
In Chapter 2 we analyzed the simplest possible circuits, those containing
only a single-node pair or a single loop. We found that these circuits can be
completely analyzed via a single algebraic equation. In the case of the sin-
gle-node-pair circuit (i.e., one containing two nodes, one of which is a ref-
erence node), once the node voltage is known, we can calculate all the
currents. In a single-loop circuit, once the loop current is known, we can cal-
culate all the voltages.

In this chapter we extend our capabilities in a systematic manner so
that we can calculate all currents and voltages in circuits that contain mul-
tiple nodes and loops. Our analyses are based primarily on two laws with
which we are already familiar: Kirchhoff’s current law (KCL) and Kirch-
hoff’s voltage law (KVL). In a nodal analysis we employ KCL to determine
the node voltages, and in a loop analysis we use KVL to determine the loop
currents.

We present and discuss a very important commercially available circuit
known as the operational amplifier, or op-amp. Op-amps are used in liter-
ally thousands of applications, including such things as compact disk (CD)
players, random access memories (RAMs), analog-to-digital (A/D) and
digital-to-analog (D/A) converters, headphone amplifiers, and electronic
instrumentation of all types. Finally, we discuss the terminal characteristics
of this circuit and demonstrate its use in practical applications as well as cir-
cuit design.
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Nodal and Loop
Analysis Techniques

3.1 Nodal Analysis An analysis technique
in which one node in an N-node network is
selected as the reference node and
Kirchhoff’s current law is applied at the
remaining N-1 nonreference nodes. The
resulting N-1 linearly independent
simultaneous equations are written in terms
of the N-1 unknown node voltages. The
solution of the N-1 linearly independent
equations yields the N-1 unknown node
voltages, which in turn can be used with
Ohm’s law to find all currents in the
circuit...Page 62

3.2 Loop Analysis An analysis technique
in which Kirchhoff’s voltage law is applied to
a network containing N independent loops.
A loop current is assigned to each
independent loop, and the application of
KVL to each loop yields a set of N
independent simultaneous equations in the
N unknown loop currents. The solution of
these equations yields the N unknown loop
currents, which in turn can be used with
Ohm’s law to find all voltages in the
circuit...Page 76

3.3 Circuits with Operational
Amplifiers The operational amplifier, or 
op-amp as it is commonly known, is an
extremely important electronic circuit. Its
characteristics are high input resistance, low
output resistance, and very high gain. It is
used in a wide range of electronic
circuits...Page 83
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Va = 3 V Vb =
V1 V3 V5

I1 I3 I5

I2 I4

1
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12 V 6 k� 4 k� 3 k�

9 k� 9 k�3 k�

+ – + – +

+
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+
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3
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  V–

Vc =
3
8
  V–Vs

Figure 3.1
Circuit with known node
voltages.

3.1 Nodal Analysis

In a nodal analysis the variables in the circuit are selected to be the node voltages. The node
voltages are defined with respect to a common point in the circuit. One node is selected as the
reference node, and all other node voltages are defined with respect to that node. Quite often
this node is the one to which the largest number of branches are connected. It is commonly called
ground because it is said to be at ground-zero potential, and it sometimes represents the chas-
sis or ground line in a practical circuit.

We will select our variables as being positive with respect to the reference node. If one or
more of the node voltages are actually negative with respect to the reference node, the analy-
sis will indicate it.

In order to understand the value of knowing all the node voltages in a network, we consider
once again the network in Fig. 2.30, which is redrawn in Fig. 3.1. The voltages, and
Vc, are all measured with respect to the bottom node, which is selected as the reference and la-
beled with the ground symbol . Therefore, the voltage at node 1 is with respect
to the reference node 5; the voltage at node 2 is with respect to the reference node
5, and so on. Now note carefully that once these node voltages are known, we can immediate-
ly calculate any branch current or the power supplied or absorbed by any element, since we know
the voltage across every element in the network. For example, the voltage across the left-
most 9-k� resistor is the difference in potential between the two ends of the resistor; that is,

 = 9 V
 = 12 - 3

 V1 = VS - Va

V1

Va = 3 V
VS = 12 V

Vb ,Va ,VS ,

This equation is really nothing more than an application of KVL around the left-most loop;
that is,

In a similar manner, we find that

and

Then the currents in the resistors are

 I5 =
V5

9k
=

Vb - Vc

9k

 I3 =
V3

3k
=

Va - Vb

3k

 I1 =
V1

9k
=

VS - Va

9k

V5 = Vb - Vc

V3 = Va - Vb

-VS + V1 + Va = 0
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vm

+

–

vN

+

–

Node m Node N

i

R

Figure 3.2
Circuit used to illustrate Ohm’s
law in a multiple-node network.

R1

R2

R3

1 2

3

V1 = 4 V V2 = –2 V

Figure 3.3
An illustration of node voltages.

In addition,

since the reference node 5 is at zero potential.
Thus, as a general rule, if we know the node voltages in a circuit, we can calculate the cur-

rent through any resistive element using Ohm’s law; that is,

3.1

as illustrated in Fig. 3.2.

i =
vm - vN

R

 I4 =
Vb - 0

4k

 I2 =
Va - 0

6k

In Example 2.3 we illustrated that the number of linearly independent KCL equations for
an N-node network was N-1. Furthermore, we found that in a two-node circuit, in which one
node was the reference node, only one equation was required to solve for the unknown node
voltage. What is illustrated in this simple case is true in general; that is, in an N-node circuit
one linearly independent KCL equation is written for each of the N-1 nonreference nodes,
and this set of N-1 linearly independent simultaneous equations, when solved, will yield
the N-1 unknown node voltages.

It is instructive to treat nodal analysis by examining several different types of circuits and
illustrating the salient features of each. We begin with the simplest case. However, as a prelude
to our discussion of the details of nodal analysis, experience indicates that it is worthwhile to
digress for a moment to ensure that the concept of node voltage is clearly understood.

At the outset it is important to specify a reference. For example, to state that the voltage at
node A is 12 V means nothing unless we provide the reference point; that is, the voltage at
node A is 12 V with respect to what. The circuit in Fig. 3.3 illustrates a portion of a network
containing three nodes, one of which is the reference node.
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v1 v2

R1

R2

R3

1 2

3
i1

i2 i3

iA
iB

Figure 3.4
A three-node circuit.

The voltage is the voltage at node 1 with respect to the reference node 3. Simi-
larly, the voltage is the voltage at node 2 with respect to node 3. In addition, how-
ever, the voltage at node 1 with respect to node 2 is ±6 V and the voltage at node 2 with respect
to node 1 is –6 V. Furthermore, since the current will flow from the node of higher potential
to the node of lower potential, the current in is from top to bottom, the current in is from
left to right, and the current in is from bottom to top.

These concepts have important ramifications in our daily lives. If a man were hanging in
midair with one hand on one line and one hand on another and the dc line voltage of each line
was exactly the same, the voltage across his heart would be zero and he would be safe. If, how-
ever, he let go of one line and let his feet touch the ground, the dc line voltage would then exist
from his hand to his foot with his heart in the middle. He would probably be dead the instant
his foot hit the ground.

In the town where I live, a young man tried to retrieve his parakeet that had escaped its cage
and was outside sitting on a power line. He stood on a metal ladder and with a metal pole
reached for the parakeet; when the metal pole touched the power line, the man was killed in-
stantly. Electric power is vital to our standard of living, but it is also very dangerous. The ma-
terial in this book does not qualify you to handle it safely. Therefore, always be extremely
careful around electric circuits.

Now as we begin our discussion of nodal analysis, our approach will be to begin with sim-
ple cases and proceed in a systematic manner to those that are more challenging. Numerous ex-
amples will be the vehicle used to demonstrate each facet of this approach. Finally, at the end
of this section, we will outline a strategy for attacking any circuit using nodal analysis.

CIRCUITS CONTAINING ONLY INDEPENDENT CURRENT SOURCES Con-
sider the network shown in Fig. 3.4. There are three nodes, and the bottom node is selected as the
reference node. The branch currents are assumed to flow in the directions indicated in the figures.
If one or more of the branch currents are actually flowing in a direction opposite to that assumed,
the analysis will simply produce a branch current that is negative.

Applying KCL at node 1 yields

Using Ohm’s law (i=Gv) and noting that the reference node is at zero potential, we obtain

or

KCL at node 2 yields

-i2 + iB + i3 = 0

AG1 + G2Bv1 - G2 v2 = iA

-iA + G1Av1 - 0B + G2Av1 - v2B = 0

-iA + i1 + i2 = 0

R3

R2R1

V2 = -2 V
V1 = 4 V

L E A R N I N G Hint
Employing the passive sign
convention.
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or

which can be expressed as

Therefore, the two equations for the two unknown node voltages and are

3.2

Note that the analysis has produced two simultaneous equations in the unknowns and They
can be solved using any convenient technique, and modern calculators and personal comput-
ers are very efficient tools for their application.

v2 .v1

 -G2 v1 + AG2 + G3Bv2 = -iB

 AG1 + G2Bv1 - G2 v2 = iA

v2v1

-G2 v1 + AG2 + G3Bv2 = -iB

-G2Av1 - v2B + iB + G3Av2 - 0B = 0

D 3.1 For the following network, write the
KCL equations for nodes 1 and 2.

ANSWER
R1

R2

R4

R3

i1 i2

v1 v2

1 2

i2 +
v1 - v2

R3
+

v1 - v2

R4
= 0

 i1 +
v1

R2
+

v1 - v2

R3
+

v1 - v2

R4
= 0

L E A R N I N G by Doing

In what follows, we will demonstrate three techniques for solving linearly independent
simultaneous equations: Gaussian elimination, matrix analysis, and the MATLAB mathe-
matical software package. A brief refresher that illustrates the use of both Gaussian elimi-
nation and matrix analysis in the solution of these equations is provided in the
Problem-Solving Companion for this text. The use of the MATLAB software is straightfor-
ward, and we will demonstrate its use as we encounter the application.

The KCL equations at nodes 1 and 2 produced two linearly independent simultaneous
equations:

The KCL equation for the third node (reference) is

Note that if we add the first two equations, we obtain the third. Furthermore, any two of the equa-
tions can be used to derive the remaining equation. Therefore, in this N=3 node circuit, only
N-1=2 of the equations are linearly independent and required to determine the N-1=2
unknown node voltages.

Note that a nodal analysis employs KCL in conjunction with Ohm’s law. Once the direc-
tion of the branch currents has been assumed, then Ohm’s law, as illustrated by Fig. 3.2 and ex-
pressed by Eq. (3.1), is used to express the branch currents in terms of the unknown node
voltages. We can assume the currents to be in any direction. However, once we assume a par-
ticular direction, we must be very careful to write the currents correctly in terms of the node
voltages using Ohm’s law.

+iA - i1 - iB - i3 = 0

 -i2 + iB + i3 = 0

 -iA + i1 + i2 = 0
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L E A R N I N G Example 3.1

Suppose that the network in Fig. 3.4 has the following parame-
ters: , and

Let us determine all node voltages and branch currents.

SOLUTION For purposes of illustration we will solve this prob-
lem using Gaussian elimination, matrix analysis, and MATLAB.
Using the parameter values Eq. (3.2) becomes

where we employ capital letters because the voltages are con-
stant. The equations can be written as

Using Gaussian elimination, we solve the first equation for in
terms of :

This value is then substituted into the second equation to yield

or

This value for is now substituted back into the equation for
in terms of which yields

The circuit equations can also be solved using matrix analysis.
The general form of the matrix equation is

GV=I

where in this case

and I = B 1 * 10-3

-4 * 10-3RG = D 1

4k

- 
1

6k

- 
1

6k

1

3k

T , V = BV1

V2
R ,

 = -6 V

 V1 =
2

3
 V2 + 4

V2  ,V1

V2

V2 = -15 V

-1

6k
 a 2

3
 V2 + 4 b +

V2

3k
= -4 * 10-3

V1 = V2 a 2

3
b + 4

V2 
V1

 - 
V1

6k
+

V2

3k
= -4 * 10-3

 
V1

4k
-

V2

6k
= 1 * 10-3

 -V1 c 1

6k
d + V2 c 1

6k
+

1

6k
d = -4 * 10-3

 V1 c 1

12k
+

1

6k
d - V2 c 1

6k
d = 1 * 10-3

R3 = 6 k�.
R1 = 12 k�, R2 = 6 k�, IB = 4 mAIA = 1 mA,

The solution to the matrix equation is

V=G–1I

and therefore,

To calculate the inverse of G, we need the adjoint and the deter-
minant. The adjoint is

and the determinant is

Therefore,

The MATLAB solution begins with the set of equations ex-
pressed in matrix form as

G*V=I

where the symbol * denotes the multiplication of the voltage
vector V by the coefficient matrix G. Then once the MATLAB
software is loaded into the PC, the coefficient matrix (G) and
the vector V can be expressed in MATLAB notation by typing
in the rows of the matrix or vector at the prompt >>. Use semi-
colons to separate rows and spaces to separate columns. Brack-
ets are used to denote vectors or matrices. When the matrix G and
the vector I have been defined, then the solution equation

V=inv(G)*I

 = B -6

-15
R

 = 18k2D 1

3k2 -
4

6k2

1

6k2 -
1

 k2

T
 BV1

V2
R = 18k2D 1

3k

1

6k

1

6k

1

4k

T B 1 * 10-3

-4 * 10-3R
 =

1

18k2

 ∑G∑ = a 1

3k
b a 1

4k
b - a -1

6k
b a -1

6k
b

Adj G = D 1

3k

1

6k

1

6k

1

4k

T

BV1

V2
R = D 1

4k

-1

6k

-1

6k

1

3k

T -1B 1 * 10-3

-4 * 10-3R
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which is also typed in at the prompt >>, will yield the unknown
vector V.

The matrix equation for our circuit expressed in decimal no-
tation is

If we now input the coefficient matrix G, then the vector I and
finally the equation V=inv(G)*I, the computer screen con-
taining these data and the solution vector V appears as follows:

>> G = [0.00025 -0.000166666; 

-0.000166666 0.00033333]

G = 

1.0e-003 *

0.2500      -0.1667

-0.1667       0.3333

>> I = [0.001 ; -0.004]

I = 

0.0010

-0.0040

>> V = inv(G)*I

B 0.00025

-0.00016666

-0.00016666

0.0003333
R BV1

V2
R = B 0.001

-0.004
R

V = 

-6.0001

-15.0002

Knowing the node voltages, we can determine all the currents
using Ohm’s law:

and

Figure 3.5 illustrates the results of all the calculations. Note that
KCL is satisfied at every node.

 I3 =
V2

6k
=

-15

6k
= - 

5

2
 mA

 I2 =
V1 - V2

6k
=

-6 - (-15)

6k
=

3

2
 mA

 I1 =
V1

R1
=

-6

12k
= - 

1

2
 mA

V1 = –6 V V2  = –15  V

1 mA 4 mA 6 k�

6 k�

12 k�

1
2
  mA–

3
2
  mA–

5
2
  mA–

Figure 3.5 Circuit used in Example 3.1.

Let us now examine the circuit in Fig. 3.6. The current directions are assumed as shown in
the figure.

At node 1, KCL yields

or

At node 2, KCL yields

-i2 + i4 - i5 = 0

 v1 a 1

R1
+

1

R2
+

1

R3
b - v2 

1

R2
- v3 

1

R3
= iA

 
v1

R1
- iA +

v1 - v2

R2
-

v3 - v1

R3
= 0

i1 - iA + i2 - i3 = 0

v1 v2 v3

R1

R2 R5

R3

R4

i1

i2

i3

i5

i4

iA iB

1 2 3

Figure 3.6
A four-node circuit.
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or

At node 3, the equation is

or

Grouping the node equations together, we obtain

3.3

Note that our analysis has produced three simultaneous equations in the three unknown node
voltages and The equations can also be written in matrix form as

3.4

At this point it is important that we note the symmetrical form of the equations that describe
the two previous networks. Equations (3.2) and (3.3) exhibit the same type of symmetrical
form. The G matrix for each network is a symmetrical matrix. This symmetry is not acciden-
tal. The node equations for networks containing only resistors and independent current sources
can always be written in this symmetrical form. We can take advantage of this fact and learn
to write the equations by inspection. Note in the first equation of (3.2) that the coefficient of

is the sum of all the conductances connected to node 1 and the coefficient of is the neg-
ative of the conductances connected between node 1 and node 2. The right-hand side of the equa-
tion is the sum of the currents entering node 1 through current sources. This equation is KCL
at node 1. In the second equation in (3.2), the coefficient of is the sum of all the conductances
connected to node 2, the coefficient of is the negative of the conductance connected between
node 2 and node 1, and the right-hand side of the equation is the sum of the currents entering
node 2 through current sources. This equation is KCL at node 2. Similarly, in the first equation
in (3.3) the coefficient of is the sum of the conductances connected to node 1, the coefficient of

is the negative of the conductance connected between node 1 and node 2, the coefficient of
is the negative of the conductance connected between node 1 and node 3, and the right-hand
side of the equation is the sum of the currents entering node 1 through current sources. The other

v3v2

v1

v1

v2

v2v1

C iA

0

- iB

S=Cv1

v2

v3

SF
1

R1
+

1

R2
+

1

R3

- 
1

R2

- 
1

R3

- 
1

R2

1

R2
+

1

R4
+

1

R5

- 
1

R5

- 
1

R3

- 
1

R5

1

R3
+

1

R5

V
v3 .v2 ,v1 ,

 -v1 
1

R3
- v2 

1

R5
+ v3 a 1

R3
+

1

R5
b = -iB

 -v1 
1

R2
+ v2 a 1

R2
+

1

R4
+

1

R5
b - v3 

1

R5
= 0

 v1 a 1

R1
+

1

R2
+

1

R3
b - v2 

1

R2
- v3 

1

R3
= iA

 -v1 
1

R3
- v2 

1

R5
+ v3 a 1

R3
+

1

R5
b = -iB

 
v3 - v1

R3
+

v3 - v2

R5
+ iB = 0

i3 + i5 + iB = 0

 -v1 
1

R2
+ v2 a 1

R2
+

1

R4
+

1

R5
b - v3 

1

R5
= 0

 - 
v1 - v2

R2
+

v2

R4
-

v3 - v2

R5
= 0
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two equations in (3.3) are obtained in a similar manner. In general, if KCL is applied to node j
with node voltage the coefficient of is the sum of all the conductances connected to
node j and the coefficients of the other node voltages are the negative of the
sum of the conductances connected directly between these nodes and node j. The right-hand
side of the equation is equal to the sum of the currents entering the node via current sources.
Therefore, the left-hand side of the equation represents the sum of the currents leaving node j
and the right-hand side of the equation represents the currents entering node j.

Ae.g., vj -1 , vj +1B
vjvj ,

L E A R N I N G Example 3.2

Let us apply what we have just learned to write the equations for
the network in Fig. 3.7 by inspection. Then given the following
parameters, we will determine the node voltages using MAT-
LAB: 

and iB = 2 mA.iA = 4 mA,
R5 = 1 k�,R3 = R4 = 4 k�,R1 = R2 = 2 k�,

If the component values are now used, the matrix equation
becomes

= 

or

=

If we now employ these data with the MATLAB software, the com-
puter screen containing the data and the results of the MATLAB
analysis is as shown next.

>> G = [0.001 0 -0.0005 ; 0 0.0005

-0.00025 ; -0.0005 -0.00025 0.00175]

G = 

0.0010   0    -0.0005

0    0.0005    -0.0003

-0.0005   -0.0003     0.0018

>> I = [-0.004 ; 0.002 ; 0]

I = 

-0.0040

0.0020

0

>> V = inv(G)*I

V = 

-4.3636

3.6364

-0.7273

C-0.004

0.002

0

SC v1

v2

v3

SC  

 0.001

 0

 -0.0005

0

0.0005

-0.00025

-0.0005

-0.00025

0.00175

S

C-0.004

0.002

0

SCv1

v2

v3

SF
1

2k
+

1

2k

0

- 
1

2k

0

1

4k
+

1

4k

- 
1

4k

-  
1

2k

-  
1

4k

1

2k
+

1

4k
+

1

1k

V
v1

v2 v3

R1

R2 R3

R4

R5

iA

iB

Figure 3.7 Circuit used in Example 3.2.

SOLUTION The equations are

which can also be written directly in matrix form as

Both the equations and the G matrix exhibit the symmetry that
will always be present in circuits that contain only resistors and
current sources.

C -iA

iA - iB

0

S=

C v1

v2

v3

SF
1

R1
+

1

R2

0

- 
1

R1

0

1

R3
+

1

R4

- 
1

R4

- 
1

R1

- 
1

R4

1

R1
+

1

R4
+

1

R5

V

 -v1 a 1

R1
b - v2 a 1

R4
b + v3 a 1

R1
+

1

R4
+

1

R5
b = 0

 -v1(0) + v2 a 1

R3
+

1

R4
b - v3 a 1

R4
b = iA - iB

 v1 a 1

R1
+

1

R2
b - v2(0) - v3 a 1

R1
b = - iA
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L E A R N I N G  E X T E N S I O N S

E3.1 Write the node equations for the circuit in Fig. E3.1.

V1 V2

2 mA4 mA 6 k� 6 k�

12 k�

ANSWER

-1

12k
 V1 +

1

4k
 V2 = -2 * 10-3.

1

4k
 V1 -

1

12k
 V2 = 4 * 10-3

 ,

E3.2 Find all the node voltages in the network in Fig. E3.2 using MATLAB.

V1
V2 V3

4 mA 2 mA

1 k�

2 k� 4 k�

1 k�

ANSWER
 V3 = 3.1429 V. V2 = 2.000 V,

 V1 = 5.4286 V,

v1 v2

R1

R2

R3 iA�io
io

Figure 3.8
Circuit with a dependent source.

CIRCUITS CONTAINING DEPENDENT CURRENT SOURCES The pres-
ence of a dependent source may destroy the symmetrical form of the nodal equations that define
the circuit. Consider the circuit shown in Fig. 3.8, which contains a current-controlled current
source. The KCL equations for the nonreference nodes are

�io +
v1

R1
+

v1 - v2

R2
= 0

Figure E3.1

Figure E3.2

and

where Simplifying the equations, we obtain

or in matrix form

=

Note that the presence of the dependent source has destroyed the symmetrical nature of the
node equation.

B 0

iA
RBv1

v2
RB AG1 + G2B

-G2

- AG2 - �G3BAG2 + G3B R
 -G2 v1 + AG2 + G3Bv2 = iA

 AG1 + G2Bv1 - AG2 - �G3Bv2 = 0

io = v2�R3 .

v2 - v1

R2
+ io - iA = 0

IRW03-065-112.I ALL  15-02-2001  13:53  Page 74



S E C T I O N  3 . 1 N O D A L  A N A L Y S I S 75

L E A R N I N G Example 3.3

Let us determine the node voltages for the network in Fig. 3.8
given the following parameters:

SOLUTION Using these values with the equations for the net-
work yields

Solving these equations using any convenient method yields
and We can check these answers

by determining the branch currents in the network and then using
that information to test KCL at the nodes. For example, the cur-
rent from top to bottom through isR3

V2 = 12�5 V.V1 = -24�5 V

 - 
1

6k
 V1 +

1

2k
 V2 = 2 * 10-3

 
1

4k
 V1 +

1

2k
 V2 = 0

 R3 = 3 k� R1 = 12 k�

 iA = 2 mA R2 = 6 k� � = 2 Similarly, the current from right to left through is

All the results are shown in Fig. 3.9. Note that KCL is satisfied
at every node.

I2 =
V2 - V1

R2
=

12�5 - (-24�5)

6k
=

6

5k
 A

R2

Io =
V2

R3
=

12�5

3k
=

4

5k
 A

12 k� 3 k�

6 k�

V1 = –24  V
5

— V2 =  12  V
5

—I2 =  6   A
5k
—

I1 = –2   A
5k
— Io =  4   A

5k
—

 10  A
5k
—2Io=  8   A

5k
—

Figure 3.9 Circuit used in Example 3.3.

L E A R N I N G Example 3.4

Let us determine the set of linearly independent equations that
when solved will yield the node voltages in the network in Fig. 3.10.
Then given the following component values, we will compute the
node voltages using MATLAB: 

and � = 2.iB = 4 mA,iA = 2 mA,R4 = 4 k�,
R2 = R3 = 2 k�,R1 = 1 k�,

v1
v2

v3

�vx

vx

R1 R2
R4R3

+ –

iB

iA

Figure 3.10
Circuit containing a
voltage-controlled
current source.

SOLUTION Applying KCL at each of the nonreference nodes
yields the equations

where Simplifying these equations, we obtain

 -G2  v2 + AG2 + G4Bv3 = iB

  -G1  v1 + AG1 + � + G2Bv2 - A� + G2Bv3 = - iA

 AG1 + G3Bv1 - G1  v2 = iA

vx = v2 - v3  .

 G2Av3 - v2B + G4 v3 - iB = 0

 iA + G1Av2 - v1B + �vx + G2Av2 - v3B = 0

 G3 v1 + G1Av1 - v2B - iA = 0

Given the component values, the equations become

=

or

=

The MATLAB input and output listings are shown next.

>> G = [0.0015 -0.001 0 ; -0.001

2.0015 -2.0005 ; 0 -0.0005 0.00075]

G = 

0.0015   -0.0010         0

-0.0010    2.0015   -2.0005

0   -0.0005    0.0008

C 0.002

-0.002

0.004

SC v1

v2

v3

SC 0.0015

-0.001

0

-0.001

2.0015

-0.0005

0

-2.0005

0.00075

S
C 0.002

-0.002

0.004

S
C v1

v2

v3

SF
1

1k
+

1

2k

- 
1

k

0

- 
1

k

1

k
+ 2 +

1

2k

- 
1

2k

0

- a 2 +
1

2k
b

1

2k
+

1

4k

V
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>> I = [0.002 ; -0.002 ; 0.004]

I = 

0.0020

-0.0020

0.0040

>> V = inv(G)*I

V = 

11.9940

15.9910

15.9940

ANSWER Vo = 4 V.

L E A R N I N G  E X T E N S I O N S

E3.3 Find the node voltages in the circuit in Fig. E3.3.

Io

2Io

V1 V2

4 mA

10 k�10 k�

10 k�

ANSWER
V2 = -8 V.

V1 = 16 V,

E3.4 Find the voltages in the network in Fig. E3.4.

Figure E3.4

Vo

Vx

2 mA 12 k� 12 k�3 k�

+

–

Vx

6000
———

Vo

CIRCUITS CONTAINING INDEPENDENT VOLTAGE SOURCES As is our
practice, in our discussion of this topic we will proceed from the simplest case to those that are
more complicated. The simplest case is that in which an independent voltage source is connected
to the reference node. The following example illustrates this case.

L E A R N I N G Example 3.5

Consider the circuit shown in Fig. 3.11a. Let us determine all
node voltages and branch currents.

SOLUTION This network has three nonreference nodes with la-
beled node voltages and Based on our previous dis-
cussions, we would assume that in order to find all the node
voltages we would need to write a KCL equation at each of the
nonreference nodes. The resulting three linearly independent si-
multaneous equations would produce the unknown node voltages.
However, note that and are known quantities because an in-
dependent voltage source is connected directly between the non-
reference node and each of these nodes. Therefore, 
and Furthermore, note that the current through the
9-k� resistor is from left to right. We
do not know or the current in the remaining resistors. However,V2

[12 - (-6)]�9k = 2 mA
V3 = -6 V.

V1 = 12 V

V3V1

V3  .V2  ,V1  ,

since only one node voltage is unknown, a single-node equation
will produce it. Applying KCL to this center node yields

or

from which we obtain

Once  all the node voltages are known, Ohm’s law can be used
to find the branch currents shown in Fig. 3.11b. The diagram il-
lustrates that KCL is satisfied at every node.

V2 =
3

2
 V

 
V2 - 12

12k
+

V2

6k
+

V2 - (-6)

12k
= 0

 
V2 - V1

12k
+

V2 - 0

6k
+

V2 - V3

12k
= 0

Figure E3.3
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Note that the presence of the voltage sources in this example
has simplified the analysis, since two of the three linear indepen-
dent equations are and We will find that
as a general rule, any time voltage sources are present between nodes,
the node voltage equations that describe the network will be simpler.

V3 = -6 V.V1 = 12 V

V1
V2 V3

12 V 12 V6 V 6 V

(a) (b)

+ 12 V –6 V

9 k� 9 k�

12 k�

12 k� 12 k�

12 k�

6 k� 6 k�

3  V–
2

4k
1   A—

8k
21  A—8k

23  A—

8k
7  A—

8k
5  A—

k
2   A—

Figure 3.11
Circuit used in Example 3.5.

L E A R N I N G Hint
Any time an independent voltage source is
connected between the reference node and a
nonreference node, the nonreference node
voltage is known.

Next let us consider the case in which an independent voltage source is connected between
two nonreference nodes. Once again, we will use an example to illustrate the approach.

L E A R N I N G Example 3.6

We wish to find the currents in the two resistors in the circuit in
Fig. 3.12a.

SOLUTION If we try to attack this problem in a brute force man-
ner, we immediately encounter a problem. Thus far, branch cur-

rents were either known source values or could be expressed as
the branch voltage divided by the branch resistance. However,
the branch current through the 6-V source is certainly not known
and cannot be directly expressed using Ohm’s law. We can, of
course, give this current a name and write the KCL equations

V1 V2

(a)

6 mA

6 V

4 mA

6 k� 12 k�

V1 V2

I1 I2

(b)

6 V

6 mA

4 mA

6 k� 12 k�

Figure 3.12
Circuits used in Example 3.6.

L E A R N I N G  E X T E N S I O N

E3.5 Use nodal analysis to find the current in the network in Fig. E3.5.

3 V6 V

6 k� 6 k�

3 k�

Io

V0

Io ANSWER Io =
3

4
 mA.

Figure E3.5

(continued)
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at the two nonreference nodes in terms of this current. Howev-
er, this approach is no panacea because this technique will result
in two linearly independent simultaneous equations in terms of
three unknowns; that is, the two node voltages and the current in
the voltage source.

To solve this dilemma, we recall that N-1 linearly inde-
pendent equations are required to determine the N-1 nonref-
erence node voltages in an N-node circuit. Since our network
has three nodes, we need two linearly independent equations.
Now note that if somehow one of the node voltages is known, we
immediately know the other; that is, if is known, then

If is known, then Therefore,
the difference in potential between the two nodes is constrained
by the voltage source and, hence,

This constraint equation is one of the two linearly independent
equations needed to determine the node voltages.

Next consider the network in Fig. 3.12b, in which the 6-V
source is completely enclosed within the dashed surface. The
constraint equation governs this dashed portion of the network.
The remaining equation is obtained by applying KCL to this

V1 - V2 = 6

V1 = V2 + 6.V2V2 = V1 - 6.
V1

dashed surface, which is commonly called a supernode. Recall
that in Chapter 2 we demonstrated that KCL must hold for a sur-
face, and this technique eliminates the problem of dealing with
a current through a voltage source. KCL for the supernode is

Solving these equations yields and and,
hence, and A quick check indicates
that KCL is satisfied at every node.

I2 = 1�3 mA.I1 = 5�3 mA
V2 = 4 VV1 = 10 V

-6 * 10-3 +
V1

6k
+

V2

12k
+ 4 * 10-3 = 0

L E A R N I N G Hint
The supernode technique

◗ Use it when a branch between two nonreference nodes contains
a voltage source.

◗ First encircle the voltage source and the two connecting nodes
to form the supernode.

◗ Write the equation that defines the voltage relationship between
the two nonreference nodes as a result of the presence of the
voltage source.

◗ Write the KCL equation for the supernode.
◗ If the voltage source is dependent, then the controlling equation

for the dependent source is also needed.

L E A R N I N G Example 3.7

Let us determine the current in the network in Fig. 3.13a.Io

Io

Io

V1

V3 + 12

V3

V2 V3 V4

12 V

12 V

6 V

6 V

12 V

12 V

(a)

(b)

2 k�

2 k�

2 k�

2 k� 2 k�

2 k�

1 k�1 k�

1 k� 1 k�

Figure 3.13
Example circuit with
supernodes.

SOLUTION Examining the network, we note that node volt-
ages and are known and the node voltages and are
constrained by the equation

The network is redrawn in Fig. 3.13b.
Since we want to find the current (in the supernode

containing and ) is written as . The KCL equation
at the supernode is then

Solving the equation for yields

can then be computed immediately as

Io =
-  

6

7

2k
= -  

3

7
 mA

Io

V3 = -  
6

7
 V

V3

V3 - (-6)

1k
+

V3 - 12

1k
+

V3

2k
= 0

V3 + 12 - (-6)

2k
+

V3 + 12 - 12

2k
+

V3 + 12V3V1

Io  , V1

V1 - V3 = 12

V3V1V4V2
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CIRCUITS CONTAINING DEPENDENT VOLTAGE SOURCES As the fol-
lowing examples will indicate, networks containing dependent (controlled) sources are treat-
ed in the same manner as described earlier.

L E A R N I N G Example 3.8

We wish to find in the network in Fig. 3.14.Io KCL at the node labeled is

where

Solving these equations yields and 
Therefore

 = 4 mA

 Io =
V1 - V2

2k

V1 = 16 V.V2 = 8 V

Ix =
V2

1k

V2 - V1

2k
-

4

k
+

V2

1k
= 0

V2

V2V1 Ix

2 kIx

2 k�

2 k� 1 k�4 mA

Io

Figure 3.14 Circuit used in Example 3.8.

SOLUTION Since the dependent voltage source is connected
between the node labeled and the reference node,

V1 = 2kIx

V1

L E A R N I N G Example 3.9

Let us find the current in the network in Fig. 3.15.Io Applying KCL to the supernode, we obtain

where the constraint equation for the supernode is

The final equation is

Solving these equations, we find that

and, hence,

Io =
V1

12k
=

3

8
 mA

V1 =
9

2
 V

V3 = 6

V1 - V2 = 2Vx

V1 - V3

6k
+

V1

12k
+

V2

6k
+

V2 - V3

12k
= 0

2Vx

Vx

Io

V2 V3V1

6 k�

6 k� 6 V12 k�

12 k�

+

–Figure 3.15
Circuit used in
Example 3.9.

SOLUTION This circuit contains both an independent voltage
source and a voltage-controlled voltage source. Note that 

and a supernode exists between the nodes labeled 
and V2  .

V1V2 = Vx  ,
V3 = 6 V  ,

L E A R N I N G  E X T E N S I O N

E3.6 Use nodal analysis to find in the network in Fig. E3.6.

Figure E3.6

V1 V2 V3 V4

4 V6 V

12 V

1 k� 2 k�

2 k�2 k�

Io

Io ANSWER Io = 3.8 mA.
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Problem-Solving Strategy
Nodal Analysis

L E A R N I N G  E X T E N S I O N

E3.7 Use nodal analysis to find in the circuit in Fig. E3.7.

Figure E3.7

Io

V1 V2

2 mA4 mA
2 k� 2 k�

Ix

2000 Ix

Io ANSWER Io =
4

3
 mA.

◗ Select one node in the N-node circuit as the reference node. Assume that the node volt-
age is zero and measure all node voltages with respect to this node.

◗ If only independent current sources are present in the network, write the KCL equations
at the N-1 nonreference nodes. If dependent current sources are present, write the
KCL equations as is done for networks with only independent current sources; then write
the controlling equations for the dependent sources.

◗ If voltage sources are present in the network, they may be connected (1) between the ref-
erence node and a nonreference node or (2) between two nonreference nodes. In the for-
mer case, if the voltage source is an independent source, then the voltage at one of the
nonreference nodes is known. If the source is dependent, it is treated as an independent
source when writing the KCL equation, but an additional constraint equation is neces-
sary, as described previously.

In the latter case, if the source is independent, the voltage between the two nodes is
constrained by the value of the voltage source, and an equation describing this constraint
represents one of the N-1 linearly independent equations required to determine the
N-node voltages. The surface of the network described by the constraint equation (i.e.,
the source and two connecting nodes) is called a supernode. One of the remaining N-1
linearly independent equations is obtained by applying KCL at this supernode. If the
voltage source is dependent, it is treated as an independent source when writing the KCL
equations, but an additional constraint equation is necessary, as described previously.

3.2 Loop Analysis

In a nodal analysis the unknown parameters are the node voltages, and KCL is employed to de-
termine them. In contrast to this approach, a loop analysis uses KVL to determine currents in
the circuit. Once the currents are known, Ohm’s law can be used to calculate the voltages. Re-
call that, in Chapter 2, we found that a single equation was sufficient to determine the current
in a circuit containing a single loop. If the circuit contains N independent loops, we will show
that N independent simultaneous equations will be required to describe the network. For now
we will assume that the circuits are planar, which simply means that we can draw the circuit
on a sheet of paper in a way such that no conductor crosses another conductor.

Our approach to loop analysis will mirror that used in nodal analysis (i.e., we will begin
with simple cases and systematically proceed to those that are more difficult). Then at the end
of this section we will outline a general strategy for employing loop analysis.
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vS2

vS1

v1

v3 v4

v2 v5

R1

R2

R3 R4

R5

i1 i2
+

–

+

+

+ +– –

–

–

A B C

F E D Figure 3.16
A two-loop circuit.

CIRCUITS CONTAINING ONLY INDEPENDENT VOLTAGE SOURCES To
begin our analysis, consider the circuit shown in Fig. 3.16. Let us also identify two loops, 
A-B-E-F-A and B-C-D-E-B. We now define a new set of current variables called loop currents,
which can be used to find the physical currents in the circuit. Let us assume that current 
flows in the first loop and that current flows in the second loop. Then the branch current
flowing from B to E through is The directions of the currents have been assumed.
As was the case in the nodal analysis, if the actual currents are not in the direction indicated,
the values calculated will be negative.

Applying KVL to the first loop yields

KVL applied to loop 2 yields

where 

Substituting these values into the two KVL equations produces the two simultaneous equa-
tions required to determine the two loop currents; that is,

or in matrix form

At this point it is important to define what is called a mesh. A mesh is a special kind of loop
that does not contain any loops within it. Therefore, as we traverse the path of a mesh, we do not
encircle any circuit elements. For example, the network in Fig. 3.16 contains two meshes defined
by the paths A-B-E-F-A and B-C-D-E-B. The path A-B-C-D-E-F-A is a loop, but it is not a mesh.
Since the majority of our analysis in this section will involve writing KVL equations for mesh-
es, we will refer to the currents as mesh currents and the analysis as a mesh analysis.

BR1 + R2 + R3

-R3

-R3

R3 + R4 + R5
R B i1

i2
R = B vS1

-vS2
R

 -i1AR3B + i2AR3 + R4 + R5B = -vS2

 i1AR1 + R2 + R3B - i2AR3B = vS1

v1 = i1R1 , v2 = i1R2 , v3 = Ai1 - i2B  R3 , v4 = i2R4 , and v5 = i2R5 .

+vS2 + v4 + v5 - v3 = 0

+v1 + v3 + v2 - vS1 = 0

i1 - i2.R3

i2

i1

D 3.2 Write the mesh
equations for the follow-
ing circuit.

ANSWER

+  i2RS + i2R4 + vS3 = 0

 i2R3 + Ai2 - i1BR2

+ Ai1 - i2BR2 = 0

-vS1 + i1R1 - vS2

vS2vS1

vS3

R1

R2

R3

R4

R5

i1

i2

L E A R N I N G by Doing

L E A R N I N G Hint
The equations employ the
passive sign convention.

L E A R N I N G Example 3.10

Consider the network in Fig. 3.17a. We wish to find the current 

SOLUTION We will begin the analysis by writing mesh equa-
tions. Note that there are no ± and – signs on the resistors. Howev-
er, they are not needed, since we will apply Ohm’s law to each
resistive element as we write the KVL equations. The equation for
the first mesh is

-12 + 6kI1 + 6kAI1 - I2B = 0

Io  . The KVL equation for the second mesh is

where 
Solving the two simultaneous equations yields 

and Therefore, All the voltages and
currents in the network are shown in Fig. 3.17b. Recall from nodal
analysis that once the node voltages were determined, we could

Io = 3�4 mA.I2 = 1�2 mA.
I1 = 5�4 mA

Io = I1 - I2  .

6kAI2 - I1B + 3kI2 + 3 = 0

(continued)
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Once again we are compelled to note the symmetrical form of the mesh equations that de-
scribe the circuit in Fig. 3.16. Note that the coefficient matrix for this circuit is symmetrical.

Since this symmetry is generally exhibited by networks containing resistors and inde-
pendent voltage sources, we can learn to write the mesh equations by inspection. In the
first equation, the coefficient of is the sum of the resistances through which mesh current
1 flows, and the coefficient of is the negative of the sum of the resistances common to mesh
current 1 and mesh current 2. The right-hand side of the equation is the algebraic sum of
the voltage sources in mesh 1. The sign of the voltage source is positive if it aids the assumed
direction of the current flow and negative if it opposes the assumed flow. The first equation
is KVL for mesh 1. In the second equation, the coefficient of is the sum of all the
resistances in mesh 2, the coefficient of is the negative of the sum of the resistances com-
mon to mesh 1 and mesh 2, and the right-hand side of the equation is the algebraic sum of
the voltage sources in mesh 2. In general, if we assume all of the mesh currents to be in the
same direction (clockwise or counterclockwise), then if KVL is applied to mesh j with mesh
current the coefficient of is the sum of the resistances in mesh j and the coefficients of
the other mesh currents are the negatives of the resistances common to these
meshes and mesh j. The right-hand side of the equation is equal to the algebraic sum of the
voltage sources in mesh j. These voltage sources have a positive sign if they aid the current
flow and a negative sign if they oppose it.ij

Ae.g., ij -1 , ij +1B
ijij ,

i1

i2

i2

i1

check our analysis using KCL at the nodes. In this case we know the
branch currents and can use KVL around any closed path to check
our results. For example, applying KVL to the outer loop yields

Since we want to calculate the current we could use loop
analysis, as shown in Fig. 3.17c. Note that the loop current 
passes through the center leg of the network and, therefore,

The two loop equations in this case are

and

Solving these equations yields and 
Since the current in the 12-V source is these
results agree with the mesh analysis.

I1 + I2 = 5�4 mA,
I2 = 1�2 mA.I1 = 3�4 mA

-12 + 6kAI1 + I2B + 3kI2 + 3 = 0

-12 + 6kAI1 + I2B + 6kI1 = 0

I1 = Io  .

I1

Io  ,

 0 = 0

 -12 +
15

2
+

3

2
+ 3 = 0

Finally, for purposes of comparison, let us find using nodal
analysis. The presence of the two voltage sources would indi-
cate that this is a viable approach. Applying KCL at the top cen-
ter node, we obtain

and hence,

and then

Note that in this case we had to solve only one equation instead
of two.

Io =
Vo

6k
=

3

4
 mA

Vo =
9

2
 V

Vo - 12

6k
+

Vo

6k
+

Vo - 3

3k
= 0

Io

Io
Io

VoVo Vo

I1
I1 I2I2

6 k�

6 k�

6 k�

6 k�

6 k�

3 k�

6 k�12 V 12 V 12 V3 V 3 V

(a) (c)(b)

3 V

3 k�

3 k�
+ – +

+

–

–
1
2
  mA–5

4
  mA–

3
4
  mA–

9
2
  V–

2
15  V—

2
3  V–

Figure 3.17 Circuits used in Example 3.10.
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CIRCUITS CONTAINING INDEPENDENT CURRENT SOURCES Just as
the presence of a voltage source in a network simplified the nodal analysis, the presence of a
current source simplifies a loop analysis. The following examples illustrate the point.

L E A R N I N G Example 3.11

Let us write the mesh equations by inspection for the network
in Fig. 3.18. Then we will use MATLAB to solve for the mesh
currents.

Note the symmetrical form of the equations. The general form of
the matrix equation is

RI=V
and the solution of this matrix equation is

I=R–1V

The input/output data for a MATLAB solution are as follows:
>> R = [10e3 0 -6e3; 0 12e3 -3e3; 

-6e3 -3e3 21e3]

R = 

  10000        0   -6000

        0    12000   -3000

   -6000    -3000    21000

>> V = [ -6 ; 6 ; 0]

V = 

      -6

       6

      0

>> I = inv(R)*V

I =

1.0e-003 *

-0.6757

0.4685

-0.1261

I1

I2
I3 12 k�3 k�

4 k�

6 k�

6 V
9 k�

Figure 3.18 Circuit used in Example 3.11.

SOLUTION The three linearly independent simultaneous equa-
tions are

or in matrix form

C 10k

0

-6k

0

12k

-3k

-6k

-3k

21k

S C I1

I2

I3

S = C-6

6

0

S
 -(6k)I1 - (3k)I2 + (3k + 6k + 12k)I3 = 0

 -(0)I1 + (9k + 3k)I2 - (3k)I3 = 6

 (4k + 6k)I1 - (0)I2 - (6k)I3 = -6

L E A R N I N G  E X T E N S I O N

E3.8 Use mesh equations to find in the circuit in Fig. E3.8.

3 V

6 k�

2 k�

2 k�

+

–

Vo

4 k�

6 V

Vo ANSWER Vo =
33

5
 V.

Figure E3.8
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What we have demonstrated in the previous example is the general approach for dealing
with independent current sources when writing KVL equations; that is, use one loop through
each current source. The number of “window panes” in the network tells us how many equa-
tions we need. Additional KVL equations are written to cover the remaining circuit elements
in the network. The following example illustrates this approach.

L E A R N I N G Hint
In this case the 4-mA current source is located on the boundary
between two meshes. Thus we will demonstrate two techniques
for dealing with this type of situation. One is a special loop
technique and the other is known as the supermesh approach.

L E A R N I N G Example 3.13

Let us find in the network in Fig. 3.20a.Io

SOLUTION First, we select two loop currents and such
that passes directly through the 2-mA source, and passes di-
rectly through the 4-mA source, as shown in Fig. 3.20b. There-
fore, two of our three linearly independent equations are 

The remaining loop current must pass through the circuit elements
not covered by the two previous equations and cannot, of course,
pass through the current sources. The path for this remaining loop
current can be obtained by open-circuiting the current sources, as
shown in Fig. 3.20c. When all currents are labeled on the original cir-
cuit, the KVL equation for this last loop, as shown in Fig. 3.20d, is

Solving the equations yields

and therefore,

Io = I1 - I2 - I3 =
-4

3
 mA

I3 =
-2

3
 mA

-6 + 1kI3 + 2kAI2 + I3B + 2kAI3 + I2 - I1B + 1kAI3 - I1B = 0

I3

 I2 = 4 * 10-3

 I1 = 2 * 10-3

I2I1

I2I1Io

I1 I2

1 k�

1 k�

2 k� 2 k�

6 V

(a)

2 mA

4 mA

Io

1 k�

1 k�

2 k� 2 k�

6 V

(b)

2 mA

4 mA

I1

I3 I3

I2

1 k�

1 k�

2 k� 2 k�

6 V

(c)

Io

1 k�

1 k�

2 k�
2 k�

6 V

(d)

2 mA

4 mA

I1 I2

I3 I3

Io

I1 I2

1 k�

1 k�

2 k�

2 k�

6 V

(e)

2 mA

4 mA

I0

1 k�

1 k�

2 k�

6 V

(f)

2 mA

2 k�

Figure 3.20 Circuits used in Example 3.13.

L E A R N I N G Example 3.12

We wish to find in the network in Fig. 3.19.Vo SOLUTION Since the currents and pass directly through
a current source, two of the three required equations are

The third equation is KVL for the mesh containing the voltage
source; that is,

These equations yield

and hence,

Vo = 6kI3 - 3 =
-3

2
 V

I3 =
1

4
 mA

4kAI3 - I2B + 2kAI3 - I1B + 6kI3 - 3 = 0

 I2 = -2 * 10-3

 I1 = 4 * 10-3

I2I1

Vo

I1

I2

I3

2 mA 3 V

4 mA

6 k�2 k�

4 k�

4 k�

+

–

Figure 3.19 Circuit used in Example 3.12.
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Note that the unknown voltage has been eliminated. The two
constraint equations, together with this latter equation, yield the
desired result.

The purpose of the supermesh approach is to avoid intro-
ducing the unknown voltage The supermesh is created by
mentally removing the 4-mA current source, as shown in
Fig. 3.20f. Then writing the KVL equation around the dotted
path, which defines the supermesh, using the original mesh cur-
rents as shown in Fig. 3.20e, yields

Note that this supermesh equation is the same as that obtained
earlier by introducing the voltage Vx  .

-6 + 1kI3 + 2kI2 + 2kAI2 - I1B + 1kAI3 - I1B = 0

Vx  .

VxNext consider the supermesh technique. In this case the three
mesh currents are specified as shown in Fig. 3.20e, and since the
voltage across the 4-mA current source is unknown, it is assumed
to be The mesh currents constrained by the current sources are

The KVL equations for meshes 2 and 3, respectively, are

Adding the last two equations yields

-6 + 1kI3 + 2kI2 + 2kAI2 - I1B + 1kAI3 - I1B = 0

 -6 + 1kI3 + Vx + 1kAI3 - I1B = 0

 2kI2 + 2kAI2 - I1B - Vx = 0

 I2 - I3 = 4 * 10-3

 I1 = 2 * 10-3

Vx  .

L E A R N I N G  E X T E N S I O N S

E3.9 Find in the network in Fig. E3.9.

Vo4 mA

5 V

6 k�

4 k�2 k�

+ –

Vo ANSWER Vo =
33

5
 V.

3.10 Find in the network in Fig. E3.10.

Vo2 mA

4 mA

4 V 4 k�

1 k�2 k� +

–

Vo ANSWER Vo =
32

5
 V.

Figure E3.9

Figure E3.10

CIRCUITS CONTAINING DEPENDENT SOURCES We deal with circuits con-
taining dependent sources just as we have in the past. First, we treat the dependent source as
though it were an independent source when writing the KVL equations. Then we write the
controlling equation for the dependent source. The following examples illustrate the point.

L E A R N I N G Example 3.14

The network in Fig. 3.21 contains both a current-controlled volt-
age source and a voltage-controlled current source. Let us use
MATLAB to determine the loop currents.

SOLUTION The equations for the loop currents shown in the
figure are

 1kAI4 - I3B + 1kAI4 - I2B + 12 = 0

 -1kIx + 2kAI3 - I1B + 1kAI3 - I4B = 0

I2 =
Vx

2k

I1 =
4

k

(continued)
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where

Combining these equations yields

In matrix form the equations are

=E 4

k

0

8

12

UD I1

I2

I3

I4

TD 1

1

0

0

0

1

1k

1k

0

-1

3k

1k

0

0

-2k

-2k

T

 1kI2 + 1kI3 - 2kI4 = 12

 1kI2 + 3kI3 - 2kI4 = 8

 I1 + I2 - I3 = 0

  I1 =
4

k

 Ix = I4 - I2

 Vx = 2kAI3 - I1B

The input and output data for the MATLAB solution are as
follows:

>> R = [ 1 0 0 0 ; 1 1 -1 0; 

0 1000 3000 -2000; 

0 1000 1000 -2000]

R = 

1       0       0        0

1       1      -1        0

0    1000    3000    -2000

0    1000    1000    -2000

>> V = [ 0.004; 0; 8; 12]

V = 

0.0040

0

8.0000

12.0000

>> I = inv(R)*V

I =

0.0040

-0.0060

-0.0020

-0.0100

1kIx 12 V

4 mA

2 k� 1 k�

2 k�

1 k�

Vx

2k
—

Vx+ –

I1 I2

I3 I4

Ix

Figure 3.21
Circuit used in
Example 3.14.

L E A R N I N G  E X T E N S I O N

E3.11 Use mesh analysis to find in the circuit in Fig. E3.11.

Figure E3.11

Vo
2000 Ix

Ix

12 V

4 k� 2 k�

2 k�

+

–

Vo ANSWER Vo = 12 V.

As a final point, it is very important to examine the circuit carefully before selecting an
analysis approach. One method could be much simpler than another, and a little time invested
up front may save a lot of time in the long run.
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Problem-Solving Strategy
Loop Analysis

◗ One loop current is assigned to each independent loop in a circuit that contains N inde-
pendent loops.

◗ If only independent voltage sources are present in the network, write the N linearly inde-
pendent KVL equations, one for each loop. If dependent voltage sources are present,
write the KVL equation as is done for circuits with only independent voltage sources;
then write the controlling equations for the dependent sources.

◗ If current sources are present in the network, either of two techniques can be used. In the
first case, one loop current is selected to pass through one of the current sources. This is
done for each current source in the network. The remaining loop currents (N-the num-
ber of current sources) are determined by open-circuiting the current sources in the net-
work and using this modified network to select them. Once all these currents are defined
in the original network, the N loop equations can be written. The second approach is simi-
lar to the first with the exception that if two mesh currents pass through a particular cur-
rent source, a supermesh is formed around this source. The two required equations for the
meshes containing this source are the constraint equations for the two mesh currents that
pass through the source and the supermesh equation. As indicated earlier, if dependent
current sources are present, the controlling equations for these sources are also necessary.

L E A R N I N G  E X T E N S I O N S

E3.12 Use loop analysis to solve the network in Example 3.5 and compare the time and effort
involved in the two solution techniques.

E3.13 Use nodal analysis to solve the circuit in Example 3.12 and compare the time and effort
involved in the two solution strategies.

3.3 Circuits with Operational Amplifiers

It can be argued that the operational amplifier, or op-amp as it is commonly known, is the sin-
gle most important integrated circuit for analog circuit design. It is a versatile interconnection
of transistors and resistors that vastly expands our capabilities in circuit design, from engine
control systems to cellular phones. Early op-amps were built with vacuum tubes, making them
bulky and power hungry. The invention of the transistor at Bell Labs in 1947 allowed engineers
to create op-amps that were much smaller and more efficient. Still, the op-amp itself consist-
ed of individual transistors and resistors interconnected on a printed circuit board (PCB). When
the manufacturing process for integrated circuits (ICs) was developed around 1970, engineers
could finally put all of the op-amps transistors and resistors onto a single IC chip. Today, it is
common to find as many as four high quality op-amps on a single IC for as little as $0.40. A
sample of commercial op-amps is shown in Fig. 3.22.

Let us first examine the origin of the term operational amplifier. Originally, the op-amp
was designed to perform mathematical operations such as addition, subtraction, differentia-
tion, and integration. By adding simple networks to the op-amp, we can create these “building
blocks” as well as other functions such as voltage scaling, current-to-voltage conversion, and
a myriad of more complex applications.
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(a) (b)

Figure 3.22 A selection of op-amps. On the left in (a) is a discrete op-amp assembled on a printed
circuit board (PCB). On the right from top to bottom, a LM324 DIP (dual in-line pack), LMC6294 DIP, and
MAX4240 in a SO-5 package (small outline/5 pins). A penny is shown for purposes of comparison. In (b)
is the APEX PA03 with its lid removed showing individual transistors and resistors.

How can we, understanding only sources and resistors, hope to comprehend the perfor-
mance of the op-amp? The answer is modeling. When all the bells and whistles are removed,
an op-amp is simply a very good voltage amplifier. In other words, the output voltage is a
scaled replica of the input voltage. Modern op-amps are such good amplifiers that it is easy to
create an accurate, first-order model. As mentioned earlier, the op-amp is very popular and is
used extensively in circuit design at all levels. We should not be surprised to find that op-amps
are available for every application—low voltage, high voltage, micro-power, high speed, high
current, and so forth. Fortunately, the topology of our model is independent of these issues.

We begin our discussion with the general purpose LM324 quad (four in a pack) op-amp from
National Semiconductor. The pinout for the LM324 is shown in Fig. 3.23 for a DIP (dual in-

4

1

3

2

0.04

0.1

0.3

0.78

0.06

(a) (b)

14
OUT 4

13
IN 4–

12
IN 4+

11
VEE

10
IN 3–

9
IN 3+

8
OUT 3

OUT 1
1

IN 1–
2

IN 1+
3

VCC
4

IN 2–
5

IN 2+
6

OUT 2
7

Figure 3.23 (a) The pinout and (b) the dimensional diagram of one side of the LM324 quad op-amp.
Note the pin pitch (distance pin-to-pin) is 0.1 inches, a standard for DIP packages.
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vo(t)

Ro

Ri

Aovin

+

–

Vin(t)

+

+

–

–

in+(t)

in–(t)

+

– Figure 3.24
A simple model of the gain
characteristics of an op-amp.

line pack) style package with the dimensions specified in inches. Recognizing there are four
identical op-amps in the package, we will focus on amplifier 1. Pins 3 and 2 are the input pins,

and and are called the noninverting and inverting inputs, respectively. The output is
at pin 1. The relationship that exists between the output and input voltages is

3.5

where all voltages are measured with respect to ground and is the gain of the op-amp. From
Eq. (3.5), we see that when increases, so will However, if increases, then will
decrease—hence the names noninverting and inverting inputs. We mentioned earlier that op-
amps are very good voltage amplifiers. How good? Typical values for are between 10,000
and 1,000,000!

To provide amplification, we need power. This power is obtained from dc voltage sources
connected to pins 4 and 11, called and respectively. Actual values for these power sup-
plies can vary widely depending on the application, from as little as one volt up to several hun-
dred volts. Traditionally, is a positive dc voltage with respect to ground and is either
a negative voltage or ground itself.

We can model the input/output relationship of the op-amp, as specified in Eq. (3.5), using
a dependent voltage source. The currents into and out of the op-amp terminals (pins 3, 2, and 1)
are fairly proportional to the pin voltages; that is, the relationship is essentially that specified
by Ohm’s law. Thus, we model the I-V performance with two resistors, one at the input terminals

and another at the output The resultant circuit is shown in Fig. 3.24.
Let us now examine the values for , and Consider the network in Fig. 3.25, where

we have modeled the driving circuit with and a resistance and the output load with a
resistor 

Since the op-amp is designed to be an excellent voltage amplifier, let us write an equation
for the overall gain of the circuit Using voltage division at the input and again at the
output, we quickly produce the expression

Vout

Vin
= c Ri

Ri + RTh1
dAo c RL

Ro + RL
d

Vout�Vin .

RL .
RTh1 ,VS

Ro .RiAo ,
ARoB.ARiB

VEEVCC

VEE ,VCC

Ao

VoIN-Vo .IN+ ,
Ao

Vo = AoAIN+ - IN- B

IN-  ,IN+

vo(t)Aovin

Ro

RL

+

–

vin(t)VS

RTh1

Ri

+

–

Figure 3.25
A network that depicts an op-
amp circuit. VS and  RTh1 model
the driving circuit, while the
load is modeled by RL.
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Table 3.1 A list of commercial op-amps and their model values

Manufacturer Part No. Ao (V/V) Ri (MV) Ro (�) Comments

National LM324 100,000 1.0 20 General purpose, up to ;16 V sup-
plies, very inexpensive

National LMC6492 50,000 107 150 Low voltage, rail-to-rail inputs and
outputs

Maxim MAX4240 20,000 45 160 Micro-power (1.8 V supply @ 10 �A),
rail-to-rail in inputs and outputs

Apex PA03 125,000 105 2 High voltage, ;75 V, and high output
current capability, 30 A. That’s 2 kW!

To maximize the gain, regardless of the input resistance and load values, we make very
large and the voltage division ratios as close to unity as possible. The ideal scenario requires

be infinite, to be infinite, and to be zero, yielding a large overall gain of Table 3.1
shows the actual values of , and for a sampling of commercial op-amps intended for
very different applications. Although and are not ideal, they do approximate the
ideal conditions.

The power supplies affect performance in two ways. First, each op-amp has minimum and
maximum supply ranges, sometimes called rail-to-rail (a trademark of Motorola Corporation)
over which the op-amp is guaranteed to function. Second, for proper operation, the input and out-
put voltages are limited to no more than the supply voltages (Op-amps are available that have
input and/or output voltage ranges beyond the supply rails: however, these devices constitute a
very small percentage of the op-amp market and will not be discussed here). If the inputs and
output can reach within a few dozen millivolts of the supplies, then the inputs and output are
called rail-to-rail. Otherwise, the inputs/output limits are more severe—usually a volt or so away
from the supply values. Combining the model in Fig. 3.25, the values in Table 3.1, and these I/O
limitations, we can produce the graphs in Fig. 3.26, which show the output–input relationship
for each op-amp outlined in Table 3.1. From the graph we see that the LM6492 and MAX 4240
have rail-to-rail outputs and the LM324 and PA03 do not.

RoRi ,Ao ,
RoRiAo ,

Ao .RoRiAo

Ao

Input voltage, vin (�V)
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O
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LM324 @ +/– 15 V

LMC6294 @ +/– 5 V
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LM324 @ +/– 15 V

LMC6294 @ +/– 5 V

MAX4240 @ +/– 1.5 V

PA03 @ +/– 75 V

Figure 3.26
Transfer plots for the op-amps
listed in Table 3.1. The supply
voltages are listed in the plot
legends. Note that the
LMC6492 and MAX4240 have
rail-to-rail output voltages, and
the LM324 and PA03 do not.

IRW03-065-112.I ALL  15-02-2001  13:53  Page 90



S E C T I O N  3 . 3 C I R C U I T S  W I T H  O P E R A T I O N A L  A M P L I F I E R S 91

(b)(a)

VEE

VCC

vout
VS

+

–

Ri

Aovin

Ro

I
VS

vout

+

–

+

–

vin

Figure 3.27
Circuit (a) and model (b) for the
unity gain buffer.

Table 3.2 Unity gain buffer performance for the op-amps listed in Table 3.1

Op-Amp Buffer Gain Vin (�V) I (pA)

LM324 0.999990 9.9999 9.9998
LMC6492 0.999980 19.999 1.9999*10–6

MAX4240 0.999950 49.998 1.1111
PA05 0.999992 7.9999 7.9999*10–5

In order to examine the performance of the op-amp in a practical circuit, consider the net-
work shown in Fig. 3.27a called a unity-gain buffer. Note that the op-amp schematic symbol
includes the power supplies. Employing the model in Fig. 3.25 yields the circuit in Fig. 3.27b,
containing just resistors and dependent sources, which we can easily analyze. The loop equa-
tions for the network are

Solving for the gain, we find

For Ro V Ri , we have

And, if is indeed W 1,

Thus, the origin of the name, unity gain buffer, should be apparent. Table 3.2 shows the ac-
tual gain values for using the op-amps listed in Table 3.1. Note how close the gain
is to unity and how small the input voltage and current are. These results lead us to simplify

VS = 1 V

Vout

VS
L 1

Ao

Vout

VS
L

1

1 +
1

Ao

Vout

VS
=

1

1 +
Ri

Ro + AoRi

Vout�VS ,

 Vin = IRi

 Vout = IRo + Ao Vin

 VS = IRi + IRo + Ao Vin
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the op-amp in Fig. 3.24 significantly. Hence, we introduce the ideal op-amp model, where 
and are infinite and is zero. This selection of parameter values produces two important
results for analyzing op-amp circuits, which are listed in Table 3.3.

From Table 3.3 we find that the ideal model for the op-amp is reduced to that shown in
Fig. 3.28. The important characteristics of the model are as follows: (1) Since Ri is extremely
large, the input currents to the op-amp are approximately zero (i.e., ); and (2) if the
output voltage is to remain bounded, then as the gain becomes very large and approaches in-
finity, the voltage across the input terminals must simultaneously become infinitesimally small
so that as (i.e., or ). The difference between
these input voltages is often called the error signal for the op-amp i.e., v+ - v- = veB.Av+ = v-v+ - v- = 0A S q, v+ - v- S 0

i+ L i- L 0

RoRi

Ao

v+

v–

i+

i–
∞

Figure 3.28
Ideal model for an
operational amplifier.
Model parameters:
i+ = i_ = 0, v+ = v_.

Vout

0 A

0 A0 V

VS

+

–

+

–

VS

+

–
Figure 3.29
As ideal op-amp
configured as a unity
gain buffer.

The ground terminal shown on the op-amp is necessary for signal current return, and it
guarantees that Kirchhoff's current law is satisfied at both the op-amp and the ground node in
the circuit.

In summary, then, our ideal model for the op-amp is simply stated by the following conditions:

3.6

These simple conditions are extremely important because they form the basis of our analysis
of op-amp circuits.

Let us now use the ideal model to re-examine the unity gain buffer, redrawn again in
Fig. 3.29, where the input voltage and currents are shown as zero. Given that vin = v+ - v-

 v+ = v-

 i+ = i- = 0

Table 3.3 Consequences of the ideal op-amp model
on input terminal I/V values

Model Assumption Terminal Result

Input voltage S 0 V
Input current S 0 ARi S q

Ao S q
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is zero, the voltage at both op-amp inputs is Since the inverting input is physically connected
to the output, is also —therefore, unity gain!

An obvious question at this point is this: If why not just connect to via two
parallel connection wires; why do we need to place an op-amp between them? The answer to
this question is fundamental and provides us with some insight that will aid us in circuit anal-
ysis and design.

Consider the circuit shown in Fig. 3.30a. In this case is not equal to because of the
voltage drop across :

vo = vS - iRS

RS 
vSvo

vovSvo = vS ,
VSVout

VS .

However, in Fig. 3.30b, the input current to the op-amp is zero and, therefore, appears at the op-
amp input. Since the gain of the op-amp configuration is 1, In Fig. 3.30a the resistive net-
work’s interaction with the source caused the voltage to be less than In other words, the
resistive network loads the source voltage. However, in Fig. 3.30b the op-amp isolates the source
from the resistive network, and therefore the voltage follower is referred to as a buffer amplifier
because it can be used to isolate one circuit from another. The energy supplied to the resistive net-
work in the first case must come from the source whereas in the second case it comes from the
power supplies that supply the amplifier, and little or no energy is drawn from 

As a general rule, when analyzing op-amp circuits we write nodal equations at the op-amp
input terminals, using the ideal op-amp model conditions. The following example demonstrates
the simplicity of this approach.

vS .
vS ,

vS .vo

vo = vS .
vS

RS RSi i

Resistive
network Resistive

network

(a) (b)

vo vo
vSvS

+
+

––

Figure 3.30
Illustration of the isolation
capability of a voltage follower.

L E A R N I N G Example 3.15

Let us determine the gain of the basic inverting op-amp config-
uration shown in Fig. 3.31.

or

Note that the gain is a simple resistor ratio. This fact makes the
amplifier very versatile in that we can control the gain accurately
and alter its value by changing only one resistor. Also, the gain is
essentially independent of op-amp parameters. Since the precise
values of A, Ri, and Ro are sensitive to such factors as temperature,
radiation, and age, their elimination results in a gain that is stable
regardless of the immediate environment. Since it is much easier
to employ the ideal op-amp model rather than the nonideal model,
unless otherwise stated we will use the ideal op-amp assumptions
to analyze circuits that contain operational amplifiers.

vo

vS
= - 

R2

R1

vS - 0

R1
+

vo - 0

R2
= 0

+

–

VS Vout

R1

R2

Figure 3.31
The basic inverting gain
stage.

SOLUTION Using the ideal op-amp model conditions, we see
that and, therefore If we now write a node equa-
tion at the negative terminal of the op-amp, we obtain

v- = 0.v+ = 0
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L E A R N I N G Example 3.16

Consider the op-amp circuit shown in Fig. 3.32. Let us deter-
mine an expression for the output voltage.

However, and Substituting these values
into the two preceding equations yields

and

Solving these two equations for vo results in the expression

Note that if and the expression reduces to

Therefore, this op-amp can be employed to subtract two input
voltages.

vo =
R2

R1
 Av2 - v1B

R3 = R1  ,R4 = R2

vo =
R2

R1
 a 1 +

R1

R2
b  

R4

R3 + R4
 v2 -

R2

R1
 v1

v2 - v-

R3
=

v-

R4

v1 - v-

R1
+

vo - v-

R2
= 0

v+ = v-  .i+ = i- = 0

v2 - v+

R3
=

v+

R4
+ i+

vo

v1

v2

R1

R2

R3

R4

+

+

–
–

+

–

+

– –

+

i

i

v

v

Figure 3.32 Differential amplifier operational amplifier circuit.

SOLUTION The node equation at the inverting terminal is

At the noninverting terminal KCL yields

v1 - v-

R1
+

vo - v-

R2
= i-

L E A R N I N G Example 3.17

The circuit shown in Fig. 3.33a is a precision differential voltage-
gain device. It is used to provide a single-ended input for an ana-
log-to-digital converter. We wish to derive an expression for the
output of the circuit in terms of the two inputs.

SOLUTION To accomplish this, we draw the equivalent cir-
cuit shown in Fig. 3.33b. Recall that the voltage across the
input terminals of the op-amp is approximately zero and the
currents into the op-amp input terminals are approximately
zero. Note that we  can write node equations for node volt-
ages v1 and v2 in terms of vo and va . Since we are interested
in an expression for vo in terms of the voltages v1 and v2 , we
simply eliminate the va terms from the two node equations.
The node equations are

 
v2 - va

R1
+

v2 - v1

RG
+

v2

R2
= 0

 
v1 - vo

R2
+

v1 - va

R1
+

v1 - v2

RG
= 0

RG
RG

va

va

vo

vo
v1

v2

v1

v1

v2

v2

R1

R1

R1

R1

R2

R2
R2

R2

i2 = 0

i1 = 0

(a) (b)

Figure 3.33 Instrumentation amplifier circuit.
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L E A R N I N G  E X T E N S I O N S

E3.14 Find in the network in Fig. E3.14.

Io

Vo

2 k�

12 k�

10 k�12 V

Io ANSWER Io = 8.4 mA.

E3.15 Determine the gain of the op-amp circuit in Fig. E3.15.

VoVS

R1

R2

+

–

ANSWER
Vo

VS
= 1 +

R2

R1
 .

Figure E3.14

Figure E3.15

Combining the two equations to eliminate va , and then writing
vo in terms of v1 and v2 , yields vo = Av1 - v2B a 1 +

R2

R1
+

2R2

RG
b
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Input voltage (V+-V–)

(b)(a)

VEE

VCC

0

–1.5 –1 –0.5 0 0.5 1 1.5

O
ut

pu
t v

ol
ta

ge

+

–

+

–

V+ V–

vin

VCC

VEE
Vout

Figure 3.34
(a) An ideal comparator and 
(b) its transfer curve.

Table 3.4 A listing of some of the features of the LM339 and MAX917 comparators

Product Min. Supply Max. Supply Supply Current Max. Output Current Typical RPULL - UP

LM339 2 V 36 V 3 mA 50 mA 3 k�

MAX919 1.8 V 5.5 V 0.8 �A 8 mA NA

COMPARATORS A comparator, a variant of the op-amp, is designed to compare the
noninverting and inverting input voltages. As shown in Fig. 3.34, when the noninverting
input voltage is greater, the output goes as high as possible, at or near On the other
hand, if the inverting input voltage is greater, the output goes as low as possible, at or near

Of course, an ideal op-amp can do the same thing, that is, swing the output voltage
as far as possible. However, op-amps are not designed to operate with the outputs saturat-
ed; whereas comparators are. As a result, comparators are faster and less expensive than
op-amps.

VEE .

VCC .

L E A R N I N G  E X T E N S I O N

E3.16 Determine both the gain and the output voltage of the op-amp configuration shown in
Fig. E3.16.

Figure E3.16

Vo100 k�

1 k�

+

–

1 mV

ANSWER
gain=101.

Vo = 0.101 V,

We will present two very different quad comparators in this text, National Semiconductor’s
LM339 and Maxim’s MAX917. Note that the LM339 requires a resistor, called a pull-up resis-
tor, connected between the output pin and The salient features of these products are listed
in Table 3.4. From Table 3.4, it is easy to surmise that the LM339 is a general purpose compara-
tor whereas the MAX917 is intended for low-power applications such as hand-held products.

A common comparator application is the zero-crossing detector, shown in Fig. 3.35a using
a LM339 with ;5 V supplies. As seen in Fig. 3.35b, when is positive, should be near
±5 V and when is negative, should be near –5 V. The output changes value on every
zero crossing!

VoutVS 
VoutVS

VCC .
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Learning by Application 

At this point, we have a new element, the op-amp, which we can effectively employ in both ap-
plications and circuit design. This device is an extremely useful element that vastly expands our
capability in these areas. Because of its ubiquitous nature, the addition of the op-amp to our
repertoire of circuit elements permits us to deal with a wide spectrum of practical circuits.
Thus, we will employ it here, and also use it throughout this text.

(b)(a)

–5 V

±5 V

+

–
Vout

Time

4

6

0

I/
O

 v
ol

ta
ge

s 
(V

)

2

–2

–4

–6

Input
Output3 k�

Figure 3.35
(a) A zero-crossing detector
and (b) the corresponding
input/output waveforms.

L E A R N I N G Example 3.18

The circuit in Fig. 3.36 is an electronic ammeter. It operates as
follows: The unknown current, I through RI produces a voltage,

is amplified by the op-amp to produce a voltage, 
which is proportional to I. The output voltage is measured with
a simple voltmeter. We want to find the value of R2 such that
10 V  appears at for each milliamp of unknown current.

SOLUTION Since the current into the op-amp+terminal is
zero, the relationship between and I is

VI = IRI

VI

Vo

Vo  ,VIVI  .

The relationship between the input and output voltages is

or, solving the equation for we obtain

Using the required ratio of 104 and resistor values from
Fig. 3.36, we can find that

R2 = 9 k�

Vo�I

Vo

I
= RI a 1 +

R2

R1
b

Vo�I,

Vo = VI a 1 +
R2

R1
b

VI VoRI = 1 k�

R1 = 1 k�

I

R2

Unknown
current

Voltmeter

+

+ –
–

+

–

Figure 3.36
Electronic ammeter.
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L E A R N I N G Example 3.19

A typical stereo system is shown in block form in Fig. 3.37a.
The phonograph output signal is only about 2 �V. The stan-
dard input voltage for stereo power amplifiers is about 2 mV.
Therefore, the phonograph signal must be amplified by a fac-
tor of 1000 before it reaches the poweramp. To accomplish this,
a special-purpose amp, called the phono preamp, is used. Stereo
manufacturers place them within the preamplifier cabinet, as
shown in Fig. 3.37a.

Let us design a phono preamp using an ideal op-amp that
has an input resistance of at least 1 M� and a voltage gain of
1000. All resistors must be less than 10 M� to limit noise.

SOLUTION One possible network is shown in Fig. 3.37b. The
input resistance requirement can be easily met with a voltage
follower as the first stage of the amplifier. The second stage, or
gain stage, can be a noninverting op-amp configuration. We will
show in later chapters that the overall voltage gain is the prod-
uct of the gains of the two stages,

To achieve a gain of 1000, we select and
R2 = 999 k�.

R1 = 1 k�

AV = AV1  AV2 = (1)A1 + AR2�R1B B

CD player

Preamp
Tape deck

Phonograph
Phono-
preamp

Power
amp

Left
speaker

Right
speaker

(a)

(b)

vo
v1

R1

R2

+

–

Figure 3.37 Multistage phonograph amplifier.

Learning by Design

L E A R N I N G Example 3.20

Let us design a temperature sensor that operates from a 3-V sup-
ply, and has a visual display consisting of five LEDs—that is,
light-emitting diodes. Only one LED should be on at any time,
indicating one of the following temperature ranges: less than 65,
65 to 70, 70 to 75, 75 to 80, and greater than 80°F.

SOLUTION In our proposed sensor, shown in Fig. 3.38, resis-
tor and a thermistor, (a temperature sensitive resistor),
form a voltage divider to produce the voltage 

3.6

In the temperature range of interest, a curve fit to a particular
commercial thermistor’s R-T data yields

RT=57.45e–0.0227T 3.7

with RT in k� and T in degrees Fahrenheit. From Eqs. (3.6) and
(3.7), we see that increasing temperature causes RT to decrease

VT = 3 c RX

RT + RX
d

VT  .
RTRX

and to increase. The voltage appears at the unity gain buffer
output, where it is divided between R1, R2, R3, and R4, yielding in-
termediate voltages and All four comparators and the
dc voltage reference, are contained in the MAX919 package
listed in Table 3.4. In this package, 

Based on fundamental comparator operation, when
the output voltage of comparator C1 will be low, near

zero volts. Since all the other compara-
tor output voltages will be low as well. Thus, there is no voltage
difference across LED2, LED3, LED4, or LED5, and these LEDs
are off. However, the voltage across LED1 is not zero. Current
will flow from the 3-V supply, through RLED and LED1, into the
output terminal of C1, through its on-chip circuitry, out of the
MAX 919 ground pin and back to the 3-V source, turning on
LED1. This is the desired display for T<65°F.

Then, at exactly 65°F, LED1 should turn off and LED2 should
turn on. This requires the output of C1 to go high, near 3 V, while
all other comparator outputs remain low. Now, only LED2 has a 
nonzero voltage across it. This can be seen in the plots in Fig. 3.39.

V4 6 V3 6 V2 6 VT  ,
VT 6 Vref ,

Vref = 1.245 V.
Vref ,

V4  .V3  ,V2  ,

VTVT
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Both display scenarios (665° and 65°-70°) will occur properly
if precisely at T=65°F. Thus, we must find RX such
that at 65°F. From Eqs. (3.6) and (3.7),

which yields RX=9.32 k�. This is the case until T reaches 70°F,
where the output of C2 must go high, turning off LED2 and turn-
ing on LED3. Thus, we require at exactly T=70°F.
Now, and Repeating this
idea at T=75 and 80°F yields the voltage division equations

V3∑T = 75 = 1.245 = c R3 + R4

R©
dVT∑T = 75

V2∑T = 70 = 1.245 = c R2 + R3 + R4

R©
dVT∑T = 70

VT 7 Vref .V4 6 V3 6 V2 = Vref

V2 = Vref

1.245 = 3 c RX

57.45e-0.0227(65) + RX

d
VT = Vref

VT = Vref

where Arbitrarily selecting 
to be 100 k� and using Eqs. (3.6) and (3.7), the required re- 
sistor values are 
and 

The LEDs employed in this design have a voltage of 2 V
when on and a desired current of 1 mA. Consider again the case
where LED1 is on; that is, the output of comparator C1 is zero.
By KVL, we have

3=ILEDRLED+ =(0.001)RLED+2.0

yielding RLED=1 k�. Since only one LED is on at any time,
there is exactly one resistor, RLED, for every possible display
scenario.

VLED

R1 = 6.28 k�.
R2 = 5.60 k�,R3 = 5.01 k�,R4 = 83.11 k�,

R©R© = R1 + R2 + R3 + R4  .

V4∑T = 80 = 1.245 = c R4

R©
dVT∑T = 80

VLED

RLED

1.245 V

Vref

RLED

RLEDILED

LED2

LED1

LED3

C1

C2

C3

C4
LED4V4

3 V

V3

V2

R1

R2

R3

R4

VT

VTRT

RX

LED5

+

–
<65 °F

65–70 °F

70–75 °F

75–80 °F

>80 °FFigure 3.38
The temperature sensor
schematic diagram.
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Figure 3.39
Critical voltages in the temperature sensor of Fig. 3.38. Resistor string voltages (a) are compared to Vref

to produce the comparator output voltages in (b). Resistors RX and R1–R4 have been selected such that
the comparator outputs change exactly at the desired temperature boundaries. The LEDs drive voltages
(c) are such that only one LED is on at any time.
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Problems
S E C T I O N  3 . 1

3.1 Find in the circuit in Fig. P3.1 using nodal analysis.

Figure P3.1

Io
6 mA

12 k� 3 k�6 k�

10 k�

Io 3.2 Find in the circuit in Fig. P3.2 using nodal analysis.

Figure P3.2

Io

10 mA
2 k�5 k�

3 k� 2 k�

Io

Summary

◗ Nodal analysis for an N-node circuit

◗ Select one node in the N-node circuit as the reference node.
Assume that the node voltage is zero and measure all node
voltages with respect to this node.

◗ If only independent current sources are present in the net-
work, write the KCL equations at the N-1 nonreference
nodes. If dependent current sources are present, write the
KCL equations as is done for networks with only indepen-
dent current sources; then write the controlling equations
for the dependent sources.

◗ If voltage sources are present in the network, they may be
connected (1) between the reference node and a nonrefer-
ence node or (2) between two nonreference nodes. In the
former case, if the voltage source is an independent source,
then the voltage at one of the nonreference nodes is known.
If the source is dependent, it is treated as an independent
source when writing the KCL equations, but an additional
constraint equation is necessary.

In the latter case, if the source is independent, the
voltage between the two nodes is constrained by the value
of the voltage source and an equation describing this con-
straint represents one of the N-1 linearly independent
equations required to determine the N-node voltages. The
surface of the network described by the constraint equa-
tion (i.e., the source and two connecting nodes) is called a
supernode. One of the remaining N-1 linearly indepen-
dent equations is obtained by applying KCL at this su-
pernode. If the voltage source is dependent, it is treated as
an independent source when writing the KCL equations,
but an additional constraint equation is necessary.

◗ Loop analysis for an N-loop circuit

◗ One loop current is assigned to each independent loop in a
circuit that contains N independent loops.

◗ If only independent voltage sources are present in the net-
work, write the N linearly independent KVL equations, one
for each loop. If dependent voltage sources are present,
write the KVL equations as is done for circuits with only
independent voltage sources; then write the controlling
equations for the dependent sources.

◗ If current sources are present in the network, either of two
techniques can be used. In the first case, one loop current is
selected to pass through one of the current sources. This is
done for each current source in the network. The remaining
loop currents (N-the number of current sources) are de-
termined by open-circuiting the current sources in the net-
work and using this modified network to select them. Once
all these currents are defined in the original network, the 
N-loop equations can be written. The second approach is
similar to the first with the exception that if two mesh cur-
rents pass through a particular current source, a supermesh
is formed around this source. The two required equations
for the meshes containing this source are the constraint
equations for the two mesh currents that pass through the
source and the supermesh equation. If dependent current
sources are present, the controlling equations for these
sources are also necessary.

◗ Ideal op-amp model For an ideal op-amp,
ix=i–=0 and vx=v–. Both nodal and loop analysis are
useful in solving circuits containing operational amplifiers.

L E A R N I N G Check
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3.3 Find in the circuit in Fig. P3.3 using nodal analysis.

Figure P3.3

3.4 Use nodal analysis to find in the circuit in Fig. P3.4.

Figure P3.4

3.5 Find in the circuit in Fig. P3.5 using nodal analysis.

Figure P3.5

3.6 Use nodal analysis to find both and in the circuit in
Fig. P3.6.

Figure P3.6

3.7 Find and in the circuit in Fig. P3.7 using nodal
analysis. Then solve the problem using MATLAB and
compare your answers.

V2V1

V1 V2

4 mA

2 mA

3 k� 12 k� 2 k�

6 k� 2 k�

Vo

+

–

VoV1

9 V 2 k�6 k� 2 k�

2 k� Io3 k�

Io

Vo

4 mA 2 mA

6 k�

3 k� 4 k�

– +

4 k�

Vo

V2

4 mA

6 k�2 k� 6 mA
+

–

4 k� 8 k�

V2

Figure P3.7

3.8 Find in the network in Fig. P3.8 using nodal analysis.

Figure P3.8

3.9 Find in the network in Fig. P3.9 using nodal analysis.

Figure P3.9

3.10 Use nodal analysis to find and in the network in
Fig. P3.10.

Figure P3.10

2 k�

6 k�

3 k�

4 k�12 mA 12 V

Io I1

I1Io

12 V 6 V6 k�

12 k�

Vo+ –

6 k�

Vo

12 V 6 V6 k�

4 k�

Io

12 k�

Io

V1

6 mA

4 mA

6 k� 5 k� 10 k�

–

+

V2

–

+4 k�
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3.11 Find in the circuit in Fig. P3.11 using nodal analysis.

Figure P3.11

3.12 Use nodal analysis to find in the network in
Fig. P3.12. Then solve the problem using MATLAB and
compare your answers.

Figure P3.12

3.13 Find in the network in Fig. P3.13.

Figure P3.13

3.14 Find in the network in Fig. P3.14.

Figure P3.14

Vo

2 k� 12 k� 8 k�

4 k�4 k�6 V
2 mA

12 V

+

–

Vo

Io

6 V 3 mA
3 mA 6 k� 6 k�3 k�4 k�

Io

Vo6 V
2 mA

2 k�2 k�

2 k�4 k� +

–

Vo

6 V 2 mA
12 k� 12 k�

12 k� 12 k�

Io

Io 3.15 Use nodal analysis to find in the circuit in Fig. P3.15.

Figure P3.15

3.16 Write the node equations for the circuit in Fig. P3.16 in ma-
trix form, and find all the node voltages using MATLAB.

Figure P3.16

3.17 Find in the network in Fig. P3.17.

Figure P3.17

3 k� 6 k�2 mA

3 V

I1

I1

4 k�2 k�

3 mA

6 mA

1 k�
V1 V3

V2 3 k�

6 V 3 V

2 k�

Vo

+

–

2 k�

1 k�

6 k�

Vo
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3.18 Find in the network in Fig. P3.18.

Figure P3.18

3.19 Find in the circuit in Fig. P3.19.

Figure P3.19

3.20 Find in the network in Fig. P3.20 using nodal analysis.

Figure P3.20

3.21 Use nodal analysis to find in the network in Fig. P3.21.
Then solve this problem using MATLAB and compare
your answers.

Figure P3.21

Vo

1 k�

2 mA

1 k�

12 V 1 k�

1 k�

+

–

Vo

Io

12 V 6 k� 2 k�

4 k�
3 k�

2 mA

Io

Io

12 V

6 V 6 k�

2 k�

4 k�4 k�

Io

4 k� 6 k�

12 k� 2 k�

3 V6 V2 mA

Io

Io 3.22 Find in the circuit in Fig. P3.22 using nodal analysis.

Figure P3.22

3.23 Use nodal analysis to find in the network in
Fig. P3.23.

Figure P3.23

3.24 Find in the network in Fig. P3.24 using nodal analysis.

Figure P3.24

12 V
1 k�

1 k�

6 mA1 k� 1 k�

Io

Io

12 V

4 mA
Io

3 k� 2 k� 1 k�

2 k�3 k�

Io

Vo

2 k�

12 V

6 V

1 k�

1 k�

1 k�

+

–

Vo
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3.25 Use nodal analysis to find in the circuit in Fig. P3.25.

Figure P3.25

3.26 Find in the circuit in Fig. P3.26 using nodal analysis.

Figure P3.26

3.27 Find in the network in Fig. P3.27 using nodal analysis.

Figure P3.27

3.28 Find in the network in Fig. P3.28 using nodal analysis.

Figure P3.28

2 mA
4 k�

2 k� 2 k�

2 k�
12 V

Vo

+

–

Vo

4 k�

4 k�

2 k�

2 k�
12 V

Vo

+

–

Vo

12 V

9 V

18 k�

6 V

4 k�

Vo

12 k� 12 k�

–

+

Vo

6 V 6 mA

9 mA

4 k�

6 k�

Vo12 k� + –

Vo 3.29 Find in the network in Fig. P3.29 using nodal analysis.

Figure P3.29

3.30 Find in the circuit in Fig. P3.30 using nodal analysis.

Figure P3.30

3.31 Find in the circuit in Fig. P3.31 using nodal analysis.

Figure P3.31

3.32 Use nodal analysis to find in the network in Fig. P3.32.

Figure P3.32

Vo

Vo

2k
––

12 V
1 k� 1 k�

1 k�

1 k�

+

–

Vo

Vo
Vo

2
––

12 V
2 k� 1 k�

1 k� +

–

Vo

Io
6 V2 mA

6 k�4 k�

4 k�8 k� 6 k�

Io

Vo6 V
2 mA 4 mA

2 k�

2 k�4 k�4 k� +

–

Vo
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3.33 Find in the circuit in Fig. P3.33 using nodal analysis.
Then solve the problem using MATLAB and compare
your answers.

Figure P3.33

3.34 Find in the network in Fig. P3.34.

Figure P3.34

3.35 Find in the circuit in Fig. P3.35 using nodal analysis.

Figure P3.35

3.36 Find in the circuit in Fig. P3.36 using nodal analysis.

Figure P3.36

IoIx
2 mA

2Ix

10 k� 10 k�

10 k�

Io

Vo

+

–

2kIx

1 k� 1 k�

1 k� 1 k�12 V

Ix

Vo

Ix

2 k� 4 k�1 k� 4 mA

1 k�
4000 Ix

Io

Io

Vo2 Ix

12 V
1 k� 1 k�

1 k�

1 k�

+

–Ix

Vo 3.37 Find in the network in Fig. P3.37 using nodal analysis.

Figure P3.37

3.38 Use nodal analysis to find in the network in
Fig. P3.38. In addition, determine all branch currents
and check KCL at every node.

Figure P3.38

3.39 Use nodal analysis to find in the circuit in Fig. P3.39.

Figure P3.39

Vo

Ix

1000 Ix

+

–
12 mA

2 k�

6 k� 6 k�

5 k�

Vo

Vo

Ix

Ix

6 V

12 V

10 k� 10 k�

10 k� 10 k�

+

–

Vo

Vo

Ix

4000 Ix

10 k�

10 k� 10 k�

4 mA

+

–

Vo
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S E C T I O N  3 . 2

3.42 Use mesh equations to find in the circuit in Fig. P3.42.

Figure P3.42

3.43 Find in the network in Fig. P3.43 using mesh
equations.

Figure P3.43

Vo2 k�2 k� 2 k�

12 V 4 V
+

–

Vo

Vo3 k� 4 k�

2 k� 2 k�

12 V

+

–

Vo 3.44 Use mesh analysis to find in the circuit in Fig. P3.44.

Figure P3.44

3.45 Use mesh analysis to find in the network in
Fig. P3.45.

Figure P3.45

Vo6 k�

3 k� 2 k�

2 mA
12 V

+

–

Vo

Vo

4 k� 4 k�

6 k�

2 k� 2 k�

12 V

+

–

Vo

3.40 Use nodal analysis to find in the circuit in Fig. P3.40.

Figure. P3.40

Vo
Vx

2 mA

2 k�1 k�

1 k�1 k�

+

–

+

–

2 Vx

1000
———

Vo 3.41 Use MATLAB to find the node voltages in the network
in Fig. P3.41.

Figure P3.41

1 k�

2 k� 1 k�12 V

1 k�

2 k�

V2 V4

V1

V3

2 mA

4 mA
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3.46 Use loop analysis to find in the circuit in Fig. P3.46.

Figure P3.46

3.47 Use loop analysis to find in the circuit in Fig. P3.47.

Figure P3.47

3.48 Use both nodal analysis and mesh analysis to find in
the circuit in Fig. P3.48.

Figure P3.48

3.49 Find in the network in Fig. P3.49 using mesh analysis.

Figure P3.49

Io

12 V

2 mA 4 mA6 k�

2 k�

4 k�

Io

Io

12 V

2 mA

4 mA

2 k�

2 k�1 k�

Io

Io

12 V 2 k� 2 k�

2 k�2 mA 4 mA

Io

Vo
2 mA

12 V

2 k�

2 k�

4 k� +

–

Vo 3.50 Find in the network in Fig. P3.50 using mesh analysis.

Figure P3.50

3.51 Find in the circuit in Fig. P3.51 using mesh analysis.

Figure P3.51

3.52 Use loop analysis to find in the network in Fig. P3.52.

Figure P3.52

3.53 Find in the network in Fig. P3.53 using loop analysis.
Then solve the problem using MATLAB and compare
your answers.

Figure P3.53

Io

6 V 5 mA

6 k�

6 k�

6 k�6 k�

Io

Vo

12 V
1 k�1 k�

1 k� 1 k�6 mA

+

–

Vo

12 V

1 k�
1 k�

2 mA

1 k� 1 k� Vo

+

–

Vo

Io

12 V

2 mA

4 mA

2 k�

2 k�

1 k�

Io
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3.54 Use loop analysis to find in the circuit in Fig. P3.54.

Figure P3.54

3.55 Find in the network in Fig. P3.55 using both mesh
and nodal analyses.

Figure P3.55

3.56 Use loop analysis to find in the circuit in Fig. P3.56.

Figure P3.56

Vo

6 V

2 mA 12 V

1 k�

2 k�1 k�

1 k�

1 k�

+

–

Vo

Vo

6 V

2 mA 2 k�

2 k�

4 k�

6 k�

+

–

Vo

12 V

4 k�

2 k�

Io

6 k�

2 mA
3 k�

Io 3.57 Use loop analysis to find in the network in Fig. P3.57.

Figure P3.57

3.58 Use loop analysis to find in the network in Fig. P3.58.

Figure P3.58

3.59 Find in the network in Fig. P3.59.

Figure P3.59

Vo

2 mA

1 mA

4 mA

1 k�

1 k�

1 k�

2 k�

2 k�

+

–

Vo

Vo

6 V

1 mA

3 mA

4 k�

4 k�

12 k�

2 k�

2 k�

+

–

Vo

4 mA

12 V

1 k�

2 mA

1 k�

1 k�

1 k�

1 k� 1 k�

Io

Io
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3.60 Find in the circuit in Fig. P3.60.

Figure P3.60

3.61 Find in the circuit in Fig. P3.61.

Figure P3.61

3.62 Use loop analysis to find in the network in
Fig. P3.62.

Figure P3.62

6 V
2 k�

1 k� 1 k� Vo
2 Ix

+

–

Ix

Vo

Io

1 mA
6 k�

2 k�

2 k�

2 k�

4 k�6 V

2 mA

Io

Vo

2 mA

4 mA

2 mA

2 k�

2 k�

1 k� 1 k�

1 k�

+

–

Vo 3.63 Use mesh analysis to find in the circuit in Fig. P3.63.

Figure P3.63

3.64 Use loop analysis to find in the circuit in Fig. P3.64.

Figure P3.64

3.65 Find in the circuit in Fig. P3.65 using mesh analysis.

Figure P3.65

Vo2000 Ix

Ix

6 V2 k�

4 k� 2 k�

+

–

Vo

Vo6 V

4 k�4 k�

2 k�

+

–

2 Vo

1000
———

Vo

Vo

4 VA
VA

12 V 6 k�

2 k�
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–

+ –

Vo
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S E C T I O N  3 . 3

Assume that all op-amps in this section are ideal.

3.70 Find in the circuit in Fig. P3.70.

Figure P3.70

Vo

5 k�

1 k�

1 V

+

–

Vo

3.71 Find in the network in Fig. P3.71 and explain what ef-
fect has on the output.

Figure P3.71

VoR12V

2 �

10 �

10 �

+

–

R1

Vo

3.66 Use both nodal analysis and mesh analysis to find in
the circuit in Fig. P3.66.

Figure P3.66

3.67 Using mesh analysis, find in the circuit in Fig. P3.67.

Figure P3.67

Vo

Vx2 mA

6 k�

6 k�

4 k�

2 k�

+

–

+

–

Vx

2000
———

Vo

Vo

+

–

Vx

+

–

12 mA

10 Vx

6 k�

12 k�
4 k�

8 k�

Vo 3.68 Find in the network in Fig. P3.68.

Figure P3.68

3.69 Use MATLAB to find the mesh currents in the network
in Fig. P3.69.

Figure P3.69

2 k�2 k�

2 k�

1 k�

1 k�
1 k�

1 k�

12 V

6 V

I1 I2

I3 I4

I5

2 mA

Vo

Vx

2 k�

2 k�

1 k�

1 k�

1 k�

1 k�

1 mA

4 mA

+

–

+–

2 Vx

1000
———

Vo
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3.72 Find in the network in Fig. P3.72.

Figure P3.72

3.73 The network in Fig. P3.73 is a current-to-voltage con-
verter or transresistance amplifier. Find for this
network.

Figure P3.73

iS vo

1 �

+

–

vo�iS

Vo

R1

4 V5 V

4 �

1 � +

–

Vo 3.74 Find in the circuit in Fig. P3.74.

Figure P3.74

3.75 Find in the circuit in Fig. P3.75.

Figure P3.75

Vo

+

–

10 k�

40 k�

80 k�

20 k�

40 k�

5 V

Vo

Vo

40 k�

5 k�

20 k�

5 k�

5 V
4 V

+

–

Vo

Typical Problems Found on the FE Exam

3FE-1 Find in the circuit in Fig. 3PFE-1.

Figure 3PFE-1

Vx

Vo

+

–

2 �

2 �

1 �

6 �

6 V12 V

Vo 3FE-2 Determine the power dissipated in the 6-ohm resistor
in the network in Fig. 3PFE-2.

Figure 3PFE-2

4 �

6 � 12 �12 V

I1

2I1

Vx
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3FE-3 Find the current in the 4-ohm resistor in the circuit
in Fig. 3PFE-3.

Figure 3PFE-3

3FE-4 Determine the voltage in the circuit in
Fig. 3PFE-4.

Figure 3PFE-4

4 � 4 �

4 �

2 �
12 V

Vx

Vo

Ix

2 Ix

+

–

Vo

6 � 4 �

3 �

12 V

2 A Vx 2Vx

Ix

+

–

Ix 3FE-5 Given the summing amplifier shown in Fig. 3PFE-5,
select the values of that will produce an output
voltage of –3 V.

Figure 3PFE-5

3FE-6 Determine the output voltage of the summing op-
amp circuit shown in Fig. 3PFE-6.

Figure 3PFE-6

Vo

24 k�

3 V

+

–

24 k�

12 k�

2 V

1 V

24 k�

36 k�

12 k�

Vo

Vo

R2

2 V

1 V

+

–

24 k�

12 k�

R2
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