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1.1 INTRODUCTION

In general, propagation through inhomogeneous media, with variable and imperfect
boundaries is simulated in this chapter. Although ground waves are of main interest,
numerical simulators presented here are quite general and applicable to, for example,
propagation through transmission lines, microstriplines, coaxial cables, waveguides,
optical films, etc.

The frequency bands of interest are MF (medium frequencies, 300 kHz to 3 MHz), HF
(high frequencies, 3 - 30 MHz), VHF (very high frequencies, 30 - 300 MHz), UHF (ultra
high frequencies, 300 MHz to 1 GHz), and MW (microwaves, 1 GHz and above).

At frequencies between 3 kHz and 30 MHz, two types of electromagnetic (EM) wave
propagation between two points on or above the earth are possible: ground wave
propagation and indirect sky wave (ionospheric wave). Ground wave propagation is
affected by the tropospheric variations (neutral atmosphere) as well as ground
characteristics. Sky wave is reflected from the ionosphere back to the earth at
appropriate frequencies and angles of incidence giving rise to long-range propagation.
Although the ionosphere acts as a reflector up to frequencies of a few megahertz, ft
becomes more penetrable for EM waves above 30 MHz as the operating frequency
increases; and at a critical frequency, no reflection towards ground occurs. Therefore,
propagation along the earth via sky wave is not possible at VHF and upper
frequencies. In this chapter, the ground wave propagation is of main interest for the
frequency bands given above; and the characteristics of the ionosphere, which is
composed of a number of ionized regions, are not considered here.

Ground waves have three components: direct waves, ground-reflected waves, and
surface waves. The model environment is a spherical earth with various ground
characteristics, above which exists a radially inhomogeneous atmosphere. Having an
excitation and observer anywhere on or above the ground, this model has served as a
canonical problem. The problem is very complex and neither a full-wave, observable-
based, numerically computable analytical solution nor a 3D, generally applicable,
numerical solution has appeared yet. Instead, analytical approximate and 2D
numerical solutions, valid under different parameter regimes, together with some
hybridized solutions, are being used.

The physical characteristics of the propagation depend on many parameters, such as
the operating frequency, medium parameters, grazing angle, transmitter and receiver
locations, and the geometry (boundary conditions, BC) between them. Some
characteristics of the ground wave propagation can be listed as:
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• At MF and lower HF, ground-wave propagation is dominated by the surface
wave. As long as the transmitter and receiver are close to the surface, direct
and ground reflected waves cancel each other and only surface waves can
propagate. The earth's surface electrical parameters are important in reaching
longer ranges. Sea surface is a good conductor, but ground is a poor conductor
at these frequencies. For example, with the same transmitter and receiver
characteristics, a 5 MHz signal, which reaches 400-km range over the sea, can
only reach up to 40 - 50-km range over the poor ground. Typical electrical
parameters (o, conductivity, er, relative permittivity) are listed in Table 1.1.

• At MF and lower HF, propagation is possible up to the 400 - 500-km range. MF
are used for long- and medium-wave radio broadcasting. Lower HF is used for
long-range marine communication and HF surface-wave radars. Propagation
beyond the line-of sight (LOS, a straight line from transmitter that is tangent to
the earth's surface) is possible at these frequencies via surface waves and/or
sky waves.

• Surface waves are hardly excited and coupled to the surface, when the
transmitter is many wavelengths (e.g., 5A, to 10A.) above the ground. When
excited and coupled, they exponentially decay with height; therefore surface
waves are rarely used above 10-15 MHz.

• At VHF and above (i.e., VHF, UHF and MW), propagation is limited by the LOS,
because surface-wave contribution becomes negligible at these frequencies
and the ground wave is then known as the space wave, which is the sum of
direct and ground reflected waves. For near grazing path, the complex reflection
coefficient of the ground for both horizontal and vertical polarization approaches
- 1 , which is appropriate to assume ground as perfectly conducting.

• At VHF, propagation beyond the LOS is still possible by means of diffracted
components (typically 5 km to 20-km range beyond obstacles)

Table 1.1: Typical ground parameters

Ground
Sea
Medium ground
Poor ground

a [S/m]
5.0
0.01
0.001

er

80.0
15.0
7.0

Today's communication systems and radars are mostly used within multi-area, multi-
sensor, land-based, maritime and/or air-based complex integrated systems (such as
an integrated maritime surveillance system or integrated early warning system against
tactical ballistic missiles, etc.). Research towards the development and to the
performance evaluation of such systems requires powerful computer simulation tools
and can only be done via these simulators. Some requirements, related to current
integrated system simulations, are as follows:
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• Modeling of propagation characteristics and path loss predictions in integrated
surveillance system simulations, where optical, microwave, and HF radars are
used

• Service planning, in rural and urban locations, for mobile communication
systems using 900-MHz and 1.8-GHz systems and for FM radio stations

• Sensor location and service planning for Intelligent Traffic Management
Systems (ITMS) in a complicated and densely occupied urban metropolis

• Control and/or detection of very low altitude missiles, camouflaged by the local
terrain profile up to the target

• Knowledge of propagation characteristics to overcome problems related to
emerging radar technologies (HF and VHF radars) etc.

Figure 1.1: A typical digital map and the height/range function for a chosen
propagation path

In real-world systems, such as those exemplified above, the problem of determining
the propagation characteristics between any two selected points (e.g., a
communication transmitter and receiver) can best be addressed via an accurate and
versatile simulation model. Such a simulator is expected to accept the characteristics
of the propagation environment as input (digitized map of the non-flat terrain, as seen
in Fig.1.1, ground cover types, parameters of the troposphere, etc.) and provide wave
propagation characteristics as output, in a nearly real-time basis. Clearly such a
simulation tool would be indispensable to the decision-maker (service planner, site
engineer, or the leader of a small military ground contingent) and it has therefore been
a continuing challenge to develop a simulator, which satisfies these requirements. The
challenge here is to parameterize this complex system in terms of the variety of wave
processes that operate there.
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Ground-Wave Propagation

1.1.1 Historical Overview
In the review article by J. R. Wait [1] the ancient and modern history of EM ground
wave propagation is outlined, and the feature article by N. DeMinco [2] contains a
wide-ranging survey of radio wave propagation and antenna modeling. Here we will
present a brief history of the investigations related to wave propagation over the earth.
For a more detailed account on this subject the reader is referred to the review paper
of the J. R. Wait[1].

Beginning with the original investigations of Heinrich Hertz, the influence of the
interference caused by the obstacles in the path had been an important subject and
then in 1899 Marconi investigated the weakening of the field strength when a hill was
located between transmitter and receiver. Early conjectures were that the signal was
guided in some fashion by the air - earth boundary, and at that time the possible
existence of the ionosphere was also broached. At the turn of the century, the
presence of the earth had been a key factor to be reckoned with, and this was the
beginning of the subject that is now called "ground-wave propagation."

In 1907, Zenneck analyzed the possibility that the air - earth interface supported a
surface wave with low attenuation. Although the guiding-wave mechanism of the air -
earth interface seemed to be a leading subject to explain the radio wave transmission
over long distances, Sommerfeld took the lead to put the question on a firm
mathematical basis. His analysis dealt with the problem of determining the fields of
electric and magnetic dipoles located in the insulating half-space over a conducting
half-space as well as dipoles located in the planar interface. In 1926, Sommerfeld
corrected his original formulation. In 1930s, there was activity on the question of the
validity of the Sommerfeld theory, including the modified 1926 version. Pol and
Niessen confirmed that the physical form of the Sommerfeld 1926 version was correct.
There has been a great deal of discussion in the literature, for the past 50 years or
more, on the form the theory should take for the general case of raised terminals.
Norton developed an improved form for the Hertz potential for arbitrary heights. J. R.
Wait [3] and his former colleague, R. J. King proposed various forms that had the
uniform property of reducing exactly to geometrical optics at higher elevation angles. It
is pointed out that Norton formulation of surface wave is to be defined as the
difference between the total wave field and the easily computed space-wave
component (sum of direct and ground-reflected wave) or GO field. R. King has also
employed the surface-impedance model, in an independent integral-equation solution.

In order to deal with the actual physical world, a spherical earth model has to be used.
In 1918, G. N. Watson began with the classical harmonic series solution for a dipole,
in the presence of a homogeneous sphere of radius a with the electrical properties
conductivity <J, dielectric permittivity £, and magnetic permeability ji. The surrounding
medium was accepted as free space. Although the solution involving spherical Bessel
functions of integer order was mathematically correct, convergence properties were
poor. Watson's first step was to represent the series by a contour integral that
enclosed the real axis of the complex wavenumber plane, and then Watson wrapped
the contour around a manageable number of complex poles, which provided a highly
convergent residue series in the shadow region. The improved spherical-earth modal
residue series solution is explained in detail in [3,4]. The mixed-path (i.e., land - sea
transition) theory [5] as well as irregular terrain concepts [6,7] are also analyzed with
analytic approximate approaches by various researches (see [1] for reference list).
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1.1.2 Available Approaches
Problem-matched analytic approximate approaches as well as purely numerical
techniques have been used and are still being developed to better understand and
model wave propagation over a non-flat terrain covered with various ground cover
types. Analytic models listed below assume a smooth spherical earth (and/or its earth-
flattened approximate equivalent) with various smooth ground characteristics, a
radially inhomogeneous atmosphere above and excitation by a vertical or a horizontal
electric dipole on or above the earth's surface.

1. The Norton formulation, which extracts from a wavenumber spectral integral
representation a ray-optical asymptotic approximation [8].

2. The Wait formulation, which restructures the spectral integral as a series of
normal modes propagating along the earth's surface [3].

3. The Ishihara - Felsen formulation, which combines ray fields and mode fields
in a self-consistent hybrid scheme [9,10], which however, is valid under less
general conditions than those of options 1 and 2 individually.

4. The hybrid algorithm, WAVEPROB, which combines Norton and Wait
solutions in an efficient manner to extend the range of validity of options 1 and
2 [11].

5. The adiabatic and intrinsic mode formulations, which extend analytic modal
solutions to media with transverse as well as longitudinal variations [12,13].

6. The numerical solution of the parabolic equation (PE) that is derived in an
approximate sense neglecting the back-scattered field (one-way propagation)
and is most directly applicable within a narrow range of angles between the
propagation direction and range (i.e., paraxial approximation) (see [14] for
historical review and references for various PE approaches).

7. A split-step Pade PE method for problems involving large angles between
propagation direction and range [14].

8. An improved PE method for impedance (Cauchy-type) boundary conditions
[14,15].

9. The hybrid ray - PE method, which addresses transitional effects in option 3
[16].

10. A hybrid (finite difference PE) - (surface Green's function) method to account
for propagation loss over mixed paths [14,17].

11. A horizontal PE method for the rigorous extension of standard PE solutions to
large transverse spatial domains [14].

12. The FDTD-based wave propagator (TDWP), which simulates and traces
broadband pulse propagation over long distances [18,19].
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13. The TLM-based wave propagator (TLM-WP), which simulates and traces
broadband pulse propagation over long distances [20].

14. Simplified Deygout solution for multiple knife-edge diffraction [21] (more
sophisticated diffraction models representing the terrain profile as a
succession of knife-edges, wedges, cylinders or flat strips are also available
[22,23]. Another important family of models uses an integral equation
formulation [6,7], which can be simplified by paraxial approximation [24]. All of
these techniques assume propagation in a homogeneous or linear
atmosphere).

In dealing with the propagation requirements listed above, it is essential to understand
propagation characteristics over spherical earth's surface such as (i) energy spread
because of curvature effects, (ii) wave scattering because of irregular terrain, (iii)
guiding as well as anti-guiding effects because of refractivity variations, etc. Although
it is a source-driven (i.e., a Green's function) problem in 3D spherical co-ordinates,
because of the azimuthal symmetry met in almost all practical applications this
problem can be reduced to 2D and using appropriate transformations the natural co-
ordinates of the problem can be converted into normalized Cartesian co-ordinates
(see Fig. 1.2) [11,19]. Detailed reviews of these radiowave propagation problems can
be found in [1,2,25-27].

kTX x

s=a6

(a) (b)

Figure 1.2: The geometry of the ground-wave propagation problem in (a) spherical
coordinates and (b) normalized Cartesian coordinates.

1.1.3 The Lower Atmosphere
Ground wave propagation through atmosphere (up to nearly 100 GHz) is affected by
oxygen and water-vapor molecules. The air can be considered as a non-dispersive

medium and can be represented by its refractive index (n =-JE~ ). The refractivity of

the propagation medium should be well understood, since non-flat terrain and/or
earth's curvature may also be implemented via refractivity in most of the analytical as
well as numerical approaches. Refractive index of the air is very close to unity
(typically about 1.0003); therefore, it is customary to use the refractivity N, defined as

N = (n-l)xlQ6 (1.1)
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were N is dimensionless, but is measured in "N units" for convenience. N depends on
the pressure P (mbar), the absolute temperature T (°K) and the partial pressure of
water vapor e (mbar) as [18],

N = 77.6~ + 3.73 xlO5-^- (1.2)
T j2

which is valid in earth - troposphere waveguides and can be used in ground wave
propagation modeling. If the refractive index were constant, radio waves would
propagate in straight lines. Since n decreases with height, radio waves are bent
downward toward the earth, so that the radio horizon lies further away than the optical
horizon. It should be noted that the radio horizon effect is taken into account either by
using N with the effective earth radius ae, or by introducing a fictitious medium where
N is replaced by the modified refractivity M,

M = N + -xlO6 =N + I57x
a

with the height x given in kilometers. In (1.3)

(1.3)
a

a = 6378 km, — = 157 and — = — + 157 (1.4)
a ox dx

For the standard atmosphere (i.e., for a vertical linearly decreasing refractive index), N
decreases by about 40 N unit/km while M increases by about 117 N unit/km. Sub-
refraction (super-refraction) occurs when the rate of change in N with respect to height
(i.e., dN/dx) is less (more) than 40 N unit/km.

A linearly decreasing (increasing) vertical refractive index variation forces a wave trap
near (diverge from) the earth's surface while propagating. Similar effects are also
caused by concave and convex surfaces. Therefore, there is an analogy between
refractive index and surface geometry in terms of propagation effects. By using this
analogy, te earth's curvature effect is included into the refractive index of the air. The
earth's curvature effect is equivalent to a vertical refractivity gradient of 157 N unit/km
(i.e., linear vertical increasing refractivity profile). As stated in the previous paragraph,
standard atmosphere, together with te earth's curvature, is represented by a vertical
refractivity gradient of 117 N unit/km.

1.1.4 Summary
Norton and Wait formulations parameterize the propagation process in terms of
different phenomenological models; their ranges of validity, accuracy, rate of
convergence, etc., depending on such problem parameters as operational
frequencies, source/observer locations, and the physical propagation environment,
differ as well, with particular impact on computations. This has led to a new hybrid
WAVEPROB algorithm [11], which seeks to combine the best features of the Norton
and Wait algorithms in an efficient, adaptive format, with dynamic prediction of the
critical height, range, frequency, and number of necessary roots in the algorithm that
switches from one method to the other.
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Either by using ray-mode theories separately or by using WAVEPROB, one may deal
with smooth-boundary problems, such as [11,25]

• Surface wave path loss or field strength variation with respect to range
(especially beyond the horizon and when both transmitter and receiver are on
the surface).

• Range and/or height propagation variations in interference regions (i.e., when
transmitter and receiver are above the surface and within the line-of-sight
(LOS)).

Ray-mode and their hybridized techniques cannot handle problems, such as

• Propagation over rough surface terrain (note that roughness capability can be
added to WAVEPROB, in an approximate sense, via modification of the surface
reflection coefficient; the Rayleigh roughness criterion, which is based on the
phase difference between two nearby reflections of the same incident wave due
to surface height changes, may be used for this purpose [11]).

• Propagation through surface and/or elevated ducts formed by inhomogeneous
vertical as well as horizontal atmospheric conditions (note that analytic
formulations are based on a coordinate separable model over a smooth
spherical earth with standard atmosphere).

Although height gain functions in mode theory [3] can be used to account for
transmitter/receiver heights, it is difficult to deal with receiver heights in diffraction
regions (beyond LOS) because of numerical problems in calculating higher-order
terms in the series representation of Airy functions [26]. Nevertheless, analytic
approximate solutions are important because they parameterize a problem in terms of
wave phenomenologies, such as rays and modes, provided that the actual problem
does not deviate substantially from the analytic prototype.

The Split-Step Parabolic Equation propagator (SSPE) and recently introduced time-
domain wave propagators TDWP and TLM-WP are very promising, since they all can
handle propagation over a realistic spherical earth's surface (including non-flat terrain
profile as well as vegetation modeled as a surface impedance) above which lies an
atmosphere with a transverse as well as longitudinally inhomogeneous refractive
index.

1.2 ANALYTICAL MODELS

An exact analytical model requires formulation of the real-life problem; calculation of a
field component at a given frequency, at any point on or above the earth's surface,
caused by a point source on or above the lossy ground, which is characterized by
surface impedance boundary condition, in spherical coordinates. The model shall
include surface irregularities (rough surface, non-flat terrain, etc.) as well as
longitudinal and/or transverse refractivity variations. Unfortunately, this model has not
appeared yet, but a model for smooth spherical earth with homogeneous or standard
atmosphere (defined in the next sections) has been in use for several decades.
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1.2.1 Statement of the Problem
Consider the problem given in Fig. 1.3 and assume wave propagation over the smooth
spherical earth with impedance boundary conditions. Further assume homogeneous
atmosphere and consider a vertical electric dipole located near the earth's surface as
the source. In spherical (r,0,(p) coordinates the earth's radius is r= a, finite conductivity
of the earth's surface at r = a is described by the surface impedance Zs.

Figure 1.3: Spherical earth geometry with smooth terrain, in spherical polar
coordinates. Also shown are transmitter and receiver heights, as well as path lengths
associated with wave processes discussed in 1.2.5. Here, \ffx denotes the angle
between the direct ray and the tangent to the earth's surface at the ray reflection point.

Under the assumption of azimuthal symmetry for the proposed problem and exp(-jorf)
time dependence the fields of a dipole source located on the polar axis 0 = 0 at r' > a
can then be derived from the radial component rU(r,Q) of the electric Hertz vector as
[3],

E =VxVx(£/re r)

H = -JCO& x(Urer)

or in component form [3,4]

1
E=-

rsinede
i a2

sin 6-
dG

Ee r drdO
(rU)

(1.5)

(1.6)

(1.7)

(1.8)
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H9 = joae
dd

(1.9)

and

Eq> ~ Hd - Hr -0 (1.10)

where £ denotes the dielectric constant of the exterior region, r > a. The function
U(r,Q) satisfies the homogeneous wave equation

(V2 + k2)U = 0 (1.11)

everywhere in the exterior region except at the source region. Here, k = co^e/J. is the

wavenumber. The boundary conditions are radiation condition for I r| -> °° and an
impedance boundary condition on the earth's surface. The latter can be expressed as

nxE = Z nx(nxH) (on earth's surface) (1.12)

where n is the outward unit vector normal to the surface and Zs denotes ground
impedance. For this problem, impedance boundary condition becomes [11]

E6 ~ ~ZsH(p> zs ~ z0
j(O£0

og + jcoeg

1/2

1 + 7«£o
cr + jcoe

o o

1/2

(1-13)

where Zo = 120JC is the free-space wave impedance, eg and og are the permittivity and
conductivity of the ground, respectively. Substituting from (1.8), (1.9), and (1.10) one
obtains

~[rU]=-j(oeZsU
r or

at r - a (1.14)

1.2.2 Equivalent Earth's Radius Concept
The atmosphere is assumed to be homogeneous in the above formulations. However,
in reality, the dielectric constant decreases smoothly and monotonically with
increasing height, h = r-a. When this weak radial inhomogeneity is taken into account,
(1.7)-(1.9) become [4]

E — —

En =

1

r£r(r) dr

— sin0 —
dd

do ,

rsin0 30
i a ( ..

er(r)r

(1 .15)

(1 .16)
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H MAHtu (117)
Z Q OU

f ^ | - k W ^ ] + - ^ ^ s i n 0 ^ ^ + ̂ o
2^2Wrf/ = O (1.18)

dr er (h) dr r sm 6 dO d6

— — [£r(r)rU]=jC0£r(r)ZsU on r = a (1.19)
r£r(r) dr

wheree r(h) = £(h) /e o i s the dielectric constant relative to permittivity£0 of the free

space and k0 is the free space wavenumber. It now proves to be convenient to factor

out a rapidly varying phase term by introducing an auxiliary quantity U [4] defined as

U = e-jkraO£r(h)rjs\nGU (1.20)

Substituting from (1.20) into (1.18), it can be shown that the wave equation is satisfied

and U can approximately be reduced to the following parabolic form

^-+2j^^e+ko{J^j 7 7 - 0 (1-21)

We will introduce a change of variables via

H = r - a (1.22)

s = ad

Then using the approximate equality

1-43 (1.23)
(1.21) can be written as

^ + yhf^(^0zlfl + ̂ \j,0 (,24)
dh1 ds y er(0) a J

In order to combine the effect of both earth radius and inhomogeneous atmosphere in
one parameter, the equivalent earth radius ae is defined as

ae a 2er(0) ^ dh ) h = 0

and (1.24) becomes
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(1.25)where e'r(0) = (teA1 _ 1 e'r(0)

Then using the approximate equality

(1.23)

h = r — a

s = ad

(JO
(0)

2

's\n6U

su

)U

1 ? ?

)U_ r(0)_

a

jkoer(r) dl

d i a

d 2 t f .„_ .*„ dtf
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)2n ?u 2kk
l R + 2jk0^ + ^h(l + g)LJ = 0 (1.26)
dh2 os ae

where

2£r(0)^ h )

If the refractive index of the atmosphere varies linearly with ft, then g=0 and (1.26)
reduces to

32? + 2 ^ + * £ . * £ ? _ 0 0.28)
ah2 " 3 * ».e

On the other hand, in a homogeneous atmosphere, £r(h) - 8r(0) for all h and using
(1.24) and (1.26), one then obtains

dh ds a

From (1.28) and (1.29) it is clear that propagation in a "linear atmosphere" can
equivalent^ be considered as the propagation over an earth with a homogeneous
atmosphere, provided that the earth radius a is modified to be the effective earth
radius ae. Since 8r (0) « 1, (1.24) can be rewritten as

— T + 2y*0—- + ̂ 0
2 U / ^ - l - f — p = o. (1.30)

dh ds y a J

1.2.3 Transformation to Non-Dimensional Quantities
The normalized coordinates for the relevant source height (h) and observation height
(/?'), which satisfy the inequalities h'/a « 1 and hi a « 1 are introduced as [3,4]

C ^ T ^ T , 1 = ^ - , | ' = ^ - q = jmer(p)-?- (1.31)
2m mm Zo

where

( 7 \ 1 / 3

~ 2 ~ (1"32)

If an attenuation function is defined as

V(4,4',e,q) = 2fgeJ'"FG£) (1.33)
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erW-erm_ 0)
h

g 2er(0)
(1.27)

3)

er(h)-X+™
a

p = o.d2U ^ ., dU l 2 |
—T + 2jk0 — + k^\

(1.29)

r _ ^ o ^ e _ ^ o ^ &»_ ^ o ^

(1.32)
2

m
1/3
I

(1-

dh ds a

d2U , . tu dU , 2k2
0 L

hU = O.+ 2jk0
dh2 " ds a

d2U , „ J7_ 9t/ , 2kZ ,
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the quantity U can be expressed in the form of Vas

U = ̂ V => U = ̂ V (1.34)

and eq. (1.30) can be approximated in "earth-flattening" non-dimensional rectangular
(§,£ ) coordinates as

[|^4+HF=0 <1-35)
where the equivalent permittivity function p(£ ) is given by

p(Z) = $ + m2
I-1 + —a Jer ( § ) - ! + — (1-36)

The boundary condition at (1.19) is expressed as

W&Q + qF(£9Z) = 0 for ( 5 = 0 ) (1.37)

for the transformed rectangular co-ordinates.

1.2.4 Exact Spectral Solution

Consider the Green's function problem [11] corresponding to (1.35) - (1.36)

^+yi^)kz) = -^^-^) d-38)

where the source location is £ = 0 (s, 9 = 0) and %'=koh'/rn, with ti being the

height of the source above ground and it is assumed that h'« a. This equation is
Fourier transformed in ^-domain using the transform pair

P~° , (1.39)

gt(W',P)= JF(&?;Oe-jKdC

and one obtains a one-dimensional spectral Green's function problem in the ^-domain
as

l^ + ipifr-phtiU'lP^-SG-?) (1-40)
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(1-

where the source location is £ = 0 (s, 0 = 0) and %'=koh'/m, with h' being the

height of the source above ground and it is assumed that h'« a. This equation is
Fourier transformed in C-domain using the transform pair

d2 • 3 /^ F(£;z) = -<5(O<S(£-£') (1.38)

Consider the Green's function problem [11] corresponding to (1.35) - (1.36)

d2 • ^ ,zs F = 0 5)

2*1

*F(te)
^

J7JC

d2

d?

y

r

m, \

[dl;2 JdC ™\
" a 2 . a ,.,

4- i -I- n(r

(1.37)
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The corresponding impedance boundary condition can be obtained from (1.37) by
replacing F with g% and a radiation condition should be imposed for £-*». The solution
of (1.40) can be written as

where £< and £> denote the smaller or larger values of £ and £, respectively. The
Wronskian is given by

^/.,/2] = /,/2-/,72. f^~f d-42)

dp

and the reflection coefficient Ro by

_ f2'(P,P) + qf2(P,P)
°""/1'(0^) + ̂ 1'(0,i8) ( 1 4 3 )

In these equations ^ and f2 denote two linearly independent progressing (traveling)
wave solutions of the source-free equation corresponding to (1.40) which are
employed in proper combination in order to ensure that all boundary conditions are
satisfied. Clearly, closed-form solutions of the source free equation can only be
obtained for a few special permittivity profiles. Then the spectral integral for F(£,Q in
(1.38) can be evaluated using residue calculations and/or asymptotic saddle point
techniques. Expanding the resonant denominator W in (1.41) by power series and
evaluating the terms of these series asymptotically at the saddle points yields the ray
representation, while evaluating the spectral integral in terms of the residues yields the
modal representations.

1.2.5 Ray Asymptotics: Norton Formulation
In the standard atmosphere, three terms are obtained via ray-asymptotic evaluation of
the spectral integral in eq. (1.39): the direct wave from the source to the observer, the
ground-reflected wave, and the surface wave, with the sum of the first two
contributions also referred to as the space wave. In his classic paper [8], Norton gives
expressions for the vertical and tangential electric field components in the earth-
flattening approximation. The problem has been addressed in [29], where the three
components of the ground wave are expressed in cylindrical co-ordinates [11]. The
exact solution to the problem of an antenna above a spherical finitely conducting earth
can be set up in terms of an infinite series of spherical harmonics with coefficients
containing 12 Bessel functions [11,29]. The convergence of these series is extremely
slow, and for commonly used radio frequencies, as many as 103 to 108 terms are
necessary for the calculation of the dominant contribution [11,29]. On the other hand
the space-wave component (sum of direct and ground-reflected wave) can easily be
constructed in spherical co-ordinates directly from the geometrical relations in Fig. 1.3
[11]. The space-wave components can be expressed as
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and the reflection coefficient Ro by
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is the direct (free space) electric field strength at an arc-distance d generated by an
electric dipole with moment Mo = I dl. The distances Ri and R2 = Ri + AR (incident
plus reflected path length) are given by

Rx = Uae +A,)2 +(ae+h2)
2 -2(ae +hl)(ae+h2)cos—

AR = R2-Rl=^A(l-Sl
2)(l-S2

2)
a

1/2

where

2a,*,
5 , = •

d?

2ah2

w + ndx= — + p cos(^- ), d2=d-dx, y = cos
_,|2ae

(h2-hx)d3 V"2 "I

(1.47)

(1.48)

(1.49)

(1.50)

2 f ., , , J2'
i l / 2

(1.51)

hi=ht, h2 = hr for ^ < Ar; fy = /zr f h2 = ht for ^ > hr (1.52)

In the above, d is the arc distance between the transmitter and receiver, d1 and d2 are
the arc distances from the transmitter and receiver to the reflection point on the
ground, a and ae are the earth's radius and effective radius, and ht and hr are the
transmitter and receiver heights, respectively. In (1.44) and (1.45), the ray field
reflection coefficient at the specular reflection point on the surface is

£g siny2 + ̂ (eg -cos \|/2)

with the angular coordinates given by

(1.53)
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\f/2 - tan
_,,,//, + h2^(i-s2

2) + T2(i-sl
2)

l + r
(1.54)

Vi =

COS
-1

COS-1

(h2 +ae)
2 +{hl +ae)

2 + R{
2

2[h{ + ae)R{

(h{ + ae)
2 +(h2 +ae)

2 + R2

2(h2 + ae)Rx

- - ; ht<hr

K

(1.55)

ht >hr

Finally, in (1.44), D is the ray divergence factor at the reflection point, which accounts
for the curvature effects of the spherical earth and is given as

D = 1 + - AS.S^T
5,(1-^X1 + 7-)

-1/2

(1.56)

1.2.6 Modal Residue Series: Wait Formulation
Calculating the residues of g^ (£,£ ' ; jS) in the spectral integral (1.39), the function F

may be expressed in terms of height gain functions. In this formulation, the vertical
(radial) component of electric field for the configuration in Fig. 1.3 is obtained as

Ew=E0V(W,C,q) (1.57)

where £ois given in (1.48) and attenuation function, V, in (1.46) is expressed as

Here /3sare the spectral poles of gx (x?x f ; /?), and

w<3,) (1.59)

is the "height-gain" function. All parameters are defined as in (1.31) and (1.32). For the
standard atmosphere model including the effects of the earth's curvature (i.e., linearly
increasing equivalent vertical profile), the transverse mode functions are the well-
known solutions of the Airy equation [30],

W(P) = yfc[Bi(P)-jAi(P)]
which satisfies the impedance boundary condition on x = 0,

(1.60)
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-jLw(P)-qW(P) = 0 (1.61)
P=P,

and the radiation condition at x -»°°. Now, the wave phenomenology is modeled via
transverse (x-domain) oscillatory modal fields, which progress with fixed wavenumber
ps along z. Only the radial component of the electric field excited by a vertically
polarized short dipole is given because the tangential component of the field is
negligible. The height gain functions are convenient to parameterize the effects of both
transmit and receive antenna heights with respect to path loss variations.

1.3 NUMERICAL MODELS

EM waves excited from a vertical electric dipole (VED) located over the ground in 2D
Cartesian co-ordinates requires us to study a TMZ problem with the field components
£x, /7y and Ez, where x and z are chosen as the transverse (height) and longitudinal
(range) coordinates, respectively (see Fig. 1.4). For a horizontal electric dipole (HED)
located over the ground, a TEZ problem with the field components Hx, £y and Hz, has
to be considered. If the operating frequency is at HF region, horizontally polarized
waves are heavily attenuated; therefore vertically polarized antennas are required to
generate efficient ground wave propagation. For both VED and HED excitations, the
propagation region is a semi-infinite region that extends from x = 0 (bottom) to x -> <=o
(top), and from z —»-°o (left) to z —> °° (right).

Propagation Direction

Figure 1.4: The 2D propagation space for numerical simulators

Numerical ground wave propagation models included here are SSPE, TDWP and
TLM-WP and are basically the solutions of parabolic type 2D wave equation and
Maxwell's equations in 2D, respectively.

1.3.1 Split-Step Parabolic Equation (SSPE) Propagator
The Fourier Split Step algorithm used to solve parabolic type equations is common
and popular for the modeling of electromagnetic wave propagation in the troposphere.
Although there are other propagation models capable of accounting for horizontal
refractive gradients, they are restricted to simplistic refractive conditions, lower
frequencies, and/or certain regions of space. Leontovich and Fock [4, Chapter 11] are
pioneers who described the use of parabolic equation (PE) for electromagnetic wave
propagation in a vertically inhomogeneous medium. However, this approach has
become famous after the introduction of the Fourier Split-Step algorithm by Tappert
[31,32]. Tappert's aim was to describe acoustic wave propagation in the ocean, but his
approach then applied to electromagnetic wave propagation in troposphere.
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80

The standard parabolic wave equation is given as

pL + 2jko^ + k2
o(n

2-l)u = O (1.62)
dx az

where u denotes the wave amplitude and x and z stand for transverse (i.e., height
above ground) and longitudinal (i.e., the direction of propagation) coordinates,
respectively. For VED (HED) u{z,x) is related to magnetic field component (electric
field component) that is perpendicular to the computation plane. In other words, in
Cartesian coordinates

H}Xz,x) = u(z,x) (VED)

Ey(z9x) = u(z9x) (HED)

Equation (1.62) may be solved in the transverse wavenumber (kx) domain at each
range step, Az, where the refractive index can be treated as constant. Applying a
Fourier transform, solving the reduced equation there and then transforming back to
transverse (x) spatial domain, one obtains classical SSPE form

i/(z,x) = exp j^-(n2 -\)Az F'x exp -j-f^- F{u(zo,x)} (1.63)
L 2 J [ L 2k° J

This equation can be used to propagate a given initial field distribution u(zo,x) along z
to u(z,x) in steps of Az. To speed up the procedure Fourier transforms are
implemented via the fast Fourier transform (FFT) algorithm. Since PE is an initial value
problem, an initial transverse field distribution, u(zo,x) is injected at an initial range, z0,
(e.g., z0 = 0) then it is longitudinally propagated through a medium defined by its
refractive index profile, n(z,x) and the transverse field profile u(zo+Az,x), at the next
range step, is obtained.

The classical SSPE flow chart is given in Fig. 1.5 and implementation steps are listed
in Section 1.6.2 of Part I. The program starts with the user supplied initial vertical
scalar field profile, some parameters (such as frequency, maximum height, first range,
last range, range increment, etc.) and vertical refractivity profile that may also be
range-dependent. By sequential operations accessing the x and kx domains via FFT
and inverse FFT, respectively, one may obtain the transverse field profile at any
range. In 2D rectangular coordinates, the earth's curvature is included by modifying
the refractivity profile. Extra terms may also be added to model various super or sub-
refraction propagation cases. Each run contains one forward and one backward FFTs.
After each run, the program checks whether the last range supplied by the user has
been reached or not. If not, the loop in Fig. 1.5 continues by replacing calculated
vertical field profile as the new input field profile at each range, and when last range is
reached, output is written and program terminates.

Boundary conditions must be implemented in SSPE algorithm since it is the solution of
an initial value problem. If the ground is assumed to be a perfect electrical conductor,
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Dirichlet and Neumann BCs are needed for VED and HED, respectively. Sine (cosine)
Fourier transformation automatically satisfies Dirichlet (Neumann) BC. Another way of
handling these BCs is as shown in Fig. 1.6. Here, the 2D propagation space that
extends from x = 0 to x = Xmax vertically and from z = z0 to z -> °° horizontally, and
initial vertical field profile of SSPE wave propagator at range z = z0 is shown on the
left. The Dirichlet (Neumann) BC at the surface is satisfied by extending vertical profile
odd (even) symmetric with respect to x = 0 axis (in the middle). After one SSPE run
the next vertical field profile t/(zo+Az,x) at the next range step z = zo+Az is obtained (on
the right). On the other hand, Cauchy (impedance) BC is needed mostly at HF and
lower VHF regions where the ground cannot be accepted as PEC because of the
dominant surface wave propagation. However it is difficult to model impedance
boundary condition and needs a lot of computation. Recently, discrete mixed Fourier
transformation (DMFT) has been introduced [15] to handle impedance BC in SSPE.

Figure 1.5: Flow chart of SSPE routine
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1.3.1.1 Classical SSPE Algorithm
The classical SSPE algorithm is a few-line code as a main routine. The initial vertical
field profile array is fed into an FFT routine, multiplied by an exponent term in
transverse wavenumber domain, then a inverse FFT, followed by another complex
exponent multiplication, is applied. Here, this classical SSPE code, written in
FORTRAN programming language, is listed together with explanations. Only the
necessary code parts are listed. The variable declaration, array and file definitions,
FFT sub-routine, etc., are not included.

The algorithm first requires the user to input initial parameters:

WRITE(Y) 'LAST RANGE, Z2=? (km)' READ(Y) Z2
WRITE(V) "RANGE STEP SIZE , DELZ=? (km)' READ(*,*) DELZ
WRITE(Y) "SOURCE HEIGHT=? (m)' READ(*,*) X_SOURCE
WRITE(V) "OBSERVATION HEIGHT=? (m)' READ(Y) Y_OBS
WRITE(Y) 'BEAMWIDTH=[DEGREE]?' READ(*,*) BW
BW=BW*PI/180.

Then discrete transverse wave number (p=/cx) points are calculated, where N is the
FFT size and DELX is the height step size, respectively.

DOL=1,N
KX(L)=-1/(2*DELX)+(L-1 )/(N*DELX)

END DO

In this sample algorithm, vertical source profile (i.e., antenna pattern) is chosen as a
Gaussian function. The normalized Gaussian antenna pattern is

f(p) = e-^/4, w= ^ ^ -
k^s'm(BWI2)

where BW is the 3 dB beam-width, and k0 is the free-space wavenumber. The antenna
pattern at z = 0, in transverse wavenumber domain is directly obtained from the
function f(p) as

(p(0,p) = f(p)e-Jpx°-f(-p)eJpx

to satisfy the Dirichlet boundary condition. This corresponds to

IF(LGT.N/2) THEN
CFIELD(L)=EXP(-(2*PI*KX(L)*W/2)**2)*EXP(-J*KX(L)*SOURCE)

ELSE
CFIELD(L)=-EXP(-(2*PI*KX(N-L+1)*W/2)**2)*EXP(J*KX(L)*SOURCE)

ENDIF

in the algorithm, where CFIELD is the complex field array. The spatial source
distribution at the starting range is obtained by applying an inverse FFT to the function
(p(0,p). Any type of transverse and/or longitudinal refractive index profile can be
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implemented in the algorithm. For example, a linearly decreasing refractive index
height profile is

DOL=1,N
IF(X(L).GE.0.0) THEN

REFR(L)=1,00060009+A0*X(L)
ELSE

REFR(L)=1.00060009-AO*X(L)
ENDIF

END DO

where X(L) and REFR(L) are height and refractive index arrays, respectively. Here, AO
denotes the height gradient of the refractive index. If the refractive index has range
dependence, its definition should be renewed at each range step. In this sample
algorithm, the pre-defined source function is propagated at each range step based on
the flowchart given in Fig. 1.5. The transverse wavenumber (p-space) complex
operator is computed as

DOL=1,N
CPSPACE(L)=CEXP(-J*DELZ*(KX(L)*2*PI)**2/(2*K0))

END DO

while complex z-space operator is computed as

DOL=1,N
CZSPACE(L)= CEXP(J*DELZ*K0*(REFR(L)-1 )/2)

END DO

for all height points. The same sub-routine is used for both FFT (Flag 1) and inverse
FFT (Flag 0) calculations. The main routine is then written as

OZ=Z1,Z2,DELZ
CALL FFT(CFIELD, N, 1) ! Apply FFT
DOL=1,N

CFIELD(L)=CFIELD(L)*CPSPACE(L)
END DO
CALL FFT(CFIELD, N, 0) ! Apply inverse FFT
DOL=1,N

CFIELD(L)=CFIELD(L)* CZSPACE(L)
END DO

• END DO

SSPE is a reliable technique for the electromagnetic propagation problems, where
back-scattered fields are not required and parabolic (paraxial) approximation is
acceptable. Parabolic approximation is used for nearly horizontal propagation
directions [31,33 - 35]. In other words, it is used in problems where u(z,x) varies slowly
with range. That also suggests that n(z,x) should vary smoothly with z as well as with
x. The parabolic equation approximation affects the accuracy of the calculations, so it
is required to analyze the order of error. The parabolic wave equation obtained for
tropospheric propagation is exactly analogous to that obtained for acoustic
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propagation in the ocean; therefore the conclusions of acoustic parabolic equation
investigations are instructive.

In certain classes of problems the parabolic approximation results in significant modal
phase velocity errors for propagation in directions with angles more than ^15° from the
horizontal axis (range). These errors become evident in problems where an oceanic
duct or shallow region gives rise to a coherent sum of several trapped modes
propagating at relatively large angles. It is possible to correct these errors using the
wide-angle approximation, which is explained in [36,37]. On the other hand,
atmospheric refractive index gradients that trap angles larger than «1° are rare and a
relatively large gradient in troposphere corresponding to a strong duct is at about
\dn/dx\ ^10~6 m"1 (i.e. smaller than « 3x10~4 m"\ which is given in [36] as a typical
example case). Therefore, the investigation of most electromagnetic problems with
parabolic approximation is adequate and there is no need for the wide-angle
propagation approximation. The wide-angle algorithm is required only for the problem
geometries (i.e., high antennas at short ranges or the non-flat surfaces, which consist
large slopes resulting in wide-spread scattering of the propagating wave) where
angles greater than 15° are of interest.

1.3.1.2 Calibration Against Analytical Exact Solution
In order to show the accuracy of the SSPE algorithm, propagation over flat earth with
a linearly decreasing vertical refractivity profile is considered. This problem has
analytical exact solutions in terms of Airy functions, when the refractive index is
defined as

n2(x) = l-a0x (1.64)

Here a0 is a positive constant. In such a non-homogeneous environment scalar

function u(x,z) satisfies the wave equation

d2u d2u . 2 2/ x
TT + TT + M (x)u = 0 (1.65)
dx dz

subject to homogeneous boundary condition at x = 0

du + a2u(x = 0) = 0, (1.66)

where ax,a2 are constants, and ccl2=0 results in Dirichlet and Neumann

conditions respectively. The radiation boundary condition is

W ( X , Z ) | Y _ - > 0

. (1.67)
W(JC,Z) - > 0
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Recalling that the time dependence is taken as e J(Ot, the modal series solution can

be expressed as

q=0

jfigZ (1.68)

where pq is the longitudinal propagation constant kz. for the related mode represented
by index q. The new function y/q(x) satisfies the one-dimensional wave equation

j2

dx2 + k*nl(x)-fc y/Jx) = 0 (1.69)

In order to solve this equation new variables are defined as

kln\x)-p2
q =K{x + K2, p = -Kl-

2/\Klx + K2)

and the wave equation becomes an Airy equation

d2

(1.70)

dp ~P VAP) = O (1.71)

The solution of this equation with BCs given in (1.66) and (1.67) is constructed in
terms of modes that are represented by the first kind of Airy function A,(p), with p being
real.

V,(P) = C0,4(P)

where COq is the normalization constant defined as

Coq = ]Af(p)dp
-1/2

(1.72)

(1.73)

If n2(x) = 1 - aox is used in the one-dimensional wave equation

Kx = -a0k
2 and K2 = k2 - /3

then

p = (aX)inx-(aok2or2!3(k2o-P>)

(1.74)

(1.75)

This equation at x = 0 is denoted as aq, q representing the mode number. The
condition at the surface is then reduced to

85

u(x,z) ••YCow(x)e

V2



Ground-Wave Propagation

Figure 1.7: First and second kind of Airy functions for real arguments

In order to validate the SSPE algorithm, the data computed with (1.79) for the chosen
parameters are compared with SSPE solutions, as is seen in Fig. 1.8. Here,

n2(x) = l-a0x and a0 = 4 x l O ~ 8 , which corresponds to the refractive index of

standard atmosphere (excluding the effect of earth's radius), causing a surface duct
that traps the wave. The ground is assumed to be PEC, satisfying the Dirichlet
boundary condition and k0 = 2n. First, (1.79) is computed with the first ten modes at z
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A;(-Gq) + aAi(-Oq) = 0 (1.76a)

Ai(-(Jq) = 0 (1.76b)

A;(-Gq) = 0 (1.76c)

for Cauchy-, Dirichlet-, and Neuman-type BCs, respectively. Here, the prime denotes
the derivative with respect to vertical coordinate. The longitudinal propagation
constant is found as for each mode

f5q=±[kt-Oq(a»kl)2n}/2 (1.77a)

and modes are trapped between the surface and their modal caustics determined from

Xcq=-OqUklYn (1.78b)

Finally, the exact modal solution of Airytype wave equation is then found to be

u{x,z) = ^CQqAX{aXf^-<yq)^
qZ (1-79)

q=\

The first and second kind of Airy functions Ai(.) and Bi(.) are real for real arguments.
Their variations are pictured in Fig. 1.7. They both have standing wave character
when the arguments are negative. While Ai(.) decays exponentially, Bi(.) blows up for
positive arguments.
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= 0 km between x = 0 m and x = 2000 m at 512 different height points, and the result
is used in SSPE algorithm as the initial height variation of the scalar function, u(x,z).
Then height variation of the function at four different ranges, (z = 25 km, z = 50 km, z
= 75 km and z = 100 km) is calculated via SSPE and plotted in Fig. 1.8. The results of
exact modal solutions computed via (1.79) at the same ranges and heights are also
plotted. Perfect agreement between the exact analytical solution and SSPE, which is a
semi-analytic-numerical method, is observed in the figure.

Figure 1.8: Field vs. height computed with exact analytical solution and SSPE
algorithm at different ranges. The height variation at z = 0 is calculated numerically
with exact analytical solution and used in SSPE as the initial height variation of the
scalar function.

Modes given in (1.79) are the building blocks (i.e., eigenfunctions) of the geometry
(they are orthonormal to each other and have unit energy); therefore, any initial
transverse source profile can be represented by superposing them via the proper
modal excitation coefficients. Modal excitation coefficients are determined from the
completeness relation. Any vertical profile (e.g., a Gaussian field distribution) can be
chosen and represented by a modal series. The number of modes can be determined
numerically by trial and error. Then, this profile may be used as an input profile of the
SSPE program, and results at any range can be obtained both analytically and
numerically. This is illustrated in the following example.

Suppose a strongly surface trapping duct, which is specified by (1.64) with a0 equal to
-4x10"5. In this case refractive index at the surface is " 1 " but reduces to, for example,
"0.2" at 20 km height. Frequency is specified as 300 MHz. The source is located 250
m above the ground and has a vertical extend from 100 m to 400 m. This vertical
profile is built with the first 100 normal modes, NM (eigenfunctions). Excitation
coefficients are between 10~4 and 10~2 for the first 11 NMs, between 0.1 and 2.23 for
NMs 12-60, and between 10'4 and 10"6 for the rest of 40 NMs. Typical comparisons
are given in Fig. 1.9 and Fig. 1.10.

In Fig. 1.9, horizontal field profile at 100 m constant height is plotted. Solid and dashed
lines correspond to exact analytical and numerical SSPE results, respectively. In Fig.
1.10, vertical field profiles at three ranges (at z = 0 km, 12 km, and 15 km), obtained
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with both methods are plotted. Very good agreement is clearly observed, even for the
highly oscillatory nature of the field profiles, in the figure.

1 . 5

1 .0

O . 5

o.o
1 5 2 0 2 5

Figure 1.9: Field strength vs. range at a fixed height of 100 m.

N o r m a l i z e d F i e l d S t r e n g t h

Figure 1.10: Field strength vs. height at z = 0 km, 12 km, and 15 km

Again, perfect agreement obtained between the two methods is clearly observed in
both figures.

1.3.1.3 Staircase Terrain Modeling
Longitudinally non-flat terrain can be incorporated into the SSPE algorithm via several
different mathematical approaches and it is possible for the user to choose the
appropriate one for his/her problem. Here, only the staircase approximation is taken
into account. Staircase terrain modeling is simpler, in which slope values are not
required (as in the other approximations); only the terrain height for each range is
needed. On each segment of constant height, the field is propagated in the usual way
for staircase terrain, applying necessary boundary condition at the ground. When
terrain height changes, corner diffraction is ignored and the field is simply set to zero
on vertical terrain facets. Since the computation height is not changed due to the
terrain, there is no need to modify refractive index; therefore it is also easy to
implement the staircase terrain modeling into the SSPE algorithm. One just needs to
take into account that ground does not support propagation under the constant height
for each segment [14]. Although staircase terrain cannot model the terrain as smooth
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as it must be, comparisons show that the results are quite satisfactory [38]. A typical
non-flat terrain profile and its discrete staircase representation is pictured in Fig. 1.11.
The smaller the range and height step sizes (Az and Ax, respectively) the better the
approximation in discrete terrain profile.

Range

Figure 1.11: The difference between terrain and its staircase approximation

In SSPE, terrain effects are included as follows:

• A terrain file contains height vs. range that represents non-flat terrain in the
chosen scenario. Zero height corresponds to flat earth's surface.

• A complex array contains field values at discrete height points from the surface
(zero height) to maximum height of interest.

Height

Range
Figure 1.12: Non-flat terrain implementation in SSPE (black circles are the field
values at different height points.; white circles are the ones that are forced to be zero
since they are inside the non-flat terrain)
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• Computed vertical field profile at the current range is used as the initial field
profile of the next range for next SSPE iteration.

• While propagating step by step the terrain file is checked continuously and
height of the terrain at the range of computation is read and array elements
(vertical field values below the terrain height), which fall below terrain height at
that range are set to zero. This is illustrated in Fig. 1.12.

1.3.2 Time-Domain Wave Propagators (TDWP, TLMWP)
The difficulty of analyzing ground-wave propagation via time-domain (TD) techniques
is the necessity of observing the fields towards the extended regions in range, which is
impossible for the conventional FDTD [39] or TLM [40] techniques. Although it is
possible to use larger computation spaces with higher computer memories, the
desired propagation region is always much larger than available FDTD and TLM
spaces (see Fig. 1.13).

2. FDTD/TLM
Space Propagation Direction

1. FDTD/TLM 3. FDTD/TLM
Space Space

Figure 1.13: The 2D propagation space, sliding FDTD/TLM windows

This is overcome by tracing the propagation region with a dynamic sliding window (the
FDTD/TLM space). In both TDWP and TLM-WP, the computation space has to be
terminated by absorbing boundary blocks (here perfectly matched layer, PML is used)
at the left, right, and top of the window. This is pictured in Fig. 1.14 with both TLM and
FDTD unit cells. A one-cell transition is used to match FDTD field components to the
TLM voltage pulses in order to use the same FDTD-based PML routine in both
propagators.

Figure 1.14: TLM, FDTD cells, the sliding window, and PML blocks
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The related FDTD iterative equations in TDWP are

En
x(i.k) = —^-—E^-l(i,k)

£+t r i (180)

(£ + <jAt)Az y y

En
z{ilk) = —^-En

2-
l(i,k)

£ + t f 1 <1.8U
(£ + GAt)Ax } y

H^ll2(i,k) = Hn
y-

ll2(i,k)

- -*- [E"X-{ (/, k + D- EI~X a, k)] d .82)
/i0Az

+ -*^\E;-l(i + l,k)-Er1li.k)]
IU0AX

where e [F/m], o [S/m] and ̂ 0 [H/m] are the permittivity, conductivity and permeability
of the propagation medium, respectively. Here, / and k are the cell numbers in the x
and z coordinates, respectively, and n tags the time step. FDTD electric field
components are calculated at discrete time instants At, 2At, 3Af, .., nAt, and the
magnetic field components are calculated at At/2, 3Atl2, 5Atl2, .., (r?+1/2)Af, in cubical
Yee cells [22] with cell sizes Ax, Ay, Az.

The corresponding TLM components /y, Vx and Vz are determined from Thevenin
equivalence of the series node [23]

/ / v = — ; £Y = - — ; £ . = - — (1.83)
y M x M z M

as
yi - y* - yi + y* + yi

Iy =2-±- 2 . 3 ±-J-9Vx=vl+vl; VZ=V[+V\ (1.84)

where Z = 4 + Zs and Zs = 4(ar ~ l ) . The characteristic impedance of each

individual transmission line, ZTL becomes Zo / yf2 , where Zo is the characteristic
impedance of the free space. The propagation medium has the relative permeability of
1 but the relative permittivity of er. So, by duality, the normalized impedance of the
short-circuited stub, Zs becomes Zs = 4(sr - l ) , meaning that the short circuited stub
models the permittivity of the medium.

91

r'l .
4 '

Hn
y-

ll2(i,k)-Hn
y-

XI2(i,k-\)

H;-1/2(i,k)-Hn
y-

1/2(i-l,k)\

i,k)
A

Hn + U2

At

• 1 1 1 (i,k)

Chapter 1Part II

i,k-l)

(i-l,k)

+

H

At

HQAI

fio^x
En

z-Hi + \,k)-En
z-

ld,k)

En
x-

X(i,k + l)-En
x-

l(irk



Ground-Wave Propagation

The implementation of TD simulations is as follows:

• A source with a chosen spatial altitude distribution, having a pulse character in
time (that yields broad band analysis with a single simulation), is injected via the
necessary field components.

• Earth's surface effects are included either as a terrain profile or a smooth
impedance boundary.

• In order to implement a non-homogeneous atmosphere, a refractivity profile
over the earth's surface (including earth's curvature) is introduced via relative
permittivity of the air, £r=n2(x,z).

• One-way propagation is traced via a 2D rectangular sliding window. The content
of this propagation window is the pulse that carries information related to terrain
scattering, refractivity effects, and surface losses.

• The sliding propagation window moves from left to right in the computation
space and circulates back to the left when reaches the right most-end, which is
the initial profile of the next computation space.

• The process and TD simulations repeat until the wave longitudinally propagates
to a desired range. The algorithm stores necessary information (such as range,
terrain profile, transverse and/or longitudinal propagation characteristics at
chosen observation points).

• Frequency-domain characteristics may be obtained from the TD simulations by
off-line discrete Fourier transformation (DFT) analysis.

It should be noted that preparation of TDWP algorithm, based on FDTD plus PML
termination, is quite straightforward. On the other hand, one needs to introduce
modifications in TLM-WP algorithm [20]. First of all, 2D TLM computation space is
constructed via a series node representation (see Fig. 1.14) to represent a TMZ

problem. Although four-arm node is shown in the figure, the fifth arm (with a short-
circuit termination) is also used to model permeability of the node, which in turn
represents permittivity because of the duality principle. Secondly, the FDTD-PML
algorithm, prepared for TDWP, is used in TLM-WP to absorb scattered fields [20,41].
In order to do that, a transition cell is located between TLM computation space and
FDTD-PML blocks, and field components of TDWP are matched to the voltage pulses
of TLM-WP in this cell, unlike [41], where overlap cell is directly taken as the first cell
in FDTD-PML region. Also, attention should be paid in matching FDTD fields to TLM
voltage pulses at the left FDTD-PML-TLM interface, since FDTD field components in a
cell are not symmetrically located as the voltages are in the TLM node. If for example,
k = m (in the z-direction) is the overlap cell, then vertical electric field component (Ex)
of the next cell (k = m+i) should also be used to write down TLM voltages in terms of
FDTD fields (or vice versa).

The implementations of non-flat PEC terrain and surface impedance in TD
propagators are as shown in Fig. 1.15. Here, the FDTD implementation is given. The
staircase approximation is used to model non-flat longitudinal terrain profile in both
simulators. It is achieved by forcing all tangential electric field components (Ex at
vertical edges, Ezat horizontal edges for boundary cells and both for the inner cells) to
be zero during the TDWP simulation. In TLM-WP, it is performed by using the short-
circuit (SC) scattering matrix in the irregular terrain regions [20].
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Although PEC boundary approximation is mostly adequate at VHF and above (i.e.,
frequencies higher than 100 - 150 MHz), accurate impedance boundary simulations
are essential at HF frequencies and below. A propagator should be capable of
handling imperfect surface effects including multi-mixed path propagation (e.g., land -
sea transition). This is achieved by surface impedance modeling as explained in [42].
The first magnetic field component above the impedance boundary (i.e., the magnetic
field component at first 2D-FDTD cell over the surface) is calculated from its value at
previous time-step plus two neighboring vertical and one horizontal electric fields by
using surface impedance relation in terms of the resistance Rs and reactance Ls

components [42].

Q

Regular FDTD components

• Ex(i,k)
A Ez(i,k)
0 Hy(i,k)

Surface Imp. components

A E2(i,k)
rVi Hy(i,k)

PEC Terrain components

H Ex(i,k)
A Ez(j.k)

Figure 1.15: Non-flat terrain and surface impedance modeling

In TDWP implementations, the first magnetic field component above the impedance
boundary is calculated from

Hn+V2{.k) = l-RsAt/2n0AX-Ls/^AX Hn-M{itk)
y l + RsAt/2^L0Ax-Ls / /HQAX

 y

At

+

JIQAz(l + RsAt/ 2/J.QAX -Ls I /J.QAX)

fc"(z+U)l
H0Ax(l + RsAt/2/i0Ax-Ls/n0Ax)1 z J

\E%(i,k + l)-E2(i,k)] (1.85)

instead of (1.82), while Ez on the surface is set to zero. For a highly conducting
medium (i.e., a » cue) surface parameters may be approximated as

R* - Ls = (1.86)

but
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Rs = , ^ cos\ - arctan(-) | (1.87a)
-2 2 C0£ J

= J__VM== j J LarctanfJL) (1.87b)

should be used if the medium is not highly conducting and a « ooe .

It should be noted that the tangential electric and magnetic field components are
related via a frequency-dependent surface impedance given in terms of frequency-
dependent Rs and Ls values, as follows:

Ez(CO) = Zs((O)Hy(CO) (1.88)

Zs(a>) = Rs(a>) + jXs((o)t Xs(co) = coLs((D) (1.89)

where CO=27tf and /"denotes the frequency. On the other hand, their TD values are
required in TDWP simulations. This makes a convolution process necessary in TD,
which means extra computation time; therefore an approximation is implemented to
eliminate the convolution process. Numerical values of Rs and Ls are calculated from
the definition of surface impedance in terms of lossy ground parameters £ and o, at
the center frequency of the band of the source pulse and are assumed to be constant
[42]. As mentioned before, the same surface impedance routine is also used in TLM-
WP by means of using a connection (transition) cell [24] between TLM computation
space and surface boundary (It should be noted that non-flat PEC terrain and surface
impedance effects are modeled separately in this study. Implementation of a non-flat
imperfect terrain is quite straightforward, yet not implemented.)

1.4 APPLICATIONS WITH CANONICAL TEST CASES

All the methods presented here are tested with characteristic scenarios and
comparisons are done among them within range of their validity. Ducting, antiducting,
elevated ducting, etc., atmospheric conditions are used together with different non-flat
terrain profiles.

In the simulators TDWP and SSPE, both earth's curvature and standard atmosphere
condition can be included by using n(x) = n0 + x/ae, where ae = 4a/3 = 8504 km is the
effective earth's radius. Refractive index is either defined as n = no(x)+x/a (where A?0(X)
is the refractive index height profile for flat earth), in order to take into account the
effects of earth's curvature for all variations of atmospheric refractivity index, or an
equivalent fictitious medium is introduced, where N as defined in (1.1) is replaced by
the modified refractivity M as given in (1.3), where height is given in km. For the
standard atmosphere (i.e., for a vertical linearly decreasing refractive index), N
decreases by about 40 N unit/km while M increases by about 117 N unit/km. Sub-
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refraction (super-refraction) occurs when the absolute value of the rate of change is
less (more) than 40 N unit/km (79 N unit/km) for the refractivity, N. When the N lapse
rate is less than -157 N unit/km ducting occurs. Sub, super, and standard atmosphere,
and ducting conditions are pictured in Fig. 1.16.

® Standard Atm. © Sub-refraction © Super-refraction ® Ducting

Figure 1.16: Vertical refractivity variations and sub, super, standard
atmosphere and ducting condition definitions

All the comparisons given in this section are presented either propagation factor or
path loss vs. height or vs. range. Propagation factor is defined as the ratio of electric
fields computed under realistic surface and atmospheric conditions and fields
computed in free space (E/Eo). This is straightforward in analytical computations. In
TDWP, propagation factor is simulated as pictured in Fig. 1.17. First, the simulation is
run for propagation over ground including refractivity conditions, and E(t) vs. range (at
constant height) or height (at a given range) is stored For this run, top, left and right of
the computation space are terminated with PML blocks (see the top figure).

Figure 1.17: Scenario for numerical propagation factor simulations in TDWP

Then, the bottom boundary is removed and simulation is repeated assuming free-
space propagation ((see the bottom figure).). In this case, E0(t) vs. range (at constant
height) or height (at a given range) is stored. In the second run, the whole computation
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space is terminated by PML blocks. Moreover, source and observer locations are
shifted up until mid heights, so that unwanted reflections from the bottom PML block
does not affect the results. Finally, they are Fourier transformed and frequency
variations are obtained. This procedure is tested to remove a good amount of noise
components, since errors introduced by imperfect PML blocks cancel each other.

In SSPE, a similar procedure is applied to calculate propagation factor. First, SSPE is
run over ground including refractivity and E is obtained at the desired frequency for the
required boundary condition, which is satisfied by extending the initial vertical profile
odd (i.e., Dirichlet) or even (i.e., Neumann) symmetric with respect to x = 0 axis (see
Fig. 1.18a). Then, £0 is calculated for free space by forcing the initial vertical profile to
be zero for x< 0 (see Fig. 1.18b).

x=Xm

Initial SSPE
profile for
propagation
simulation
over earth's
surface

x=0

)

x=Xm a x

Initial SSPE
profile for
propagation
simulation in
free space

x=0

)

x=-Xmax

Dirichlet BC z = z o Neumann BC z=z0

(a) (b)
Figure 1.18: Initial vertical profiles for (a) propagation over the earth's surface and (b)
propagation in free space

Path loss Lp(z) is defined at z = d as

Z,W) = 1 0 l o g 1 0 ( - ^ | [dB], (1.90)

where Pt and Pr are the transmitted (at z = 0) and received (at z = d) powers,
respectively. For excitation by a short electric dipole with a moment of M = 5XI2n,
corresponding to Pt = 1 kW, the received power for an isotropic receiver at z = d can
be determined from the computed field strength Efor an isotropic receiver via

Prid)=iM-*x
Zo An

(1.91)

This leads to the expression

Lp{d) = 142.0 + 20\ogl0(fMHz)-20\ogl0(E^v/m) [dB] (1.92)
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with the frequency and field strength measured in MHz and dB(iV/m, respectively.
Frequency-domain characteristics can be obtained from the TD simulations. The
algorithms store necessary information (such as range, terrain profile, transverse
and/or longitudinal propagation characteristics at chosen observation points) while
propagating from left to right. For example, a vertical field distribution (or propagation
factor) at a given range can be obtained as follows:

• During the TDWP and/or TLM-WP simulation, time domain propagation data
such as £x(Xi,fj) at discrete x, (/ = 1,2, ...) observation heights and discrete f, (/ =
1,2, ...) simulation instants is accumulated at a desired range.

• The accumulation continues until all transients fade away.

• After TDWP simulation, height field distribution Ex(Xj,fA) at a given frequency fA
is directly obtained by off-line DFT analysis.

1.4.1 Propagation Under Ducting Conditions
The TD propagators are first tested over smooth, spherical earth. The propagation
region is characterized by longitudinally homogeneous, bi-linear vertical refractive
index, n, with the gradient of |dn/dx| = 10~3 [n unit/m] (i.e., decreasing between ground
and 25 m and increasing over 25 m). The vertical distribution of the source is
Gaussian with spatial extent =15 m and maximum at 26 m height (i.e., the vertical
profile is non-zero between 18.5 m and 33.5 m). The temporal distribution is a once-
differentiated Gaussian pulse with 200-MHz bandwidth centered at 200 MHz. A 1000
x 500 FDTD/TLM computation (corresponding to 100 m x 50 m physical) space is
used. A 1000 x 250 virtual window circulates 20 times as if the longitudinal number of
cells in FDTD/TLM computation space is 5000. Instant snapshots are taken at
different simulation times and are plotted as field profiles at different ranges in Fig.
1.19 (each plot is normalized to its maximum value).

Figure 1.19: TD pulse propagation inside the sliding window at propagation ranges Z,,
Z2, ..., Z6. Z?: 670th time step ~ 50-m range; Z2: 1570th time step ~ 110-m range; Z3:
2250th time step « 155-m range; Z4: 2580th time step » 180-m range; Z5: 3070th time
step ~ 215-m range; Z6: 4330th time step « 305-m range
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The relevant wave constituents are the direct, ground-reflected and surface waves
whose wavefronts and their interference (wave maxima and minima) appear as 2D
images. As shown in the figure, the wave propagates to the right and is above the
ground (at z = Z-i). While it is propagating it spatially extends because of cylindrical
spreading and reaches the bottom surface (at z-Z2 and z = Z3). Then it reflects from
the surface, giving rise to interference between the leading direct and trailing ground-
reflected waves (as observed at z = Z4 through z = Z6).

Time histories of the pulse during propagation are accumulated at different ranges and
along two constant heights; they are plotted in Fig. 1.20, where the results of both
TDWP and TLM-WP are almost indistinguishable. In Fig.s 1.20a and 1.20b, the
receiver heights are chosen to be 13 m and 35 m above the ground, respectively.
Three plots correspond to the 94 ns time histories (i.e., signal vs. time) at three
different ranges. Since the scale in each plot is normalized to its maximum value in
order to reveal the detailed pulse shapes along the entire trajectory, relative field
strengths with respect to the first window are also included as dB values in the plots.
At z = 23.5 m, only the initial pulses appear inside the 94 ns propagation windows
because the delay of the signal caused by the path difference (distance between
direct and ground reflected pulses) exceeds the window length. As the distance
increases, the path difference decreases and the ground-reflected pulse also appears
inside the 94 ns propagation windows, as shown in the second windows. Inside the
last windows the direct and ground-reflected pulses are almost indistinguishable.

(b)
Figure 1.20: Time histories of the pulse in Fig. 1.19 observed at different ranges along
(a) 13 m, (b) 35 m above the surface. Solid: TLM-WP; dashed: TDWP

TD results are transformed to Fourier domain (FD), and propagation factor vs. height
variations are plotted in Fig. 1.21, where TDWP, TLMWP and SSPE are compared.
Here, a fictitious tri-linear vertical refractivity is chosen with refractive index gradients
between ground and 15 m, 15 m - 25 m and above 25 m as dn/dx-- 1.2x10"5, 5x10"6

and -1.2x10"5, respectively. The spatial distribution of the source is Gaussian at a
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248m 273m23.5m

OtlB

(a)

l d B -2dB

198 m9 8 m

Direct pulse

23.5m

OdB Ground-reflected
pulse

13dB 9 d B

z

Observer (b)

Observer (a)

Z3?2

Z, Z2 . . . Z3

z ,X

1-0

0.6

0.1

-0.3

-0.7

-1.1

l.D

0.6

-0.3

98



Part Chapter 1

height of 15 m, with spatial extent of =12 m. Temporal distribution is a once-
differentiated Gaussian pulse in TLM-WP and TDWP. This short pulse has 200-MHz
bandwidth centered at 200 MHz. The SSPE propagator, with the same spatial source
distribution, is run separately for each frequency. With these parameters, energy is
mostly trapped along the surface and the pulse reaches to PML blocks at larger
distances compared to standard atmosphere. Therefore, numerical dispersion effect is
dominant in this example.

-45 -35 -25 -15 -5 5 -40 -30 -20 -10 0 10

Propagation Factor [dB]
-45 -35 -25 -15 - 5 5 40 -30 -20 -10 0 10

Propagation Factor [dB]

Figure 1.21: \E/E0\ vs. height after 25 and 45 sliding windows

The first two plots belong to the results at a range of 625 m (311 A, at 150 MHz and
518A, at 250 MHz). At these ranges the propagating pulse is still confined in the sliding
window and the agreement is very good. On the other hand, the last two figures
belong to a range of 1121.5 m reached at 45th window (561 A, at 150 MHz and 935A, at
250 MHz), where the sliding window is hardly capable of holding the propagating
pulse. Although the sliding window hardly bounds all the forward-propagated energy,
very good agreement may still be obtained in frequency domain as long as most of the
dominant contribution is traced.

1.4.2 Propagation Over Non-Flat Terrain
The TDWP is then compared against SSPE in propagation scenario that includes non-
flat terrain. A scenario with strong forward scatter (and negligible backward
propagation) is chosen in order to make comparisons with SSPE possible. A
downward sloping terrain (200 m high at the source point and Om at 5.5 km) plus
smooth surface over which exists a vertical tri-linear, longitudinally homogeneous
refractivity profile is taken into account.

A 1500 x 1000 TDWP computation space corresponding to 2250 m height and 1500
m range (with 1.5 m spatial discretization) is chosen. The initial field distribution is a
once-differentiated Gaussian function with 15 MHz bandwidth at 10 MHz center
frequency. A tri-linear vertical refractive index with no=1.OOO3 at the surface, dMIdx =
120 M/km up to 250 m, dMIdx = -50 M/km between 250 m and 400 m and dMIdx =
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118 M/km above 400 m (with respect to the bottom of FDTD computation space) is
chosen. Here, dMIdx is the gradient of atmospheric refractivity modulus. The spatial
distribution of the source is Gaussian at an altitude of 300 m over the terrain. A 1500 x
500 virtual window circulates 13 times and extends the longitudinal number of cells in
FDTD computation space to 6500. In Fig. 1.22, instant snapshots of field profiles
taken at different simulation times are plotted at ranges Zi to Z6, respectively. Pulse
propagation (Z-i), surface reflection (Z2), energy split (Z3 and Z4), and surface and
elevated duct formation (Z5 and Z6) are clearly observed in Fig. 1.22.

1100m

Figure 1.22:. Signal strength vs. range-height over terrain in TD (TDWP)

Same source pattern is fed into the SSPE algorithm and is propagated through the
same medium. In Fig. 1.23, the range-altitude field distributions at 10 MHz are
plotted.

750m

300m

200m

OdB

-lOdB

-20dB

-35dB

-50dB

5.5 11

Range [Km] (b)

Figure 1.23:. Signal strength vs. range-height over terrain in TD (SSPE)

Propagation factor vs. height for the same environment as in Figs. 1.22 and 1.23 are
plotted in Fig. 1.24. Neumann boundary condition is applied for SSPE to model VED
excitation as in TDWP. A good agreement between TDWP and SSPE is clearly
observed. Propagation factor vs. height over a PEC level terrain with the same tri-
linear refractivity profile, computed via SSPE, is also given in the figure (dashed
curves) to emphasize the effects of the downward sloping terrain portion.
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In Fig. 1.25 propagation factor vs. range computed with these three simulators are
plotted in Fig. 1.25 for a more realistic scenario. Here, a 1.5-km-long non-flat terrain,
with maximum height of 40 m is taken into account (see Fig. 1.25a). The source and
observation points are 5 m above the ground and the mesh sizes are taken as 10 cm.

7 H 149A,

200 -

3 8940m
100-j

4 f=5MHz.

-35 -25 -15 -5 5 15 30 -20 -10 0 10-40 -30 -20 -10 0 1050-40-30-20-10 0 10 20

Propagation Factor [dB]

Figure 1.24:. \E/E0\ vs. height at 10 MHz and 15 MHz and at two observation
ranges (solid: SSPE; dots: TDWP, dashes: SSPE over level surface).

zo~
TDWP
SSPE
TLM-WP

O 25O 5OO 75O 1OOO
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125O 15OO

Figure 1.25: \E/E0\ vs. range for the typical non-flat terrain

Although SSPE does not include the back-scatter effects, TDWP and TLM-WP results
contain local back-scatter contribution as long as it is within the sliding window. This
explains the discrepancy between SSPE and TD propagators. As seen in Fig. 1.25,
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there is also a discrepancy between the magnitudes of TDWP and TLM-WP, which is
not observed for propagation over smooth ground. This can be because of numerical
dispersion or differences in abilities of the FDTD and TLM implementations
themselves, resulting in different responses to the scattering mechanisms, such as
reflection, edge/tip diffraction, multi-path interference, and surface waves, which is
under investigation.

1.4.3 Urban Wireless Communication
TD propagators are also applicable in wireless communications when the depths of
the buildings are assumed large enough to reduce the problem to a 2D case. The
power of the TD propagators arises from their applicability in wireless communication
in urban regions, such as along a narrow street with tall buildings in different sizes. In
this section this is presented on various scenarios.

In most of the practical problems, maximum ranges of interest in urban areas cannot
be covered by one or a few sliding windows. Therefore, while the sliding window is
tracing the longitudinally propagating component, backward and upward propagated
waves are also traced as long as they are confined inside the sliding window. There
may still be backward and upward scattered contributions at observation points where
the window has already passed. Because of this inefficiency, time domain propagators
are called to handle local back and up scattered components. In order to show these
effects, a scenario in Fig. 1.26 is taken into account.

7 5m
Figure 1.26: A scenario with two wedge-shaped PEC obstacles (base = 10 m, height
= 15 m). Transmitter is located 15 m above the PEC ground

Here, two 15-m-tall PEC triangular buildings having 10 m base lengths are separated
with a distance of 25 m. The other dimensions and source and observation locations
are denoted in the figure. The mesh size is 1 cm. The same Gaussian source is used
and TD propagation along the buildings is simulated in two ways: (i) with a unique
FDTD space (without sliding), (ii) with two sliding windows via TDWP and TLM-WP.
The results are given in Fig. 1.27, as propagation factor vs. height at four observation
ranges (it should be noted that these results belong to a single time-domain simulation
plus multiple DFT application). In the figure, observation ranges from left to right are
numbered from 1 (at 15 m) to 4 (at 70 m). Almost indistinguishable solid and dashed
lines correspond to TDWP and TLM-WP computations, respectively, while the dashed
line represents single window FDTD computations. It is clearly observed in the figure
that, although TDWP and TLM-WP results have indistinguishable agreement, they do
not agree very well with the FDTD, which may be assumed as a reference solution.
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Moreover, unacceptable discrepancies appear at some heights and ranges. Here,
FDTD results represent reference solutions (since the numerical dispersion ratio is 60
at 50 MHz), and the reason of the discrepancies may easily be understood from the
scenario given in Fig. 1.26. The strongest back- and up-scattered components are
expected to be at the first observation range, at the bottom and at heights above the
source (because of the inclined wall of the wedge type building). Not so strong as the
dominant scatter, back- and up-scattered components are also expected in between
the buildings. On the other hand, at the last observation range the forward propagating
wave is dominant, therefore, as expected, the best agreement is obtained at this
range.

Figure 1.27: \F\ vs. height at 50 MHz at four observation ranges mentioned in Fig.
1.26. Solid, TDWP; Dashed, TLM-WP; Solid with dots, FDTD

Longitudinal variations of field strength are also calculated via TDWP and TLM-WP
and are presented in Fig. 1.28 at 15-m height and for 50 MHz.

o 10 70

Figure 1.28: \E/E0\ vs. range fora scenario that includes two wedge-type obstacles
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As seen, although range variations are highly oscillatory almost perfect agreement is
obtained between TDWP and TLM-WP results. It is also interesting to observe tip-
diffracted components (two peaks at ranges 25 m and 60 m, which correspond to the
tips of the buildings) in the 50 MHz figure. Finally, a complex scenario, where four
different-shaped buildings with different sizes are used, is taken into account as given
in Fig. 1.29.

20n

15m

6m fim 10m 10m 15m 6m 10m

Figure 1.29: A scenario with multiple buildings and four observation ranges. The
transmitter is located at top of the first building (i. e., 20 m above ground)

All dimensions and source/observation locations are mentioned in the figure. The
buildings are assumed to be PEC. The results are presented in Fig. 1.30 as
propagation factor vs. height at given four observation ranges. Both TDWP and TLM-
WP computations are carried out within a unique FDTD/TLM computation space (to
account for all scattered contributions).

0 -j~r^TTT- ^r^~rrJ ' '"Trr
-20 5 30 55 eo - w - is io as-so

Propagation Factor [dB]

Figure 1.30: \E/E0\ vs. height at 100 MHz at four observation ranges mentioned
in Fig. 1.29. Solid, TDWP; Dashed, TLM-WP
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The results do not agree very well as observed in the previous examples. There is no
discretization error in this example, since all the buildings are chosen to be
rectangular. Possible sources of these discrepancies are (i) numerical dispersion
errors (it may require numerical dispersion ratios higher than 30 at 100 MHz), (ii) PML
termination (since the scattering mechanisms, such as reflection, edge/tip diffraction,
multi-path interference, surface waves, etc., become complex in this example), or (iii)
differences in abilities of the FDTD and TLM implementations themselves.

The screen captures of TD pulse scattering at different time instants for the same
scenario is given in Fig. 1.31 as signal strength vs. range/height. Since very similar
results are obtained, only TDWP results are pictured in this figure. The multi-
reflections, edge and tip diffraction and ringing in between buildings are clearly
observed in the figure.

Figure 1.31: A 3D picture of pulse scattering along the street

\AA Surface Waves and Mixed-Path Propagation
Although a perfectly reflecting boundary assumption provides in general sufficient
approximation at VHF and above (i.e., frequencies higher than 100 - 200 MHz), the
use of impedance boundary condition becomes essential at HF frequencies and
below. This is especially required for the simulation of long-range marine
communication and/or ocean surveillance systems using HF frequencies. A
challenging problem is to predict surface wave path loss variations over mixed paths,
such as sea - land or sea - land - sea (island) transitions. A sharp decrease occurs in
signal strength along sea - land transition and the signal recovers itself after land - sea
transition (beyond the island), known as the Millington (recovery) effect [5]. A
propagator should be capable of handling these effects in mixed-path simulations.
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Data generated via approximate analytical (ray-mode) solutions is used for the
validation of the TDWP augmented with the implementation of the impedance
boundary condition on the ground surface. Two typical scenarios and the results
obtained with TDWP simulations are given in Figs. 1.32 and 1.33. In Fig. 1.32, a sea -
land transition problem for a standard atmosphere including earth's curvature (i.e.,
dM/dx =118 M/km) is taken into account and range versus surface wave path loss
(when both transmitter and receiver are at the surface) are plotted at 15 MHz.

Range [km]
Figure 1.32: SW path loss vs. range over mixed-path (sea - land transition, the first
8.2 km is sea and the rest is land) at 15 MHz

The first 8.2 km is assumed to be sea and the rest is land (the parameters of the land
and sea are taken as ag = 0.01 [S/m], eg = 15 and ag = 5 [Sim], eg = 70, respectively).
Ray - mode results are also shown in this figure and serve as reference solutions. A
vertical short electrical dipole (with a dipole moment of 5XI2n Am, corresponding to a 1
kW transmitter) is used in analytical solution and TDWP results are normalized to this
value. A very good agreement between the results is clearly seen in the figures. It
should be noted that TDWP results at both frequencies belong to a single pulse
propagation simulation followed by two off-line DFT applications.

Range [km]
Figure 1.33: SW path loss versus range over mixed-path (island transition, a
5.2 km length island 5.2 km away from the source) at 15 MHz
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In Fig. 1.33, the results of a scenario corresponding to ground wave propagation over
a path including an island transition under the assumption of standard atmospheric
conditions are plotted. A 5.2-km length island is assumed to be 5.2 km away from the
transmitter. Again, range versus surface wave path loss are plotted at 15 MHz with the
same land and sea parameters. Also in this case the results agree very well.

1.5 NUMERICAL SIMULATORS

Five simulator packages are prepared for the reader who wants to exercise different
ground wave propagation scenarios. Three of them (GRWAVE, HFMIX, and KNIFE)
are based on ray-mode approach and the other two are SSPE in FD and TDWP in TD.

Ray-mode formulations in (1.44) - (1.46) and (1.58) can be combined in an intelligent
way to extend ranges of their individual validity and uniformizes the solution in
interference, intermediate and diffraction regions [WAVEPROB]. Here, simple sample
simulators are presented which can be used in these regions, separately. GRWAVE is
valid over lossy spherical earth's surface, only in interference region, where transmitter
and receiver is within LOS. HFMIX is prepared for surface-wave path loss calculations
which can handle multimixed-paths beyond the diffraction region. Transmitter and
receiver height effects are augmented into HFMIX as height gain functions (as given in
(1.58)). KNIFE uses four rays to account for single knife-edge diffraction effects as
described in [43]. Surface impedance and roughness are also taken into account in
KNIFE.

1.5.1 GRWAVE: LOS Ray Code
The flow chart of GRWAVE is given in Fig. 1.34. The simulator reads user-supplied
input parameters from the input file GRW.INP, runs and outputs the results in two
different output files: GR-R.DAT as range vs. propagation factor [dB] and GR-H.DAT
as height vs. propagation factor [dB].

Figure 1.34: The structure of GRWAVE

The GRW.INP input file contains five rows of parameters, which are listed in Table
1.2. The fifth line has four real numbers A, B, C, and D, which correspond to range
[km], first height [m], last height [m] and height increment [m] when scenario type is 1,
and to height [m], first range [km], last range [km] and range increment [km] when
scenario type is 2, respectively.
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Two typical examples obtained via GRWAVE are pictured in Figs. 1.35 and 1.36. In
Fig. 1.35, propagation factor vs. range is plotted and the input parameters are as
follows:

GRW.INP (Fig. 1.35) LINE
LINE
LINE
LINE
LINE

1:
2:
3:
4:
5:

500
15,
500
2
100

.01

, 20.0, 120.0, 0.5

Table 1.2: The GRW.INP file and required parameters

Row No.
1
2
3
4

5

Parameter
Frequency [MHz]
Relative permittivity, conductivity
Transmitter height [m]
Scenario type
(1, Field vs. height: 2, field vs. range)
A, B, C, D

Similarly, in Fig. 1.36, propagation factor vs. height is plotted. Here, GRWAVE is run
three times at three different ranges. Input parameters are as follows:
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GRW.INP (Fig. 1.36) LINE 1:
LINE 2:
LINE 3:
LINE 4:
LINE 5:

500
15, .01
500
2
A, 0.0, 400, 0.5 (A=40, 80 and 120)

10

o

~ 1 O

- 15

tZ,

Physical

&<> no 40 f>© oo 70 no oo Ioo H O r^o
Ran^e [km]

Figure 1.35: \E/E0\ vs. range at 100 m obtained with GRWAVE
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Figure 1.36 : \E/E0\ vs. height at 40, 80 and 120 km, respectively

1.5.2 HFMIX: Surface-Wave Path Loss Predictor
The flow-chart of HFMIX is given in Fig. 1.37. The simulator reads user-supplied input
parameters from the input file HFMIX.INP, runs and outputs the results in two different
output files; LMIX.dat as range vs. path loss [dB] and EMIX.DAT as height vs. field
values [dB|iV/m].

Figure 1.37: The structure of HFMIX

The HFMIX.INP input file contains a minimum of five rows of parameters, which are
listed in Table 1.3. The user supplies a number of propagation sections in the fourth
line in HFMIX.INP. Depending on this number path length, conductivity, and relative
permittivity of each section is given in the fifth, sixth, seventh, etc., lines.

Table 1.3: The HFMIX.INP file and required parameters

Row No:
1
2
3
4
5

Parameter
Frequency [MHz]
Range increment [km]
Transmitter and receiver heights [m]
Number of propagation paths [Integer]
Path length, conductivity, relative permittivity
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Ground-Wave Propagation

The scenario of HFMIX is pictured in Fig. 1.38. Total propagation path is automatically
calculated when section lengths are specified by the user (e.g., R = d^ + d2 + c/3 + d4)

land

Figure 1.38: HFMIX scenario definitions

A typical HFMIX result is presented in Fig. 1.39, as path loss vs. range for a three-
section propagation path (first 100 km sea, then an island of 50 km, and another 150
km of sea) at three different frequencies are plotted.

100 200 300

Range [km]

Figure 1.39: Path loss vs. range over a three-section path

Some remarks on HFMIX are listed as follows:

• Standard atmosphere over smooth spherical earth is assumed, therefore no
refractivity variations are allowed.

• Only surface wave contribution is included. Transmitter and receiver heights are
included as height gain functions.

• HFMIX can be best used from a few hundred kHz up to 40-50 MHz. In this
frequency region, transmitter and receiver heights better be less than a hundred
meters.

• Ground parameters are taken into account, but only two types of grounds are
allowed. Mixed-path effects (Millington recovery) can be calculated for up to 10
different propagation sections.

• Homogeneous (single-section) ground, such as land or sea, can be given by
giving " 1 " in the line 4 and total propagation length in the 5th line.
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• Codes are calibrated against SSPE and CCIR [44] recommendations. There are
no "shortcuts" while coding.

• Since this is an analytical-based code, no improvements are expected parallel
to increase in computers' capabilities. Current PC's are fast enough to do
computations.

1.5.3 KNIFE: Four-Ray Knife-Edge Code
Knife is a ray method prepared for a single PEC obstacle with zero thickness between
a transmitter and a receiver. It uses four rays: the direct ray between the transmitter
and receiver, the tip-diffracted ray from the top of the obstacle, te ground-reflected
rays, and, finally, the ground-reflected ray behind the obstacle that reaches there via
tip diffraction. KNIFE accounts for polarization and surface impedance, including a
surface roughness factor. The details of this program can be found in [43].

The structure of this code is illustrated in Fig. 1.40. As usual, the package accepts
user defined input parameters from the input file KNIFE.INP. The KNIFE.INP input file
contains seven rows of parameters, which are listed in Table 1.4. A typical example is
plotted in Fig. 1.41, for PEC surface at three different frequencies.

Figure 1.40: The structure of KNIFE

The KNIFE.INP file for this example is as follows:

KNIFE.INP (Fig. 1.41)

Although relative permittivity and conductivity values are supplied in LINE 5, surface
roughness for sections both on the left and right of the obstacle are set to zero in LINE
6. The polarization is horizontal for all these three plots.

I l l

KNIFE .INP

KN-QUT.ditKNIFE

Tieight

Field .

LINE 1: 170, 600 and 1300
LINE 2: 100
LINE 3: 100,10000,5000
LINE 4: 1,250,1
LINE 5: 4.0, .0001,4.0, .0001
LINE 6: 0.0, 0.0
LINE 7 1
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Table 1.4: The KNIFE.INP file and required parameters

Row No:
1
2
3

4

5

6
7

Parameter
Frequency [MHz]
Transmitter height [m]
Obstacle height [m], TR to Obstacle distance
[m], Obstacle to Rx distance [m]
First height [m], last height [m], height
increment [m]
Relative permittivity, conductivity [Left part]
Relative permittivity, conductivity [Right part]
Roughess factor (real number between 0-1)
1 [ H polarization], 2 [V polarization]

& 1
CD I

4

so-j

1

|F|[dB]
Figure 1.41: \E/E0\ vs. height at three different frequencies

1.5.4 SSPE: Frequency- Domain Wave Propagator
SSPE package is capable of calculating propagation factor and path loss as a range
and/or height profile. The structure is given in Fig. 1.42. Some remarks on the
package are as follows:

• It uses Dirichlet-type boundary conditions at the surface, therefore source
should be minimum 10 m above the surface.

• Dirichlet-type boundary condition for the scalar wave function correspond to TEZ

type EM wave problem, therefore only horizontal polarization is possibly
chosen.

• The package is better used for frequencies from 200 MHz up to 1 GHz.
Maximum height is limited as 500 m, which is divided into 256 height steps.

• Because of the Nyquist criteria, the maximum frequency that can be used with
this height step size is limited to approximately 1 GHz for accuracy up to
propagation angle of 0 = 4.5° with respect to horizontal axis z. For higher
propagation angles, the operating frequency should be lower.
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Again, the program requires that the user first supply the input file SSPE.INP. It
runs and yields two output files RANGE.DAT (first column range [km], second
column propagation factor [dB]), and HEIGHT.DAT (first column height [m], second
column propagation factor [dB]). Optionally, CONTOUR.DAT may also be
obtained, where 3D field data are used in a MATLAB file (PLOT3D.M) for plots as
propagation factor vs. range/height is available. Necessary input parameters are
listed in Table 1.5.

Figure 1.42: The structure of the SSPE sample package

Table 1.5: The SSPE.INP file and required parameters

Row No:
1
2
3
4
5
6

7

7-8

8 (or 9)

Parameter
Frequency [MHz]
Transmitter height [m]
Maximum range of interest [m]
Observation height [m]
Contour map (1: Yes, 0: No)
Scenario Type
(1, single obstacle; 2, double obstacle)
If Scenario Type is 1 (Single Obstacle)
Obstacle height [m], transmitter-to- obstacle distance [m],
obstacle base length [m], obstacle type (1 :wedge, 2: block)
If Scenario Type is 2 (Double Obstacle)
Obstacle height [m], transmitter-to-obstacle distance [m],
obstacle base length [m], obstacle type (1,wedge; 2, block)
Obstacle height [m], distance between first and second
obstacles [m], obstacle base length [m], obstacle type (1,
wedge; 2, block)
Refractivity profile (1,2 or 3)
1: Standard atmosphere
2: Sub-refraction
3: Super-refraction

For example the SSPE.INP file given below belongs to Fig. 1.43. The parameters read
are 400 MHz, source height hv - 50 m, single obstacle, obstacle height hter = 100 m,
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Ground-Wave Propagation

transmitter-to-obstacle distance cfi = 5 km, obstacle base w^ = 2000 m, maximum
range of interest Rmax = 10 km, observation height hobs = 50 m, obstacle: wedge,
vertical refractivity profile: standard atmosphere and no contour map data is required.

SSPE.INP (Fig. 7.43)

K

LINE 1:
LINE 2:
LINE 3:
LINE 4:
LINE 5:
LINE 3:
LINE 4:
LINE 5

400
50
10000.
50
0
1
100,5000,2000, 1
1

di

iA
Wj -*l

Figure 1.43: The scenario of the SSPE.INP file in SSPE.INP given above

Similarly, the scenario in Fig. 1.44 can be obtained with an input file given below (250
MHz, source height hv= 10 m, double obstacle, wedge and block, wedge height /jteri =
5 m, source-to-wedge distance of-i = 500 m, wedge base ^ = 5 m, block height hte&

 =

10 m, wedge-to-block distance = 50 m, block base w2 = 5 m, maximum range of
interest Rmax = 1 km, observation height hoi)S = 10 m vertical refractivity profile:
standard atmosphere and contour map data are required).

SSPE.INP (Fig. 1.44) LINE 1:
LINE 2:
LINE 3:
LINE 4
LINE 5:
LINE 6:
LINE 7:
LINE 8
LINE 9

250
10
1000
10
1
2
5, 500, 5, 1
10,50,5,2
1

SSPE is applied to two typical propagation scenarios, where a wedge shaped PEC
obstacle is located in between the transmitter and receiver. The scenario is pictured
in Fig. 1.45. Here, the obstacle has a 50-m base length and is 250 m away from a
150-MHz source, which is 25 m above the ground. The height of the obstacle is a
parameter.
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Figure 1.44: The scenario of the SSPE.INP file in SSPE.INP given above

Figure 1.45: A (first) scenario with single obstacle

SSPE is run with this scenario and propagation factor vs. both range and height
behind the obstacle are calculated. In Fig. 1.46, propagation factor vs. range for the
three cases mentioned in Fig. 1.45, are plotted.

Range [km]

Figure 1.46: \E/E0\ vs. range for the first scenario (observation height = 25 m)
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Ground-Wave Propagation

As observed from the figure, the higher the obstacle, the lower the signal strength right
behind when the receiver height is less than the obstacle. The interested reader may
run this scenario with different heights and ranges and could see the differences. The
second calculation with this first scenario is done for propagation factor vs. height, and
results are given in Fig. 1.47.

The second scenario used as an example in SSPE includes wedge-shaped obstacles
with same height but different base lengths. All other parameters are kept the same as
in the first scenario (obstacle, and observation heights are 50 m, and 25 m,
respectively. Propagation factor vs. range behind the obstacle is given in Fig. 1.48.
SSPE and KNIFE simulators can also be compared with each other, since both can
handle wedge-type obstacle effects under Dirichlet-type boundary conditions. A
comparison at 500 MHz for a 100-m height sharp wedge-type PEC obstacle is given in
Fig. 1.49. The scenarios are also pictured in the figure.

Figure 1.47: \E/E0\ vs. height for the first scenario (observation range = 25 m)

-80 -80 -40 -20 0 20

IFI [dB]

Figure 1.48: \E/E0\ vs. range for the first scenario (observation height = 25 m) with
different base length (1, 50 m; 2, 100 m; 3, 200 m)
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Although the examples starting from Fig. 1.43 to Fig. 1.48 are generated via the SSPE
package, some modifications in default parameters (e.g., maximum height) are done
to satisfy the accuracy requirements. The contour plots (i.e., propagation factor vs.
range/height) are shown in Figs. 1.50 and 1.51 in order to emphasize the importance
of parameter selection. In both figures, operating frequency, transmitter-to-wedge
distance, and wedge and transmitter heights are selected as 300 MHz, 1000 m, 100 m
and 50 m, respectively. In order to show the effect of terrain slope, the wedge base
lengths are chosen differently, 2000 m and 100 m for the scenarios shown in Figs.
1.50 and 1.51, respectively. For both scenarios, maximum height is kept as given
inside the SSPE package. The color bar at the right side of the figures scales the
amplitude of propagation factor. The effect of the obstacle is clearly observed in Fig.
1.50, the propagating wave is scattered from the left edge, and there exists a shadow
region behind the wedge. However, in Fig. 1.51, it seems as if the upper part of the
wedge permits the wave to penetrate, which is not physically true. The wedge affects
as if it is lower. The reason is the slope angle, which is very high compared to the one
in Fig. 1.51. Therefore, smaller height step sizes have to be used to satisfy the Nyquist
criteria. Besides, staircase terrain approximation in SSPE has difficulties in modeling
sharp slopes and needs more diligent discretization in height.

300 -r - -——

0 ..! rrr-_-r^r..;r.T.,. . ..
-30 -20 -10 0 10

IF! f,dB],
Figure 1.49: \E/E0\ vs. height obtained with SSPE and KNIFE
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Figure 1.50 \F\ vs. range/height at 300 MHz for wedge with 2000 m base length
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Ground-Wave Propagation

At the upper left of the Figs. 1.50 and 1.51, the amplitude of propagation factor is
higher than it should be, because the propagating wave cannot reach that height at
that range and numerical error is slightly smaller for free space, causing the
denominator in the formula of the propagation factor to be small.

Figure 1.51: \F\ vs. range/height at 300 MHz for wedge with 100 m base length

1.5.5 TDWP: Time- Domain Wave Propagator
A simplified version of the TDWP package for HED, where Hx, Hz and
related field components, is prepared and presented here. In this version:

Ey are the

• The sliding window technique is removed and only a single window is allowed.
Therefore, the code is reduced to a 2D TEZ (with no variation along y-direction)
FDTD code.

• The propagation domain is terminated by 16-PML blocks from left, right, and
top. Ground is assumed to be PEC.

• The computation domain is 500 x 2000 with Ax = Ay = Az = 10 cm, which
corresponds to a 50-m-high by 200-m-long area.

• The source bandwidth is chosen as B =100 MHz.

The structure of the TDWP, shown in Fig. 1.52, is quite similar to the other
propagators. Nevertheless two TD simulations explained below should be run
separately in order to calculate propagation factors. Both programs accept the user-
supplied input parameters from the same file named as TDWP.INP. But the for the
rest of the input parameters, each program needs a different additional parameter file.

• TDWP-F: Free space simulation. The additional input parameter file is TDWP-
F. PAR. The outputs are given in T-RANGE-F.dat and T-HEIGHT-F.dat files
for range and height profiles, respectively.

• TDWP-S: Includes obstacles, PEC ground, and refractivity. The additional
input parameter file is TDWP-S. PAR. The outputs are given in T-RANGE-
S.dat and T-HEIGHT-S.dat files for range and height profiles, respectively.
Electric field data vs. height/range are stored in SNAP.DAT in order to plot
instant snapshots. An off-line Matlab file (PLOT3D.M) uses SNAP.DAT to
depict a 3D figure where electric field variation vs. range/height is shown.
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Off-line DFT is applied to the data in these output files, and propagation factor vs.
range or height are calculated for a given frequency. The FD data are given in F-
RANGE.dat and F-HEIGHT.dat files. Since short pulse propagation is simulated in
TDWP, off-line DFT may be applied as many frequencies as the user desires (within
bandwidth of the short pulse injected). Necessary input parameters are listed in Table
1.6.

FD results

Figure 1.52: The structure of TDWP package

For example, the TDWP.INP file given below belongs to Fig. 1.48. The parameters
read are transmitter height /7t = 20 m; receiver height hT = 20 m; single obstacle;
observation ranges: 50 m, 100 m, 150 m; obstacle height hier = 20 m, source-to-
obstacle distance d-\ = 50 m; obstacle base; w^ = 25 m, obstacle: wedge; vertical
refractivity profile: standard atmosphere; time steps for instant snapshots: 500 and
1000.

TDWP.INP (Fig. 1.48) LINE 1:
LINE 2:
LINE 3:
LINE 4:
LINE 5:
LINE 5
LINE 6
LINE 7

10
10
3,50, 100, 150
1
20, 50, 25 ,1
1
1
2,500, 1000
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Table 1.6: The TDWP.INP file and required parameters

Row No:
1
2
3

4

5

6

6 (or 7)

8

Parameter
Transmitter height [m]
Receiver (observer) height [m]
NRANGE (number of observation ranges: 1 - 3), first
observation range [m], second observation range [m]
(arbitrary if NRANGE < 2), third observation range [m]
(arbitrary if NRANGE < 3)

Scenario type [0, 2]
(0, no obstacle; 1, single obstacle; 2, double obstacle
If scenario type is 1 (single obstacle)
Obstacle height [m], source-to- obstacle distance [m], obstacle
base length [m], obstacle type (1, wedge; 2, block)
If scenario type is 2 (double obstacle)
Obstacle height [m], source-to- obstacle distance [m], obstacle
base length [m], obstacle type (1, wedge; 2, block)
Obstacle height [m], distance between two obstacles [m],
obstacle base length [m], obstacle type (1, wedge; 2, block)
Refractivity profile (1,2 or 3)
1: Standard atmosphere (117)
2: Sub-refraction (200)
3: Super-refraction (-43)
N_TIME (number of instant snapshots: 1, 3), first snapshot
time [1-NSTOP], second snapshot time [0-NSTOP] (arbitrary if
N TIME < 2), third second snapshot time [0-NSTOP] (arbitrary
if NTIME < 3). Here, NSTOP is the number of total time steps
in TDWP. Instant snapshots are available only for TDWP-S.

Like SSPE in FD, TDWP may also be used to obtain 3D plots of propagation directly
in TD. An example of this is given in Fig. 1.53, where four different snapshots are
plotted.

Range
Figure 1.53: Pulse propagation in TD simulated with TDWP
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CONCLUSIONS AND DISCUSSION

Chapter 1

The problem of ground-wave propagation over a non-flat, imperfect earth's surface
through a non-homogeneous atmosphere is discussed in this chapter. Three methods
are presented; analytical approximate (ray-mode) solutions, the SSPE in FD and the
TDWP in TD.

The main conclusions of this chapter are the following:

• Analytical ray-mode techniques (also their hybridized form WAVEPROB) yield
sufficiently accurate results only when propagation over a spherical smooth
earth (including lossy ground) is considered.

• SSPE is efficient and reliable for modeling narrow-band wave propagation
(especially for frequencies VHF and above) over weakly back-scattering rough
surfaces, above which exists a vertically and/or horizontally varying refractivity
profile.

• The TDWP provides an efficient and reliable method for ground-wave
propagation problems involving broadband pulse signals. Although
computationally expensive and not yet optimized, this technique is quite flexible
and can be used in a variety of applications. By adding decision-makers and
parallel processing, the TDWP may be capable of simulating not only 2D but
also 3D propagation of pulsed signals over terrain, which may include surface
impedance variations.

• Major factors that at present restrict the applicability and/or validity of TDWP are
(i) computer memory and speed requirements,
(ii) unwanted reflections from the top PML boundary,
(Hi) numerical dispersion effects.

The restrictions of all these methods are listed in Table 1.7. Also, the comparisons in
terms of ground-wave propagation requirements in order to clarify the utilities are
listed in Tables 1.8.

Table 1.7: Comparison of the algorithms in terms of operating frequency

Operating
Frequency

MF
HF

VHF
MW

Ray-Mode
(WAVEPROB)
Easy
Easy
Easy
Easy

SSPE

Difficult
Difficult
Easy
Easy

TDWP

Easy
Easy
Difficult
Difficult

Most of the numerical results given in this chapter were performed via a personal
computer (PCs, Pentium II with 128 MB RAM). The restrictions mentioned in (i) and
(iii) above can partly be removed when more capable computers (with larger memory
and higher speed) are used. This will allow one to utilize a larger computation space
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(as well as a larger sliding window) than that we have used in this study and hence
extend the simulation range. At this stage, TD simulators are limited to ranges up to
few thousands of wavelengths. The effects of unwanted reflections from the top PML
boundary dominate the numerical dispersion effects in most of the propagation
scenarios considered in this study. Also, PML works better for propagation over
irregular terrain, because of the wide spread scattering of the waves. However, in this
case, due to direct and ground scattered pulse interference together with numerical
dispersion accuracy deteriorates at longer ranges. On the other hand, some signal
processing techniques (such as windowing, signal estimation, etc.) can be
incorporated to the TDWP to achieve a (slight) improvement in performance.

Table 1.8: Comparison of the algorithms in terms of ground-wave propagation
requirements

Propagation
Scenario

Atmosphere

Non-flat terrain
effects

Surface
impedance
oundary

Back and up
scattering

Long-range
propagation

Ray-Mode
(WAVEPROB)
Standard
atmosphere with
and without
earth's curvature

Only rough
surface

Easy

Not applicable

Easy

SSPE

All kinds of vertical and
horizontal atmospheric
changes including ducts,
but for relatively small
atmospheric gradient.
All terrain types can be
included, but for piecewise
linear approximation there
exists a limitation for slope
angles, and for staircase
approximation it is difficult
to apply Neumann type
surface boundary condition.
Easy, but there are
problems for the source
located at a highly
conducting surface, such
as sea.

Not applicable (possible
with finite difference PE or
vector PE ).

Easy

TDWP

No restriction

No restriction

Easy, but
needs extra
calculations if
recursive
convolution
algorithm is
applied.
Local back
and up scatter
effects are
included.
Difficult and
needs extra
precautions.
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