
Legitimate Applications of Peer-to-Peer Networks, by Dinesh C. Verma 1
ISBN 0-471-46369-8 Copyright © 2004 John Wiley & Sons, Inc.

1
THE PEER-TO-PEER
ARCHITECTURE

In this chapter, we look at the general architecture of a peer-to-
peer system and contrast it with the traditional client-server ar-
chitecture that is ubiquitous in current computing systems. We
then compare the relative merits and demerits of each of these ap-
proaches toward building a distributed system.

We begin the chapter with a discussion of the client-server and
peer-to-peer computing architectures. The subsequent subsec-
tions look at the base components that go into making a peer-to-
peer application, finally concluding with a section that compares
the relative strengths and weaknesses of the two approaches.

1.1 DISTRIBUTED APPLICATIONS

A distributed application is an application that contains two or
more software modules that are located on different computers.
The software modules interact with each other over a communica-
tion network connecting the different computers.

To build a distributed application, you would need to decide
how many software modules to include in the application, how to
place those software modules on the different computers in the
network, and how each software module discovers the other mod-
ules it needs to communicate with. There are many other tasks

c01.qxd 1/27/2004 10:43 AM Page 1

that must be done to build a distributed application, but
those mentioned above are the key tasks to explain the dif-
ference between client-server computing and peer-to-peer com-
puting.

1.1.1 A Distributed Computing Example

The different approaches to distributed computing can be ex-
plained best by means of an example. Suppose you are given the
task of creating a simulation of the movement of the Sun, the
Earth, and the Moon by a team of five astronomers. Each of the
five astronomers has a computer on which he or she would like to
see the motion and position of the three heavenly bodies at any
given time for the last 2000 years as well as the next 2000 years.
Let us say (purely for the sake of illustration, rather than as the
preferred way to write such simulation) that the best way to solve
this problem is to create a large database of records, each record
containing the relative positions of the three bodies at different
times ranging over the entire 4000-year period. To show the posi-
tions of the three heavenly bodies, the program will find the ap-
propriate set of records and display the position visually on the
computer screen. Even after making this choice on how to write
the program, you, as the programmer assigned to the task, have
multiple ways to develop and deploy the software.

You can write a stand-alone program that will do the complete
simulation of the three heavenly bodies that runs on a single com-
puter and install five copies of it on each of the computers. This
approach (approach I) has the advantage that each astronomer
can run the program as long as his or her computer is up and does
not require access to a network, or to the computers of the other
astronomers. This approach would be fine if the application runs
well enough on each of the computers, but it does not harness the
combined processing power of all the five computers. Further-
more, experienced programmers know that all programs must be
maintained and upgraded multiple times—to fix bugs, to add new
features, or to correct any errors in generation of the set of records
in the program. With this approach, any changes that you make
after the initial installation of the program would need to be repli-
cated five times.

An alternative approach (approach II) would be for you to select
the most powerful computer among the five to do the simulation,

2 THE PEER-TO-PEER ARCHITECTURE

c01.qxd 1/27/2004 10:43 AM Page 2

with all the other computers (as well as the one running the simu-
lation) having a visualization interface for the users to interact
with the simulator. You have broken the program into two soft-
ware modules, the visualization module and the simulation mod-
ule, and created five instances of the visualization module and
one instance of the simulation module. If the astronomers’ com-
puters are of differing power, this allows all of them to harness
the power of the fastest computer. Because the simulation module
maintains a large set of data, this set can be maintained at a sin-
gle place and use less disk space. Also, you can localize changes to
the simulation module to a single computer, and only changes to
the visualization module must be propagated to all of the five
computers. If the visualization module is much simpler than the
simulation module, this will cut down significantly on the number
of bugs and changes that need to be maintained in different
places. The drawback now is that each astronomer needs connec-
tivity to the network in order to access the simulation module and
that the computer running the simulation module must be avail-
able continuously.

Approach II outlined above follows the client-server architec-
ture for distributed applications where the fastest computer is
acting as the simulation server. The visualization modules run-
ning on the other computers are the clients that accesses the sim-
ulation module running on the server.

Although approach II allowed each computer to access the re-
sources of the fastest computer, it did not use the combined pro-
cessing power of the other four computers available to the distrib-
uted application. To use the processing power of all the five
computers, you can divide your simulation modules into five iden-
tical portions, each one handling a different but similar part of
the simulation process (approach III). Recalling the fact that the
simulation module was implemented as a database of relative po-
sitions, each of the five computers can be assigned to hold a por-
tion of the database. One could split the database into five equal
portions, each computer holding one portion, or one could divide
the database into overlapping portions so that the position at any
time is stored at two or more computers. If disk space is not an is-
sue, one could simply replicate the database on all the computers.
When an astronomer wants to check the position of the three
heavenly bodies at any time, the visualization module on his/her
computer finds one of the five computers that has the simulation

1.1 DISTRIBUTED APPLICATIONS 3

c01.qxd 1/27/2004 10:43 AM Page 3

module with the correct portion of the database and then talks to
that simulation module. All the five computers are acting as
peers, each having a client component (the visualization module)
as well as a server component (the simulation module). Approach
III is the pure peer-to-peer approach to solving the three-body
simulation problem.

Approach III could potentially be more scalable than approach
II because it is leveraging the combined power of all the comput-
ers rather than that of a single computer. If the records in the
database are available from multiple computers, the reliability of
this approach may be higher than that of approach II. However, it
reintroduces the problem that any changes made to a module
(simulation or visualization) need to be replicated on all of the dif-
ferent computers.

In real life, one could also use a hybrid approach that is a mix-
ture between the client-server architecture and the peer-to-peer
architecture. The hybrid approach places some software modules
on a set of computers that can act as servers and others act as
clients. The hybrid approach for some distributed applications
can often result in a better trade-off between the ease of software
maintenance, scalability, and reliability.

For any of the approaches selected, you would need to solve the
discovery problem. The different modules of the application need
to communicate with each other, and a prerequisite for this would
be that the modules know where to send messages to the other
modules. In the Internet, messages are sent to other applications
by specifying their network address, which consists of the IP ad-
dress of the application and the port numbers on which the appli-
cation is receiving messages. To communicate over the Internet
protocol suite, each software module must find out the network
address of the other software module (or modules).

One solution to the discovery process is to fix the port numbers
for all the software modules that they will be using and have all
the modules know the port numbers and IP addresses of the dif-
ferent modules. When developing the simulation application for
the astronomers, you can hard code this information within each
of the modules. However, you must ensure that the selected port
numbers are available on the computers that the applications will
be running on. Because most computers run applications devel-
oped by many different companies, this solution would require a
global coordination of port numbers among all the software devel-

4 THE PEER-TO-PEER ARCHITECTURE

c01.qxd 1/27/2004 10:43 AM Page 4

opers in the world, which is clearly not feasible. The alternative is
to have the address and port number information be provided as
configuration parameters to the different software modules. If you
use this approach with the example application we have discussed
here, it is relatively easy to specify five port numbers and IP ad-
dresses in the configuration of each computer. However, if you
consider the case of a more complex real-world application that
needs to run on many more computers, the manual effort required
for configuration could be quite substantial.

One of the key advantages of the client-server architecture (ap-
proach II discussed above) is that it makes the discovery process
quite simple. This enables the deployment of a large number of
clients and a high degree of scalability. Let us now define the
client-server architecture and the peer-to-peer computing archi-
tecture in a more precise manner and then examine the discovery
process in each of the architectures.

1.1.2 Client-Server Architecture

The client-server architecture is a way to structure a distributed
application so that it consists of two distinct software modules:

� A server module, only one instance of which is present in the
system

� A client module, of which multiple instances are present in
the system

The only communication in the system is between the client mod-
ules and the server module.

Please note that the client and server modules themselves may
be quite complex systems with further submodules and compo-
nents. However, the key characteristic of the client-server archi-
tecture is that there is a server module that is the central point
for communication. Clients do not communicate with each other,
only with the server module.

In the client-server architecture, the server is usually the more
complex piece of the software. The clients are often (although not
always) simpler. With the wide availability of a web browser on
most desktops, it is quite common to develop distributed applica-
tions so that they can use a standard web browser as the client. In

1.1 DISTRIBUTED APPLICATIONS 5

c01.qxd 1/27/2004 10:43 AM Page 5

this case, no effort is needed to develop or maintain the client (or,
rather, the effort has been taken over by a third party—the devel-
oper of the web browser). This simplifies the task of maintaining
and upgrading the application software.

In any distributed application, the different components must
discover each other in order to communicate. In the client-server
architecture, only the clients need to communicate with the serv-
er. Therefore, each client needs to discover the network address of
the server, and the server needs to know the network address of
each of the clients.

The solution used for discovery in the client-server architecture
is quite simple. The server runs on a port and network address
that is known to the client module. The clients connect to the
server on this well-known network address. Once the client con-
nects to the server, the client and server are able to communicate
with each other. The server need not be configured with any infor-
mation about the clients. This implies that the same server mod-
ule can communicate with any number of clients, constrained only
by the physical resources needed to provide a reasonable response
time to all of the connected clients.

For most common applications that run on the Internet, the
port numbers on which the server side can run have been stan-
dardized [1]. Thus the clients only need to know the IP address of
the computer on which the server is running. Any individual
client can also easily switch to another server module by using the
IP address (or, in general, the IP address and the port number) of
the new server. As an example, a web server typically runs on
port 80 and web browsers can connect to the web server when a
user specifies the name of the computer running the web server.
The browser also has the option of connecting to a server running
on a port different than 80.

The simplicity and ease of maintenance of client-server archi-
tecture are the key reasons for its widespread usage in the design
of distributed applications at the present time. However, the
client-server architecture has one drawback—It does not utilize
the computing power of the computers running the client modules
as effectively as it does the computing power of the server module.
At present, when even the standard desktop packs more comput-
ing power than the computers that were used for Neil Arm-
strong’s flight to the Moon in 1969, this does appear to be a rather
wasteful approach.

6 THE PEER-TO-PEER ARCHITECTURE

c01.qxd 1/27/2004 10:43 AM Page 6

1.1.3 Peer-to-Peer Architecture

The peer-to-peer architecture is a way to structure a distributed
application so that it consists of many identical software modules,
each module running on a different computer. The different soft-
ware modules communicate with each other to complete the pro-
cessing required for the completion of the distributed application.

One could view the peer-to-peer architecture as placing a server
module as well as a client module on each computer. Thus each
computer can access services from the software modules on anoth-
er computer, as well as providing services to the other computer.
However, it also implies that the discovery process in the peer-to-
peer architecture is much more complicated than that of the
client-server architecture. Each computer would need to know the
network addresses of the other computers running the distributed
application, or at least of that subset of computers with which it
may need to communicate. Furthermore, propagating changes to
the different software modules on all the different computers
would also be much harder. However, the combined processing
power of several large computers could easily surpass the process-
ing power available from even the best single computer, and the
peer-to-peer architecture could thus result in much more scalable
applications.

The bulk of this book is devoted to the subject of peer-to-peer
applications. In Section 1.2, we look at the architecture of the
typical software that must run on each computer in the peer-to-
peer architecture. Subsequent chapters in the book discuss the
issues of discovery and creating communication overlays among
all the nodes that are participating in the peer-to-peer architec-
ture.

1.2 THE PEER-TO-PEER SOFTWARE STRUCTURE

As mentioned above, a distributed application implemented in a
peer-to-peer fashion would have the same software module run-
ning on all of the participating modules. Given the complexity as-
sociated with discovering, communicating, and managing the
large number of computers involved in a distributed system,
the software module is typically structured in a layered manner.
The software of most peer-to-peer applications can be divided into

1.2 THE PEER-TO-PEER SOFTWARE STRUCTURE 7

c01.qxd 1/27/2004 10:43 AM Page 7

the three layers, the base overlay layer, the middleware layer,
and the application layer.

The base overlay layer deals with the issue of discovering other
participants in the peer-to-peer system and creating a mechanism
for all the nodes to communicate with each other. This layer is re-
sponsible for ensuring that all the participants in the nodes are
aware of the other participants. Functions provided by the base
layer are the minimum functionality required for a peer-to-peer
application to run.

The middleware layer includes additional software components
that could be potentially reused by many different applications.
The term “middleware” is used to refer to software components
that are primarily invoked by other software components and
used as a supporting infrastructure to build other applications.
Functions included in this layer include the ability to create a dis-
tributed index for information in the system, providing a publish-
subscribe facility, and security services. The functions provided in
the middleware level are not necessary for all applications, but
they are developed to be reused by more than one application.

Finally, the application layer provides software packages in-
tended to be used by human users and developed so as to exploit
the distributed nature of the peer-to-peer infrastructure.

Some implementation of the base functionality is needed in all
peer-to-peer systems. Some peer-to-peer systems [2, 3] only pro-
vide middleware functionality and enable other applications to be
written on top of them. Other peer-to-peer systems provide com-
plete applications by using a common middleware [4] or by pro-
viding their own private implementation [5].

Please note that there is no standard terminology across differ-
ent implementations of peer-to-peer systems, and thus the terms
used above are general descriptions of the functionality needed
for building a generic peer-to-peer system, rather than the struc-
ture of any specific peer-to-peer system. Also, most peer-to-peer
systems are developed as single applications. However, the struc-
turing of the three layers as discussed in this chapter provides a
good way to categorize and study the different applications.

1.2.1 Base Overlay Layer

As mentioned above, the base overlay formation is a feature that
must be provided by all peer-to-peer systems. The functions in-
cluded in this layer include the following:

8 THE PEER-TO-PEER ARCHITECTURE

c01.qxd 1/27/2004 10:43 AM Page 8

� Discovery: Before communicating with each other, a node in
a peer-to-peer system must discover a minimum set of other
nodes so that it could communicate with them. The discovery
mechanism may include discovering all the other nodes in
the system or just one other node that could be used as an in-
termediary to communicate with the other nodes.

� Overlay Formation: This provides a mechanism by which all
the peer-to-peer nodes are connected into some type of com-
mon network. The network is used by each of the nodes to
communicate with the other nodes.

� Application-Level Multicast: This functionality permits a
node to send a message out to all of the other nodes in the
network. In some peer-to-peer infrastructures, the only com-
munication supported is the ability of a node to send a mes-
sage to all of the other nodes. Some other peer-to-peer archi-
tectures would allow formation of subgroups within the
system so that the message is sent only to a restricted subset
of nodes.

1.2.2 Middleware Functions

The middleware layer is responsible for providing some common
functions that will be used by applications at the higher layer.
The middleware consists of those software functions that are in-
tended to be used primarily by other software components, rather
than by a human user. The middleware function in itself cannot
be used to build a complete application, but the common functions
can be used to build peer-to-peer applications rapidly.

Some of the functions included in this layer are:

� Security: This middleware function provides the support
needed for managing secure communication among the dif-
ferent nodes, providing support such as encryption, access
control, and authentication. The issues involved in the secu-
rity aspects of peer-to-peer communication are similar to
those involved in traditional client-server computing sys-
tems. However, the distributed nature of the system makes
security issues much harder in peer-to-peer systems.

� Distributed Indexing: Many peer-to-peer applications need a
fast way to index and find information that is distributed
along the different nodes of a peer-to-peer infrastructure. A

1.2 THE PEER-TO-PEER SOFTWARE STRUCTURE 9

c01.qxd 1/27/2004 10:43 AM Page 9

distributed indexing system could be used by applications
such as a distributed storage application or a distributed file
system. A special type of an index is a hash table, which
maps keywords of arbitrary length into a fixed-length hash
and uses the hash to locate the entries corresponding to the
keywords. Distributed indexing and hash tables have been
an active area of research in peer-to-peer computing sys-
tems.

� Directory Services: A directory service provides a name
lookup service, whereby one could look up the properties of
an entity by specifying its name. In many respects, a directo-
ry service is like a index or hashing service, with one differ-
ence. It is common in conventional directory services to im-
pose a hierarchical naming structure on the elements stored
in the directory. The most widespread directory servers use
the LDAP protocol to allow clients to access the information
stored in the directory service. A peer-to-peer implementa-
tion of the directory service can offer some unique advan-
tages over the traditional server-based implementation.

� Publish-Subscribe Systems: A publish-subscribe system al-
lows for the sharing of information in a system in a con-
trolled manner. Publishers of information send the informa-
tion to the publish-subscribe system, and the subscribers of
information inform the system about what types of informa-
tion they wish to receive. The publish-subscribe system man-
ages the published information sources and the preferences
of the different subscribers and provides an efficient delivery
mechanism.

Most middleware functions can be implemented with a client-
server approach as well as a peer-to-peer approach. In the subse-
quent chapters of the book, we look at the different middleware
functions that can be provided with a peer-to-peer infrastructure
and compare the alternative implementations of the middleware
functions.

1.2.3 Application Layer

We define this layer as consisting of the software components
that are designed to be used primarily by a human user. The file-
sharing application is the most ubiquitous peer-to-peer applica-

10 THE PEER-TO-PEER ARCHITECTURE

c01.qxd 1/27/2004 10:43 AM Page 10

tion, with multiple implementations available from a large num-
ber of providers. The file-sharing application allows users of a
peer-to-peer network to find files of interest from other computers
on the network and to download them locally. The use of this ap-
plication for sharing copyrighted content has been the subject of
several legal cases between developers of peer-to-peer software
and the music industry.

File sharing, however, is not the only application that can ex-
ploit the properties of a distributed base overlay infrastructure. A
peer-to-peer infrastructure can be used to support self-managing
websites, assist users to surf the network in an anonymous man-
ner, and provide highly scalable instant messaging services and a
host of other common applications.

There are some old applications which were built and devel-
oped with the peer-to-peer model long before the file-sharing ap-
plication grew in prominence. These applications include some
routing protocols used within the Internet infrastructure as well
as the programs used to provide discussion and distributed news-
groups on the Internet.

Several such applications, new and legacy, are discussed in the
subsequent chapters of this book. Each of these applications can
be implemented with the client-server architecture or the peer-to-
peer architecture. With each application, there are unique advan-
tages and drawbacks in development using the peer-to-peer struc-
ture as compared to the client-server structure. However, some of
these advantages and disadvantages pertain across all such appli-
cations and are discussed in Section 1.3.

1.3 COMPARISON OF ARCHITECTURES

If you had to implement an application and had the choice of im-
plementing it with a peer-to-peer architecture or a client-server
architecture, which one would you pick? Either of the two ap-
proaches to building the application can be made to work in
most cases. In this section, we look at some of the issues you
should consider when deciding which of the two approaches
would be more appropriate for the task at hand. Each of the sub-
sections discuss some of the issues you may want to consider and
the merits and demerits of the two architectures compared with
each other.

1.3 COMPARISON OF ARCHITECTURES 11

c01.qxd 1/27/2004 10:43 AM Page 11

1.3.1 Ease of Development

When building an application, you need to consider how easy or
difficult it will be to build and test the software for the applica-
tion. The task of developing the software is eased by the existence
of development and debugging tools that can be used to hasten
the task of developing the application.

For developing client-server applications, there are a large
number of application programs that are available to ease the
task of development. Many software components, such as web
servers, web-application servers, and messaging software, are
available from several vendors and provide infrastructure that
can be readily used to provide a server-centric solution.

Some programming environment packages are available for
peer-to-peer computing, such as Sun’s JXTA package [6] or Win-
dows XP P2P SDK [7]. However, these packages are relatively
new compared with the more traditional client-server software
and therefore not quite as mature. Thus the risk of running into
an undiscovered bug in the infrastructure is higher for peer-to-
peer packages compared with those for client-server computing.

Furthermore, the task of debugging and testing a centralized
server solution is easier than the task of debugging distributed
software that requires interaction among several components.
Thus, from an ease of development perspective, the client-server
approach has an advantage over the peer-to-peer approach.

1.3.2 Manageability

Manageability refers to the ease of managing the final software
when it is finally deployed. After a software application is up and
ready, it still needs ongoing maintenance while in operation.
Maintenance includes tasks such as ensuring that the application
has not stopped working (and restarting it in case it stops work-
ing), making backup copies of the data generated by the applica-
tion, applying software upgrades, fixing any bugs that are discov-
ered, educating users about the application, and a variety of other
functions.

Several tasks (e.g., user education) associated with managing a
running application remain essentially unchanged regardless of
the implementation approach that is used. However, many tasks
(e.g., backup, upgrades, bug fixes) are easier to do on a centralized
application than on an application that is run on multiple plat-

12 THE PEER-TO-PEER ARCHITECTURE

c01.qxd 1/27/2004 10:43 AM Page 12

forms. An associated issue with peer-to-peer applications is the
different number of platforms that the software would need to run
on. For a centralized client-server approach, the server part of the
software is at a single location and one could choose the platform
on which the server part of the application would run. Choosing a
platform in this instance means selecting the hardware and oper-
ating system of the machines on which the application software
will run. A common platform allows for an improved degree of
manageability on the server component of the software. The plat-
form choices for the client component cannot be similarly restrict-
ed. However, for a client-server architecture that is developed
with a standard client (e.g., a web browser), very little mainte-
nance is associated with the client portion.

In a peer-to-peer application, the application is running on sev-
eral different machines that could be distributed across a wide ge-
ographic area. If they are all under a single administrative do-
main, it is possible to standardize on a common platform for all of
them. However, it is more common to find the situation in which
the different components of a peer-to-peer application would run
on different platforms. This makes the manageability of peer-to-
peer applications much harder.

The advent of platform-independent programming languages
such as Java has simplified the manageability of distributed peer-
to-peer applications to a large extent. Furthermore, the domi-
nance of the Windows computing platform on the desktop market
has limited the number of potential platforms that a peer-to-peer
application needs to run on. These factors help the manageability
of peer-to-peer applications to a large extent. However, in general,
a peer-to-peer application is typically less manageable than a
client-server application.

1.3.3 Scalability

The scalability of an application is measured in terms of the high-
est rate or size of user-level interactions that the application can
support with a reasonable performance. The quantity in which
scalability is measured is determined by the type of application.
The scalability of a web server can be measured by the number of
user requests it can support per second; the scalability of a direc-
tory server can be measured by the number of operations it can
support per second, as well as by the maximum number of records

1.3 COMPARISON OF ARCHITECTURES 13

c01.qxd 1/27/2004 10:43 AM Page 13

it can store while maintaining a reasonable performance, for ex-
ample, the maximum number of records it can store while keep-
ing the time for a lookup operation below 100 ms.

Peer-to-peer applications use many computers to solve a prob-
lem and thus are likely to provide a more scalable solution than a
server-centric solution, which relies on a single computer to per-
form the equivalent task. In general, using multiple computers
would tend to improve the scalability of the application compared
with using only a single computer.

However, a server-centric solution could be developed that uses
multiple computers as well. Most high-performance server sites
typically deploy many computers with a load balancer or dis-
patcher in front of the servers to provide a scalable solution. A
dispatcher device distributes incoming requests to one of the
many servers. Each server can process the request in the same
manner. In most cases, the dispatcher maintains the affinity be-
tween clients and servers, that is, the dispatcher remembers
which client requests were forwarded to which server and for-
wards multiple requests from the same client to the same server.
An increase in the number of servers helps the system handle a
large volume of requests. More details can be found in [8].

In general, if one uses the same number of computers to solve
the problem, using all of the computers as servers would provide a
more scalable system than using the same number of computers
in a distributed peer-to-peer manner. This is because the peer-to-
peer infrastructure requires communication among different
nodes to perform the various tasks and thus has a larger over-
head compared with a server-centric approach. In most cases, a
centralized solution is much more efficient than a distributed so-
lution.

The scalability of client-server computing as well as peer-to-
peer computing has been proven by experience. Web servers of
popular websites such as cnn.com or yahoo.com can handle mil-
lions of requests each day on a routine basis. Similarly, the large
number of files exchanged on existing peer-to-peer networks such
as gnutella and kazaa is on the order of millions of files every day.
However, there is one difference between the scalability of the
centralized server solution and the peer-to-peer solution. To build
a server-centric solution, one would typically need to procure ded-
icated computers and host them at a facility. It is possible in
many peer-to-peer applications to leverage existing computers

14 THE PEER-TO-PEER ARCHITECTURE

c01.qxd 1/27/2004 10:43 AM Page 14

(e.g., workstations and laptops) that are not always heavily used.
This enables a peer-to-peer infrastructure to harness many more
computers at very little cost and thus allows a more scalable solu-
tion at a lower cost.

A fair criticism of the low-cost aspect of peer-to-peer systems
such as gnutella or kazaa is that they are getting a free ride on
the costly infrastructure paid for and supported by users and In-
ternet service providers (ISPs). Although the criticism is valid,
nothing prevents enterprise or industry operators to use the same
trick to provide low-cost solutions to scalability. Most enterprises
have hundreds of computers, desktops, and laptops, which are
only using a fraction of their computational power and capacity.
By harnessing their computing power with a peer-to-peer ap-
proach, enterprises can build scalable applications at a lower cost
than that of comparable systems using dedicated servers.

1.3.4 Administrative Domains

One of the key factors determining how to structure the applica-
tion would depend on the usage pattern of the application and
how the different computers that are used to deploy the applica-
tion software are going to be administered. In general, with a
client-server approach, the server computers need to be under a
single administrative domain. Thus the server-centric approach
would typically not be used if the servers needed to host the appli-
cation would belong to several different administrative domains.

A peer-to-peer system, however, can often be created by using
computers from many different administrative domains. Thus, if
usage of the software requires that computers from many differ-
ent administrative domains be used, the peer-to-peer approach
would be the natural choice for that application.

1.3.5 Security

Once an application has been deployed, one of the administrative
tasks associated with it is to manage its security. Security man-
agement entails the tasks of making sure that the system is only
accessed by authorized users, that user credentials are authenti-
cated, and that malicious users of the system do not plant viruses
or Trojan horses on the system.

Security issues and vulnerabilities have been studied compre-

1.3 COMPARISON OF ARCHITECTURES 15

c01.qxd 1/27/2004 10:43 AM Page 15

hensively in server-centric solutions, and safeguards against the
most common types of security attacks have been developed. In
general, the security of a centralized system can be managed
much more readily than the security of a distributed infrastruc-
ture. In a distributed infrastructure, the security apparatus and
mechanisms must be replicated at multiple sites as opposed to a
single site. This increases the cost of providing the security infra-
structure. Furthermore, the existence of multiple sites allows for
an increased vulnerability because there are more points that can
be attacked by a hacker. In peer-to-peer applications that are
written to run on computers across multiple administrative do-
mains, the security issues are even harder to solve.

1.3.6 Reliability

The reliability of a system is measured by its ability to continue
working when one or more of its components fail. In the context of
computer systems, reliability is often measured in terms of the
ability of the system to run when one or more computers hosting
the system are brought down. The approach used for reliability in
most computers is to provide for redundant components, having
multiple computers do the task instead of a single computer, such
as having standbys that can be activated when a primary comput-
er fails.

High-reliability computer applications can be developed by us-
ing either client-server or peer-to-peer architectures. The solution
for scalability for high-volume servers also provides for increased
reliability and continued operation in case one of the servers fails.
Distributed peer-to-peer systems, for most applications, use mul-
tiple computers to do identical tasks, and thus the system contin-
ues to be operational and available, even when a single computer
fails or goes off-line. The most popular peer-to-peer networks are
made up of thousands of computers. Although each computer in
itself is a simple desktop and goes out of service frequently (when
users switch off their machines), the entire system keeps on func-
tioning without interruption.

As in the case of scalability, the difference between the reliabil-
ity of a server-centric approach and the peer-to-peer approach is
that of the cost at which the reliability is achieved. The peer-to-
peer approach provides for a much more lower-cost solution for re-
liability than the server-centric approach.

16 THE PEER-TO-PEER ARCHITECTURE

c01.qxd 1/27/2004 10:43 AM Page 16

Summarizing the overall discussion, we can say that a client-
server approach provides for better security, manageability, and
ease of development, whereas the peer-to-peer approach provides
for increased reliability and scalability in a more cost-efficient
manner and allows for interoperation across multiple administra-
tive domains.

1.3 COMPARISON OF ARCHITECTURES 17

c01.qxd 1/27/2004 10:43 AM Page 17

c01.qxd 1/27/2004 10:43 AM Page 18

