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Chapter 2

Thermodynamics of Separation Operations

or density, enthalpy, entropy, availability, and fugacities and
activities together with their coefficients, all as functions of
temperature, pressure, and phase composition. Methods for
estimating properties for ideal and nonideal mixtures are
summarized. However, this chapter is not a substitute for
any of the excellent textbooks on chemical engineering
thermodynamics. Furthermore, emphasis here is on fluid
phases, with little consideration of solid phases.

Thermodynamic properties and equations play a major role
in separation operations, particularly with respect to energy
requirements, phase equilibria, and sizing equipment. This
chapter discusses applied thermodynamics for separation
processes. Equations for energy balances, entropy and
availability balances, and for determining phase densities and
phase compositions at equilibrium are developed. These
involve thermodynamic properties, including specific volume

2.0 INSTRUCTIONAL OBJECTIVES

After completing this chapter, you should be able to:

• Make energy, entropy, and availability balances around a separation process using the first and second laws of
thermodynamics.

• Calculate lost work and second-law efficiency of a separation process.
• Explain the concept of phase equilibria in terms of Gibbs free energy, chemical potential, fugacity, fugacity

coefficients, activity, and activity coefficients.
• Understand the concept and usefulness of the equilibrium ratio (K-value) for problems involving liquid and/or

vapor phases at equilibrium.
• Derive expressions for K-values in terms of fugacity coefficients and activity coefficients.
• Write vapor–liquid K-value expressions for Raoult’s law (ideal), a modified Raoult’s law, and Henry’s law.
• Calculate density, enthalpy, and entropy of ideal mixtures.
• Utilize graphical correlations to obtain thermodynamic properties of ideal and near-ideal mixtures.
• Use nomographs to estimate vapor–liquid K-values of nonideal hydrocarbon and light–gas mixtures.
• Explain how computer programs use equations of state (e.g., Soave-Redlich-Kwong or Peng-Robinson) to

compute thermodynamic properties of vapor and liquid mixtures, including K-values.
• Explain how computer programs use liquid-phase activity-coefficient correlations (e.g., Wilson, NRTL,

UNIQUAC, or UNIFAC) to compute thermodynamic properties, including K-values, for nonideal vapor and
liquid mixtures at equilibrium.

2.1 ENERGY, ENTROPY, AND 
AVAILABILITY BALANCES

Most industrial separation operations utilize large quantities
of energy in the form of heat and/or shaft work. A study by
Mix et al. [1] reports that two quads (1 quad � 1015 Btu) of
energy were consumed by distillation separations in petro-
leum, chemical, and natural-gas processing plants in the
United States in 1976. This amount of energy was 2.7% of
the total U.S. energy consumption of 74.5 quads and is
equivalent to the energy obtained from approximately 1 mil-
lion bbl of crude oil per day over a one-year period. This
amount of oil can be compared to 13 million bbl/day, the

average amount of crude oil processed by petroleum refiner-
ies in the United States in early 1991. At a crude oil price of
approximately $40/bbl, the energy consumption by distilla-
tion in the United States is approximately $20 trillion per
year. Thus, it is of considerable interest to know the extent of
energy consumption in a separation process, and to what
degree energy requirements might be reduced. Such energy
estimates can be made by applying the first and second laws
of thermodynamics.

Consider the continuous, steady-state, flow system for a
general separation process in Figure 2.1. One or more feed
streams flowing into the system are separated into two or
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more product streams that flow out of the system. For all
these streams, we denote the molar flow rates by n, the com-
ponent mole fractions by zi , the temperature by T, the pres-
sure by P, the molar enthalpies by h, the molar entropies by
s, and the molar availabilities by b. If chemical reactions
occur in the process, enthalpies and entropies are referred to
the elements, as discussed by Felder and Rousseau [2]; oth-
erwise they can be referred to the compounds. Heat flows in

or out of the system are denoted by Q, and shaft work cross-
ing the boundary of the system is denoted by Ws . At steady
state, if kinetic, potential, and surface energy changes are
neglected, the first law of thermodynamics (also referred to
as the conservation of energy or the energy balance), states
that the sum of all forms of energy flowing into the system
equals the sum of the energy flows leaving the system:

(stream enthalpy flows + heat transfer
+ shaft work)leaving system − (stream enthalpy flows
+ heat transfer + shaft work)entering system

= 0

In terms of symbols, the energy balance is given by Eq. (1) in
Table 2.1, where all flow rate, heat transfer, and shaft work
terms are positive. Molar enthalpies may be positive or neg-
ative depending on the reference state.

All separation processes must satisfy the energy balance.
Inefficient separation processes require large transfers of
heat and/or shaft work both into and out of the process; effi-
cient processes require smaller levels of heat transfer and/or
shaft work. The first law of thermodynamics provides no
information on energy efficiency, but the second law of ther-
modynamics (also referred to as the entropy balance), given
by Eq. (2) in Table 2.1, does. In words, the steady-state
entropy balance is

(Stream entropy flows
+ entropy flows by heat transfer)leaving system
− (stream entropy flows
+ entropy flows by heat transfer)entering system

= production of entropy by the process

In the entropy balance equation, the heat sources and
sinks in Figure 2.1 are at absolute temperatures Ts. For ex-
ample, if condensing steam at 150◦C supplies heat, Q, to the
reboiler of a distillation column, Ts = 150 + 273 = 423 K.
If cooling water at an average temperature of 30◦C removes
heat, Q, in a condenser, Ts = 30 + 273 = 303 K. Unlike the
energy balance, which states that energy is conserved, the
entropy balance predicts the production of entropy, �Sirr,
which is the irreversible increase in the entropy of the uni-
verse. This term, which must be a positive quantity, is a
quantitative measure of the thermodynamic inefficiency of a
process. In the limit, as a reversible process is approached,
�Sirr tends to zero. Note that the entropy balance contains
no terms related to shaft work.

Although �Sirr is a measure of energy inefficiency, it is
difficult to relate to this measure because it does not have the
units of energy/time (power). A more useful measure or
process inefficiency can be derived by combining (1) and (2)
in Table 2.1 to obtain a combined statement of the first and
second laws of thermodynamics, which is given as (3) in
Table 2.1. To perform this derivation, it is first necessary to
define an infinite source of or sink for heat transfer at the ab-
solute temperature, Ts = T0, of the surroundings. This tem-
perature is typically about 300 K and represents the largest
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Figure 2.1 General separation system.

Table 2.1 Universal Thermodynamic Laws for a Continuous,
Steady-State, Flow System

Energy balance:

(1) 
∑
out of
system

(nh + Q + Ws) −
∑
in to

system

(nh + Q + Ws) = 0

Entropy balance:

(2) 
∑
out of
system

(
ns + Q

Ts

)
−

∑
in to

system

(
ns + Q

Ts

)
= �Sirr

Availability balance:

(3) 
∑
in to

system

[
nb + Q

(
1 − T0

Ts

)
+ Ws

]

−
∑
out of
system

[
nb + Q

(
1 − T0

Ts

)
+ Ws

]
= LW

Minimum work of separation:

(4) Wmin =
∑
out of
system

nb −
∑
in to

system

nb

Second-law efficiency:

(5) � = Wmin

LW + Wmin

where b = h − T0s = availability function
LW = T0�Sirr = lost work
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source of coolant associated with the processing plant being
analyzed. This might be the average temperature of cooling
water, air, or a nearby river, lake, or ocean. Heat transfer as-
sociated with this surrounding coolant and transferred from
(or to) the process is termed Q0. Thus, in both (1) and (2) in
Table 2.1, the Q and Q/Ts terms include contributions from
Q0 and Q0/T0, respectively.

The derivation of (3) in Table 2.1 can be made, as shown
by de Nevers and Seader [3], by combining (1) and (2) to
eliminate Q0. The resulting equation is referred to as an
availability (or exergy) balance, where the term availability
means “available for complete conversion to shaft work.”
The stream availability function, b, as defined by

b = h − T0s (2-1)

is a measure of the maximum amount of stream energy that
can be converted into shaft work if the stream is taken to
the reference state. It is similar to Gibbs free energy,
g = h − T s , but differs in that the infinite surroundings tem-
perature, T0, appears in the equation instead of the stream
temperature, T. Terms in (3) in Table 2.1 containing Q are
multiplied by (1 − T0/Ts), which, as shown in Figure 2.2, is
the reversible Carnot heat-engine cycle efficiency, represent-
ing the maximum amount of shaft work that can be produced
from Q at Ts, where the residual amount of energy (Q − Ws)
is transferred as heat to a sink at T0. Shaft work, Ws , remains
at its full value in (3). Thus, although Q and Ws have the
same thermodynamic worth in (1) of Table 2.1, heat transfer
has less worth in (3). This is because shaft work can be con-
verted completely to heat (by friction), but heat cannot be
converted completely to shaft work unless the heat is avail-
able at an infinite temperature.

Availability, like entropy, is not conserved in a real, irre-
versible process. The total availability (i.e., ability to pro-
duce shaft work) passing into a system is always greater than
the total availability leaving a process. Thus (3) in Table 2.1
is written with the “into system” terms first. The difference

is the lost work, LW, which is also called the loss of avail-
ability (or exergy), and is defined by

LW = T0�Sirr (2-2)

Lost work is always a positive quantity. The greater its
value, the greater is the energy inefficiency. In the lower
limit, as a reversible process is approached, lost work tends
to zero. The lost work has the same units as energy, thus
making it easy to attach significance to its numerical value.
In words, the steady-state availability balance is

(Stream availability flows + availability of heat
+ shaft work)entering system − (stream availability flows
+ availability of heat + shaft work)leaving system

= loss of availability (lost work)

For any separation process, lost work can be computed
from (3) in Table 2.1. Its magnitude depends on the extent of
process irreversibilities, which include fluid friction, heat
transfer due to finite temperature-driving forces, mass trans-
fer due to finite concentration or activity-driving forces,
chemical reactions proceeding at finite displacements from
chemical equilibrium, mixing of streams at differing condi-
tions of temperature, pressure, and/or composition, and so
on. Thus, to reduce the lost work, driving forces for momen-
tum transfer, heat transfer, mass transfer, and chemical reac-
tion must be reduced. Practical limits to this reduction exist
because, as driving forces are decreased, equipment sizes
increase, tending to infinitely large sizes as driving forces
approach zero.

For a separation process that occurs without chemical re-
action, the summation of the stream availability functions
leaving the process is usually greater than the same summa-
tion for streams entering the process. In the limit for a re-
versible process (LW � 0), (3) of Table 2.1 reduces to (4),
where Wmin is the minimum shaft work required to conduct
the separation and is equivalent to the difference in the heat
transfer and shaft work terms in (3). This minimum work is
independent of the nature (or path) of the separation process.
The work of separation for an actual irreversible process is
always greater than the minimum value computed from (4).

From (3) of Table 2.1, it is seen that as a separation
process becomes more irreversible, and thus more energy
inefficient, the increasing LW causes the required equivalent
work of separation to increase by the same amount. Thus,
the equivalent work of separation for an irreversible process
is given by the sum of lost work and minimum work of
separation. The second-law efficiency, therefore, can be
defined as

(fractional second-law efficiency)

=
(

minimum work of separation

equivalent actual work of separation

)

In terms of symbols, the efficiency is given by (5) in Table 2.1.
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Figure 2.2 Carnot heat engine cycle for converting heat to shaft
work.
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For the propylene–propane separation of Figure 1.12, using the fol-
lowing thermodynamic properties for certain streams, as estimated
from the Soave–Redlich–Kwong equation of state discussed in Sec-
tion 2.5, and the relations given in Table 2.1, compute in SI units:

(a) The condenser duty, QC

(b) The reboiler duty, QR

(c) The irreversible entropy production, assuming 303 K for the
condenser cooling-water sink and 378 K for the reboiler steam
source

(d) The lost work, assuming T0 � 303 K

(e) The minimum work of separation

(f) The second-law efficiency

Phase Enthalpy (h), Entropy (s),
Stream Condition kJ/kmol kJ/kmol-K

Feed (F) Liquid 13,338 −4.1683
Overhead vapor (OV) Vapor 24,400 24.2609
Distillate (D) and reflux (R) Liquid 12,243 −13.8068
Bottoms (B) Liquid 14,687 −2.3886

SOLUTION

Place the condenser (C) cooling water and the reboiler (R) steam
outside the distillation system. Thus, QC and QR cross the boundary
of the system. The following calculations are made using the
stream flow rates in Figure 1.12 and properties above.

(a) Compute condenser duty from an energy balance around the
condenser. From (1), Table 2.1, noting that the overhead-vapor
molar flow rate is given by nOV = nR + nD and h R = hD , the
condenser duty is

QC = nOV (hOV − h R)
= (2,293 + 159.2)(24,400 − 12,243)
= 29,811,000 kJ/h

(b) Compute reboiler duty from an energy balance around the en-
tire distillation operation. (An energy balance around the re-
boiler cannot be made because data are not given for the boilup
rate.) From (1), Table 2.1,

Q R = nDhD + nBhB + QC − nF hF

= 159.2(12,243) + 113(14,687)
+ 29,811,000 − 272.2(13,338)

= 29,789,000 kJ/h

(c) Compute the production of entropy from an entropy balance
around the entire distillation system. From Eq. (2), Table 2.1,

�Sirr = nDsD + nBsB + QC/TC − nF sF − Q R/TR

= 159.2(−13.8068) + 113(−2.3886) + 29,811,000/303
− 272.2(−4.1683) − 29,789,000/378

= 18,246 kJ/h–K

(d) Compute lost work from its definition at the bottom of Table 2.1:

LW = T0�Sirr

= 303(18,246) = 5,529,000 kJ/h

EXAMPLE 2.1 Alternatively, compute lost work from an availability balance
around the entire distillation system. From (3), Table 2.1,
where the availability function, b, is defined near the bottom of
Table 2.1,

LW = nF bF + Q R(1 − T0/TR)
− nDbD − nBbB − QC (1 − T0/TC )

= 272.2[13,338 − (303)(−4.1683)]
+ 29,789,000(1 − 303/378)
− 159.2[12,243 − (303)(−13.8068)]
− 113[14,687 − (303)(−2.3886)]
− 29,811,000(1 − 303/303)

= 5,529,000 kJ/h (same result)

(e) Compute the minimum work of separation for the entire distil-
lation system. From (4), Table 2.1,

Wmin = nDbD + nBbB − nF bF

= 159.2[12,243 − (303)(−13.8068)]
+ 113[14,687 − (303)(−2.3886)]
− 272.2[13,338 − (303)(−4.1683)]

= 382,100 kJ/h

(f) Compute the second-law efficiency for the entire distillation
system. From (5), Table 2.1,

� = Wmin

LW + Wmin

= 382,100

5,529,000 + 382,100
= 0.0646 or 6.46%

This low second-law efficiency is typical of a difficult distilla-
tion separation, which in this case requires 150 theoretical
stages with a reflux ratio of almost 15 times the distillate rate.

2.2 PHASE EQUILIBRIA

Analysis of separations equipment frequently involves the
assumption of phase equilibria as expressed in terms of
Gibbs free energy, chemical potentials, fugacities, or activi-
ties. For each phase in a multiphase, multicomponent sys-
tem, the total Gibbs free energy is

G = G(T , P, N1, N2, . . . , NC )

where Ni � moles of species i. At equilibrium, the total G for
all phases is a minimum, and methods for determining this
minimum are referred to as free-energy minimization tech-
niques. Gibbs free energy is also the starting point for the
derivation of commonly used equations for expressing
phase equilibria. From classical thermodynamics, the total
differential of G is given by

dG = −S dT + V d P +
C∑

i=1

�i d Ni (2-3)
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where �i is the chemical potential or partial molar Gibbs free
energy of species i. When (2-3) is applied to a closed system
consisting of two or more phases in equilibrium at uniform
temperature and pressure, where each phase is an open sys-
tem capable of mass transfer with another phase, then

dGsystem =
N∑

p=1

[
C∑

i=1

�
( p)
i d N ( p)

i

]
P,T

(2-4)

where the superscript (p) refers to each of N phases in equi-
librium. Conservation of moles of each species, in the ab-
sence of chemical reaction, requires that

d N (1)
i = −

N∑
p=2

d N ( p)
i (2-5)

which, upon substitution into (2-4), gives

N∑
p=2

[
C∑

i=1

(
�

( p)
i − �(1)

i

)
d N ( p)

i

]
= 0 (2-6)

With d N (1)
i eliminated in (2-6), each d N ( p)

i term can be var-
ied independently of any other d N ( p)

i term. But this requires
that each coefficient of d N ( p)

i in (2-6) be zero. Therefore,

�(1)
i = �(2)

i = �(3)
i = · · · = �(N )

i (2-7)

Thus, the chemical potential of a particular species in a mul-
ticomponent system is identical in all phases at physical
equilibrium.

Fugacities and Activity Coefficients

Chemical potential cannot be expressed as an absolute quan-
tity, and the numerical values of chemical potential are diffi-
cult to relate to more easily understood physical quantities.
Furthermore, the chemical potential approaches an infinite
negative value as pressure approaches zero. For these rea-
sons, the chemical potential is not favored for phase equilib-
ria calculations. Instead, fugacity, invented by G. N. Lewis
in 1901, is employed as a surrogate.

The partial fugacity of species i in a mixture is like a
pseudo-pressure, defined in terms of the chemical potential by

f̄i = C exp
( �i

RT

)
(2-8)

where C is a temperature-dependent constant. Regardless of
the value of C, it is shown by Prausnitz, Lichtenthaler, and
Azevedo [4] that (2-7) can be replaced with

f̄ (1)
i = f̄ (2)

i = f̄ (3)
i = · · · = f̄ (N )

i (2-9)

Thus, at equilibrium, a given species has the same partial fu-
gacity in each existing phase. This equality, together with

equality of phase temperatures and pressures,

T (1) = T (2) = T (3) = · · · = T (N ) (2-10)

and

P (1) = P (2) = P (3) = · · · = P (N ) (2-11)

constitutes the required conditions for phase equilibria. For
a pure component, the partial fugacity, f̄i , becomes the
pure-component fugacity, fi . For a pure, ideal gas, fugacity
is equal to the pressure, and for a component in an ideal-gas
mixture, the partial fugacity is equal to its partial pressure,
pi = yi P . Because of the close relationship between fugac-
ity and pressure, it is convenient to define their ratio for a
pure substance as

�i = fi

P
(2-12)

where �i is the pure-species fugacity coefficient, which has
a value of 1.0 for an ideal gas. For a mixture, partial fugacity
coefficients are defined by

�̄iV ≡ f̄iV

yi P
(2-13)

�̄i L ≡ f̄i L

xi P
(2-14)

such that as ideal-gas behavior is approached, �̄iV → 1.0
and �̄i L → Ps

i /P , where Ps
i = vapor (saturation) pressure.

At a given temperature, the ratio of the partial fugacity of
a component to its fugacity in some defined standard state is
termed the activity. If the standard state is selected as the
pure species at the same pressure and phase condition as the
mixture, then

ai ≡ f̄i

f o
i

(2-15)

Since at phase equilibrium, the value of f o
i is the same for

each phase, substitution of (2-15) into (2-9) gives another al-
ternative condition for phase equilibria,

a(1)
i = a(2)

i = a(3)
i = · · · = a(N )

i (2-16)

For an ideal solution, aiV = yi and ai L = xi .
To represent departure of activities from mole fractions

when solutions are nonideal, activity coefficients based on
concentrations in mole fractions are defined by

�iV ≡ aiV

yi
(2-17)

�i L ≡ ai L

xi
(2-18)

For ideal solutions, �iV = 1.0 and �i L = 1.0.
For convenient reference, thermodynamic quantities that

are useful in phase equilibria calculations are summarized in
Table 2.2.



K-Values

A phase-equilibrium ratio is the ratio of mole fractions of
a species present in two phases at equilibrium. For the
vapor–liquid case, the constant is referred to as the K-value
(vapor–liquid equilibrium ratio or K-factor):

Ki ≡ yi

xi
(2-19)

For the liquid–liquid case, the ratio is referred to as the dis-
tribution coefficient or liquid–liquid equilibrium ratio:

K Di ≡ x (1)
i

x (2)
i

(2-20)

For equilibrium-stage calculations involving the separation
of two or more components, separation factors, like (1-4),
are defined by forming ratios of equilibrium ratios. For the
vapor–liquid case, relative volatility is defined by

�i j ≡ Ki

Kj
(2-21)

For the liquid–liquid case, the relative selectivity is

�i j ≡ K Di

K Dj

(2-22)

Equilibrium ratios can be expressed by the quantities in
Table 2.2 in a variety of rigorous formulations. However, the
only ones of practical interest are developed as follows. For
vapor–liquid equilibrium, (2-9) becomes, for each component,

f̄iV = f̄i L

To form an equilibrium ratio, these partial fugacities are
commonly replaced by expressions involving mole fractions
as derived from the definitions in Table 2.2:

f̄i L = �i L xi f o
i L (2-23)

or

f̄i L = �̄i L xi P (2-24)

and

f̄iV = �̄iV yi P (2-25)

If (2-24) and (2-25) are used with (2-19), a so-called
equation-of-state form of the K-value is obtained:

Ki = �̄i L

�̄iV
(2-26)

This expression has received considerable attention, with
applications of importance being the Starling modification
of the Benedict, Webb, and Rubin (B–W–R–S) equation of
state [5], the Soave modification of the Redlich–Kwong
(S–R–K or R–K–S) equation of state [6], the Peng–
Robinson (P–R) equation of state [7], and the Plöcker et al.
modification of the Lee–Kesler (L–K–P) equation of state [8].

If (2-23) and (2-25) are used, a so-called activity coeffi-
cient form of the K-value is obtained:

Ki = �i L f o
i L

�̄iV P
= �i L�i L

�̄iV
(2-27)
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Table 2.2 Thermodynamic Quantities for Phase Equilibria

Limiting Value
for Ideal Gas and

Thermodynamic Quantity Definition Physical Significance Ideal Solution

Chemical potential �i ≡
(

∂G

∂Ni

)
P,T , Nj

Partial molar free energy, ḡi �i = ḡi

Partial fugacity f̄i ≡ C exp

(
�i

RT

)
Thermodynamic pressure f̄iV = yi P

f̄i L = xi Ps
i

Fugacity coefficient of a pure species �i ≡ fi

P
Deviation to fugacity due �iV = 1.0

�i L = Ps
i

P

to pressure

Partial fugacity coefficient of a �̄iV ≡ f̄iV

yi P

�̄i L ≡ f̄i L

xi P

Deviations to fugacity due to �̄iV = 1.0

�̄i L = Ps
i

P

species in a mixture pressure and composition

Activity ai ≡ f̄i

f o
i

Relative thermodynamic pressure aiV = yi

ai L = xi

Activity coefficient �iV ≡ aiV

yi

�i L ≡ ai L

xi

Deviation to fugacity due �iV = 1.0
�i L = 1.0to composition



2.2 Phase Equilibria 33

Since 1960, (2-27) has received considerable attention with
applications to important industrial systems presented by
Chao and Seader (C–S) [9], with a modification by Grayson
and Streed [10].

Table 2.3 is a summary of useful formulations for estimat-
ing K-values for vapor–liquid equilibrium. Included are the
two rigorous expressions given by (2-26) and (2-27), from
which the other approximate formulations are derived. The
so-called Raoult’s law or ideal K-value is obtained from
(2-27) by substituting from Table 2.2, for an ideal gas and
ideal gas and liquid solutions, �i L = 1.0, �i L = Ps

i /P , and
�̄iV = 1.0. The modified Raoult’s law relaxes the assumption
of an ideal liquid solution by including the liquid-phase ac-
tivity coefficient. The Poynting-correction form for moderate
pressures is obtained by approximating the pure-component
liquid fugacity coefficient in (2-27) by the expression

�i L = �s
iV

Ps
i

P
exp

(
1

RT

∫ P

Ps
i

vi L d P

)
(2-28)

where the exponential term is the Poynting factor or cor-
rection. If the liquid molar volume is reasonably constant
over the pressure range, the integral in (2-28) becomes
vi L ( P − Ps

i ). For a light gas species, whose critical tempera-
ture is less than the system temperature, the Henry’s law form
for the K-value is convenient provided that a value of Hi, the
empirical Henry’s law coefficient, is available. This constant
for a particular species, i, depends on liquid-phase composi-
tion, temperature, and pressure. As pointed out in other chap-
ters, other forms of Henry’s law are used besides the one in
Table 2.3. Included in Table 2.3 are recommendations for the
application of each of the vapor–liquid K-value expressions.

Regardless of which thermodynamic formulation is used
for estimating K-values, the accuracy depends on the partic-
ular correlations used for the thermodynamic properties

required (i.e., vapor pressure, activity coefficient, and fugac-
ity coefficients). For practical applications, the choice of K-
value formulation is a compromise among considerations of
accuracy, complexity, convenience, and past experience.

For liquid–liquid equilibria, (2-9) becomes

f̄ (1)
i L = f̄ (2)

i L (2-29)

where superscripts (1) and (2) refer to the two immiscible
liquid phases. A rigorous formulation for the distribution
coefficient is obtained by combining (2-23) with (2-20) to
obtain an expression involving only activity coefficients:

K Di = x (1)
i

x (2)
i

= � (2)
i L f o(2)

i L

� (1)
i L f o(1)

i L

= � (2)
i L

� (1)
i L

(2-30)

For vapor–solid equilibria, a useful formulation can be
derived if the solid phase consists of just one of the compo-
nents of the vapor phase. In that case, the combination of
(2-9) and (2-25) gives

fi S = �̄iV yi P (2-31)

At low pressure, �̄iV = 1.0 and the solid fugacity can be ap-
proximated by the vapor pressure of the solid to give for the
vapor-phase mole fraction of the component forming the
solid phase:

yi = ( Ps
i )solid

P
(2-32)

For liquid–solid equilibria, a similar useful formulation
can be derived if again the solid phase is a pure component.
Then the combination of (2-9) and (2-23) gives

fi S = �i L xi f o
i L (2-33)

Table 2.3 Useful Expressions for Estimating K-Values for Vapor–Liquid Equilibria (Ki ≡ yi/xi )

Equation Recommended Application

Rigorous forms:

(1) Equation-of-state Ki = �̄i L

�̄iV
Hydrocarbon and light gas mixtures from cryogenic 

temperatures to the critical region

(2) Activity coefficient Ki = �i L �i L

�̄iV
All mixtures from ambient to near-critical temperature

Approximate forms:

(3) Raoult’s law (ideal) Ki = Ps
i

P
Ideal solutions at near-ambient pressure

(4) Modified Raoult’s law Ki = �i L Ps
i

P
Nonideal liquid solutions at near-ambient pressure

(5) Poynting correction Ki = �i L �s
iV

(
Ps

i

P

)
exp

(
1

RT

∫ P

Ps
i

vi L d P

)
Nonideal liquid solutions at moderate pressure and 

below the critical temperature

(6) Henry’s law Ki = Hi

P
Low-to-moderate pressures for species at supercritical

temperature



At low pressure, the solid fugacity can be approximated
by vapor pressure to give, for the component in the solid
phase,

xi = ( Ps
i )solid

�i L ( Ps
i )liquid

(2-34)

Estimate the K-values of a vapor-liquid mixture of water and
methane at 2 atm total pressure for temperatures of 20 and 80◦C.

SOLUTION

At the conditions of temperature and pressure, water will exist
mainly in the liquid phase and will follow Raoult’s law, as given in
Table 2.3. Because methane has a critical temperature of −82.5◦C,
well below the temperatures of interest, it will exist mainly in the
vapor phase and follow Henry’s law, in the form given in Table 2.3.
From Perry’s Chemical Engineers’ Handbook, 6th ed., pp. 3-237
and 3-103, the following vapor pressure data for water and Henry’s
law coefficients for CH4 are obtained:

T, �C Ps for H2O, atm H for CH4, atm

20 0.02307 3.76 × 104

80 0.4673 6.82 × 104

K-values for water and methane are estimated from (3) and (6),
respectively, in Table 2.3, using P � 2 atm, with the following results:

T, �C KH2O KCH4

20 0.01154 18,800
80 0.2337 34,100

The above K-values confirm the assumptions of the phase distribu-
tion of the two species. The K-values for H2O are low, but increase
rapidly with increasing temperature. The K-values for methane are
extremely high and do not change rapidly with temperature for this
example.

2.3 IDEAL-GAS, IDEAL-LIQUID-SOLUTION
MODEL

Design procedures for separation equipment require numer-
ical values for phase enthalpies, entropies, densities, and
phase–equilibrium ratios. Classical thermodynamics pro-
vides a means for obtaining these quantities in a consistent
manner from P–v–T relationships, which are usually
referred to as equation-of-state models. The simplest model
applies when both liquid and vapor phases are ideal solu-
tions (all activity coefficients equal 1.0) and the vapor is an
ideal gas. Then the thermodynamic properties can be
computed from unary constants for each of the species in
the mixture in a relatively straightforward manner using
the equations given in Table 2.4. In general, these ideal

EXAMPLE 2.2
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equations apply only at near-ambient pressure, up to about
50 psia (345 kPa), for mixtures of isomers or components of
similar molecular structure.

For the vapor, the molar volume and mass density are
computed from (1), the ideal-gas law in Table 2.4, which
involves the molecular weight, M, of the mixture and the
universal gas constant, R. For a mixture, the ideal-gas law
assumes that both Dalton’s law of additive partial pressures
and Amagat’s law of additive pure-species volumes apply.

The molar vapor enthalpy is computed from (2) by inte-
grating, for each species, an equation in temperature for
the zero-pressure heat capacity at constant pressure, Co

PV
,

starting from a reference (datum) temperature, T0, to the
temperature of interest, and then summing the resulting
species vapor enthalpies on a mole-fraction basis. Typically,
T0 is taken as 0 K or 25◦C. Although the reference pressure is
zero, pressure has no effect on the enthalpy of an ideal gas.
A common empirical representation of the effect of

Table 2.4 Thermodynamic Properties for Ideal Mixtures

Ideal gas and ideal-gas solution:

(1) vV = V
C∑

i=1
Ni

= M

�V
= RT

P
, M =

C∑
i=1

yi Mi

(2) hV =
C∑

i=1

yi

∫ T

T0

(
Co

P

)
iV dT =

C∑
i=1

yi h
o
iv

(3) sV =
C∑

i=1

yi

∫ T

T0

(Co
P )iV

T
dT − R ln

(
P

P0

)
− R

C∑
i=1

yi ln yi

where the first term is so
V

Ideal-liquid solution:

(4) vL = V
C∑

i=1
Ni

= M

�L
=

C∑
i=1

xivi L , M =
C∑

i=1

xi Mi

(5) hL =
C∑

i=1

xi
(
ho

iV − �Hvap
i

)

(6) sL =
C∑

i=1

xi

[∫ T

T0

(Co
P )iV

T
dT − �Hvap

i

T

]

−R ln

(
P

P0

)
− R

C∑
i=1

xi ln xi

Vapor–liquid equilibria:

(7) Ki = Ps
i

P

Reference conditions (datum): h, ideal gas at T0 and zero pressure; s, ideal
gas at T0 and 1 atm pressure.

Refer to elements if chemical reactions occur; otherwise refer to
components.
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temperature on the zero-pressure vapor heat capacity of a
pure component is the following fourth-degree polynomial
equation:

Co
PV

= [a0 + a1T + a2T 2 + a3T 3 + a4T 4]R (2-35)

where the constants ak depend on the species. Values of the
constants for hundreds of compounds, with T in K, are tabu-
lated by Poling, Prausnitz, and O’Connell [11]. Because
CP = dh/dT , (2-35) can be integrated for each species to
give the ideal-gas species molar enthalpy:

ho
V =

∫ T

T0

Co
PV

dT =
5∑

k=1

ak−1(T k − T k
0 )R

k
(2-36)

The vapor molar entropy is computed from (3) in Table 2.4
by integrating Co

PV
/T from T0 to T for each species, sum-

ming on a mole-fraction basis, adding a term for the effect of
pressure referenced to a datum pressure, P0, which is gener-
ally taken to be 1 atm (101.3 kPa), and adding a term for the
entropy change of mixing. Unlike the ideal vapor enthalpy,
the ideal vapor entropy includes terms for the effects of pres-
sure and mixing. The reference pressure is not taken to be
zero, because the entropy is infinity at zero pressure. If
(2-35) is used for the heat capacity,

∫ T

T0

(
Co

PV

T

)
dT =

[
a0 ln

(
T

T0

)
+

4∑
k=1

ak(T k − T k
0 )

k

]
R

(2-37)

The liquid molar volume and mass density are computed
from the pure species molar volumes using (4) in Table 2.4
and the assumption of additive volumes (not densities). The
effect of temperature on pure-component liquid density from
the freezing point to the critical region at saturation pressure
is correlated well by the empirical two-constant equation of
Rackett [12]:

�L = AB−(1−T/Tc)2/7
(2-38)

where values of the constants A, B, and the critical tempera-
ture, Tc, are tabulated for approximately 700 organic com-
pounds by Yaws et al. [13].

The vapor pressure of a pure liquid species is well repre-
sented over a wide range of temperature from below the
normal boiling point to the critical region by an empirical
extended Antoine equation:

ln Ps = k1 + k2/(k3 + T ) + k4T + k5 ln T + k6T k7

(2-39)

where the constants kk depend on the species. Values of the
constants for hundreds of compounds are built into the
physical-property libraries of all computer-aided process
simulation and design programs. Constants for other

empirical vapor-pressure equations are tabulated for hun-
dreds of compounds by Poling et al. [11]. At low pressures,
the enthalpy of vaporization is given in terms of vapor pres-
sure by classical thermodynamics:

�H vap = RT 2

(
d ln Ps

dT

)
(2-40)

If (2-39) is used for the vapor pressure, (2-40) becomes

�H vap = RT 2

[
− k2

(k3 + T )2
+ k4 + k5

T
+ k7k6T k7−1

]
(2-41)

The enthalpy of an ideal-liquid mixture is obtained by
subtracting the molar enthalpy of vaporization from the ideal
vapor molar enthalpy for each species, as given by (2-36),
and summing these, as shown by (5) in Table 2.4. The en-
tropy of the ideal-liquid mixture, given by (6), is obtained in
a similar manner from the ideal-gas entropy by subtracting
the molar entropy of vaporization, given by �H vap/T .

The final equation in Table 2.4 gives the expression for
the ideal K-value, previously included in Table 2.3. Al-
though it is usually referred to as the Raoult’s law K-value,
where Raoult’s law is given by

pi = xi Ps
i (2-42)

the assumption of Dalton’s law is also required:

pi = yi P (2-43)

Combination of (2-42) and (2-43) gives the Raoult’s law
K-value:

Ki ≡ yi

xi
= Ps

i

P
(2-44)

The extended Antoine equation, (2-39) (or some other
suitable expression), can be used to estimate vapor pressure.
Note that the ideal K-value is independent of phase compo-
sitions, but is exponentially dependent on temperature, be-
cause of the vapor pressure, and inversely proportional to
pressure. From (2-21), the relative volatility using (2-44) is
independent of pressure.

Styrene is manufactured by catalytic dehydrogenation of ethyl-
benzene, followed by vacuum distillation to separate styrene
from unreacted ethylbenzene [14]. Typical conditions for the
feed to an industrial distillation unit are 77.5◦C (350.6 K) and
100 torr (13.33 kPa) with the following vapor and liquid flows

EXAMPLE 2.3



at equilibrium:

n, kmol/h

Component Vapor Liquid

Ethylbenzene (EB) 76.51 27.31
Styrene (S) 61.12 29.03

Based on the property constants given below, and assuming that the
ideal-gas, ideal-liquid-solution model of Table 2.4 is suitable at this
low pressure, estimate values of vV , �V , hV, sV, vL , �L , hL, and sL

in SI units, and the K-values and relative volatility.

Property Constants for (2-35), (2-38), (2-39)
(In all cases, T is in K)

Ethylbenzene Styrene

M, kg/kmol 106.168 104.152
Co

PV
, J/kmol-K:

a0 R −43,098.9 −28,248.3
a1 R 707.151 615.878
a2 R −0.481063 −0.40231
a3 R 1.30084 × 10−4 9.93528 × 10−5

a4 R 0 0
Ps, Pa:

k1 86.5008 130.542
k2 −7,440.61 −9,141.07
k3 0 0
k4 0.00623121 0.0143369
k5 −9.87052 −17.0918
k6 4.13065 × 10−18 1.8375 × 10−18

k7 6 6
�L , kg/m3:

A 289.8 299.2
B 0.268 0.264
Tc, K 617.9 617.1

R = 8.314 kJ/kmol-K or kPa-m3/kmol-K � 8,314 J/kmol-K

SOLUTION

Phase mole-fraction compositions and average molecular
weights: From yi = (niV )/nV , xi = (ni L )/nL ,

Ethylbenzene Styrene

y 0.5559 0.4441
x 0.4848 0.5152

From (1), Table 2.4,

MV = (0.5559)(106.168) + (0.4441)(104.152) = 105.27

ML = (0.4848)(106.168) + (0.5152)(104.152) = 105.13

Vapor molar volume and density: From (1), Table 2.4,

vV = RT

P
= (8.314)(350.65)

(13.332)
= 219.2 m3/kmol

�V = MV

vV
= 105.27

219.2
= 0.4802 kg/m3

Vapor molar enthalpy (datum � ideal gas at 298.15 K and
0 kPa): From (2-36) for ethylbenzene,

ho
EBV

= −43098.9(350.65 − 298.15)

+
(

707.151

2

)
(350.652 − 298.152)

−
(

0.481063

3

)
(350.653 − 298.153)

+
(

1.30084 × 10−4

4

)
(350.654 − 298.154)

= 7,351,900 J/kmol

Similarly,

ho
SV

= 6,957,700 J/kmol

From (2), Table 2.4, for the mixture,

hV =
∑

yi h
o
iV = (0.5559)(7,351,900)

+ (0.4441)(6,957,100) = 7,176,800 J/kmol

Vapor molar entropy (datum � pure components as vapor at
298.15 K, 101.3 kPa): From (2-37), for each component,

∫ T

T0

(
Co

PV

T

)
dT = 22,662 J/kmol-K for ethylbenzene

and 21,450 J/kmol-K for styrene

From (3), Table 2.4, for the mixture,

sV = [(0.5559)(22,662.4) + (0.4441)(21,450.3)]

− 8,314 ln

(
13.332

101.3

)
− 8,314[(0.5559) ln(0.5559)

+ (0.4441) ln(0.4441)] = 44,695 J/kmol-K

Note that the terms for the pressure effect and the mixing effect are
significant for this problem. 

Liquid molar volume and density. From (2-38), for ethylbenzene,

�EBL = (289.8)(0.268)−(1−350.65/617.9)2/7 = 816.9 kg/m3

vEBL = MEB

�EBL

= 0.1300 m3/kmol

Similarly,
�SL = 853.0 kg/m3

vSL = 0.1221 m3/kmol

From (4), Table 2.4, for the mixture,

vL = (0.4848)(0.1300) + (0.5152)(0.1221) = 0.1259 m3/kmol

�L = ML

vL
= 105.13

0.1259
= 835.0 kg/m3

Liquid molar enthalpy (datum � ideal gas at 298.15 K): Use (5)
in Table 2.4 for the mixture. For the enthalpy of vaporization of

36 Chapter 2 Thermodynamics of Separation Operations
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ethylbenzene, from (2-41),

�Hvap
EB = 8,314(350.65)2

[−(−7,440.61)

(0 + 350.65)2
+ 0.00623121

+ −(9.87052)

(350.65)
+ 6(4.13065 × 10−18)(350.65)5

]
= 39,589,800 J/kmol

Similarly,

�Hvap
S = 40,886,700 J/kmol

Then, applying (5), Table 2.4, using ho
EBV

and ho
SV

from above,

hL = [(0.4848)(7,351,900 − 39,589,800)
+ (0.5152)(6,957,700 − 40,886,700)]

= −33,109,000 J/kmol

Liquid molar entropy (datum � pure components as vapor at
298.15 K and 101.3 kPa): From (6), Table 2.4 for the mixture, using
values for

∫ T
T0

(Co
PV

/T ) dT and �Hvap of EB and S from above,

sL = (0.4848)

(
22,662 − 39,589,800

350.65

)

+ (0.5152)

(
21,450 − 40,886,700

350.65

)

− 8.314 ln

(
13.332

101.3

)
− 8,314[0.4848 ln(0.4848) + 0.5152 ln(0.5152)]

= −70,150 J/kmol-K

K-values: Because (7), Table 2.4 will be used to compute the
K-values, first estimate the vapor pressures using (2-39). For
ethylbenzene,

ln Ps
EB = 86.5008 +

( −7,440.61)

(0 + 350.65

)
+ 0.00623121(350.65) + (−9.87052) ln(350.65)
+ 4.13065 × 10−18(350.65)6

= 9.63481
Ps

EB = exp(9.63481) = 15,288 Pa = 15.288 kPa

Similarly,

Ps
S = 11.492 kPa

From (7), Table 2.4,

KEB = 15.288

13.332
= 1.147

KS = 11.492

13.332
= 0.862

Relative volatility: From (2-21),

�EB,S = KEB

KS
= 1.147

0.862
= 1.331

2.4 GRAPHICAL CORRELATIONS OF
THERMODYNAMIC PROPERTIES

Calculations of estimated thermodynamic and other physical
properties for the design of separation operations are most
commonly carried out with computer-aided, process design

Undecane

cm
3

,

Figure 2.3 Hydrocarbon fluid
densities.
[Adapted from G.G. Brown, D.L. Katz,
G.G. Oberfell, and R.C. Alden, Natural
Gasoline and the Volatile Hydrocarbons,
Nat’l Gas Assoc. Amer., Tulsa, OK (1948).]
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Figure 2.4 Vapor pressure as a function of temperature.
[Adapted from A.S. Faust, L.A. Wenzel, C.W. Clump, L. Maus, and L.B. Andersen, Principles of Unit Operations, John Wiley and Sons,
New York (1960).]
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Figure 2.5 Ideal-gas-state enthalpy of pure components.
[Adapted from Engineering Data Book, 9th ed., Gas Processors Suppliers
Association, Tulsa (1972).]

and simulation programs, such as Aspen Plus, HYSYS,
ChemCad, and Pro/II. However, plots of properties can best
show effects of temperature and pressure. Some represen-
tative plots, which are readily generated by simulation pro-
grams, are shown in this section.

Saturated liquid densities as a function of temperature are
plotted for some hydrocarbons in Figure 2.3. The density de-
creases rapidly as the critical temperature is approached
until it becomes equal to the density of the vapor phase at the
critical point. The liquid density curves are well correlated
by the modified Rackett equation (2-38).

Figure 2.4 is a plot of liquid-state vapor pressures for
some common chemicals, covering a wide range of temper-
ature from below the normal boiling point to the critical
temperature, where the vapor pressure terminates at the
critical pressure. In general, the curves are found to fit the
extended Antoine equation (2-39) reasonably well. This plot
is useful for determining the phase state (liquid or vapor) of
a pure substance and for estimating Raoult’s law K-values
from (2-44) [or (3) in Table 2.3].

Curves of ideal-gas, zero-pressure enthalpy over a wide
range of temperature are given in Figure 2.5 for light-paraffin
hydrocarbons. The datum is the liquid phase at 0◦C, at which
the enthalpy is zero. The derivatives of these curves fit
the fourth-degree polynomial (2-35) for the ideal-gas heat
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Figure 2.7 Heat of vaporization of light olefins and paraffins.
[Adapted from American Petroleum Institute, Technical Data Book,
Washington, DC (Aug. 1963).]

Nomographs for determining the effects of temperature
and pressure on the K-values of hydrocarbons and light gases
are presented in Figures 2.8 and 2.9, which are taken from
Hadden and Grayson [15]. In both charts, all K-values col-
lapse to 1.0 at a pressure of 5,000 psia (34.5 MPa). This pres-
sure, called the convergence pressure, depends on the boil-
ing range of the components in the mixture. For example,
in Figure 2.10 the components of the mixture (N2 to nC10)
cover a very wide boiling-point range, resulting in a conver-
gence pressure of close to 2,500 psia. For narrow-boiling
mixtures, such as a mixture of ethane and propane, the con-
vergence pressure is generally less than 1,000 psia. The K-
value charts of Figures 2.8 and 2.9 apply strictly to a conver-
gence pressure of 5,000 psia. A detailed procedure for
correcting for the convergence pressure is given by Hadden
and Grayson [15]. Use of the nomographs is illustrated
below in Exercise 2.4.

No simple charts are available for estimating liquid–
liquid equilibrium constants (distribution coefficients)
because of the pronounced effect of composition. How-
ever, for ternary systems that are dilute in the solute and
involve almost immiscible solvents, an extensive tabulation
of distribution coefficients for the solute is given by
Robbins [16].

Petroleum refining begins with the distillation, at near-atmospheric
pressure, of crude oil into fractions of different boiling ranges. The
fraction boiling from 0 to 100◦C, the light naphtha, is a blending
stock for gasoline. The fraction boiling from 100 to 200◦C, the
heavy naphtha, undergoes subsequent chemical processing into
more useful products. One such process is steam cracking to pro-
duce a gas containing ethylene, propylene, and a number of other
compounds, including benzene and toluene. This gas is then sent to
a distillation train to separate the mixture into a dozen or more
products. In the first column, hydrogen and methane are removed
by cryogenic distillation at 3.2 MPa (464 psia). At a tray in the dis-
tillation column where the temperature is 40◦F, use the appropriate
K-value nomograph to estimate K-values for H2, CH4, C2H4, and
C3H6.

SOLUTION

At 40◦F, Figure 2.8 applies. The K-value of hydrogen depends on
the other compounds in the mixture. Because appreciable amounts
of benzene and toluene are present, locate a point (call it A) mid-
way between the points for “H2 in benzene” and “H2 in toluene.”
Next, locate a point (call it B) at 40◦F and 464 psia on the T–P grid.
Connect points A and B with a straight line and read a value of
K � 100 where the line intersects the K scale.

In a similar way, with the same location for point B, read K � 11
for methane. For ethylene (ethene) and propylene (propene), the
point A is located on the normal boiling-point scale and the
same point is used for B. Resulting K-values are 1.5 and 0.32,
respectively.

EXAMPLE 2.4

capacity reasonably well. Curves of ideal-gas entropy of sev-
eral light gases, over a wide range of temperature, are given in
Figure 2.6.

Enthalpies (heats) of vaporization are plotted as a func-
tion of saturation temperature in Figure 2.7 for light-paraffin
hydrocarbons. These values are independent of pressure and
decrease to zero at the critical point, where vapor and liquid
phases become indistinguishable.
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Figure 2.8 Vapor–liquid equilibria, 40 to 800°F.
[From S.T. Hadden and H.G. Grayson, Hydrocarbon Proc. and Petrol. Refiner, 40, 207 (Sept. 1961), with
permission.]
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[From S.T. Hadden and H.G. Grayson, Hydrocarbon Proc. and Petrol. Refiner, 40, 207 (Sept. 1961), with permission.]



2.5 NONIDEAL THERMODYNAMIC
PROPERTY MODELS

Unlike the equations of Table 2.1, which are universally
applicable to all pure substances and mixtures, whether ideal
or nonideal, no universal equations are available for com-
puting, for nonideal mixtures, values of thermodynamic
properties such as density, enthalpy, entropy, fugacities, and
activity coefficients as functions of temperature, pressure,
and phase composition. Instead, two types of models are
used: (1) P–v–T equation-of-state models and (2) activity
coefficient or free-energy models. These are based on cons-
titutive equations because they depend on the constitution or
nature of the components in the mixture.

P–v–T Equation-of-State Models

The first type of model is a relationship between molar vol-
ume (or density), temperature, and pressure, usually referred
to as a P–v–T equation of state. A large number of such equa-
tions have been proposed, mostly for the vapor phase. The
simplest is the ideal-gas law, which applies only at low pres-
sures or high temperatures because it neglects the volume
occupied by the molecules and intermolecular forces among
the molecules. All other equations of state attempt to correct
for these two deficiencies. The equations of state that are
most widely used by chemical engineers are listed in
Table 2.5. These and other equations of state are discussed in
some detail by Poling et al. [11].

Not included in Table 2.5 is the van der Waals equation,
P = RT/(v − b) − a/v2 , where a and b are species-
dependent constants that can be estimated from the critical
temperature and pressure. The van der Waals equation was
the first successful approach to the formulation of an equa-
tion of state for a nonideal gas. It is rarely used by chemical
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Table 2.5 Useful Equations of State

Name Equation Equation Constants and Functions

(1) Ideal gas law P = RT

v
None

(2) Generalized P = Z RT

v
Z � Z{Pr, Tr, Zc or �} as derived from data

(3) Redlich–Kwong (R–K) P = RT

v − b
− a

v2 + bv
b = 0.08664RTc/Pc

a = 0.42748R2T 2.5
c /PcT 0.5

(4) Soave–Redlich–Kwong (S–R–K or R–K–S) P = RT

v − b
− a

v2 + bv
b = 0.08664RTc/Pc

a = 0.42748R2T 2
c

[
1 + f�

(
1 − T 0.5

r

)]2
/Pc

f� = 0.48 + 1.574� − 0.176�2

(5) Peng–Robinson (P–R) P = RT

v − b
− a

v2 + 2bv − b2
b = 0.07780RTc/Pc

a = 0.45724R2T 2
c

[
1 + f�

(
1 − T 0.5

r

)]2
/Pc

f� = 0.37464 + 1.54226� − 0.26992�2
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Figure 2.10 Comparison of experimental K-value data and
S–R–K correlation.
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engineers because its range of application is too narrow.
However, its development did suggest that all species might
have equal reduced molar volumes, vr = v/vc , at the same
reduced temperature, Tr = T/Tc , and reduced pressure,
Pr = P/Pc . This finding, referred to as the law (principle or
theorem) of corresponding states, was utilized to develop the
generalized equation of state given as (2) in Table 2.5. That
equation defines the compressibility factor, Z, which is a
function of Pr, Tr, and the critical compressibility factor, Zc,
or the acentric factor, �, which is determined from experi-
mental P–v–T data. The acentric factor, introduced by Pitzer
et al. [17], accounts for differences in molecular shape and is
determined from the vapor pressure curve:

� =
[
− log

(
Ps

Pc

)
Tr =0.7

]
− 1.000 (2-45)

This definition results in a value for � of zero for symmetric
molecules. Some typical values of � are 0.264, 0.490, and
0.649 for toluene, n-decane, and ethyl alcohol, respectively,
as taken from the extensive tabulation of Poling et al. [11].

In 1949, Redlich and Kwong [18] published an equation
of state that, like the van der Waals equation, contains only
two constants, both of which can be determined from Tc and
Pc, by applying the critical conditions(

∂ P

∂v

)
Tc

= 0 and

(
∂2 P

∂v2

)
Tc

= 0

However, the R–K equation, given as (3) in Table 2.5, is a
considerable improvement over the van der Waals equation.
A study by Shah and Thodos [19] showed that the simple
R–K equation, when applied to nonpolar compounds, has an
accuracy that compares quite favorably with equations con-
taining many more constants. Furthermore, the R–K equa-
tion can approximate the liquid-phase region.

If the R–K equation is expanded to obtain a common
denominator, a cubic equation in v results. Alternatively,
(2) and (3) in Table 2.5 can be combined to eliminate v to
give the compressibility factor, Z, form of the R–K equation:

Z3 − Z2 + ( A − B − B2)Z − AB = 0 (2-46)

where

A = a P

R2T 2
(2-47)

B = bP

RT
(2-48)

Equation (2-46), which is cubic in Z, can be solved ana-
lytically for three roots (e.g., see Perry’s Handbook, 7th ed.,
p. 4-20). In general, at supercritical temperatures, where
only one phase can exist, one real root and a complex conju-
gate pair of roots are obtained. Below the critical tempera-
ture, where vapor and/or liquid phases can exist, three real
roots are obtained, with the largest value of Z (largest v)

corresponding to the vapor phase—that is, ZV —and the
smallest Z (smallest v) corresponding to the liquid phase—
that is, ZL. The intermediate value of Z is of no practical use.

To apply the R–K equation to mixtures, mixing rules are
used to average the constants a and b for each component in
the mixture. The recommended rules for vapor mixtures of C
components are

a =
C∑

i=1

[
C∑

j=1

yi yj (ai aj )
0.5

]
(2-49)

b =
C∑

i=1

yi bi (2-50)

Glanville, Sage, and Lacey [20] measured specific volumes of
vapor and liquid mixtures of propane and benzene over wide
ranges of temperature and pressure. Use the R–K equation to esti-
mate specific volume of a vapor mixture containing 26.92 wt%
propane at 400◦F (477.6 K) and a saturation pressure of 410.3 psia
(2,829 kPa). Compare the estimated and experimental values.

SOLUTION

Let propane be denoted by P and benzene by B. The mole fractions
are

yP = 0.2692/44.097

(0.2692/44.097) + (0.7308/78.114)
= 0.3949

yB = 1 − 0.3949 = 0.6051

The critical constants for propane and benzene are given by Poling
et al. [11]:

Propane Benzene

Tc, K 369.8 562.2
Pc, kPa 4,250 4,890

From the equations for the constants b and a in Table 2.5 for the
R–K equation, using SI units,

bP = 0.08664(8.3144)(369.8)

4,250
= 0.06268 m3/kmol

aP = 0.42748(8.3144)2(369.8)2.5

(4,250)(477.59)0.5

= 836.7 kPa-m6/kmol2

Similarly,

bB = 0.08263 m3/kmol

aB = 2,072 kPa-m6/kmol2

From (2-50),

b = (0.3949)(0.06268) + (0.6051)(0.08263) = 0.07475 m3/kmol

EXAMPLE 2.5



From (2-49),

a = y2
PaP + 2yP yB(aPaB)0.5 + y2

BaB

= (0.3949)2(836.7) + 2(0.3949)(0.6051)[(836.7)(2,072)]0.5

+ (0.6051)2(2,072) = 1,518 kPa-m6/kmol2

From (2-47) and (2-48) using SI units,

A = (1,518)(2,829)

(8.314)2(477.59)2
= 0.2724

B = (0.07475)(2,829)

(8.314)(477.59)
= 0.05326

From (2-46), we obtain the cubic Z form of the R–K equation:

Z3 − Z2 + 0.2163Z − 0.01451 = 0

Solving this equation gives one real root and a conjugate pair of
complex roots:

Z = 0.7314, 0.1314 + 0.04243i, 0.1314 − 0.04243i

The one real root is assumed to be that for the vapor phase.

From (2) of Table 2.5, the molar volume is

v = Z RT

P
= (0.7314)(8.314)(477.59)

2,829
= 1.027 m3/kmol

The average molecular weight of the mixture is computed to
64.68 kg/kmol. The specific volume is

v

M
= 1.027

64.68
= 0.01588 m3/kg = 0.2543 ft3/lb

Glanville et al. report experimental values of Z � 0.7128 and
v/M = 0.2478 ft3/lb, which are within 3% of the above estimated
values.

Following the success of earlier work by Wilson [21],
Soave [6] added a third parameter, the acentric factor, �, de-
fined by (2-45), to the R–K equation. The resulting, so-called
Soave–Redlich–Kwong (S–R–K) or Redlich–Kwong–Soave
(R–K–S) equation of state, given as (4) in Table 2.5, was
immediately accepted for application to mixtures containing
hydrocarbons and/or light gases because of its simplicity and
accuracy. The main improvement was to make the parameter
a a function of the acentric factor and temperature so as to
achieve a good fit to vapor pressure data of hydrocarbons and
thereby greatly improve the ability of the equation to predict
properties of the liquid phase.

Four years after the introduction of the S–R–K equation,
Peng and Robinson [7] presented a further modification of
the R–K and S–R–K equations in an attempt to achieve im-
proved agreement with experimental data in the critical re-
gion and for liquid molar volume. The Peng–Robinson
(P–R) equation of state is listed as (5) in Table 2.5. The
S–R–K and P–R equations of state are widely applied in
process calculations, particularly for saturated vapors and
liquids. When applied to mixtures of hydrocarbons and/or
light gases, the mixing rules are given by (2-49) and (2-50),
except that (2-49) is often modified to include a binary inter-
action coefficient, kij:

a =
C∑

i=1

[
C∑

j=1

yi yj (ai aj )
0.5(1 − ki j )

]
(2-51)

Values of kij, back-calculated from experimental data, have
been published for both the S–R–K and P–R equations.
Knapp et al. [22] present an extensive tabulation. Generally,
kij is taken as zero for hydrocarbons paired with hydrogen or
other hydrocarbons.

Although the S–R–K and P–R equations were not in-
tended to be applied to mixtures containing polar organic
compounds, they are finding increasing use in such applica-
tions by employing large values of kij, in the vicinity of 0.5,
as back-calculated from experimental data. However, a
preferred procedure for mixtures containing polar organic
compounds is to use a more theoretically based mixing rule
such as that of Wong and Sandler, which is discussed in de-
tail in Chapter 11 and which bridges the gap between a cubic
equation of state and an activity-coefficient equation.

Another theoretical basis for polar and nonpolar sub-
stances is the virial equation of state due to Thiesen [23] and
Onnes [24]. A common representation of the virial equation,
which can be derived from the statistical mechanics of the
forces between the molecules, is a power series in 1/v for Z:

Z = 1 + B

v
+ C

v2
+ · · · (2-52)

An empirical modification of the virial equation is the
Starling form [5] of the Benedict–Webb–Rubin (B–W–R)
equation of state for hydrocarbons and light gases in both the
gas and liquid phases. Walas [25] presents an extensive dis-
cussion of B–W–R-type equations, which because of the
large number of terms and species constants (at least 8), is not
widely used except for pure substances at cryogenic tempera-
tures.Amore useful modification of the B–W–R equation is a
generalized corresponding-states form developed by Lee and
Kesler [26] with an important extension to mixtures by
Plöcker et al. [8]. All of the constants in the L–K–P equation
are given in terms of the acentric factor and reduced tempera-
ture and pressure, as developed from P–v–T data for three
simple fluids (� � 0), methane, argon, and krypton, and a ref-
erence fluid (� � 0.398), n-octane. The equations, constants,
and mixing rules in terms of pseudo-critical properties are
given by Walas [25]. The Lee–Kesler–Plöcker (L–K–P)
equation of state describes vapor and liquid mixtures of
hydrocarbons and/or light gases over wide ranges of temper-
ature and pressure.

Derived Thermodynamic Properties 
from P–v–T Models

In the previous subsection, several useful P–v–T equations
of state for the estimation of the molar volume (or density)
or pure substances and mixtures in either the vapor or liquid
phase were presented. If a temperature-dependent, ideal-gas
heat capacity or enthalpy equation, such as (2-35) or (2-36),
is also available, all other vapor- and liquid-phase properties
can be derived in a consistent manner by applying the classi-
cal integral equations of thermodynamics given in Table 2.6.
These equations, in the form of departure (from the ideal
gas) equations of Table 2.4, and often referred to as residu-
als, are applicable to vapor or liquid phases.
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When the ideal-gas law, P = RT/v, is substituted into (1)
to (4) of Table 2.6, the results for the vapor, as expected, are(

h − ho
V

) = 0 � = 1(
s − so

V

) = 0 �̄ = 1

However, when the R–K equation is substituted into the
equations of Table 2.6, the following results for the vapor
phase are obtained after a rather tedious exercise in calculus:

hV =
C∑

i=1

(yi h
o
iV ) + RT

[
ZV − 1 − 3A

2B
ln

(
1 + B

ZV

)]
(2-53)

sV =
C∑

i=1

(yi s
o
iV ) − R ln

(
P

Po

)

−R
C∑

i=1

(yi ln yi ) + R ln(ZV − B)

(2-54)

�V = exp

[
ZV − 1 − ln(ZV − B) − A

B
ln

(
1 + B

ZV

)]
(2-55)

�̄iV = exp

[
(ZV − 1)

Bi

B
− ln(ZV − B)

− A

B

(
2

√
Ai

A
− Bi

B

)
ln

(
1 + B

ZV

)] (2-56)

The results for the liquid phase are identical if yi and ZV

(but not ho
iV ) are replaced by xi and ZL, respectively. It may

be surprising that the liquid-phase forms of (2-53) and
(2-54) account for the enthalpy and entropy of vaporization,
respectively. This is because the R–K equation of state, as
well as the S–R–K and P–R equations, are continuous func-
tions in passing between the vapor and liquid regions, as
shown for enthalpy in Figure 2.11. Thus, the liquid enthalpy
is determined by accounting for the following four effects for
a pure species at a temperature below the critical. From (1),
Table 2.6, the four contributions to enthalpy in Figure 2.11
are as follows:

hL = ho
V + Pv − RT −

∫
v

∞

[
P − T

(
∂ P

∂T

)
v

]
dv

= ho
V︸︷︷︸

(1) Vapor at zero pressure

+ ( Pv)Vs − RT −
∫

vVs

∞

[
P − T

(
∂ P

∂T

)
v

]
︸ ︷︷ ︸

(2) Pressure correction for vapor to saturation pressure

dv

− T

(
∂ P

∂T

)
s

(vVs − vLs )︸ ︷︷ ︸
(3) Latent heat of vaporization

+[( Pv)L − ( Pv)Ls ] −
∫

vL

vLs

[
P − T

(
∂ P

∂T

)
v

]
︸ ︷︷ ︸

(4) Correction to liquid for pressure in excess of saturation pressure

dv

(2-57)

where the subscript s refers to the saturation pressure.
The fugacity coefficient, �, of a pure species at tempera-

ture T and pressure P from the R–K equation, as given by
(2-55), applies to the vapor for P < Ps

i . For P > Ps
i , � is

the fugacity coefficient of the liquid. Saturation pressure cor-
responds to the condition of �V = �L . Thus, at a tempera-
ture T < Tc , the saturation pressure (vapor pressure), Ps, can
be estimated from the R–K equation of state by setting
(2-55) for the vapor equal to (2-55) for the liquid and
solving, by an iterative procedure, for P, which then equals Ps.

Table 2.6 Classical Integral Departure Equations of
Thermodynamics

At a given temperature and composition, the following equations
give the effect of pressure above that for an ideal gas.

Mixture enthalpy:

(1) 
(
h − ho

V

) = Pv − RT −
∫ v

∞

[
P − T

(
∂ P

∂T

)
v

]
dv

Mixture entropy:

(2) 
(
s − so

V

) =
∫ v

∞

(
∂ P

∂T

)
v

dv −
∫ v

∞

R

v
dv

Pure-component fugacity coefficient:

(3) �iV = exp

[
1

RT

∫ P

0

(
v − RT

P

)
d P

]

= exp

[
1

RT

∫ ∞

v

(
P − RT

v

)
dv − ln Z + (Z − 1)

]

Partial fugacity coefficient:

(4) �̄iV = exp

{
1

RT

∫ ∞

V

[(
∂ P

∂Ni

)
T ,V , Nj

− RT

V

]
dV − ln Z

}

where V = v
C∑

i=1
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Figure 2.11 Contributions to enthalpy.



The results, as given by Edmister [27], are plotted in reduced
form in Figure 2.12. The R–K vapor-pressure curve does not
satisfactorily represent data for a wide range of molecular
shapes, as witnessed by the experimental curves for
methane, toluene, n-decane, and ethyl alcohol on the same
plot. This failure represents one of the major shortcomings
of the R–K equation and is the main reason why Soave [6]
modified the R–K equation by introducing the acentric
factor in such a way as to greatly improve agreement with
experimental vapor-pressure data. Thus, while the critical
constants, Tc and Pc alone are insufficient to generalize ther-
modynamic behavior, a substantial improvement is made by
incorporating into the P–v–T equation a third parameter
that represents the generic differences in the reduced-vapor-
pressure curves.

As seen in (2-56), partial fugacity coefficients depend on
pure-species properties, Ai and Bi, and mixture properties,
A and B. Once �̄iV and �̄i L are computed from (2-56), a
K-value can be estimated from (2-26).

The most widely used P–v–T equations of state for sepa-
ration calculations involving vapor and liquid phases are the
S–R–K, P–R, and L–K–P relations. These equations are
combined with the integral departure equations of Table 2.6
to obtain useful equations for estimating the enthalpy, en-
tropy, fugacity coefficients, partial fugacity coefficients of
vapor and liquid phases, and K-values. The results of the in-
tegrations are even more complex than (2-53) to (2-56) and
are unsuitable for manual calculations. However, computer
programs for making calculations with these equations are
rapid, accurate, and readily available. Such programs are
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incorporated into widely used steady-state, computer-aided
process design and simulation programs, such as Aspen
Plus, HYSYS, ChemCad, and Pro/II.

Ideal K-values as determined from Eq. (7) in Table 2.4,
depend only on temperature and pressure, and not on com-
position. Most frequently, ideal K-values are applied to mix-
tures of nonpolar compounds, particularly hydrocarbons
such as paraffins and olefins. Figure 2.13 shows experimen-
tal K-value curves for a light hydrocarbon, ethane, in various
binary mixtures with other, less volatile hydrocarbons at
100◦F (310.93 K) for pressures from 100 psia (689.5 kPa) to
convergence pressures between 720 and 780 psia (4.964 MPa
to 5.378 MPa). At the convergence pressure, separation by
operations involving vapor–liquid equilibrium becomes im-
possible because all K-values become 1.0. The temperature
of 100◦F is close to the critical temperature of 550◦R
(305.6 K) for ethane. Figure 2.13 shows that ethane does not
form ideal solutions at 100◦F with all the other components
because the K-values depend on the other component, even
for paraffin homologs. For example, at 300 psia, the K-value
of ethane in benzene is 80% higher than in propane.

The ability of equations of state, such as S–R–K, P–R,
and L–K–P equations, to predict the effect of composition as
well as the effect of temperature and pressure on K-values of
multicomponent mixtures of hydrocarbons and light gases is
shown in Figure 2.10. The mixture contains 10 species rang-
ing in volatility from nitrogen to n-decane. The experimen-
tal data points, covering almost a 10-fold range of pressure
at 250◦F, are those of Yarborough [28]. Agreement with the
S–R–K equation is very good.
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In the high-pressure, high-temperature, thermal hydrodealkylation
of toluene to benzene (C7H8 + H2 → C6H6 + CH4), excess hydro-
gen is used to minimize cracking of aromatics to light gases. In
practice, conversion of toluene per pass through the reactor is only
70%. To separate and recycle hydrogen, hot reactor effluent vapor
of 5,597 kmol/h at 500 psia (3,448 kPa) and 275◦F (408.2 K) is par-
tially condensed to 120◦F (322 K), with product phases separated in
a flash drum. If the composition of the reactor effluent is as follows,
and the flash drum pressure is 485 psia (3,344 kPa), calculate equi-
librium compositions and flow rates of vapor and liquid leaving the
flash drum and the amount of heat that must be transferred using a
computer-aided, steady-state, simulation program with each of the
equation-of-state models discussed above. Compare the results,
including flash-drum K-values and enthalpy and entropy changes.

Component Mole Fraction

Hydrogen (H) 0.3177
Methane (M) 0.5894
Benzene (B) 0.0715
Toluene (T) 0.0214______

1.0000

SOLUTION

The computations were made with a computer-aided, process-
simulation program, using the S–R–K, P–R, and L–K–P equations
of state. The results at 120◦F and 485 psia are as follows:

Equation of State

S–R–K P–R L–K–P

Vapor flows, kmol/h:
Hydrogen 1,777.1 1,774.9 1,777.8
Methane 3,271.0 3,278.5 3,281.4
Benzene 55.1 61.9 56.0
Toluene 6.4 7.4 7.0______ ______ ______

Total 5,109.6 5,122.7 5,122.2
Liquid flows, kmol/h:

Hydrogen 1.0 3.3 0.4
Methane 27.9 20.4 17.5
Benzene 345.1 338.2 344.1
Toluene 113.4 112.4 112.8_____ _____ _____

Total 487.4 474.3 474.8
K-values:

Hydrogen 164.95 50.50 466.45
Methane 11.19 14.88 17.40
Benzene 0.01524 0.01695 0.01507
Toluene 0.00537 0.00610 0.00575

Enthalpy 35.267 34.592 35.173
change, GJ/h

Entropy change, −95.2559 −93.4262 −95.0287
MJ/h-K

Percent of benzene 88.2 86.7 87.9
and toluene 
condensed

EXAMPLE 2.6 Because the reactor effluent is mostly hydrogen and methane, the
effluent at 275◦F and 500 psia, and the equilibrium vapor at 120◦F
and 485 psia are nearly ideal gases (0.98 < Z < 1.00), despite the
moderately high pressures. Thus, the enthalpy and entropy changes
are dominated by vapor heat capacity and latent heat effects, which
are largely independent of which equation of state is used. Conse-
quently, the enthalpy and entropy changes among the three equa-
tions of state differ by less than 2%.

Significant differences exist for the K-values of H2 and CH4. How-
ever, because the values are in all cases large, the effect on the
amount of equilibrium vapor is very small. Reasonable K-values
for H2 and CH4, based on experimental data, are 100 and 13, re-
spectively. K-values for benzene and toluene differ among the three
equations of state by as much as 11% and 14%, respectively, which,
however, causes less than a 2% difference in the percentage of ben-
zene and toluene condensed. Raoult’s law K-values for benzene
and toluene, based on vapor-pressure data, are 0.01032 and
0.00350, which are considerably lower than the values computed
from each of the three equations of state because deviations to fu-
gacities due to pressure are important in the liquid phase and, par-
ticularly, in the vapor phase.

Note that the material balances are precisely satisfied for each
equation of state. However, the user of a computer-aided design
and simulation program should never take this as an indication that
the results are correct.

2.6 ACTIVITY-COEFFICIENT MODELS
FOR THE LIQUID PHASE

In Sections 2.3 and 2.5, methods based on equations of state
are presented for predicting thermodynamic properties of
vapor and liquid mixtures. In this section, predictions of liq-
uid properties based on Gibbs free-energy models for predict-
ing liquid-phase activity coefficients and other excess func-
tions such as volume and enthalpy of mixing are developed.
Regular-solution theory, which can be applied to mixtures of
nonpolar compounds using only constants for the pure com-
ponents, is the first model presented. This is followed by a
discussion of several models that can be applied to mixtures
containing polar compounds, provided that experimental
data are available to determine the binary interaction para-
meters in these models. If not, group-contribution methods,
which have been extensively developed, can be used to make
estimates. All models discussed can be applied to predict
vapor–liquid phase equilibria; and some can estimate
liquid–liquid equilibria, and even solid–liquid and polymer–
liquid equilibria.

Except at high pressures, dependency of K-values on com-
position is due primarily to nonideal solution behavior in the
liquid phase. Prausnitz, Edmister, and Chao [29] showed that
the relatively simple regular-solution theory of Scatchard
and Hildebrand [30] can be used to estimate deviations due to
nonideal behavior of hydrocarbon–liquid mixtures. They
expressed K-values in terms of (2-27), Ki = �i L�i L/�̄iV .
Chao and Seader [9] simplified and extended application of
this equation to a general correlation for hydrocarbons and
some light gases in the form of a compact set of equations



especially suitable for use with a digital computer, which was
widely used before the availability of the S–R–K and P–R
equations.

Simple models for the liquid-phase activity coefficient,
�i L , based only on properties of pure species, are not gener-
ally accurate. However, for hydrocarbon mixtures, regular-
solution theory is convenient and widely applied. The theory
is based on the premise that nonideality is due to differences
in van der Waals forces of attraction among the different
molecules present. Regular solutions have an endothermic
heat of mixing, and all activity coefficients are greater than
one. These solutions are regular in the sense that molecules
are assumed to be randomly dispersed. Unequal attractive
forces between like and unlike molecule pairs tend to cause
segregation of molecules. However, for regular solutions the
species concentrations on a molecular level are identical to
overall solution concentrations. Therefore, excess entropy
due to segregation is zero and entropy of regular solutions is
identical to that of ideal solutions, in which the molecules
are randomly dispersed.

Activity Coefficients from Gibbs Free Energy

Activity-coefficient equations often have their basis in Gibbs
free-energy models. For a nonideal solution, the molar
Gibbs free energy, g, is the sum of the molar free energy of
an ideal solution and an excess molar free energy gE for non-
ideal effects. For a liquid solution,

g =
C∑

i=1

xi gi + RT
C∑

i=1

xi ln xi + gE

=
C∑

i=1

xi
(
gi + RT ln xi + ḡE

i

) (2-58)

where g ≡ h–T s and excess molar free energy is the sum of
the partial excess molar free energies. The partial excess
molar free energy is related by classical thermodynamics to
the liquid-phase activity coefficient by

ḡE
i

RT
= ln �i =

[
∂(Nt gE/RT )

∂Ni

]
P,T , Nj

= gE

RT
−

∑
k

xk

[
∂(gE/RT )

∂xk

]
P,T ,xr

(2-59)

where j �= i, r �= k, k �= i, and r �= i.
The relationship between excess molar free energy and

excess molar enthalpy and entropy is

gE = hE − T s E =
C∑

i=1

xi
(
h̄E

i − T s̄ E
i

)
(2-60)

Regular-Solution Model

For a multicomponent, regular liquid solution, the excess
molar free energy is based on nonideality due to differences
in molecular size and intermolecular forces. The former are

expressed in terms of liquid molar volume and the latter in
terms of the enthalpy of vaporization. The resulting model is

gE =
C∑

i=1

(xivi L )

[
1

2

C∑
i=1

C∑
j=1

�i�j (	i − 	j )
2

]
(2-61)

where � is the volume fraction assuming additive molar
volumes, as given by

�i = xivi L

C∑
j=1

xjvj L

= xivi L

vL
(2-62)

and 	 is the solubility parameter, which is defined in terms of
the volumetric internal energy of vaporization as

	i =
(

�Evap
i

vi L

)1/2

(2-63)

Values of the solubility parameter for many components can
be obtained from process simulation programs.

Applying (2-59) to (2-61) gives an expression for the ac-
tivity coefficient in a regular solution:

ln �i L =
vi L

(
	i −

C∑
j=1

�j 	j

)2

RT
(2-64)

Because ln �i L varies almost inversely with absolute temper-
ature, vi L and 	j are frequently taken as constants at some
convenient reference temperature, such as 25◦C. Thus, the
estimation of �L by regular-solution theory requires only
the pure-species constants vL and 	. The latter parameter is
often treated as an empirical constant determined by back-
calculation from experimental data. For species with a criti-
cal temperature below 25◦C, vL and 	 at 25◦C are hypothet-
ical. However, they can be evaluated by back-calculation
from phase-equilibria data.

When molecular-size differences, as reflected by liquid
molar volumes, are appreciable, the following Flory–Huggins
size correction can be added to the regular-solution free-
energy contribution:

gE = RT
C∑

i=1

xi ln

(
�i

xi

)
(2-65)

Substitution of (2-65) into (2-59) gives

ln �i L = ln

(
vi L

vL

)
+ 1 −

(
vi L

vL

)
(2-66)

The complete expression for the activity coefficient of a
species in a regular solution, including the Flory–Huggins
correction, is

�i L = exp




vi L

(
	i −

C∑
j=1

�j 	j

)2

RT
+ ln

(
vi L

vL

)
+ 1 − vi L

vL




(2-67)

48 Chapter 2 Thermodynamics of Separation Operations



2.6 Activity-Coefficient Models for the Liquid Phase 49

Yerazunis, Plowright, and Smola [31] measured liquid-phase activ-
ity coefficients for the n-heptane/toluene system over the entire
concentration range at 1 atm (101.3 kPa). Estimate activity coef-
ficients for the range of conditions using regular-solution theory
both with and without the Flory–Huggins correction. Compare
estimated values with experimental data.

SOLUTION

Experimental liquid-phase compositions and temperatures for 7 of 19
points are as follows, where H denotes heptane andTdenotes toluene:

T, �C xH xT

98.41 1.0000 0.0000
98.70 0.9154 0.0846
99.58 0.7479 0.2521

101.47 0.5096 0.4904
104.52 0.2681 0.7319
107.57 0.1087 0.8913
110.60 0.0000 1.0000

At 25◦C, liquid molar volumes are vHL = 147.5 cm3/mol and
vTL = 106.8 cm3/mol. Solubility parameters are 7.43 and 8.914
(cal/cm3)1/2, respectively, for H and T. As an example, consider
mole fractions in the above table for 104.52◦C. From (2-62), vol-
ume fractions are

�H = 0.2681(147.5)

0.2681(147.5) + 0.7319(106.8)
= 0.3359

�T = 1 − �H = 1 − 0.3359 = 0.6641

Substitution of these values, together with the solubility parame-
ters, into (2-64) gives

� H = exp

{
147.5[7.430 − 0.3359(7.430) − 0.6641(8.914)]2

1.987(377.67)

}
= 1.212

Values of �H and �T computed in this manner for all seven liquid-
phase conditions are plotted in Figure 2.14.
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Figure 2.14 Liquid-phase activity coefficients for
n-heptane/toluene system at 1 atm.

Applying (2-67), with the Flory–Huggins correction, to the same
data point gives

� H = exp

[
0.1923 + ln

(
147.5

117.73

)
+ 1 −

(
147.5

117.73

)]
= 1.179

Values of � H and � T computed in this manner are included in
Figure 2.14. Deviations from experiment are not greater than 12%
for regular-solution theory and not greater than 6% when the
Flory–Huggins correction is included. Unfortunately, such good
agreement is not always obtained with nonpolar hydrocarbon solu-
tions, as shown, for example, by Hermsen and Prausnitz [32], who
studied the cyclopentane/benzene system.

Nonideal Liquid Solutions

When liquids contain dissimilar polar species, particularly
those that can form or break hydrogen bonds, the ideal-liquid
solution assumption is almost always invalid and the regular-
solution theory is not applicable. Ewell, Harrison, and Berg
[33] provide a very useful classification of molecules based
on the potential for association or solvation due to hydrogen-
bond formation. If a molecule contains a hydrogen atom at-
tached to a donor atom (O, N, F, and in certain cases C), the
active hydrogen atom can form a bond with another molecule
containing a donor atom. The classification in Table 2.7 per-
mits qualitative estimates of deviations from Raoult’s law for
binary pairs when used in conjunction with Table 2.8. Posi-
tive deviations correspond to values of �i L > 1. Nonideality
results in a variety of variations of �i L with composition, as
shown in Figure 2.15 for several binary systems, where the

Roman numerals refer to classification groups in Tables 2.7
and 2.8. Starting with Figure 2.15a and taking the other plots
in order, we offer the following explanations for the non-
idealities. Normal heptane (V) breaks ethanol (II) hydrogen
bonds, causing strong positive deviations. In Figure 2.15b,
similar but less positive deviations occur when acetone (III)
is added to formamide (I). Hydrogen bonds are broken
and formed with chloroform (IV) and methanol (II) in
Figure 2.15c, resulting in an unusual positive deviation curve
for chloroform that passes through a maximum. In Figure
2.15d, chloroform (IV) provides active hydrogen atoms that
can form hydrogen bonds with oxygen atoms of acetone (III),
thus causing negative deviations. For water (I) and n-butanol
(II) in Figure 2.15e, hydrogen bonds of both molecules are
broken, and nonideality is sufficiently strong to cause forma-
tion of two immiscible liquid phases (phase splitting) over a
wide region of overall composition.
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Table 2.8 Molecule Interactions Causing Deviations from Raoult’s Law

Type of Deviation Classes Effect on Hydrogen Bonding

Always negative III + IV H-bonds formed only

Quasi-ideal; always positive or ideal III + III No H-bonds involved
III + V
IV + IV
IV + V
V + V

Usually positive, but some negative I + I H-bonds broken and formed
I + II
I + III

II + II
II + III

Always positive I + IV H-bonds broken and formed, but dissociation 
(frequently limited of Class I or II is more important effect

solubility)
II + IV

Always positive I + V H-bonds broken only
II + V

Table 2.7 Classification of Molecules Based on Potential for Forming Hydrogen Bonds

Class Description Example

I Molecules capable of forming three-dimensional networks Water, glycols, glycerol, amino alcohols, hydroxylamines, 
of strong H-bonds hydroxyacids, polyphenols, and amides

II Other molecules containing both active hydrogen atoms Alcohols, acids, phenols, primary and secondary amines, 
and donor atoms (O, N, and F) oximes, nitro and nitrile compounds with α-hydrogen atoms,

ammonia, hydrazine, hydrogen fluoride, and hydrogen cyanide
III Molecules containing donor atoms but no active Ethers, ketones, aldehydes, esters, tertiary amines (including 

hydrogen atoms pyridine type), and nitro and nitrile compounds without
α-hydrogen atoms

IV Molecules containing active hydrogen atoms but no donor CHCl3, CH2Cl2, CH3CHCl2, CH2ClCH2Cl, CH2ClCHClCH2Cl,
atoms that have two or three chlorine atoms on the same and CH2ClCHCl2
carbon atom as a hydrogen or one chlorine on the 
carbon atom and one or more chlorine atoms on 
adjacent carbon atoms

V All other molecules having neither active hydrogen Hydrocarbons, carbon disulfide, sulfides, mercaptans, and 
atoms nor donor atoms halohydrocarbons not in class IV

Nonideal-solution effects can be incorporated into
K-value formulations in two different ways. We have
already described the use of �̄i , the partial fugacity coeffi-
cient, in conjunction with an equation of state and adequate
mixing rules. This is the method most frequently used for
handling nonidealities in the vapor phase. However, �̄iV re-
flects the combined effects of a nonideal gas and a nonideal-
gas solution. At low pressures, both effects are negligible. At
moderate pressures, a vapor solution may still be ideal even
though the gas mixture does not follow the ideal-gas law.
Nonidealities in the liquid phase, however, can be severe
even at low pressures. Earlier in this section, �̄i L was used
to express liquid-phase nonidealities for nonpolar species.

When polar species are present, mixing rules can be modi-
fied to include binary interaction parameters, kij, as in (2-51).

The other technique for handling solution nonidealities is
to retain �̄iV in the K-value formulation, but replace �̄i L by
the product of �i L and �i L , where the former quantity ac-
counts for deviations from nonideal solutions. Equation (2-26)
then becomes

Ki = �i L�i L

�̄iV
(2-68)

which was derived previously as (2-27). At low pressures,
from Table 2.2, �i L = Ps

i /P and �̄iV = 1.0, so (2-68)
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reduces to a modified Raoult’s law K-value, which differs
from (2-44) only in the �i L term:

Ki = �i L Ps
i

P
(2-69)

At moderate pressures, (5) of Table 2.3 is preferred over
(2-69).

Regular-solution theory is useful only for estimating val-
ues of �i L for mixtures of nonpolar species. However, many
empirical and semitheoretical equations exist for estimating
activity coefficients of binary mixtures containing polar
and/or nonpolar species. These equations contain binary
interaction parameters, which are back-calculated from ex-
perimental data. Some of the more useful equations are
listed in Table 2.9 in binary-pair form. For a given activity-

coefficient correlation, the equations of Table 2.10 can be
used to determine excess volume, excess enthalpy, and ex-
cess entropy. However, unless the dependency on pressure
of the parameters and properties used in the equations for
activity coefficient is known, excess liquid volumes cannot
be determined directly from (1) of Table 2.10. Fortunately,
the contribution of excess volume to total mixture volume is
generally small for solutions of nonelectrolytes. For exam-
ple, consider a 50 mol% solution of ethanol in n-heptane at
25◦C. From Figure 2.15a, this is a highly nonideal, but mis-
cible, liquid mixture. From the data of Van Ness, Soczek,
and Kochar [34], excess volume is only 0.465 cm3/mol,
compared to an estimated ideal-solution molar volume of
106.3 cm3/mol. Once the partial molar excess functions are
estimated for each species, the excess functions are com-
puted from the mole fraction sums.

Butanol   2

20

0.0 0.2 0.4 0.6
Mole fraction ethanol in liquid phase

Methanol

Ethanol

N-Heptane

Chloroform

(a)

0.8 1.0

0 0.2 0.4 0.6
Mole fraction chloroform

in liquid phase

(c)

0.8 1.0

10
8.0

6.0

4.0

3.0

2.0

A
ct

iv
it

y 
co

ef
fi

ci
en

t,
 γ

1.0
0.9

10.0
8.0

6.0

4.0

1.0

A
ct

iv
it

y 
co

ef
fi

ci
en

t,
 γ

2.0

0.0 0.2

Acetone
Formamide

0.4 0.6
Mole fraction acetone in liquid phase

(b)

0.8 1.0

8.0

4.0

2.0

A
ct

iv
it

y 
co

ef
fi

ci
en

t,
 γ

0.0

Acetone

Chloroform

0 0.2 0.4 0.6
Mole fraction of acetone

in liquid phase

(d)

0.8 1.0

0.8
0.9
1.0

0.7

0.6

0.5

0.3

A
ct

iv
it

y 
co

ef
fi

ci
en

t,
 γ

0.4

0 0.2 0.4 0.6
Mole fraction water in liquid phase

(e)

0.8

1 Bγ
1Aγa

2Aγ

γ

2 Bγ

a

b

b

Phase A +
Phase A

Water   1

Phase B
Phase B

1.0

8.0
10.0

15.0

30.0

20.0

6.0
5.0
4.0
3.0

1.0

A
ct

iv
it

y 
co

ef
fi

ci
en

t,
 γ

2.0 γ

Figure 2.15 Typical variations
of activity coefficients with
composition in binary liquid
systems: (a) ethanol(II)/n-
heptane(V); (b) acetone(III)/
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methanol(II); (d) acetone(III)/ 
chloroform(IV); (e) water(I)/
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Margules Equations

The Margules equations (1) and (2) in Table 2.9 date back
to 1895, and the two-constant form is still in common use
because of its simplicity. These equations result from power-
series expansions in mole fractions for ḡE

i and conversion to
activity coefficients by means of (2-59). The one-constant
form is equivalent to symmetrical activity-coefficient
curves, which are rarely observed experimentally.

van Laar Equation

Because of its flexibility, simplicity, and ability to fit many
systems well, the van Laar equation is widely used. It was
derived from the van der Waals equation of state, but the

constants, shown as A12 and A21 in (3) of Table 2.9, are best
back-calculated from experimental data. These constants
are, in theory, constant only for a particular binary pair at a
given temperature. In practice, they are frequently computed
from isobaric data covering a range of temperature. The van
Laar theory expresses the temperature dependence of Aij as

Ai j = A′
i j

RT
(2-70)

Regular-solution theory and the van Laar equation are
equivalent for a binary solution if

Ai j = vi L

RT
(	i − 	j )

2 (2-71)

The van Laar equation can fit activity coefficient–
composition curves corresponding to both positive and
negative deviations from Raoult’s law, but cannot fit curves
that exhibit minima or maxima such as those in Figure 2.15c.

When data are isothermal, or isobaric over only a narrow
range of temperature, determination of van Laar constants is
conducted in a straightforward manner. The most accurate
procedure is a nonlinear regression to obtain the best fit to
the data over the entire range of binary composition, subject
to minimization of some objective function. A less accurate,
but extremely rapid, manual-calculation procedure can be
used when experimental data can be extrapolated to infinite-
dilution conditions. Modern experimental techniques are
available for accurately and rapidly determining activity
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Table 2.9 Empirical and Semitheoretical Equations for Correlating Liquid-Phase Activity Coefficients of Binary Pairs

Name Equation for Species 1 Equation for Species 2

(1) Margules log �1 = Ax2
2 log �2 = Ax2

1

(2) Margules (two-constant) log �1 = x2
2 [ Ā12 + 2x1( Ā21 − Ā12)] log �2 = x2

1 [ Ā21 + 2x2( Ā12 − Ā21)]

(3) van Laar (two-constant) ln �1 = A12

[1 + (x1 A12)/(x2 A21)]2
ln �2 = A21

[1 + (x2 A21)/(x1 A12)]2

(4) Wilson (two-constant) ln �1 = − ln(x1 + �12x2)

+ x2

(
�12

x1 + �12x2
− �21

x2 + �21x1

) ln �2 = − ln(x2 + �21x1)

− x1

(
�12

x1 + �12x2
− �21

x2 + �21x1

)

(5) NRTL (three-constant) ln �1 = x2
2 
21G2

21

(x1 + x2G21)2
+ x2

1 
12G12

(x2 + x1G12)2

Gi j = exp(−�i j 
i j )

ln �2 = x2
1 
12G2

12

(x2 + x1G12)2
+ x2

2 
21G21

(x1 + x2G21)2

Gi j = exp(−�i j 
i j )

(6) UNIQUAC (two-constant) ln �1 = ln
�1

x1
+ Z̄

2
q1 ln

�1

�1
ln �2 = ln

�2

x2
+ Z̄

2
q2 ln

�2

�2

+�2

(
l1 − r1

r2
l2

)
− q1 ln(�1 + �2T21) +�1

(
l2 − r2

r1
l1

)
− q2 ln(�2 + �1T12)

+ �2q1

(
T21

�1 + �2T21
− T12

�2 + �1T12

)
+ �1q2

(
T12

�2 + �1T12
− T21

�1 + �2T21

)

Table 2.10 Classical Partial Molar Excess Functions of
Thermodynamics

Excess volume:

(1) 
(
v̄i L − v̄ID

i L

) ≡ v̄E
i L = RT

(
∂ ln �i L

∂ P

)
T ,x

Excess enthalpy:

(2) 
(
h̄i L − h̄ID

i L

) ≡ h̄E
i L = −RT 2

(
∂ ln �i L

∂T

)
P,x

Excess entropy:

(3) 
(
s̄i L − s̄ID

i L

) ≡ s̄E
i L = −R

[
T

(
∂ ln �i L

∂T

)
P,x

+ ln �i L

]

ID � ideal mixture; E � excess because of nonideality.
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(1)/n-hexane (2), a system of this type, at 101.3 kPa. These
data were correlated with the van Laar equation by Orye
and Prausnitz [36] to give A12 � 2.409 and A21 � 1.970.
From x1 � 0.1 to 0.9, the fit of the data to the van Laar
equation is reasonably good; in the dilute regions, however,
deviations are quite severe and the predicted activity coeffi-
cients for ethanol are low. An even more serious problem
with these highly nonideal mixtures is that the van Laar
equation may erroneously predict formation of two liquid
phases (phase splitting) when values of activity coefficients
exceed approximately 7.

Local-Composition Concept and the Wilson Model

Since its introduction in 1964, the Wilson equation [37],
shown in binary form in Table 2.9 as (4), has received wide
attention because of its ability to fit strongly nonideal, but
miscible, systems.As shown in Figure 2.16, the Wilson equa-
tion, with binary interaction parameters of �12 = 0.0952 and
�21 = 0.2713 determined by Orye and Prausnitz [36], fits
experimental data well even in dilute regions where the vari-
ation of �1 becomes exponential. Corresponding infinite-
dilution activity coefficients computed from the Wilson
equation are �∞

1 = 21.72 and �∞
2 = 9.104.

The Wilson equation accounts for effects of differences
both in molecular size and intermolecular forces, consistent
with a semitheoretical interpretation based on the Flory–
Huggins relation (2-65). Overall solution-volume fractions
(�i = xivi L/vL ) are replaced by local-volume fractions, �̄i ,
which are related to local-molecule segregations caused by
differing energies of interaction between pairs of molecules.
The concept of local compositions that differ from overall
compositions is shown schematically for an overall, equimo-
lar, binary solution in Figure 2.17, which is taken from
Cukor and Prausnitz [38]. About a central molecule of type
1, the local mole fraction of molecules of type 2 is shown as
5
8 , while the overall composition is 1

2 .
For local-volume fraction, Wilson proposed

�̄i = vi L xi exp(−�i i/RT )
C∑

j=1
vj L xj exp(−�i j/RT )

(2-75)
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Figure 2.16 Liquid-phase activity coefficients for ethanol/
n-hexane system.
[Data from J.E. Sinor and J.H. Weber, J. Chem. Eng. Data, 5, 243–247
(1960).]
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Figure 2.17 The concept of local compositions.
[From P.M. Cukor and J.M. Prausnitz, Int. Chem. Eng. Symp. Ser. No. 32,
3, 88 (1969).]

coefficients at infinite dilution. Applying (3) of Table 2.9 to
the conditions xi � 0 and then xj � 0, we have

Ai j = ln �∞
i , xi = 0

and

Aji = ln �∞
j , xj = 0 (2-72)

For practical applications, it is important that the van Laar
equation predicts azeotrope formation correctly, where
xi � yi and Ki � 1.0. If activity coefficients are known or can
be computed at the azeotropic composition—say, from
(2-69), (�i L = P/Ps

i , since Ki � 1.0)—these coefficients
can be used to determine the van Laar constants directly
from the following equations obtained by solving simultane-
ously for A12 and A21:

A12 = ln �1

(
1 + x2 ln �2

x1 ln �1

)2

(2-73)

A21 = ln �2

(
1 + x1 ln �1

x2 ln �2

)2

(2-74)

These equations are applicable to activity-coefficient data
obtained at any single composition.

Mixtures of self-associated polar molecules (class II in
Table 2.7) with nonpolar molecules such as hydrocarbons
(class V) can exhibit the strong nonideality of the positive-
deviation type shown in Figure 2.15a. Figure 2.16 shows
experimental data of Sinor and Weber [35] for ethanol



where energies of interaction �i j = �j i , but �i i �= �j j . Fol-
lowing the treatment by Orye and Prausnitz [36], substitu-
tion of the binary form of (2-75) into (2-65) and defining the
binary interaction parameters as

�12 = v2L

v1L
exp

[
− (�12 − �11)

RT

]
(2-76)

�21 = v1L

v2L
exp

[
− (�12 − �22)

RT

]
(2-77)

leads to the following equation for a binary system:

gE

RT
= −x1 ln(x1 + �12x2) − x2 ln(x2 + �21x1) (2-78)

The Wilson equation is very effective for dilute composi-
tions where entropy effects dominate over enthalpy effects.
The Orye–Prausnitz form of the Wilson equation for the
activity coefficient, as given in Table 2.9, follows from com-
bining (2-59) with (2-78). Values of �i j < 1 correspond to
positive deviations from Raoult’s law, while values > 1 cor-
respond to negative deviations. Ideal solutions result from
�i j = 1. Studies indicate that �i i and �i j are temperature-
dependent. Values of vi L/vj L depend on temperature also,
but the variation may be small compared to temperature
effects on the exponential terms in (2-76) and (2-77).

The Wilson equation is readily extended to multicompo-
nent mixtures by neglecting ternary and higher molecular
interactions and assuming a pseudo-binary mixture. The
following multicomponent Wilson equation involves only
binary interaction constants:

ln �k = 1 − ln

(
C∑

j=1

xj�k j

)
−

C∑
i=1


 xi�ik

C∑
j=1

xj�i j


 (2-79)

where �i i = �j j = �kk = 1.
As mixtures become highly nonideal, but still miscible,

the Wilson equation becomes markedly superior to the
Margules and van Laar equations. The Wilson equation is
consistently superior for multicomponent solutions. Values
of the constants in the Wilson equation for many binary sys-
tems are tabulated in the DECHEMA collection of Gmehling
and Onken [39]. Two limitations of the Wilson equation are
its inability to predict immiscibility, as in Figure 2.15e, and
maxima and minima in the activity coefficient–mole fraction
relationships, as shown in Figure 2.15c.

When insufficient experimental data are available to de-
termine binary Wilson parameters from a best fit of activity
coefficients over the entire range of composition, infinite-
dilution or single-point values can be used. At infinite dilu-
tion, the Wilson equation in Table 2.9 becomes

ln �∞
1 = 1 − ln �12 − �21 (2-80)

ln �∞
2 = 1 − ln �21 − �12 (2-81)

An iterative procedure is required to obtain �12 and �21

from these nonlinear equations. If temperatures correspond-
ing to �∞

1 and �∞
2 are not close or equal, (2-76) and (2-77)

should be substituted into (2-80) and (2-81) with values of
(�12 − �11) and (�12 − �22) determined from estimates of
pure-component liquid molar volumes.

When the experimental data of Sinor and Weber [35] for
n-hexane/ethanol, shown in Figure 2.16, are plotted as a
y–x diagram in ethanol (Figure 2.18), the equilibrium curve
crosses the 45◦ line at an ethanol mole fraction of x � 0.332.
The measured temperature corresponding to this composi-
tion is 58◦C. Ethanol has a normal boiling point of 78.33◦C,
which is higher than the normal boiling point of 68.75◦C
for n-hexane. Nevertheless, ethanol is more volatile than
n-hexane up to an ethanol mole fraction of x � 0.322, the
minimum-boiling azeotrope. This occurs because of the rel-
atively close boiling points of the two species and the high
activity coefficients for ethanol at low concentrations. At
the azeotropic composition, yi � xi; therefore, Ki � 1.0.
Applying (2-69) to both species,

�1 Ps
1 = �2 Ps

2 (2-82)

If species 2 is more volatile in the pure state (Ps
2 > Ps

1 ), the
criteria for formation of a minimum-boiling azeotrope are

�1 ≥ 1 (2-83)

�2 ≥ 1 (2-84)

and
�1

�2
<

Ps
2

Ps
1

(2-85)

for x1 less than the azeotropic composition. These critieria
are most readily applied at x1 � 0. For example, for the n-
hexane (2)/ethanol (1) system at 1 atm (101.3 kPa), when
the liquid-phase mole fraction of ethanol approaches zero,
temperature approaches 68.75◦C (155.75◦F), the boiling
point of pure n-hexane. At this temperature, Ps

1 = 10 psia
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(68.9 kPa) and Ps
2 = 14.7 psia (101.3 kPa). Also from

Figure 2.16, �∞
1 = 21.72 when �2 = 1.0. Thus, �∞

1 /�2 =
21.72, but Ps

2 /Ps
1 = 1.47. Therefore, a minimum-boiling

azeotrope will occur.
Maximum-boiling azeotropes are less common. They

occur for relatively close-boiling mixtures when negative
deviations from Raoult’s law arise such that �i < 1.0. Crite-
ria for their formation are derived in a manner similar to that
for minimum-boiling azeotropes. At x1 � 1, where species 2
is more volatile,

�1 = 1.0 (2-86)

�∞
2 < 1.0 (2-87)

and
�∞

2

�1
<

Ps
1

Ps
2

(2-88)

For an azeotropic binary system, the two binary interac-
tion parameters �12 and �21 can be determined by solving
(4) of Table 2.9 at the azeotropic composition, as shown in
the following example.

From measurements by Sinor and Weber [35] of the azeotropic
condition for the ethanol/n-hexane system at 1 atm (101.3 kPa,
14.696 psia), calculate �12 and �21.

SOLUTION

Let E denote ethanol and H denote n-hexane. The azeotrope occurs
at xE � 0.332, xH � 0.668, and T � 58◦C (331.15 K). At 1 atm,
(2-69) can be used to approximate K-values. Thus, at azeotropic
conditions, �i = P/Ps

i . The vapor pressures at 58◦C are Ps
E = 6.26

psia and Ps
H = 10.28 psia. Therefore,

�E = 14.696

6.26
= 2.348

�H = 14.696

10.28
= 1.430

Substituting these values together with the above corresponding
values of xi into the binary form of the Wilson equation in Table 2.9
gives

ln 2.348 = − ln(0.332 + 0.668�EH)

+ 0.668

(
�EH

0.332 + 0.668�EH
− �HE

0.332�HE + 0.668

)
ln 1.430 = − ln(0.668 + 0.332�HE)

− 0.332

(
�EH

0.332 + 0.668�EH
− �HE

0.332�HE + 0.668

)
Solving these two nonlinear equations simultaneously by an itera-
tive procedure, we obtain �EH = 0.041 and �HE = 0.281. From
these constants, the activity-coefficient curves can be predicted if
the temperature variations of �EH and �HE are ignored. The results
are plotted in Figure 2.19. The fit of experimental data is good
except, perhaps, for near-infinite-dilution conditions, where
�∞

E = 49.82 and �∞
H = 9.28. The former value is considerably

EXAMPLE 2.8

greater than the value of 21.72 obtained by Orye and Prausnitz [36]
from a fit of all experimental data points. However, if Figures 2.16
and 2.19 are compared, it is seen that widely differing �∞

E values
have little effect on � in the composition region xE � 0.15 to 1.00,
where the two sets of Wilson curves are almost identical. For accu-
racy over the entire composition range, commensurate with the
ability of the Wilson equation, data for at least three well-spaced
liquid compositions per binary are preferred.

The Wilson equation can be extended to liquid–liquid or
vapor–liquid–liquid systems by multiplying the right-hand
side of (2-78) by a third binary-pair constant evaluated from
experimental data [37]. However, for multicomponent sys-
tems of three or more species, the third binary-pair constants
must be the same for all constituent binary pairs. Further-
more, as shown by Hiranuma [40], representation of ternary
systems involving only one partially miscible binary pair
can be extremely sensitive to the third binary-pair Wilson
constant. For these reasons, application of the Wilson equa-
tion to liquid–liquid systems has not been widespread.
Rather, the success of the Wilson equation for prediction of
activity coefficients for miscible liquid systems greatly stim-
ulated further development of the local-composition concept
of Wilson in an effort to obtain more universal expressions
for liquid-phase activity coefficients.

NRTL Model

The nonrandom, two-liquid (NRTL) equation developed by
Renon and Prausnitz [41,42] as listed in Table 2.9, repre-
sents an accepted extension of Wilson’s concept. The NRTL
equation is applicable to multicomponent vapor–liquid,
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Figure 2.19 Liquid-phase activity coefficients for ethanol/
n-hexane system.



liquid–liquid, and vapor–liquid–liquid systems. For multi-
component vapor–liquid systems, only binary-pair constants
from the corresponding binary-pair experimental data are re-
quired. For a multicomponent system, the NRTL expression
for the activity coefficient is

ln �i =

C∑
j=1


j i G ji xj

C∑
k=1

Gki xk

+
C∑

j=1


 xj Gi j

C∑
k=1

Gkj xk



i j −

C∑
k=1

xk
k j Gkj

C∑
k=1

Gkj xk







(2-89)

where

Gji = exp(−�j i 
j i ) (2-90)

The coefficients 
 are given by


i j = gi j − gj j

RT
(2-91)


j i = gji − gii

RT
(2-92)

where gij, gjj, and so on are energies of interaction between
molecule pairs. In the above equations, Gji �= Gi j , 
i j �= 
j i ,
Gii = Gj j = 1, and 
i i = 
j j = 0. Often (gi j − gj j ) and
other constants are linear in temperature. For ideal solutions,

j i = 0.

The parameter �j i characterizes the tendency of species j
and species i to be distributed in a nonrandom fashion. When
�j i = 0, local mole fractions are equal to overall solution
mole fractions. Generally �j i is independent of temperature
and depends on molecule properties in a manner similar to
the classifications in Tables 2.7 and 2.8. Values of �j i usually
lie between 0.2 and 0.47. When �j i < 0.426, phase immisci-
bility is predicted. Although �j i can be treated as an ad-
justable parameter, to be determined from experimental
binary-pair data, more commonly �j i is set according to the
following rules, which are occasionally ambiguous:

1. �j i = 0.20 for mixtures of saturated hydrocarbons and
polar, nonassociated species (e.g., n-heptane/acetone).

2. �j i = 0.30 for mixtures of nonpolar compounds (e.g.,
benzene/n-heptane), except fluorocarbons and paraf-
fins; mixtures of nonpolar and polar, nonassociated
species (e.g., benzene/acetone); mixtures of polar
species that exhibit negative deviations from Raoult’s
law (e.g., acetone/chloroform) and moderate positive
deviations (e.g., ethanol/water); mixtures of water and
polar nonassociated species (e.g., water/acetone).

3. �j i = 0.40 for mixtures of saturated hydrocarbons and
homolog perfluorocarbons (e.g., n-hexane/perfluoro-
n-hexane).

4. �j i = 0.47 for mixtures of an alcohol or other strongly
self-associated species with nonpolar species (e.g.,
ethanol/benzene); mixtures of carbon tetrachloride
with either acetonitrile or nitromethane; mixtures of
water with either butyl glycol or pyridine.

UNIQUAC Model

In an attempt to place calculations of liquid-phase activity
coefficients on a simple, yet more theoretical basis, Abrams
and Prausnitz [43] used statistical mechanics to derive
an expression for excess free energy. Their model, called
UNIQUAC (universal quasichemical), generalizes a previ-
ous analysis by Guggenheim and extends it to mixtures of
molecules that differ appreciably in size and shape. As in the
Wilson and NRTL equations, local concentrations are used.
However, rather than local volume fractions or local mole
fractions, UNIQUAC uses the local area fraction �i j as the
primary concentration variable.

The local area fraction is determined by representing a
molecule by a set of bonded segments. Each molecule is
characterized by two structural parameters that are deter-
mined relative to a standard segment taken as an equivalent
sphere of a unit of a linear, infinite-length, polymethylene
molecule. The two structural parameters are the relative
number of segments per molecule, r (volume parameter),
and the relative surface area of the molecule, q (surface
parameter). Values of these parameters computed from bond
angles and bond distances are given by Abrams and
Prausnitz [43] and Gmehling and Onken [39] for a number
of species. For other compounds, values can be estimated by
the group-contribution method of Fredenslund et al. [46].

For a multicomponent liquid mixture, the UNIQUAC
model gives the excess free energy as

gE

RT
=

C∑
i=1

xi ln

(
�i

xi

)
+ Z̄

2

C∑
i=1

qi xi ln

(
�i

�i

)

−
C∑

i=1

qi xi ln

(
C∑

j=1

�i Tji

) (2-93)

The first two terms on the right-hand side account for com-
binatorial effects due to differences in molecule size and
shape; the last term provides a residual contribution due to
differences in intermolecular forces, where

�i = xiri

C∑
i=1

xiri

= segment fraction (2-94)

� = xi qi

C∑
i=1

xi qi

= area fraction (2-95)

where Z̄ = lattice coordination number set equal to 10, and

Tji = exp

(
uji − uii

RT

)
(2-96)

Equation (2-93) contains only two adjustable parameters
for each binary pair, (uji − uii ) and (ui j − uj j ). Abrams
and Prausnitz show that uji = ui j and Tii = Tj j = 1. In gen-
eral, (uji − uii ) and (ui j − uj j ) are linear functions of
temperature.
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If (2-59) is combined with (2-93), an equation for the
liquid-phase activity coefficient for a species in a multicom-
ponent mixture is obtained:

ln �i = ln �C
i + ln � R

i

= ln(�i/xi ) + ( Z̄/2) qi ln(�i/�i ) + li − (�i/xi )
C∑

j=1

xj lj︸ ︷︷ ︸
C, combinatorial

+ qi


1 − ln

(
C∑

j=1

�j Tji

)
−

C∑
j=1


 �j Ti j

C∑
k=1

�k Tk j







︸ ︷︷ ︸
R, residual

(2-97)
where

lj =
(

Z̄

2

)
(rj − qj ) − (rj − 1) (2-98)

For a binary mixture of species 1 and 2, (2-97) reduces to (6)
in Table 2.9 for Z̄ = 10.

UNIFAC Model

Liquid-phase activity coefficients must be estimated for
nonideal mixtures even when experimental phase equilibria
data are not available and when the assumption of regular
solutions is not valid because polar compounds are present.
For such predictions, Wilson and Deal [47] and then Derr
and Deal [48], in the 1960s, presented methods based on
treating a solution as a mixture of functional groups instead
of molecules. For example, in a solution of toluene and ace-
tone, the contributions might be 5 aromatic CH groups, 1
aromatic C group, and 1 CH3 group from toluene; and 2 CH3

groups plus 1 CO carbonyl group from acetone. Alterna-
tively, larger groups might be employed to give 5 aromatic
CH groups and 1 CCH3 group from toluene; and 1 CH3

group and 1 CH3CO group from acetone. As larger and
larger functional groups are used, the accuracy of molecular
representation increases, but the advantage of the group-
contribution method decreases because a larger number of
groups is required. In practice, about 50 functional groups
are used to represent literally thousands of multicomponent
liquid mixtures.

To estimate the partial molar excess free energies, ḡE
i ,

and then the activity coefficients, size parameters for each
functional group and binary interaction parameters for each
pair of functional groups are required. Size parameters can
be calculated from theory. Interaction parameters are back-
calculated from existing phase-equilibria data and then used
with the size parameters to predict phase-equilibria proper-
ties of mixtures for which no data are available.

The UNIFAC (UNIQUAC Functional-group Activity
Coefficients) group-contribution method, first presented by
Fredenslund, Jones, and Prausnitz [49] and further devel-
oped for use in practice by Fredenslund, Gmehling, and

Rasmussen [50], Gmehling, Rasmussen, and Fredenslund
[51], and Larsen, Rasmussen, and Fredenslund [52], has
several advantages over other group-contribution methods:
(1) It is theoretically based on the UNIQUAC method;
(2) the parameters are essentially independent of tempera-
ture; (3) size and binary interaction parameters are available
for a wide range of types of functional groups; (4) predic-
tions can be made over a temperature range of 275–425 K
and for pressures up to a few atmospheres; and (5) extensive
comparisons with experimental data are available. All com-
ponents in the mixture must be condensable.

The UNIFAC method for predicting liquid-phase activity
coefficients is based on the UNIQUAC equation (2-97),
wherein the molecular volume and area parameters in the
combinatorial terms are replaced by

ri =
∑

k


(i)
k Rk (2-99)

qi =
∑

k


(i)
k Qk (2-100)

where 
(i)
k is the number of functional groups of type k in

molecule i, and Rk and Qk are the volume and area parame-
ters, respectively, for the type-k functional group.

The residual term in (2-97), which is represented by
ln � R

i , is replaced by the expression

ln � R
i =

∑
k


(i)
k

(
ln �k − ln �

(i)
k

)
︸ ︷︷ ︸
all functional groups in mixture

(2-101)

where �k is the residual activity coefficient of the functional
group k in the actual mixture, and �(i)

k is the same quantity
but in a reference mixture that contains only molecules of
type i. The latter quantity is required so that � R

i → 1.0 as
xi → 1.0. Both �k and �(i)

k have the same form as the resid-
ual term in (2-97). Thus,

ln �k = Qk


1 − ln

(∑
m

�m Tmk

)
−

∑
m

�m Tmk∑
n

�nTnm




(2-102)

where �m is the area fraction of group m, given by an equa-
tion similar to (2-95),

�m = Xm Qm∑
n

Xn Qm
(2-103)

where Xm is the mole fraction of group m in the solution,

Xm =

∑
j



( j)
m xj∑

j

∑
n

(
( j)
n xj )

(2-104)

and Tmk is a group interaction parameter given by an equa-
tion similar to (2-96),

Tmk = exp
(
−amk

T

)
(2-105)



where amk �= akm. When m � k, then amk � 0 and Tmk � 1.0.
For �

(i)
k , (2-102) also applies, where � terms correspond to the

pure component i. Although values of Rk and Qk are different
for each functional group, values of amk are equal for all sub-
groups within a main group. For example, main group CH2

consists of subgroups CH3, CH2, CH, and C. Accordingly,

aCH3,CHO = aCH2,CHO = aCH,CHO = aC,CHO

Thus, the amount of experimental data required to obtain
values of amk and akm and the size of the corresponding bank
of data for these parameters is not as large as might be
expected.

The ability of a group-contribution method to predict
liquid-phase activity coefficients has been further improved
by introduction of a modified UNIFAC method by Gmehling
[51], referred to as UNIFAC (Dortmund). To correlate data
for mixtures having a wide range of molecular size, they
modified the combinatorial part of (2-97). To handle temper-
ature dependence more accurately, they replaced (2-105)
with a three-coefficient equation. The resulting modification
permits reasonably reliable predictions of liquid-phase ac-
tivity coefficients (including applications to dilute solutions
and multiple liquid phases), heats of mixing, and azeotropic
compositions. Values of the UNIFAC (Dortmund) parameters
for 51 groups are available in a series of publications starting
in 1993 with Gmehling, Li, and Schiller [53] and more re-
cently with Wittig, Lohmann, and Gmehling [54].

Liquid–Liquid Equilibria

When species are notably dissimilar and activity coefficients
are large, two and even more liquid phases may coexist at
equilibrium. For example, consider the binary system of
methanol (1) and cyclohexane (2) at 25◦C. From measure-
ments of Takeuchi, Nitta, and Katayama [55], van Laar con-
stants are A12 � 2.61 and A21 � 2.34, corresponding, respec-
tively, to infinite-dilution activity coefficients of 13.6 and
10.4 obtained using (2-72). These values of A12 and A21 can
be used to construct an equilibrium plot of y1 against x1 as-
suming an isothermal condition. By combining (2-69),
where Ki = yi/xi , with

P =
C∑

i=1

xi �i L Ps
i (2-106)

one obtains the following relation for computing yi from xi:

y1 = x1�1 Ps
1

x1�1 Ps
1 + x2�2 Ps

2

(2-107)

Vapor pressures at 25◦C are Ps
1 = 2.452 psia (16.9 kPa) and

Ps
2 = 1.886 psia (13.0 kPa).Activity coefficients can be com-

puted from the van Laar equation in Table 2.9. The resulting
equilibrium plot is shown in Figure 2.20, where it is observed
that over much of the liquid-phase region, three values of y1

exist. This indicates phase instability. Experimentally, single
liquid phases can exist only for cyclohexane-rich mixtures of

x1 � 0.8248 to 1.0 and for methanol-rich mixtures of x1 � 0.0
to 0.1291. Because a coexisting vapor phase exhibits only a
single composition, two coexisting liquid phases prevail at
opposite ends of the dashed line in Figure 2.20. The liquid
phases represent solubility limits of methanol in cyclohexane
and cyclohexane in methanol.

For two coexisting equilibrium liquid phases, the relation
� (1)

i L x (1)
i = � (2)

i L x (2)
i must hold. This permits determination of

the two-phase region in Figure 2.20 from the van Laar or
other suitable activity-coefficient equation for which the
constants are known. Also shown in Figure 2.20 is an equi-
librium curve for the same binary system at 55◦C based on
data of Strubl et al. [56]. At this higher temperature,
methanol and cyclohexane are completely miscible. The
data of Kiser, Johnson, and Shetlar [57] show that phase in-
stability ceases to exist at 45.75◦C, the critical solution tem-
perature. Rigorous thermodynamic methods for determining
phase instability and, thus, existence of two equilibrium liq-
uid phases are generally based on free-energy calculations,
as discussed by Prausnitz et al. [4]. Most of the empirical
and semitheoretical equations for the liquid-phase activity
coefficient listed in Table 2.9 apply to liquid–liquid systems.
The Wilson equation is a notable exception.

2.7 DIFFICULT MIXTURES

The equation-of-state and activity-coefficient models pre-
sented in Sections 2.5 and 2.6, respectively, are inadequate
for estimating K-values of mixtures containing: (1) both polar
and supercritical (light-gas) components, (2) electrolytes,
and (3) both polymers and solvents. For these difficult
mixtures, special models have been developed, some of
which are briefly described in the following subsections.
More detailed discussions of the following three topics are
given by Prausnitz, Lichtenthaler, and de Azevedo [4].
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systems.
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Predictive Soave–Redlich–Kwong (PSRK) Model

Equation-of-state models, such as S–R–K and P–R, describe
mixtures of nonpolar and slightly polar compounds. Gibbs
free-energy activity-coefficient models are formulated for
subcritical nonpolar and polar compounds. When a mixture
contains both polar compounds and supercritical (light-gas)
components (e.g., a mixture of hydrogen, carbon monoxide,
methane, methyl acetate, and ethanol), neither method ap-
plies. To estimate vapor–liquid phase equilibria for such
mixtures, a number of more theoretically based mixing rules
for use with the S–R–K and P–R equations of state have
been developed. In a different approach, Holderbaum and
Gmehling [58] formulated a group-contribution equation of
state referred to as the predictive Soave–Redlich–Kwong
(PSRK) model, which combines a modified S–R–K equation
of state with the UNIFAC model. To improve the ability of
the S–R–K equation to predict vapor pressure of polar com-
pounds, they provide an improved temperature dependence
for the pure-component parameter, a, in Table 2.5. To handle
mixtures of nonpolar, polar, and supercritical components,
they use a mixing rule for a, which includes the UNIFAC
model for handling nonideal effects more accurately.
Additional and revised pure-component and group interac-
tion parameters for use in the PSRK model are provided
by Fischer and Gmehling [59]. In particular, [58] and [59]
provide parameters for nine light gases (Ar, CO, CO2, CH4,
H2, H2S, N2, NH3, and O2) in addition to UNIFAC parame-
ters for 50 groups.

Electrolyte Solution Models

Solutions of weak and/or strong electrolytes are common in
chemical processes. For example, sour water, found in many
petroleum plants, may consist of solvent (water) and five
dissolved gases: CO, CO2, CH4, H2S, and NH3. The apparent
composition of the solution is based on these six molecules.
However, because of dissociation, which in this case is
weak, the true composition of the aqueous solution includes
ionic as well as molecular species. For sour water, the ionic
species present at chemical equilibrium include H+, OH−,
HCO3

−, CO3
�, HS−, S�, NH4

+, and NH2COO−, with the
total numbers of positive and negative ions subject to elec-
troneutrality. For example, while the apparent concentration
of NH4 in the solution might be 2.46 moles per kg of water,
when dissociation is taken into account, the molality is only
0.97, with NH4

+ having a molality of 1.49. All eight ionic
species are nonvolatile, while all six molecular species
are volatile to some extent. Accurate calculations of vapor–
liquid equilibrium for multicomponent electrolyte solutions
must consider both chemical and physical equilibrium, both
of which involve liquid-phase activity coefficients.

A number of models have been developed for predicting
activity coefficients in multicomponent systems of elec-
trolytes. Of particular note are the models of Pitzer [60] and
Chen and associates [61, 62, and 63], both of which are in-
cluded in simulation programs. Both models can handle

dilute to concentrated solutions, but only the model of Chen
and associates, which is a substantial modification of the
NRTL model (see Section 2.6), can handle mixed-solvent
systems, such as those containing water and alcohols.

Polymer Solution Models

Polymer processing often involves solutions of solvent,
monomer, and an amorphous (noncrystalline) polymer, re-
quiring vapor–liquid and, sometimes, liquid–liquid phase-
equilibria calculations, for which estimation of activity coef-
ficients of all components in the mixture is needed. In general,
the polymer is nonvolatile, but the solvent and monomer are
volatile. When the solution is dilute in the polymer, activity-
coefficient methods of Section 2.6, such as the NRTLmethod,
can be used. Of more interest are solutions with appreciable
concentrations of polymer, for which the methods of Sections
2.5 and 2.6 are inadequate. Consequently, special-purpose
empirical and theoretical models have been developed. One
method, which is available in simulation programs, is the
modified NRTL model of Chen [64], which combines a mod-
ification of the Flory-Huggins equation (12-65) for widely
differing molecular size with the NRTL concept of local com-
position. Chen represents the polymer with segments. Thus,
solvent–solvent, solvent–segment, and segment–segment
binary interaction parameters are required, which are often
available from the literature and may be assumed indepen-
dent of temperature, polymer chain length, and polymer con-
centration, making the model quite flexible.

2.8 SELECTING AN APPROPRIATE MODEL

The three previous sections of this chapter have discussed
the more widely used models for estimating fugacities,
activity coefficients, and K-values for components in mix-
tures. These models and others are included in computer-
aided, process-simulation programs. To solve a particular
separations problem, it is necessary to select an appropriate
model. This section presents recommendations for making
at least a preliminary selection.

The selection procedure includes a few models not cov-
ered in this chapter, but for which a literature reference is
given. The procedure begins by characterizing the mixture
by chemical types present: Light gases (LG), Hydrocarbons
(HC), Polar organic compounds (PC), and Aqueous solu-
tions (A), with or without Electrolytes (E).

If the mixture is (A) with no (PC), then if electrolytes
are present, select the modified NRTL equation. Otherwise,
select a special model, such as one for sour water (contain-
ing NH3, H2S, CO2, etc.) or aqueous amine solutions.

If the mixture contains (HC), with or without (LG), cover-
ing a wide boiling range, choose the corresponding-states
method of Lee–Kesler–Plöcker [8, 65]. If the boiling range of
a mixture of (HC) is not wide boiling, the selection depends
on the pressure and temperature. For all temperatures and
pressures, the Peng–Robinson equation is suitable. For



all pressures and noncryogenic temperatures, the Soave–
Redlich–Kwong equation is suitable. For all temperatures,
but not pressures in the critical region, the Benedict–Webb–
Rubin–Starling [5, 66, 67] method is suitable.

If the mixture contains (PC), the selection depends on
whether (LG) are present. If they are, the PSRK method is
recommended. If not, then a suitable liquid-phase activity-

coefficient method is selected as follows. If the binary inter-
action coefficients are not available, select the UNIFAC
method, which should be considered as only a first approxi-
mation. If the binary interaction coefficients are available
and splitting in two liquid phases will not occur, select the
Wilson or NRTL equation. Otherwise, if phase splitting is
probable, select the NRTL or UNIQUAC equation.
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components, certain P–v–T equation-of-state models such as
S–R–K, P–R, and L–K–P can be used to estimate density, enthalpy,
entropy, fugacity coefficients, and K-values.

6. For nonideal liquid solutions containing nonpolar and/or polar
components, certain free-energy models such as Margules, van
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solutions, and mixtures of polar and supercritical components.
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EXERCISES

Section 2.1

2.1 A hydrocarbon stream in a petroleum refinery is to be sepa-
rated at 1,500 kPa into two products under the conditions shown
below. Using the data given, compute the minimum work of sepa-
ration, Wmin, in kJ/h for T0 � 298.15 K.

kmol/h

Component Feed Product 1

Ethane 30 30
Propane 200 192
n-Butane 370 4
n-Pentane 350 0
n-Hexane 50 0

Feed Product 1 Product 2

Phase condition Liquid Vapor Liquid
Temperature, K 364 313 394
Enthalpy, kJ/kmol 19,480 25,040 25,640
Entropy, kJ/kmol-K 36.64 33.13 54.84

2.2 In petroleum refineries, a mixture of paraffins and cycloparaf-
fins is commonly reformed in a fixed-bed catalytic reactor to pro-
duce blending stocks for gasoline and aromatic precursors for
making petrochemicals. A typical multicomponent product from
catalytic reforming is a mixture of ethylbenzene with the three
xylene isomers. If this mixture is separated, these four chemicals
can then be subsequently processed to make styrene, phthalic an-
hydride, isophthalic acid, and terephthalic acid. Compute, using the
following data, the minimum work of separation in Btu/h for
T0 � 560◦R if the mixture below is separated at 20 psia into three
products.

Split Fraction (SF)

Feed, Product Product Product
Component lbmol/h 1 2 3

Ethylbenzene 150 0.96 0.04 0.000
p-Xylene 190 0.005 0.99 0.005
m-Xylene 430 0.004 0.99 0.006
o-Xylene 230 0.00 0.015 0.985



Product Product Product
Feed 1 2 3

Phase condition Liquid Liquid Liquid Liquid
Temperature, ◦F 305 299 304 314
Enthalpy, 29,290 29,750 29,550 28,320
Btu/lbmol

Entropy, 15.32 12.47 13.60 14.68
Btu/lbmol-◦R

2.3 Distillation column C3 in Figure 1.9 separates stream 5 into
streams 6 and 7, according to the material balance in Table 1.5. A
suitable column for the separation, if carried out at 700 kPa, con-
tains 70 plates with a condenser duty of 27,300,000 kJ/h. Using the
following data and an infinite surroundings temperature, T0, of
298.15 K, compute:

(a) The duty of the reboiler in kJ/h

(b) The irreversible production of entropy in kJ/h-K, assuming the
use of cooling water at a nominal temperature of 25◦C for the con-
denser and saturated steam at 100◦C for the reboiler

(c) The lost work in kJ/h

(d) The minimum work of separation in kJ/h
(e) The second-law efficiency

Assume the shaft work of the reflux pump is negligible.

Feed Distillate Bottoms
(Stream 5) (Stream 6) (Stream 7)

Phase condition Liquid Liquid Liquid
Temperature, K 348 323 343
Pressure, kPa 1,950 700 730
Enthalpy, 17,000 13,420 15,840
kJ/kmol

Entropy, 25.05 5.87 21.22
kJ/kmol-K

2.4 A spiral-wound, nonporous cellulose acetate membrane sepa-
rator is to be used to separate a gas containing H2, CH4, and C2H6.
The permeate will be 95 mol% pure H2 and will contain no ethane.
The relative split ratio (separation power), SP, for H2 relative to
methane will be 47. Using the following data and an infinite sur-
roundings temperature of 80◦F, compute:

(a) The irreversible production of entropy in Btu/h-R

(b) The lost work in Btu/h
(c) The minimum work of separation in Btu/h. Why is it negative?

What other method(s) might be used to make the separation?

Feed flow rates,
lbmol/h

H2 3,000
CH4 884
C2H6 120

Stream properties:

Feed Permeate Retentate

Phase condition Vapor Vapor Vapor
Temperature, ◦F 80 80 80
Pressure, psia 365 50 365
Enthalpy, 8,550 8,380 8,890
Btu/lbmol

Entropy, 1.520 4.222 2.742
Btu/lbmol-R

Section 2.2

2.5 Which of the following K-value expressions, if any, is (are)
rigorous? For those expressions that are not rigorous, cite the
assumptions involved.

(a) Ki = �̄i L/�̄iV

(b) Ki = �i L/�i L

(c) Ki = �i L

(d) Ki = �i L �i L/�̄iV

(e) Ki = Ps
i /P

(f) Ki = �i L �i L/�iV �iV

(g) Ki = �i L Ps
i /P

2.6 Experimental measurements of Vaughan and Collins [Ind. Eng.
Chem., 34, 885 (1942)] for the propane–isopentane system at 167◦F
and 147 psia show for propane a liquid-phase mole fraction of 0.2900
in equilibrium with a vapor-phase mole fraction of 0.6650. Calculate:

(a) The K-values for C3 and iC5 from the experimental data.
(b) Estimates of the K-values of C3 and iC5 from Raoult’s law
assuming vapor pressures at 167◦F of 409.6 and 58.6 psia,
respectively.

Compare the results of (a) and (b).Assuming the experimental values
are correct, how could better estimates of the K-values be achieved?
To respond to this question, compare the rigorous expression
Ki = �i L �i L/�̄iV to the Raoult’s law expression Ki = Ps

i /P.

2.7 Mutual solubility data for the isooctane (1)/furfural (2) sys-
tem at 25°C are [Chem. Eng. Sci., 6, 116 (1957)]

Liquid Phase I Liquid Phase II

x1 0.0431 0.9461

Compute:

(a) The distribution coefficients for isooctane and furfural

(b) The relative selectivity for isooctane relative to furfural
(c) The activity coefficient of isooctane in liquid phase 1 and the
activity coefficient of furfural in liquid phase 2 assuming
� (1)

2 = 1.0 and � (2)
1 = 1.0.

2.8 In petroleum refineries, streams rich in alkylbenzenes and
alkylnaphthalenes result from catalytic cracking operations. Such
streams can be hydrodealkylated to more valuable products such as
benzene and naphthalene. At 25°C, solid naphthalene (normal
melting point � 80.3°C) has the following solubilities in various
liquid solvents [Naphthalene, API Publication 707, Washington,
DC (Oct. 1978)], including benzene:

Mole Fraction
Solvent Naphthalene

Benzene 0.2946
Cyclohexane 0.1487
Carbon tetrachloride 0.2591
n-Hexane 0.1168
Water 0.18 × 10−5

For each solvent, compute the activity coefficient of naphthalene in
the liquid solvent phase using the following equations for the vapor
pressure in torr of solid and liquid naphthalene:

ln Ps
solid = 26.708 − 8,712/T

ln Ps
liquid = 16.1426 − 3992.01/(T − 71.29)

where T is in K.

62 Chapter 2 Thermodynamics of Separation Operations
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Section 2.3

2.9 A binary ideal-gas mixture of A and B undergoes an isother-
mal, isobaric separation at T0, the infinite surroundings tempera-
ture. Starting with Eq. (4), Table 2.1, derive an equation for the
minimum work of separation, Wmin, in terms of mole fractions of
the feed and the two products. Use your equation to prepare a plot
of the dimensionless group, Wmin/RT0nF, as a function of mole frac-
tion of A in the feed for:

(a) A perfect separation

(b) A separation with SFA � 0.98, SFB � 0.02

(c) A separation with SRA � 9.0 and SRB = 1
9

(d) A separation with SF � 0.95 for A and SPA,B � 361

How sensitive is Wmin to product purities? Does Wmin depend on the
particular separation operation used?

Prove, by calculus, that the largest value of Wmin occurs for a
feed with equimolar quantities of A and B.

2.10 The separation of isopentane from n-pentane by distillation
is difficult (approximately 100 trays are required), but is commonly
practiced in industry. Using the extended Antoine vapor pressure
equation, (2-39), with the constants below and in conjunction with
Raoult’s law, calculate relative volatilities for the isopentane/
n-pentane system and compare the values on a plot with the
following smoothed experimental values [J. Chem. Eng. Data, 8,
504 (1963)]:

Temperature, �F αiC5,nC5

125 1.26
150 1.23
175 1.21
200 1.18
225 1.16
250 1.14

What do you conclude about the applicability of Raoult’s law in
this temperature range for this binary system?

Vapor pressure constants for (2-39) with vapor pressure in kPa
and T in K are

iC5 nC5

k1 13.6106 13.9778
k2 −2,345.09 −2,554.60
k3 −40.2128 −36.2529
k4, k5, k6 0 0

2.11 Operating conditions at the top of a vacuum distillation col-
umn for the separation of ethylbenzene from styrene are given below,
where the overhead vapor is condensed in an air-cooled condenser to
give subcooled reflux and distillate. Using the property constants in
Example 2.3, estimate the heat transfer rate (duty) for the condenser
in kJ/h, assuming an ideal gas and ideal gas and liquid solutions.

Overhead
Vapor Reflux Distillate

Phase condition Vapor Liquid Liquid
Temperature, K 331 325 325
Pressure, kPa 6.69 6.40 6.40
Component flow 
rates, kg/h:
Ethylbenzene 77,500 66,960 10,540
Styrene 2,500 2,160 340

2.12 Toluene can be hydrodealkylated to benzene, but the conver-
sion per pass through the reactor is only about 70%. Consequently,
the toluene must be recovered and recycled. Typical conditions
for the feed to a commercial distillation unit are 100°F, 20 psia,
415 lbmol/h of benzene, and 131 lbmol/h of toluene. Based on the
property constants below, and assuming that the ideal gas, ideal
liquid solution model of Table 2.4 applies at this low pressure, prove
that the mixture is a liquid and estimate vL and �L in American engi-
neering units.

Property constants for (2-38) and (2-39), where in all cases, T is
in K, are

Benzene Toluene

M, kg/kmol 78.114 92.141
Ps, torr:
k1 15.9008 16.0137
k2 −2,788.51 −3,096.52
k3 −52.36 −53.67
k4, k5, k6 0 0

�L , kg/m3:
A 304.1 290.6
B 0.269 0.265
Tc 562.0 593.1

Section 2.4

2.13 Measured conditions for the bottoms from a depropanizer
distillation unit in a small refinery are given below. Using the data
in Figure 2.3 and assuming an ideal liquid solution (volume of mix-
ing � 0), compute the liquid density in lb/ft3, lb/gal, lb/bbl (42 gal),
and kg/m3.

Phase Condition Liquid

Temperature, ◦F 229
Pressure, psia 282
Flow rates, lbmol/h:

C3 2.2
iC4 171.1
nC4 226.6
iC5 28.1
nC5 17.5

2.14 Isopropanol, containing 13 wt% water, can be dehydrated to
obtain almost pure isopropanol at a 90% recovery by azeotropic
distillation with benzene. When condensed, the overhead vapor
from the column splits into two immiscible liquid phases. Use the
relations in Table 2.4 with data in Perry’s Handbook and the oper-
ating conditions below to compute the rate of heat transfer in Btu/h
and kJ/h for the condenser.

Organic-
Water-Rich Rich

Overhead Phase Phase

Phase Vapor Liquid Liquid
Temperature, ◦C 76 40 40
Pressure, bar 1.4 1.4 1.4
Flow rate, kg/h:

Isopropanol 6,800 5,870 930
Water 2,350 1,790 560
Benzene 24,600 30 24,570

2.15 A hydrocarbon vapor–liquid mixture at 250°F and 500 psia
contains N2, H2S, CO2, and all the normal paraffins from methane
to heptane. Use Figure 2.8 to estimate the K-value of each



component in the mixture. Which components will have a tendency
to be present to a greater extent in the equilibrium vapor?

2.16 Acetone, a valuable solvent, can be recovered from air by ab-
sorption in water or by adsorption on activated carbon. If absorption
is used, the conditions for the streams entering and leaving are as
listed below. If the absorber operates adiabatically, estimate the tem-
perature of the exiting liquid phase using a simulation program.

Feed Gas Liquid 
Gas Absorbent Out Out

Flow rate, lbmol/h:
Air 687 0 687 0
Acetone 15 0 0.1 14.9
Water 0 1,733 22 1,711

Temperature, ◦F 78 90 80 —
Pressure, psia 15 15 14 15
Phase Vapor Liquid Vapor Liquid

Some concern has been expressed about the possible explosion
hazard associated with the feed gas. The lower and upper flamma-
bility limits for acetone in air are 2.5 and 13 mol%, respectively. Is
the mixture within the explosive range? If so, what can be done to
remedy the situation?

Section 2.5

2.17 Subquality natural gas contains an intolerable amount of
nitrogen impurity. Separation processes that can be used to remove
nitrogen include cryogenic distillation, membrane separation, and
pressure-swing adsorption. For the latter process, a set of typical
feed and product conditions is given below. Assume a 90% removal
of N2 and a 97% methane natural-gas product. Using the R–K equa-
tion of state with the constants listed below, compute the flow rate in
thousands of actual cubic feet per hour for each of the three streams.

N2 CH4

Feed flow rate, lbmol/h: 176 704
Tc, K 126.2 190.4
Pc, bar 33.9 46.0

Stream conditions are

Feed
(Subquality Product Waste

Natural Gas) (Natural Gas) Gas

Temperature, ◦F 70 100 70
Pressure, psia 800 790 280

2.18 Use the R–K equation of state to estimate the partial fugac-
ity coefficients of propane and benzene in the vapor mixture of
Example 2.5.

2.19 Use a computer-aided, steady-state simulation program to es-
timate the K-values, using the P–R and S–R–K equations of state, of
an equimolar mixture of the two butane isomers and the four butene
isomers at 220°F and 276.5 psia. Compare these values with the fol-
lowing experimental results [J. Chem. Eng. Data, 7, 331 (1962)]:

Component K-value

Isobutane 1.067
Isobutene 1.024
n-Butane 0.922
1-Butene 1.024
trans-2-Butene 0.952
cis-2-Butene 0.876

2.20 The disproportionation of toluene to benzene and xylenes is
carried out in a catalytic reactor at 500 psia and 950°F. The reactor
effluent is cooled in a series of heat exchangers for heat recovery
until a temperature of 235°F is reached at a pressure of 490 psia.
The effluent is then further cooled and partially condensed by the
transfer of heat to cooling water in a final exchanger. The resulting
two-phase equilibrium mixture at 100°F and 485 psia is then sepa-
rated in a flash drum. For the reactor effluent composition given
below, use a computer-aided, steady-state simulation program with
the S–R–K and P–R equations of state to compute the component
flow rates in lbmol/h in both the resulting vapor and liquid streams,
the component K-values for the equilibrium mixture, and the rate of
heat transfer to the cooling water. Compare the results.

Reactor Effluent,
Component lbmol/h

H2 1,900
CH4 215
C2H6 17
Benzene 577
Toluene 1,349
p-Xylene 508

Section 2.6

2.21 For an ambient separation process where the feed and prod-
ucts are all nonideal liquid solutions at the infinite surroundings
temperature, T0, (4) of Table 2.1 for the minimum work of separa-
tion reduces to

Wmin

RT0
=

∑
out

n

[∑
i

xi ln(�i xi )

]
−

∑
in

n

[∑
i

xi ln(�i xi )

]

For the liquid-phase separation at ambient conditions (298 K, 101.3
kPa) of a 35 mol% mixture of acetone (1) in water (2) into 99 mol%
acetone and 98 mol% water products, calculate the minimum work
in kJ/kmol of feed. Liquid-phase activity coefficients at ambient
conditions are correlated reasonably well by the van Laar equations
with A12 � 2.0 and A21 � 1.7. What would the minimum rate of
work be if acetone and water formed an ideal liquid solution?

2.22 The sharp separation of benzene and cyclohexane by distil-
lation at ambient pressure is impossible because of the formation of
an azeotrope at 77.6°C. K.C. Chao [Ph.D. thesis, University of
Wisconsin (1956)] obtained the following vapor–liquid equilib-
rium data for the benzene (B)/cyclohexane (CH) system at 1 atm:

T, �C xB yB �B �CH

79.7 0.088 0.113 1.300 1.003
79.1 0.156 0.190 1.256 1.008
78.5 0.231 0.268 1.219 1.019
78.0 0.308 0.343 1.189 1.032
77.7 0.400 0.422 1.136 1.056
77.6 0.470 0.482 1.108 1.075
77.6 0.545 0.544 1.079 1.102
77.6 0.625 0.612 1.058 1.138
77.8 0.701 0.678 1.039 1.178
78.0 0.757 0.727 1.025 1.221
78.3 0.822 0.791 1.018 1.263
78.9 0.891 0.863 1.005 1.328
79.5 0.953 0.938 1.003 1.369
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Exercises 65

Vapor pressure is given by (2-39), where constants for benzene are
in Exercise 2.12 and constants for cyclohexane are k1 � 15.7527,
k2 = −2766.63, and k3 = −50.50.

(a) Use the data to calculate and plot the relative volatility of ben-
zene with respect to cyclohexane versus benzene composition in
the liquid phase. What happens to the relative volatility in the vicin-
ity of the azeotrope?
(b) From the azeotropic composition for the benzene/cyclohexane
system, calculate the constants in the van Laar equation. With
these constants, use the van Laar equation to compute the activity
coefficients over the entire range of composition and compare
them, in a plot like Figure 2.16, with the above experimental
data. How well does the van Laar equation predict the activity
coefficients?

2.23 Benzene can be used to break the ethanol/water azeotrope so
as to produce nearly pure ethanol. The Wilson constants for the
ethanol(1)/benzene(2) system at 45°C are �12 = 0.124 and
�21 = 0.523. Use these constants with the Wilson equation to
predict the liquid-phase activity coefficients for this system over
the entire range of composition and compare them, in a plot like
Figure 2.16, with the following experimental results [Austral. J.
Chem., 7, 264 (1954)]:

x1 ln �1 ln �2

0.0374 2.0937 0.0220
0.0972 1.6153 0.0519

x1 ln �1 ln �2

0.3141 0.7090 0.2599
0.5199 0.3136 0.5392
0.7087 0.1079 0.8645
0.9193 0.0002 1.3177
0.9591 −0.0077 1.3999

2.24 For the binary system ethanol(1)/isooctane(2) at 50°C, the
infinite-dilution, liquid-phase activity coefficients are �∞

1 = 21.17
and �∞

2 = 9.84.

(a) Calculate the constants A12 and A21 in the van Laar equations.

(b) Calculate the constants �12 and �21 in the Wilson equations.

(c) Using the constants from (a) and (b), calculate �1 and �2 over
the entire composition range and plot the calculated points as log �
versus x1.

(d) How well do the van Laar and Wilson predictions agree
with the azeotropic point where x1 � 0.5941, �1 = 1.44, and
�2 = 2.18?

(e) Show that the van Laar equation erroneously predicts
separation into two liquid phases over a portion of the composi-
tion range by calculating and plotting a y–x diagram like Fig-
ure 2.20.


