
Overview

PA RTONE

200110_CH01/RomanX 11/14/01 4:14 PM Page 1

In Part 1, we introduce the server-side development platform that is the Java 2
Platform, Enterprise Edition (J2EE), of which the Enterprise JavaBeans (EJB) com-
ponent architecture is a vital piece. J2EE is a conglomeration of concepts, pro-
gramming standards, and innovations—all written in the Java programming
language. With J2EE, you can rapidly construct distributed, scalable, reliable,
and portable secure server-side deployments.

Chapter 1 begins by exploring the need for a server-side component architec-
ture such as EJB. You’ll see the rich needs of server-side computing, such as
scalability, high availability, resource management, and security. We’ll look
at each of the different parties that are involved in an EJB deployment.
We’ll also survey the J2EE server-side development platform.

Chapter 2 moves on to the Enterprise JavaBeans fundamentals. We’ll look at
the concept of request interception, which is crucial for understanding how
EJB works. We’ll also look at the different files that go into a bean and how
they work together.

Chapter 3 gets down and dirty with EJB programming. Here, we’ll write our
first simple bean. We’ll show how to code each of the files that compose
the bean, and we’ll also look at how to call that bean from clients.

O V E R V I E W2

200110_CH01/RomanX 11/14/01 4:14 PM Page 2

C H A P T E R 1

3

Enterprise JavaBeans (EJB) is a server-side component architecture that simpli-
fies the process of building enterprise-class distributed component applica-
tions in Java. By using EJB, you can write scalable, reliable, and secure
applications without writing your own complex distributed component
framework. EJB is about rapid application development for the server side;
you can quickly and easily construct server-side components in Java by lever-
aging a prewritten distributed infrastructure provided by the industry. EJB is
designed to support application portability and reusability across any ven-
dor’s enterprise middleware services.

If you are new to enterprise computing, these concepts will be clarified
shortly. EJB is a complicated subject and thus deserves a thorough explanation.
In this chapter, we’ll introduce EJB by answering the following questions:

�� What plumbing do you need to build a robust distributed object
deployment?

�� What is EJB, and what value does it add?

�� Who are the players in the EJB ecosystem?

Let’s kick things off with a brainstorming session.

Overview

200110_CH01/RomanX 11/14/01 4:14 PM Page 3

The Motivation for EJB

Figure 1.1 shows a typical business application. This application could exist in
any vertical industry and could solve any business problem. Here are some
examples:

�� A stock trading system

�� A banking application

�� A customer call center

�� A procurement system

�� An insurance risk analysis application

Notice that this application is a distributed system. We broke up what would
normally be a large, monolithic application and divorced each layer of the
application from the others, so that each layer is completely independent and
distinct.

Take a look at this picture, and ask yourself the following question based
purely on your personal experience and intuition: If we take a monolithic appli-
cation and break it up into a distributed system with multiple clients connecting to
multiple servers and databases over a network, what do we need to worry about now
(as shown in Figure 1.1)?

Take a moment to think of as many issues as you can. Then turn the page and
compare your list to ours. Don’t cheat!

O V E R V I E W4

Database

Client Client Client

Server Server

Figure 1.1 Standard multitier deployment.

200110_CH01/RomanX 11/14/01 4:14 PM Page 4

In the past, most companies built their own middleware. For example, a finan-
cial services firm might build some of the middleware services above to help
them put together a stock trading system.

These days, companies that build their own middleware risk setting them-
selves up for failure. High-end middleware is hideously complicated to build
and maintain, requires expert-level knowledge, and is completely orthogonal
to most companies’ core business. Why not buy instead of build?

The application server was born to let you buy these middleware services, rather
than build them yourself. Application servers provide you with common mid-
dleware services, such as resource pooling, networking, and more. Applica-
tion servers allow you to focus on your application and not worry about the
middleware you need for a robust server-side deployment. You write the code
specific to your vertical industry and deploy that code into the runtime envi-
ronment of an application server. You’ve just solved your business problem by
dividing and conquering.

Divide and Conquer to the Extreme

We’ve just discussed how you can gain your middleware from an application
server, empowering you to focus on your business problem. But there’s even bet-
ter news: You may be able to buy a partial solution to the business problem itself.

To achieve this, you need to build your application out of components. A com-
ponent is code that implements a set of well-defined interfaces. It is a manage-
able, discrete chunk of logic. Components are not entire applications—they
cannot run alone. Rather, they can be used as puzzle pieces to solve some
larger problem.

The idea of software components is very powerful. A company can purchase a
well-defined module that solves a problem and combine it with other compo-
nents to solve larger problems. For example, consider a software component
that computes the price of goods. We’ll call this a pricing component. You hand
the pricing component information about a set of products, and it figures out
the total price of the order.

The pricing problem can get quite hairy. For example, let’s assume we’re order-
ing computer parts, such as memory and hard drives. The pricing component
figures out the correct price based on a set of pricing rules that may include:

Base prices of a single memory upgrade or a single hard disk

Quantity discounts that a customer receives for ordering more than 10 mem-
ory modules

Overview 5

200110_CH01/RomanX 11/14/01 4:14 PM Page 5

O V E R V I E W6

Things to Consider When Building Large Business Systems

By now you should have a decent list of things you’d have to worry about when
building large business systems. Here’s a short list of the big things we came up
with. Don’t worry if you don’t understand all of them yet—you will.

�� Remote method invocations. We need logic that connects a client and server via
a network connection. This includes dispatching method requests, brokering of
parameters, and more.

�� Load balancing. Clients must be directed to the server with the lightest load. If a
server is overloaded, a different server should be chosen.

�� Transparent fail-over. If a server crashes, or if the network crashes, can clients
be rerouted to other servers without interruption of service? If so, how fast
does fail-over happen? Seconds? Minutes? What is acceptable for your business
problem?

�� Back-end integration. Code needs to be written to persist business data into
databases as well as integrate with legacy systems that may already exist.

�� Transactions. What if two clients access the same row of the database simulta-
neously? Or what if the database crashes? Transactions protect you from these
issues.

�� Clustering. What if the server contains state when it crashes? Is that state repli-
cated across all servers, so that clients can use a different server?

�� Dynamic redeployment. How do you perform software upgrades while the site
is running? Do you need to take a machine down, or can you keep it running?

�� Clean shutdown. If you need to shut down a server, can you do it in a smooth,
clean manner so that you don’t interrupt service to clients who are currently
using the server?

�� Logging and auditing. If something goes wrong, is there a log that we can con-
sult to determine the cause of the problem? A log would help us debug the
problem so it doesn’t happen again.

�� Systems Management. In the event of a catastrophic failure, who is monitoring
our system? We would like monitoring software that paged a system administra-
tor if a catastrophe occurred.

�� Threading. Now that we have many clients connecting to a server, that server is
going to need the capability of processing multiple client requests simultane-
ously. This means the server must be coded to be multi-threaded.

�� Message-oriented middleware. Certain types of requests should be message-
based where the clients and servers are very loosely coupled. We need infra-
structure to accommodate messaging.

�� Object life cycle. The objects that live within the server need to be created or
destroyed when client traffic increases or decreases, respectively.

200110_CH01/RomanX 11/14/01 4:14 PM Page 6

Bundling discounts that the customer receives for ordering both memory and
a hard disk

Preferred customer discounts that you can give to big-name customers

Locale discounts depending on where the customer lives

Overhead costs such as shipping and taxes

These pricing rules are in no way unique to ordering computer parts. Other
industries, such as health care, appliances, airline tickets, and others need the
same pricing functionality. Obviously, it would be a huge waste of resources if
each company that needed complex pricing had to write its own sophisticated
pricing engine. Thus, it makes sense that a vendor provides a generic pricing
component that can be reused for different customers. For example:

1. The U.S. Postal Service can use the pricing component to compute ship-
ping costs for mailing packages. This is shown in Figure 1.2.

2. An automobile manufacturer can use the pricing component to determine
prices for cars. This manufacturer may set up a Web site that allows cus-
tomers to get price quotes for cars over the Internet. Figure 1.3 illustrates
this scenario.

Overview 7

�� Resource pooling. If a client is not currently using a server, that server’s precious
resources can be returned to a pool to be reused when other clients connect.
This includes sockets (such as database connections) as well as objects that live
within the server.

�� Security. The servers and databases need to be shielded from saboteurs. Known
users must be allowed to perform only operations that they have rights to
perform.

�� Caching. Let’s assume there is some database data that all clients share and
make use of, such as a common product catalog. Why should your servers
retrieve that same catalog data from the database over and over again? You
could keep that data around in the servers’ memory and avoid costly network
roundtrips and database hits.

�� And much, much, much more.

Each of these issues is a separate service that needs to be addressed for seri-
ous server-side computing. These services are needed in any business problem
and in any vertical industry. And each of these services requires a lot of thought
and a lot of plumbing to resolve. Together, these services are called middleware.

200110_CH01/RomanX 11/14/01 4:14 PM Page 7

3. An online grocery store can use the pricing component as one discrete
part of a complete workflow solution. When a customer purchases gro-
ceries over the Web, the pricing component first computes the price of the
groceries. Next, a different vendor’s component bills the customer with
the generated price. Finally, a third component fulfills the order, setting
things in motion for the groceries to be delivered to the end user. We
depict this in Figure 1.4.

O V E R V I E W8

Post Office worker

Legacy System

Workstation / Dumb Terminal

Pricing
Component

Call into legacy system

Figure 1.2 Reusing a pricing component for the U.S. Postal Service.

200110_CH01/RomanX 11/14/01 4:14 PM Page 8

Reusable components are quite enticing because components promote rapid
application development. An IT shop can quickly assemble an application
from prewritten components rather than writing the entire application from
scratch. This means:

Overview 9

Web Server

Network

Client Browser

Client Browser

Client Browser

Pricing
Component

Figure 1.3 Reusing a pricing component for quoting car prices over the Internet.

200110_CH01/RomanX 11/14/01 4:14 PM Page 9

The IT shop needs less in-house expertise. The IT shop can consider the
pricing component to be a black box, and it does not need experts in com-
plex pricing algorithms.

The application is assembled faster. The component vendor has already
written the tough logic, and the IT shop can leverage that work, saving
development time.

O V E R V I E W10

Web Server

2: Bill Order to Customer

1: Price Order

Workflow Logic

3: Fulfill Order

Pricing
Component

Billing
Component

Fufillment
Component

Figure 1.4 Reusing a pricing component as part of an e-commerce workflow solution.

200110_CH01/RomanX 11/14/01 4:14 PM Page 10

There is a lower total cost of ownership. The component vendor’s cash cow
is its components, and therefore it must provide top-notch documentation,
support, and maintenance if it is to stay in business. Because the compo-
nent vendor is an expert in its field, the component generally has fewer
bugs and higher performance than an IT shop’s home-grown solution. This
reduces the IT shop’s maintenance costs.

Once the rules of engagement have been laid down for how components
should be written, a component marketplace is born, where vendors can sell
reusable components to companies. The components are deployed within
application servers, which provide the needed middleware.

Overview 11

Is a Component Marketplace a Myth?

There is a very small component marketplace today. For years we’ve been hoping
that the marketplace will explode, but it is behind schedule. There are several
reasons for Independent Software Vendors (ISVs) not shipping components:

Maturity. Because components live inside application servers, the application
servers must be mature before we see components written to those servers.

Politics. Many ISVs have written their own application servers. Some (falsely) view
this as a competitive advantage.

Questionable value. Most ISVs are customer-driven (meaning they prioritize what
their customers are asking for). Since components are new to many customers,
many of them are not asking for their ISVs to support components.

It is our opinion that the marketplace will eventually explode, and it’s just a
matter of time. If you represent an ISV, this could be a fantastic opportunity
for you.

The good news is that the marketplace already beginning to emerge. Most
packaged e-commerce ISVs (Ariba, Broadvision, Vignette, and so on) are shipping
or have announced support for server-side Java technologies.

In the meantime, you’ll have to build your own components from scratch
within your organizations. Some of our customers at The Middleware Company
are attempting this by having departments provide components to other depart-
ments. In effect, that department is acting as an internal ISV.

200110_CH01/RomanX 11/14/01 4:14 PM Page 11

Component Architectures

It has been a number of years since the idea of multitier server-side deploy-
ments surfaced. Since then, well over 50 application servers have appeared on
the market. At first, each application server provided component services in a
nonstandard, proprietary way. This occurred because there was no agreed def-
inition of what a component should be. The result? Once you bet on an appli-
cation server, your code was locked into that vendor’s solution. This greatly
reduced portability and was an especially tough pill to swallow in the Java
world, which promotes openness and portability. It also hampered the com-
merce of components, because a customer could not combine a component
written to one application server with another component written to a differ-
ent application server.

What we need is an agreement, or set of interfaces, between application servers
and components. This agreement will enable any component to run within
any application server. This will allow components to be switched in and out
of various application servers without having to change code or potentially
even recompile the components themselves. Such an agreement is called com-
ponent architecture and is shown in Figure 1.5.

If you’re trying to explain components to a nontechie, try these analogies:

�� Any CD player can play any compact disc because of the CD standard. Think of an
application server as a CD player and components as compact discs.

�� In the United States, any TV set can tune into any broadcast because of the NTSC
standard. Think of an application server as a TV set and components as television
broadcasts.

O V E R V I E W12

Application Server

agreed-upon
interfaces
specified by
component
architecture

Components

Figure 1.5 A component architecture.

200110_CH01/RomanX 11/14/01 4:14 PM Page 12

Introducing Enterprise JavaBeans

The Enterprise JavaBeans (EJB) standard is a component architecture for
deployable server-side components in Java. It is an agreement between com-
ponents and application servers that enable any component to run in any
application server. EJB components (called enterprise beans) are deployable,
and can be imported and loaded into an application server, which hosts those
components.

The top three values of EJB are as follows:

1. It is agreed upon by the industry. Those who use EJB will benefit from its
widespread use. Because everyone will be on the same page, in the future
it will be easier to hire employees who understand your systems (since
they may have prior EJB experience), learn best practices to improve your
system (by reading books like this one), partner with businesses (since
technology will be compatible), and sell software (since customers will
accept your solution). The concept of “train once, code anywhere” applies.

2. Portability is easier. The EJB specification is published and available freely
to all. Since EJB is a standard, you do not need to gamble on a single, pro-
prietary vendor’s architecture. And although portability will never be
free, it is cheaper than without a standard.

3. Rapid application development. Your application can be constructed
faster because you get middleware from the application server. There’s
also less of a mess to maintain.

Note that while EJB does have these virtues, there are also scenarios where EJB
is inappropriate. See Chapter 15 for a complete discussion of when to (and
when not to) use EJB.

Physically, EJB is actually two things in one:

A specification. This is a 500-plus-page Adobe Acrobat PDF file, freely downloadable
from http://java.sun.com. This specification lays out the rules of engagement
between components and application servers. It constricts how you program so
that you can interoperate.

A set of Java interfaces. Components and application servers must conform to these
interfaces. Since all components are written to the same interfaces, they all look
the same to the application server. The application server therefore can manage
anyone’s components. You can freely download these interfaces from
http://java.sun.com.

Overview 13

200110_CH01/RomanX 11/14/01 4:14 PM Page 13

Why Java?

EJB components must be written in Java only and require dedication to Java.
This is indeed a serious restriction. The good news, however, is that Java is an
ideal language to build components, for many reasons.

Interface/implementation separation. We need a clean interface/implemen-
tation separation to ship components. After all, customers who purchase com-
ponents shouldn’t be messing with implementation. Upgrades and support
will become horrendous. Java supports this at a syntactic level via the interface
keyword and class keyword.

Safe and secure. The Java architecture is much safer than traditional program-
ming languages. In Java, if a thread dies, the application stays up. Pointers are
no longer an issue. Memory leaks occur much less often. Java also has a rich
library set, so that Java is not just the syntax of a language but a whole set of
prewritten, debugged libraries that enable developers to avoid reinventing the
wheel in a buggy way. This safety is extremely important for mission-critical
applications. Sure, the overhead required to achieve this level of safety might
make your application slower, but 90 percent of all business programs are glo-
rified Graphical User Interfaces (GUIs) to databases. That database is going to
be your number one bottleneck, not Java.

Cross-platform. Java runs on any platform. Since EJB is an application of Java,
this means EJB should also easily run on any platform. This is valuable for cus-
tomers who have invested in a variety of powerful hardware, such as Win32,
UNIX, and mainframes. They do not want to throw away these investments.

If you don’t want to go the EJB route, you have two other choices as well:

�� Microsoft’s .NET managed components, part of the Microsoft.NET platform

�� The Object Management Group (OMG’s) Common Object Request Broker Archi-
tecture (CORBA)

Note that many EJB servers are based upon and can interoperate with CORBA (see
Appendix B for strategies for achieving this).

EJB as a Business Solution

EJB is specifically used to help solve business problems. EJB components (enter-
prise beans) might perform any of the following tasks.

Perform business logic. Examples include computing the taxes on the shop-
ping cart, ensuring that the manager has authority to approve the purchase
order, or sending an order confirmation email using the JavaMail API.

O V E R V I E W14

200110_CH01/RomanX 11/14/01 4:14 PM Page 14

Access a database. Examples include submitting an order for books, transfer-
ring money between two bank accounts, or calling a stored procedure to
retrieve a trouble ticket in a customer support system. Enterprise beans
achieve database access using the Java Database Connectivity (JDBC) API.

Access another system. Examples include calling a high-performing CICS
legacy system written in COBOL that computes the risk factor for a new
insurance account, calling a legacy VSAM data store, or calling SAP R/3.
Enterprise beans achieve existing application integration via the Java Con-
nector Architecture (JCA).

EJB components are not GUI components; rather, enterprise beans sit behind
the GUIs and do all the hard work. Examples of GUIs that can connect to enter-
prise beans include the following:

Thick clients. Thick clients execute on a user’s desktop. They could connect
via the network with EJB components that live on a server. These EJB com-
ponents may perform any of the tasks listed above (business logic, data-
base logic, or accessing other systems). Thick clients in Java include applets
and applications.

Dynamically generated web pages. Web sites that are complex need their
Web pages generated specifically for each request. For example, the home-
page for Amazon.com is completely different for each user, depending on
the user’s profile. Java servlets and JavaServer Pages (JSPs) are used to
generate such specific pages. Both servlets and JSPs live within a Web
server and can connect to EJB components, generating pages differently
based upon the values returned from the EJB layer.

XML-based Web Service wrappers. Some business applications require no
user interface at all. They exist to interconnect with other business part-
ners’ applications that may provide their own user interface. For example,
Dell Computer Corporation needs to purchase Intel chips to manufacture
desktop computers. Intel could expose a Web Service that enables Dell’s
software to connect and order chips. In this case, Intel’s system does not
have a user interface of its own, but rather acts as a Web Service. Possible
technologies used here include SOAP, UDDI, ebXML, and WSDL. This is
shown in Figure 1.6.

The real difference between GUI components (thick clients, dynamically gener-
ated Web pages, and Web Service wrappers) and enterprise beans is the domain
that each component type is intended to be part of. GUI components are well
suited to handle client-side operations, such as rendering GUIs (although they
don’t necessarily need to have one), performing other presentation-related
logic, and lightweight business logic operations. They deal directly with the
end-user or business partner.

Overview 15

200110_CH01/RomanX 11/14/01 4:14 PM Page 15

Enterprise beans, on the other hand, are not intended for the client side; they
are server-side components. They are meant to perform server-side operations,
such as executing complex algorithms or performing high-volume business
transactions. The server side has different kinds of needs from a rich GUI envi-
ronment. Server-side components need to run in a highly available (24 � 7),
fault-tolerant, transactional, and multiuser secure environment. The applica-
tion server provides this high-end server-side environment for the enterprise
beans, and it provides the runtime containment necessary to manage enter-
prise beans.

The EJB Ecosystem

To get an EJB deployment up and running successfully, you need more than just
an application server and components. In fact, EJB encourages collaboration of
more than six different parties. Each of these parties is an expert in its own field
and is responsible for a key part of a successful EJB deployment. Because each
party is a specialist, the total time required to build an enterprise-class deploy-
ment is significantly reduced. Together, these players form the EJB Ecosystem.

Let’s discuss who the players are in the EJB Ecosystem. As you read on, think
about your company’s business model to determine which role you fill. If
you’re not sure, ask yourself what the core competency of your business is.
Also think about what roles you might play in upcoming projects.

The EJB Ecosystem is not for everyone. At my company, we’ve heard ghastly stories
of businesses choosing EJB because everyone else is using it, or because it is new
and exciting. Those are the wrong reasons to use EJB and can result in disappointing
results. For a complete discussion of when and when not to use EJB, see Chapter 15.

O V E R V I E W16

Dell
Web Site

HTTP

End-User Web Browser

Intel

EJBs
XML-Based

Web Service
Wrappers

(Servlets, JSPs)

SOAP
UDDI
ebXML
WSDL

Figure 1.6 EJBs as the back-end to Web services.

200110_CH01/RomanX 11/14/01 4:14 PM Page 16

The Bean Provider

The bean provider supplies business components, or enterprise beans. Enter-
prise beans are not complete applications, but rather are deployable compo-
nents that can be assembled into complete solutions. The bean provider could
be an ISV selling components or an internal department providing compo-
nents to other departments.

Many vendors ship reusable components today. You can get the complete list
from www.componentsource.com or www.flashline.com. In the future,
traditional enterprise software vendors (such as sales force automation ven-
dors, enterprise resource planning vendors, financial services vendors, and
e-commerce vendors) will offer their software as enterprise beans or provide
connectors to their current technology.

The Application Assembler

The application assembler is the overall application architect. This party is
responsible for understanding how various components fit together and
writes the applications that combine components. An application assembler
may even author a few components along the way. His or her job is to build an
application from those components that can be deployed in a number of

Overview 17

JavaBeans. Enterprise JavaBeans

You may have heard of another standard called JavaBeans. JavaBeans are com-
pletely different from Enterprise JavaBeans.

In a nutshell, JavaBeans are Java classes that have get/set methods on them.
They are reusable Java components with properties, events, and methods (similar
to Microsoft’s ActiveX controls) that can be easily wired together to create (often
visual) Java applications.

JavaBeans are much smaller than Enterprise JavaBeans. You can use JavaBeans
to assemble larger components or to build entire applications. JavaBeans, how-
ever, are development components and are not deployable components. You typ-
ically do not deploy a JavaBean; rather, JavaBeans help you construct larger
software that is deployable. And because they cannot be deployed, JavaBeans do
not need to live in a runtime environment. Since JavaBeans are just Java classes,
they do not need an application server to instantiate them, to destroy them, and
to provide other services to them. The application itself is made up of JavaBeans.

200110_CH01/RomanX 11/14/01 4:14 PM Page 17

settings. The application assembler is the consumer of the beans supplied by
the bean provider.

The application assembler could perform any or all of the following tasks:

�� From knowledge of the business problem, decide which combination of
existing components and new enterprise beans are needed to provide an
effective solution; in essence, plan the application assembly.

�� Supply a user interface (perhaps Swing, servlet/JSP, application/applet,
or Web Service wrapper).

�� Write new enterprise beans to solve some problems specific to your busi-
ness problem.

�� Write the code that calls on components supplied by bean providers.

�� Write integration code that maps data between components supplied by
different bean providers. After all, components won’t magically work
together to solve a business problem, especially if different vendors write
the components.

An example of an application assembler is a systems integrator, a consulting
firm, or an in-house programmer.

The EJB Deployer

After the application assembler builds the application, the application must be
deployed (and go live) in a running operational environment. Some challenges
faced here include the following:

�� Securing the deployment with a firewall and other protective measures

�� Integrating with an LDAP server for security lists, such as Lotus Notes or
Microsoft Active Directory

�� Choosing hardware that provides the required level of performance

�� Providing redundant hardware and other resources for reliability and
fault tolerance

�� Performance-tuning the system

Frequently the application assembler (who is usually a developer or systems
analyst) is not familiar with these issues. This is where the EJB deployer comes
into play. EJB deployers are aware of specific operational requirements and
perform the tasks above. They understand how to deploy beans within servers
and how to customize the beans for a specific environment. The EJB deployer

O V E R V I E W18

200110_CH01/RomanX 11/14/01 4:14 PM Page 18

has the freedom to adapt the beans, as well as the server, to the environment in
which the beans are to be deployed.

An EJB deployer can be a staff person, an outside consultant, or a vendor.
Examples of EJB deployers include Loudcloud and HostJ2EE.com, which both
offer hosting solutions for EJB deployments.

The System Administrator

Once the deployment goes live, the system administrator steps in to oversee
the stability of the operational solution. The system administrator is responsi-
ble for the upkeep and monitoring of the deployed system and may make use
of runtime monitoring and management tools that the EJB server provides.

For example, a sophisticated EJB server might page a system administrator if
a serious error occurs that requires immediate attention. Some EJB servers
achieve this by developing hooks into professional monitoring products, such
as Tivoli and Computer Associates. Others are providing their own systems
management by supporting the Java Management Extension (JMX).

The Container and Server Provider

The container provider supplies an EJB container (the application server). This
is the runtime environment in which beans live. The container supplies mid-
dleware services to the beans and manages them. Examples of EJB containers

Overview 19

Qualities of Service in EJB

Monitoring of EJB deployments is not specified in the EJB specification. It is an
optional service that advanced EJB servers can provide. This means that each EJB
server could provide the service differently.

At first blush you might think this hampers application portability. However, in
reality this service should be provided transparently behind the scenes, and
should not affect your application code. It is a quality of service that lies beneath
the application level and exists at the systems level. Changing application servers
should not affect your EJB code.

Other transparent qualities of service not specified in the EJB specification
include load balancing, transparent fail-over, caching, clustering, and connection
pooling algorithms.

200110_CH01/RomanX 11/14/01 4:14 PM Page 19

are BEA’s WebLogic, iPlanet’s iPlanet Application Server, IBM’s WebSphere,
Oracle’s Oracle 9i, Macromedia’s JRun, Persistence’s PowerTier, Brokat’s
Gemstone/J, HP’s Bluestone, IONA’s iPortal, Borland’s AppServer, and the
JBoss open source code application server.

The server provider is the same as the container provider. Sun has not yet dif-
ferentiated these (and they may never do so). We will use the terms EJB con-
tainer and EJB server interchangeably in this book.

The Tool Vendors

To facilitate the component development process, there should be a standard-
ized way to build, manage, and maintain components. In the EJB Ecosystem,
there are several Integrated Development Environments (IDEs) assist you in
rapidly building and debugging components. Examples are Webgain’s Visual
Cafe, IBM’s VisualAge for Java, or Borland’s JBuilder.

Other tools enable you to model components in the Unified Modeling Lan-
guage (UML), which is the diagram style used in this book. You can then auto-
generate EJB code from that UML. Examples of products in this space are
Togethersoft’s Together/J and Rational’s Rational Rose.

There are other tools as well, such as tools to organize components (Flashline,
ComponentSource), testing tools (JUnit, RSW Software), and build tools (Ant).

Summary of Roles

Figure 1.7 summarizes the interaction of the different parties in EJB.

You may be wondering why so many different participants are needed to pro-
vide an EJB deployment. The answer is that EJB enables companies or indi-
viduals to become experts in certain roles, and division of labor leads to
best-of-breed deployments.

The EJB specification makes each role clear and distinct, enabling experts in
different areas to participate in a deployment without loss of interoperability.
Note that some of these roles could be combined as well. For example, the EJB
server and EJB container today come from the same vendor. Or at a small
startup company, the bean provider, application assembler, and deployer
could all be the same person who is trying to build a business solution using
EJB from scratch. What roles do you see yourself playing?

For some of the parties EJB merely suggests possible duties, such as the system
administrator overseeing the well-being of a deployed system. For other par-
ties, such as the bean provider and container provider, EJB defines a set of

O V E R V I E W20

200110_CH01/RomanX 11/14/01 4:14 PM Page 20

strict interfaces and guidelines that must be followed or the entire ecosystem
will break down. By clearly defining the roles of each party, EJB lays a founda-
tion for a distributed, scalable component architecture where multiple ven-
dors’ products can interoperate.

A future EJB specification will define a new role, called the persistence manager,
which plugs into an application server. Your components harness the persistence
manager to map your business data into storage, such as mapping objects into rela-
tional databases.

The persistence manager may be written to understand how to persist business data
to any storage type. Examples include legacy systems, flat file systems, relational
databases, object databases, or a proprietary system.

The persistence manager provider may be the same as the container/server vendor,
such as the case with IBM’s WebSphere, which includes built-in persistence capabili-
ties. Examples of ISV persistence manager providers include WebGain’s TOPLink and
Thought Inc’s Cocobase.

Unfortunately, the persistence manager provider role is not explicitly defined in the
EJB 2.0 specification. Due to time constraints, a standard for plugging persistence
managers into application servers won’t exist until a future version of EJB. The good
news is this won’t affect the portability of your code, because your application
doesn’t care whether it’s being persisted by the container or by some persistence
manager that happens to plug into the container. The bad news is that you’ll need to
rely on proprietary agreements between persistence manager providers and applica-
tion server vendors, which means that not every persistence manager may work in
every application server — for now.

Overview 21

Bean Provider

EJB Container/Server
 Provider

Deployer System Administrator
(Maintains Deployment)

Application
Assembler

Constru
ct

Enterprise Beans

Build Application Deploy System

Supply

EJB Container/S
erver

Tool Provider

Supply Tools

Figure 1.7 The parties of EJB.

200110_CH01/RomanX 11/14/01 4:14 PM Page 21

The Java 2 Platform, Enterprise Edition (J2EE)

EJB is only a portion of a larger offering from Sun Microsystems called the Java
2 Platform, Enterprise Edition (J2EE). The mission of J2EE is to provide a
platform-independent, portable, multiuser, secure, and standard enterprise-
class platform for server-side deployments written in the Java language.

J2EE is a specification, not a product. J2EE specifies the rules of engagement
that people must agree on when writing enterprise software. Vendors then
implement the J2EE specifications with their J2EE-compliant products.

Because J2EE is a specification (meant to address the needs of many compa-
nies), it is inherently not tied to one vendor; it also supports cross-platform
development. This encourages vendors to compete, yielding best-of-breed
products. It also has its downside, which is that incompatibilities between ven-
dor products will arise—some problems due to ambiguities with specifica-
tions, other problems due to the human nature of competition.

J2EE is one of three different Java platforms. Each platform is a conceptual
superset of the next smaller platform.

The Java 2 Platform, Micro Edition (J2ME) is a development platform for
Java-enabled devices, such as Palm Pilots, pagers, watches, and so on. This
is a restricted form of the Java language due to the inherent performance
and capacity limitations of small devices.

The Java 2 Platform, Standard Edition (J2SE) contains standard Java ser-
vices for applets and applications, such as input/output facilities, graphi-
cal user interface facilities, and more. This platform contains what most
people use in standard Java Development Kit (JDK) programming.

The Java 2 Platform, Enterprise Edition (J2EE) takes Java’s Enterprise APIs
and bundles them together in a complete development platform for
enterprise-class server-side deployments in Java.

The arrival of J2EE is significant because it creates a unified platform for
server-side Java development. J2EE consists of the following deliverables
from Sun Microsystems.

Specifications. Each enterprise API within J2EE has its own specification,
which is a PDF file downloadable from http://java.sun.com. Each time
there is a new version of J2EE, Sun locks-down the versions of each Enter-
prise API specification and bundles them together as the de facto versions
to use when developing with J2EE. This increases code portability across
vendors’ products because each vendor supports exactly the same API
revision. This is analogous to a company such as Microsoft releasing a new

O V E R V I E W22

200110_CH01/RomanX 11/14/01 4:14 PM Page 22

version of Windows every few years: Every time a new version of Win-
dows comes out, Microsoft locks-down the versions of the technologies
bundled with Windows and releases them together.

Test suite. Sun provides a test suite for J2EE server vendors to test their
implementations against. If a server passes the tests, Sun issues a compli-
ance brand, alerting customers that the vendor’s product is indeed J2EE-
compliant. There are numerous J2EE-certified vendors, and you can read
reviews of their products for free on TheServerSide.com.

Reference implementation. To enable developers to write code against J2EE
as they have with the JDK, Sun provides its own free reference implemen-
tation of J2EE. Sun is positioning it as a low-end reference platform, as it is
not intended for commercial use.

BluePrints Document. Each of the Enterprise APIs has a clear role in J2EE, as
defined by Sun’s J2EE BluePrints document. This document is a download-
able PDF file that describes how to use the J2EE technologies together.

The J2EE Technologies

The Java 2 Platform, Enterprise Edition is a robust suite of middleware ser-
vices that make life very easy for server-side application developers. J2EE
builds on the existing technologies in the J2SE. J2SE includes the base Java sup-
port and the various libraries (.awt, .net, .io) with support for both applets and
applications. Because J2EE builds on J2SE, a J2EE-compliant product must not
only implement all of J2EE, but must also implement all of J2SE. This means
that building a J2EE product is an absolutely huge undertaking. This barrier to
entry has resulted in significant industry consolidation in the Enterprise Java
space, with a few players emerging from the pack as leaders.

We will discuss version 1.3 of J2EE, which supports EJB 2.0. Some of the major
J2EE technologies are shown working together in Figure 1.8.

To understand more about the real value of J2EE, here is each API that a J2EE
1.3-compliant implementation must provide for you.

Enterprise JavaBeans (EJB). EJB defines how server-side components are
written and provides a standard contract between components and the
application servers that manage them. EJB is the cornerstone for J2EE and
uses several other J2EE technologies.

Java Remote Method Invocation (RMI) and RMI-IIOP. RMI is the Java lan-
guage’s native way to communicate between distributed objects, such as
two different objects running on different machines. RMI-IIOP is an exten-
sion of RMI that can be used for CORBA integration. RMI-IIOP is the offi-
cial API that we use in J2EE (not RMI). We cover RMI-IIOP in Appendix A.

Overview 23

200110_CH01/RomanX 11/14/01 4:14 PM Page 23

Java Naming and Directory Interface (JNDI). JNDI is used to access naming
and directory systems. You use JNDI from your application code for a vari-
ety of purposes, such as connecting to EJB components or other resources
across the network, or accessing user data stored in a naming service such
as Microsoft Exchange or Lotus Notes. JNDI is covered in Appendix A.

Java Database Connectivity (JDBC). JDBC is an API for accessing relational
databases. The value of JDBC is that you can access any relational database
using the same API. JDBC is used in Chapter 6.

O V E R V I E W24

Firewall

EJBs

Existing System
Legacy System

ERP System

IIOP

Client Tier

J2EE Server

Back-End
Systems

Business
Partner

or Other System

Servlets

Business Partner
or Other System

Applets,
Applications,

CORBA Clients

IIOPWeb services technologies
(SOAP, UDDI, WSDL, ebXML) HTTP

Databases

Proprietary Protocol
Web Services Technologies
(SOAP, UDDI, WSDL, ebXML)

Connectors

SQL

JSPs

Web Browser Wireless Device

HTTP

JMS

Figure 1.8 A Java 2 Platform, Enterprise Edition deployment.

200110_CH01/RomanX 11/14/01 4:14 PM Page 24

Java Transaction API (JTA) Java Transaction Service (JTS). The JTA and JTS
specifications allow for components to be bolstered with reliable transac-
tion support. JTA and JTS are explained in Chapter 10.

Java Messaging Service (JMS). JMS allows for your J2EE deployment to
communicate using messaging. You can use messaging to communicate
within your J2EE system as well as outside your J2EE system. For example,
you can connect to existing message-oriented middleware (MOM) systems
such as IBM MQSeries or Microsoft Message Queue (MSMQ). Messaging is
an alternative paradigm to RMI-IIOP, and has its advantages and disad-
vantages. We explain JMS in Chapter 8.

Java Servlets. Servlets are networked components that you can use to extend
the functionality of a Web server. Servlets are request/response oriented in
that they take requests from some client host (such as a Web browser) and
issue a response back to that host. This makes servlets ideal for performing
Web tasks, such as rendering an HTML interface. Servlets differ from EJB
components in that the breadth of server-side component features that EJB
offers is not readily available to servlets. Servlets are much better suited to
handling simple request/response needs, and they do not require sophisti-
cated management by an application server. We illustrate using Servlets
with EJB in Chapter 17.

Java Pages (JSPs). JSPs are very similar to servlets. In fact, JSP scripts are
compiled into servlets. The largest difference between JSP scripts and
servlets is that JSP scripts are not pure Java code; they are much more cen-
tered around look-and-feel issues. You would use JSP when you want the
look and feel of your deployment to be physically separate and easily
maintainable from the rest of your deployment. JSPs are perfect for this,
and they can be easily written and maintained by non-Java savvy staff
members (JSPs do not require a Java compiler). We illustrate using JSPs
with EJB in Chapter 17.

Java IDL. Java IDL is Sun Microsystems’ Java-based implementation of
CORBA. Java IDL allows for integration with other languages. Java IDL
also allows for distributed objects to leverage CORBA’s full range of
services. J2EE is thus fully compatible with CORBA, completing the
Java 2 Platform, Enterprise Edition. We discuss CORBA integration in
Appendix B.

JavaMail. The JavaMail service allows you to send email messages in a
platform-independent, protocol-independent manner from your Java pro-
grams. For example, in a server-side J2EE deployment, you can use Java-
Mail to confirm a purchase made on your Internet e-commerce site by
sending an email to the customer. Note that JavaMail depends on the

Overview 25

200110_CH01/RomanX 11/14/01 4:14 PM Page 25

JavaBeans Activation Framework (JAF), which makes JAF part of J2EE as
well. We do not cover JavaMail in this book.

J2EE Connector Architecture (JCA). Connectors allow you to access existing
enterprise information systems from a J2EE deployment. This could
include any existing system, such as a mainframe systems running high-
end transactions (such as those deployed with IBM’s CICS or BEA’s
TUXEDO), Enterprise Resource Planning (ERP) systems, or your own pro-
prietary systems. Connectors are useful because they automatically man-
age the details of middleware navigation to existing systems, such as
handling transaction and security concerns. Another value of the JCA is
that you can write a driver to access an existing system once, and then
deploy that driver into any J2EE-compliant server. This is important
because you only need to learn how to access any given existing system
once. Furthermore, the driver needs to be developed only once and can be
reused in any J2EE server. This is extremely useful for independent soft-
ware vendors (ISVs) who want their software to be accessible from within
application servers. Rather than write a custom driver for each server, the
ISV can write a single driver. We discuss legacy integration more in Chap-
ters 12 and 13.

The Java API for XML Parsing (JAXP). There are many applications of XML
in a J2EE deployment. For example, you might need to parse XML if you
are performing B2B interactions (such as through Web services), if you are
accessing legacy systems and mapping data to and from XML, or if you are
persisting XML documents to a database. JAXP is the de facto API for pars-
ing XML documents in a J2EE deployment and is an implementation-
neutral interface to XML parsers. You typically use the JAXP API from
within servlets, JSPs, or EJB components. There is a free whitepaper avail-
able on TheServerSide.com that describes how to build Web services
with J2EE.

The Java Authentication and Authorization Service (JAAS). JAAS is a stan-
dard API for performing security-related operations in J2EE. Conceptually,
JAAS also enables you to plug in a security system to a J2EE deployment.
See Chapter 9 for more details on security and EJB.

Summary

We’ve achieved a great deal in this chapter. First, we brainstormed a list of
issues involved in a large, multitier deployment. We then understood that a
server-side component architecture allows us to write complex business appli-
cations without understanding tricky middleware services. We then dove into

O V E R V I E W26

200110_CH01/RomanX 11/14/01 4:14 PM Page 26

the EJB standard and fleshed out its value proposition. We investigated the
different players involved in an EJB deployment and wrapped up by explor-
ing J2EE.

The good news is that we’re just getting started, and many more interesting
and advanced topics lie ahead. The next chapter delves into the concept of
request interception, which is the mental leap you need to make to understand
EJB. Let’s go!

Overview 27

200110_CH01/RomanX 11/14/01 4:14 PM Page 27

200110_CH01/RomanX 11/14/01 4:14 PM Page 28

