
Chapter 3

Mass Transfer and Diffusion

barriers, such as membranes, differing species mass-transfer
rates through the membrane govern equipment design.

In a binary mixture, molecular diffusion of component
A with respect to B occurs because of different potentials
or driving forces, which include differences (gradients)
of concentration (ordinary diffusion), pressure (pressure
diffusion), temperature (thermal diffusion), and external force
fields (forced diffusion) that act unequally on the different
chemical species present. Pressure diffusion requires a large
pressure gradient, which is achieved for gas mixtures with a
centrifuge. Thermal diffusion columns or cascades can be
employed to separate liquid and gas mixtures by establishing
a temperature gradient. More widely applied is forced
diffusion in an electrical field, to cause ions of different
charges to move in different directions at different speeds.

In this chapter, only molecular diffusion caused by
concentration gradients is considered, because this is the
most common type of molecular diffusion in separation
processes. Furthermore, emphasis is on binary systems, for
which molecular-diffusion theory is relatively simple and
applications are relatively straightforward. Multicomponent
molecular diffusion, which is important in many applica-
tions, is considered briefly in Chapter 12. Diffusion in multi-
component systems is much more complex than diffusion in
binary systems, and is a more appropriate topic for advanced
study using a text such as Taylor and Krishna [1].

Molecular diffusion occurs in solids and in fluids that are
stagnant or in laminar or turbulent motion. Eddy diffusion
occurs in fluids in turbulent motion. When both molecular
diffusion and eddy diffusion occur, they take place in
parallel and are additive. Furthermore, they take place
because of the same concentration difference (gradient).
When mass transfer occurs under turbulent-flow conditions,
but across an interface or to a solid surface, conditions may
be laminar or nearly stagnant near the interface or solid
surface. Thus, even though eddy diffusion may be the
dominant mechanism in the bulk of the fluid, the overall rate
of mass transfer may be controlled by molecular diffusion
because the eddy-diffusion mechanism is damped or even
eliminated as the interface or solid surface is approached.

Mass transfer of one or more species results in a total net
rate of bulk flow or flux in one direction relative to a fixed
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Mass transfer is the net movement of a component in a
mixture from one location to another where the component
exists at a different concentration. In many separation
operations, the transfer takes place between two phases
across an interface. Thus, the absorption by a solvent liquid
of a solute from a carrier gas involves mass transfer of the
solute through the gas to the gas–liquid interface, across the
interface, and into the liquid. Mass-transfer models describe
this and other processes such as passage of a species through
a gas to the outer surface of a porous, adsorbent particle and
into the adsorbent pores, where the species is adsorbed on
the porous surface. Mass transfer also governs selective
permeation through a nonporous, polymeric material of a
component of a gas mixture. Mass transfer, as used here,
does not refer to the flow of a fluid through a pipe. However,
mass transfer might be superimposed on that flow. Mass
transfer is not the flow of solids on a conveyor belt.

Mass transfer occurs by two basic mechanisms:
(1) molecular diffusion by random and spontaneous micro-
scopic movement of individual molecules in a gas, liquid, or
solid as a result of thermal motion; and (2) eddy (turbulent)
diffusion by random, macroscopic fluid motion. Both
molecular and/or eddy diffusion frequently involve the
movement of different species in opposing directions. When
a net flow occurs in one of these directions, the total rate of
mass transfer of individual species is increased or decreased
by this bulk flow or convection effect, which may be
considered a third mechanism of mass transfer. Molecular
diffusion is extremely slow, whereas eddy diffusion is orders
of magnitude more rapid. Therefore, if industrial separation
processes are to be conducted in equipment of reasonable
size, fluids must be agitated and interfacial areas maximized.
If mass transfer in solids is involved, using small particles to
decrease the distance in the direction of diffusion will
increase the rate.

When separations involve two or more phases, the extent
of the separation is limited by phase equilibrium, because,
with time, the phases in contact tend to equilibrate by mass
transfer between phases. When mass transfer is rapid,
equilibration is approached in seconds or minutes, and
design of separation equipment may be based on phase
equilibrium, not mass transfer. For separations involving
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plane or stationary coordinate system. When a net flux
occurs, it carries all species present. Thus, the molar flux of
an individual species is the sum of all three mechanisms. If
Ni is the molar flux of species i with mole fraction xi, and N
is the total molar flux, with both fluxes in moles per unit time
per unit area in a direction perpendicular to a stationary
plane across which mass transfer occurs, then

Ni = xi N + molecular diffusion flux of i
+ eddy diffusion flux of i (3-1)

where xiN is the bulk-flow flux. Each term in (3-1) is positive
or negative depending on the direction of the flux relative to

the direction selected as positive. When the molecular and
eddy-diffusion fluxes are in one direction and N is in the
opposite direction, even though a concentration difference
or gradient of i exists, the net mass-transfer flux, Ni, of i can
be zero.

In this chapter, the subject of mass transfer and diffusion
is divided into seven areas: (1) steady-state diffusion in
stagnant media, (2) estimation of diffusion coefficients,
(3) unsteady-state diffusion in stagnant media, (4) mass
transfer in laminar flow, (5) mass transfer in turbulent flow,
(6) mass transfer at fluid–fluid interfaces, and (7) mass
transfer across fluid–fluid interfaces.

3.0 INSTRUCTIONAL OBJECTIVES

After completing this chapter, you should be able to:

• Explain the relationship between mass transfer and phase equilibrium.
• Explain why separation models for mass transfer and phase equilibrium are useful.
• Discuss mechanisms of mass transfer, including the effect of bulk flow.
• State, in detail, Fick’s law of diffusion for a binary mixture and discuss its analogy to Fourier’s law of heat

conduction in one dimension.
• Modify Fick’s law of diffusion to include the bulk flow effect.
• Calculate mass-transfer rates and composition gradients under conditions of equimolar, countercurrent diffusion

and unimolecular diffusion.
• Estimate, in the absence of data, diffusivities (diffusion coefficients) in gas and liquid mixtures, and know of some

sources of data for diffusion in solids.
• Calculate multidimensional, unsteady-state, molecular diffusion by analogy to heat conduction.
• Calculate rates of mass transfer by molecular diffusion in laminar flow for three common cases: (1) falling liquid

film, (2) boundary-layer flow past a flat plate, and (3) fully developed flow in a straight, circular tube.
• Define a mass-transfer coefficient and explain its analogy to the heat-transfer coefficient and its usefulness, as an

alternative to Fick’s law, in solving mass-transfer problems.
• Understand the common dimensionless groups (Reynolds, Sherwood, Schmidt, and Peclet number for mass

transfer) used in correlations of mass-transfer coefficients.
• Use analogies, particularly that of Chilton and Colburn, and more theoretically based equations, such as those of

Churchill et al., to calculate rates of mass transfer in turbulent flow.
• Calculate rates of mass transfer across fluid–fluid interfaces using the two-film theory and the penetration

theory.

3.1 STEADY-STATE, ORDINARY
MOLECULAR DIFFUSION

Suppose a cylindrical glass vessel is partly filled with water
containing a soluble red dye. Clear water is carefully added
on top so that the dyed solution on the bottom is undisturbed.
At first, a sharp boundary exists between the two layers, but
after a time the upper layer becomes colored, while the layer
below becomes less colored. The upper layer is more col-
ored near the original interface between the two layers and
less colored in the region near the top of the upper layer.
During this color change, the motion of each dye molecule is
random, undergoing collisions mainly with water molecules
and sometimes with other dye molecules, moving first in one

direction and then in another, with no one direction pre-
ferred. This type of motion is sometimes referred to as a
random-walk process, which yields a mean-square distance
of travel for a given interval of time, but not a direction of
travel. Thus, at a given horizontal plane through the solution
in the cylinder, it is not possible to determine whether, in a
given time interval, a given molecule will cross the plane or
not. However, on the average, a fraction of all molecules in
the solution below the plane will cross over into the region
above and the same fraction will cross over in the opposite
direction. Therefore, if the concentration of dye molecules in
the lower region is greater than in the upper region, a net rate
of mass transfer of dye molecules will take place from the
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lower to the upper region. After a long time, a dynamic equi-
librium will be achieved and the concentration of dye will be
uniform throughout the solution. Based on these observa-
tions, it is clear that:

1. Mass transfer by ordinary molecular diffusion occurs
because of a concentration, difference or gradient; that
is, a species diffuses in the direction of decreasing
concentration.

2. The mass-transfer rate is proportional to the area normal
to the direction of mass transfer and not to the volume
of the mixture. Thus, the rate can be expressed as a flux.

3. Net mass transfer stops when concentrations are
uniform.

Fick’s Law of Diffusion

The above observations were quantified by Fick in 1855, who
proposed an extension of Fourier’s 1822 heat-conduction
theory. Fourier’s first law of heat conduction is

qz = −k
dT

dz
(3-2)

where qz is the heat flux by conduction in the positive z-
direction, k is the thermal conductivity of the medium, and
dT/dz is the temperature gradient, which is negative in the
direction of heat conduction. Fick’s first law of molecular
diffusion also features a proportionality between a flux and a
gradient. For a binary mixture of A and B,

JAz = −DAB
dcA

dz
(3-3a)

and

JBz = −DBA
dcB

dz
(3-3b)

where, in (3-3a), JAz is the molar flux of A by ordinary mol-
ecular diffusion relative to the molar-average velocity of the
mixture in the positive z direction, DAB is the mutual diffu-
sion coefficient of A in B, discussed in the next section, cA is
the molar concentration of A, and dcA/dz is the concentra-
tion gradient of A, which is negative in the direction of ordi-
nary molecular diffusion. Similar definitions apply to (3-3b).
The molar fluxes of A and B are in opposite directions. If the
gas, liquid, or solid mixture through which diffusion occurs
is isotropic, then values of k and DAB are independent of di-
rection. Nonisotropic (anisotropic) materials include fibrous
and laminated solids as well as single, noncubic crystals.
The diffusion coefficient is also referred to as the diffusivity
and the mass diffusivity (to distinguish it from thermal and
momentum diffusivities).

Many alternative forms of (3-3a) and (3-3b) are used,
depending on the choice of driving force or potential in the
gradient. For example, we can express (3-3a) as

JA = −cDAB
dxA

dz
(3-4)

where, for convenience, the z subscript on J has been
dropped, c = total molar concentration or molar density
(c = 1/v = �/M), and xA � mole fraction of species A.

Equation (3-4) can also be written in the following equiv-
alent mass form, where jA is the mass flux of A by ordinary
molecular diffusion relative to the mass-average velocity of
the mixture in the positive z-direction, � is the mass density,
and wA is the mass fraction of A:

jA = −�DAB
dwA

dz
(3-5)

Velocities in Mass Transfer

It is useful to formulate expressions for velocities of chemi-
cal species in the mixture. If these velocities are based on
the molar flux, N, and the molar diffusion flux, J, the molar
average velocity of the mixture, vM , relative to stationary
coordinates is given for a binary mixture as

vM = N

c
= NA + NB

c
(3-6)

Similarly, the velocity of species i, defined in terms of Ni, is
relative to stationary coordinates:

vi = Ni

ci
(3-7)

Combining (3-6) and (3-7) with xi = ci/c gives

vM = xAvA + xBvB (3-8)

Alternatively, species diffusion velocities, viD , defined in
terms of Ji, are relative to the molar-average velocity and are
defined as the difference between the species velocity and
the molar-average velocity for the mixture:

viD = Ji

ci
= vi − vM (3-9)

When solving mass-transfer problems involving net
movement of the mixture, it is not convenient to use fluxes
and flow rates based on vM as the frame of reference. Rather,
it is preferred to use mass-transfer fluxes referred to station-
ary coordinates with the observer fixed in space. Thus, from
(3-9), the total species velocity is

vi = vM + viD (3-10)

Combining (3-7) and (3-10),

Ni = civM + civiD (3-11)

Combining (3-11) with (3-4), (3-6), and (3-7),

NA = nA

A
= xA N − cDAB

(
dxA

dz

)
(3-12)

and

NB = nB

A
= xB N − cDBA

(
dxB

dz

)
(3-13)
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where in (3-12) and (3-13), ni is the molar flow rate in moles
per unit time, A is the mass-transfer area, the first terms on the
right-hand sides are the fluxes resulting from bulk flow, and
the second terms on the right-hand sides are the ordinary mol-
ecular diffusion fluxes. Two limiting cases are important:

1. Equimolar counterdiffusion (EMD)

2. Unimolecular diffusion (UMD)

Equimolar Counterdiffusion

In equimolar counterdiffusion (EMD), the molar fluxes of A
and B in (3-12) and (3-13) are equal but opposite in direc-
tion; thus,

N = NA + NB = 0 (3-14)

Thus, from (3-12) and (3-13), the diffusion fluxes are also
equal but opposite in direction:

JA = −JB (3-15)

This idealization is closely approached in distillation. From
(3-12) and (3-13), we see that in the absence of fluxes other
than molecular diffusion,

NA = JA = −cDAB

(
dxA

dz

)
(3-16)

and

NB = JB = −cDBA

(
dxB

dz

)
(3-17)

If the total concentration, pressure, and temperature are
constant and the mole fractions are maintained constant (but
different) at two sides of a stagnant film between z1 and z2,
then (3-16) and (3-17) can be integrated from z1 to any z
between z1 and z2 to give

JA = cDAB

z − z1
(xA1 − xA) (3-18)

and

JB = cDBA

z − z1
(xB1 − xB) (3-19)

Thus, in the steady state, the mole fractions are linear in dis-
tance, as shown in Figure 3.1a. Furthermore, because c is
constant through the film, where

c = cA + cB (3-20)

by differentiation,

dc = 0 = dcA + dcB (3-21)

Thus,

dcA = −dcB (3-22)

From (3-3a), (3-3b), (3-15), and (3-22),

DAB

dz
= DBA

dz
(3-23)

Therefore, DAB = DBA.
This equality of diffusion coefficients is always true in a

binary system of constant molar density.

Two bulbs are connected by a straight tube, 0.001 m in diameter
and 0.15 m in length. Initially the bulb at end 1 contains N2 and the
bulb at end 2 contains H2. The pressure and temperature are main-
tained constant at 25◦C and 1 atm. At a certain time after allowing
diffusion to occur between the two bulbs, the nitrogen content of
the gas at end 1 of the tube is 80 mol% and at end 2 is 25 mol%. If
the binary diffusion coefficient is 0.784 cm2/s, determine:

(a) The rates and directions of mass transfer of hydrogen and
nitrogen in mol/s

(b) The species velocities relative to stationary coordinates,
in cm/s

SOLUTION

(a) Because the gas system is closed and at constant pressure and
temperature, mass transfer in the connecting tube is equimolar
counterdiffusion by molecular diffusion.

The area for mass transfer through the tube, in cm2, is A =
3.14(0.1)2/4 = 7.85 × 10−3 cm2. The total gas concentration (molar
density) is c = P

RT = 1
(82.06)(298) = 4.09 × 10−5 mol/cm3. Take the

reference plane at end 1 of the connecting tube. Applying (3-18) to

EXAMPLE 3.1

Figure 3.1 Concentration profiles for limiting
cases of ordinary molecular diffusion in binary
mixtures across a stagnant film: (a) equimolar
counterdiffusion (EMD); (b) unimolecular
diffusion (UMD).
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N2 over the length of the tube,

nN2 = cDN2 ,H2

z2 − z1
[(xN2 )1 − (xN2 )2]A

= (4.09 × 10−5)(0.784)(0.80 − 0.25)

15
(7.85 × 10−3)

= 9.23 × 10−9 mol/s in the positive z-direction

nH2 = 9.23 × 10−9 mol/s in the negative z-direction

(b) For equimolar counterdiffusion, the molar-average velocity of
the mixture, vM, is 0. Therefore, from (3-9), species velocities are
equal to species diffusion velocities. Thus,

vN2 = (vN2 )D = JN2

cN2

= nN2

AcxN2

= 9.23 × 10−9

[(7.85 × 10−3)(4.09 × 10−5)xN2 ]

= 0.0287

xN2

in the positive z-direction

Similarly,

vH2 = 0.0287

xH2

in the negative z-direction

Thus, species velocities depend on species mole fractions, as
follows:

z, cm xN2 xH2 vN2 , cm/s vH2 , cm/s

0 (end 1) 0.800 0.200 0.0351 −0.1435
5 0.617 0.383 0.0465 −0.0749

10 0.433 0.567 0.0663 −0.0506
15 (end 2) 0.250 0.750 0.1148 −0.0383

Note that species velocities vary across the length of the connect-
ing tube, but at any location, z, vM = 0. For example, at z = 10 cm,
from (3-8),

vM = (0.433)(0.0663) + (0.567)(−0.0506) = 0

Unimolecular Diffusion

In unimolecular diffusion (UMD), mass transfer of compo-
nent A occurs through stagnant (nonmoving) component B.
Thus,

NB = 0 (3-24)

and

N = NA (3-25)

Therefore, from (3-12),

NA = xA NA − cDAB
dxA

dz
(3-26)

which can be rearranged to a Fick’s-law form,

NA = − cDAB

(1 − xA)

dxA

dz
= −cDAB

xB

dxA

dz
(3-27)

The factor (1 − xA) accounts for the bulk-flow effect. For a
mixture dilute in A, the bulk-flow effect is negligible or
small. In mixtures more concentrated in A, the bulk-flow
effect can be appreciable. For example, in an equimolar
mixture of A and B, (1 − xA) = 0.5 and the molar mass-
transfer flux of A is twice the ordinary molecular-diffusion
flux.

For the stagnant component, B, (3-13) becomes

0 = xB NA − cDBA
dxB

dz
(3-28)

or

xB NA = cDBA
dxB

dz
(3-29)

Thus, the bulk-flow flux of B is equal but opposite to its
diffusion flux.

At quasi-steady-state conditions, that is, with no accumu-
lation, and with constant molar density, (3-27) becomes in
integral form:∫ z

z1

dz = −cDAB

NA

∫ xA

xA1

dxA

1 − xA
(3-30)

which upon integration yields

NA = cDAB

z − z1
ln

(
1 − xA

1 − xA1

)
(3-31)

Rearrangement to give the mole-fraction variation as a func-
tion of z yields

xA = 1 − (1 − xA1 ) exp

[
NA(z − z1)

cDAB

]
(3-32)

Thus, as shown in Figure 3.1b, the mole fractions are non-
linear in distance.

An alternative and more useful form of (3-31) can be
derived from the definition of the log mean. When z = z2,
(3-31) becomes

NA = cDAB

z2 − z1
ln

(
1 − xA2

1 − xA1

)
(3-33)

The log mean (LM) of (1 − xA) at the two ends of the stag-
nant layer is

(1 − xA)LM = (1 − xA2 ) − (1 − xA1 )

ln[(1 − xA2 )/(1 − xA1 )]

= xA1 − xA2

ln[(1 − xA2 )/(1 − xA1 )]

(3-34)

Combining (3-33) with (3-34) gives

NA = cDAB

z2 − z1

(xA1 − xA2 )

(1 − xA)LM
= cDAB

(1 − xA)LM

(−�xA)

�z

= cDAB

(xB)LM

(−�xA)

�z

(3-35)

70 Chapter 3 Mass Transfer and Diffusion
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As shown in Figure 3.2, an open beaker, 6 cm in height, is filled
with liquid benzene at 25◦C to within 0.5 cm of the top. A gentle
breeze of dry air at 25◦C and 1 atm is blown by a fan across the
mouth of the beaker so that evaporated benzene is carried away by
convection after it transfers through a stagnant air layer in the
beaker. The vapor pressure of benzene at 25◦C is 0.131 atm. The
mutual diffusion coefficient for benzene in air at 25◦C and 1 atm is
0.0905 cm2/s. Compute:

(a) The initial rate of evaporation of benzene as a molar flux in
mol/cm2-s

(b) The initial mole-fraction profiles in the stagnant air layer

(c) The initial fractions of the mass-transfer fluxes due to molecu-
lar diffusion

(d) The initial diffusion velocities, and the species velocities (rela-
tive to stationary coordinates) in the stagnant layer

(e) The time in hours for the benzene level in the beaker to drop
2 cm from the initial level, if the specific gravity of liquid ben-
zene is 0.874. Neglect the accumulation of benzene and air in
the stagnant layer as it increases in height

SOLUTION

Let A � benzene, B � air.

c = P

RT
= 1

(82.06)(298)
= 4.09 × 10−5 mol/cm3

(a) Take z1 � 0. Then z2 − z1 = �z = 0.5 cm. From Dalton’s law,
assuming equilibrium at the liquid benzene–air interface,

xA1 = pA1

P
= 0.131

1
= 0.131 xA2 = 0

(1 − xA)LM = 0.131

ln[(1 − 0)/(1 − 0.131)]
= 0.933 = (xB)LM

From (3-35),

NA = (4.09 × 10−5)(0.0905)

0.5

(
0.131

0.933

)
= 1.04 × 10−6 mol/cm2-s

(b)
NA(z − z1)

cDAB
= (1.04 × 10−6)(z − 0)

(4.09 × 10−5)(0.0905)
= 0.281 z

EXAMPLE 3.2 From (3-32),

xA = 1 − 0.869 exp(0.281 z) (1)

Using (1), the following results are obtained:

z, cm xA xB

0.0 0.1310 0.8690
0.1 0.1060 0.8940
0.2 0.0808 0.9192
0.3 0.0546 0.9454
0.4 0.0276 0.9724
0.5 0.0000 1.0000

These profiles are only slightly curved.

(c) From (3-27) and (3-29), we can compute the bulk flow terms,
xANA and xBNA, from which the molecular diffusion terms are
obtained.

z, cm A B A B

0.0 0.1360 0.9040 0.9040 −0.9040
0.1 0.1100 0.9300 0.9300 −0.9300
0.2 0.0840 0.9560 0.9560 −0.9560
0.3 0.0568 0.9832 0.9832 −0.9832
0.4 0.0287 1.0113 1.0113 −1.0113
0.5 0.0000 1.0400 1.0400 −1.0400

Note that the molecular-diffusion fluxes are equal but opposite,
and the bulk-flow flux of B is equal but opposite to its molecular-
diffusion flux, so that its molar flux, NB, is zero, making B (air)
stagnant.

(d) From (3-6),

vM = N

c
= NA

c
= 1.04 × 10−6

4.09 × 10−5
= 0.0254 cm/s (2)

From (3-9), the diffusion velocities are given by

vid = Ji

ci
= Ji

xi c
(3)

From (3-10), the species velocities relative to stationary coordinates
are

vi = vid + vM (4)

Using (2) to (4), we obtain

z, cm A B A B

0.0 0.1687 −0.0254 0.1941 0
0.1 0.2145 −0.0254 0.2171 0
0.2 0.2893 −0.0254 0.3147 0
0.3 0.4403 −0.0254 0.4657 0
0.4 0.8959 −0.0254 0.9213 0
0.5 ∞ −0.0254 ∞ 0

Ji

Species Velocity,
cm/s 

vid

Molecular-Diffusion 
Velocity, cm/s

Ji

Molecular-Diffusion
Flux, mol/cm2-s × 106

xiN
Bulk-Flow Flux,
mol/cm2-s × 106

Figure 3.2 Evaporation of benzene from a beaker—Example 3.2.
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Note that vB is zero everywhere, because its molecular-diffusion
velocity is negated by the molar-mean velocity.

(e) The mass-transfer flux for benzene evaporation can be equated
to the rate of decrease in the moles of liquid benzene per unit cross
section of the beaker. Letting z = distance down from the mouth of
the beaker and using (3-35) with �z = z,

NA = cDAB

z

(−�xA)

(1 − xA)LM
= �L

ML

dz

dt
(5)

Separating variables and integrating,

∫ t

0
dt = t = �L (1 − xA)LM

ML cDAB(−�xA)

∫ z2

z1

z dz (6)

The coefficient of the integral on the right-hand side of (6) is
constant at

0.874(0.933)

78.11(4.09 × 10−5)(0.0905)(0.131)
= 21,530 s/cm2

∫ z2

z1

z dz =
∫ 2.5

0.5
z dz = 3 cm2

From (6), t = 21,530(3) = 64,590 s or 17.94 h, which is a long time
because of the absence of turbulence.

3.2 DIFFUSION COEFFICIENTS

Diffusivities or diffusion coefficients are defined for a binary
mixture by (3-3) to (3-5). Measurement of diffusion coeffi-
cients must involve a correction for any bulk flow using
(3-12) and (3-13) with the reference plane being such that
there is no net molar bulk flow.

The binary diffusivities, DAB and DBA, are mutual or
binary diffusion coefficients. Other coefficients include DiM ,
the diffusivity of i in a multicomponent mixture; Dii , the
self-diffusion coefficient; and the tracer or interdiffusion
coefficient. In this chapter, and throughout this book, the
focus is on the mutual diffusion coefficient, which will be
referred to as the diffusivity or diffusion coefficient.

Diffusivity in Gas Mixtures

As discussed by Poling, Prausnitz, and O’Connell [2], a
number of theoretical and empirical equations are available
for estimating the value of DAB = DBA in gases at low
to moderate pressures. The theoretical equations, based
on Boltzmann’s kinetic theory of gases, the theorem of cor-
responding states, and a suitable intermolecular energy-
potential function, as developed by Chapman and Enskog,
predict DAB to be inversely proportional to pressure and
almost independent of composition, with a significant in-
crease for increasing temperature. Of greater accuracy and
ease of use is the following empirical equation of Fuller,
Schettler, and Giddings [3], which retains the form of the
Chapman–Enskog theory but utilizes empirical constants

derived from experimental data:

DAB = DBA = 0.00143T 1.75

P M1/2
AB [(

∑
V )1/3

A + (
∑

V )1/3
B ]2

(3-36)

where DAB is in cm2/s, P is in atm, T is in K,

MAB = 2

(1/MA) + (1/MB)
(3-37)

and
∑

V = summation of atomic and structural diffusion
volumes from Table 3.1, which includes diffusion volumes
of some simple molecules.

Experimental values of binary gas diffusivity at 1 atm and
near-ambient temperature range from about 0.10 to 10.0 cm2/s.
Poling, et al. [2] compared (3-36) to experimental data for
51 different binary gas mixtures at low pressures over a tem-
perature range of 195–1,068 K. The average deviation was
only 5.4%, with a maximum deviation of 25%. Only 9 of 69
estimated values deviated from experimental values by more
than 10%. When an experimental diffusivity is available at
values of T and P that are different from the desired condi-
tions, (3-36) indicates that DAB is proportional to T 1.75/P ,
which can be used to obtain the desired value. Some repre-
sentative experimental values of binary gas diffusivity are
given in Table 3.2.
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Table 3.1 Diffusion Volumes from Fuller,
Ensley, and Giddings [J. Phys. Chem, 73,
3679–3685 (1969)] for Estimating Binary Gas
Diffusivity by the Method of Fuller et al. [3]

Atomic Diffusion Volumes Atomic
and Structural Diffusion-Volume Increments

C 15.9 F 14.7
H 2.31 Cl 21.0
O 6.11 Br 21.9
N 4.54 I 29.8
Aromatic ring −18.3 S 22.9
Heterocyclic ring −18.3

Diffusion Volumes of Simple Molecules

He 2.67 CO 18.0
Ne 5.98 CO2 26.7
Ar 16.2 N2O 35.9
Kr 24.5 NH3 20.7
Xe 32.7 H2O 13.1
H2 6.12 SF6 71.3
D2 6.84 Cl2 38.4
N2 18.5 Br2 69.0
O2 16.3 SO2 41.8
Air 19.7
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For binary mixtures of light gases, at pressures to about
10 atm, the pressure dependence on diffusivity is adequately
predicted by the simple inverse relation (3-36), that is, PDAB =
a constant for a given temperature and gas mixture. At higher
pressures, deviations from this relation are handled in a man-
ner somewhat similar to the modification of the ideal-gas law
by the compressibility factor based on the theorem of corre-
sponding states. Although few reliable experimental data are
available at high pressure, Takahasi [4] has published a tenta-
tive corresponding-states correlation, shown in Figure 3.3,
patterned after an earlier correlation for self-diffusivities by
Slattery [5]. In the Takahashi plot, DABP/(DABP)LP is given
as a function of reduced temperature and pressure, where
(DABP)LP is at low pressure where (3-36) applies. Mixture-
critical temperature and pressure are molar-average values.
Thus, a finite effect of composition is predicted at high pres-
sure. The effect of high pressure on diffusivity is important in
supercritical extraction, discussed in Chapter 11.

Estimate the diffusion coefficient for a 25/75 molar mixture of argon
and xenon at 200 atm and 378 K. At this temperature and 1 atm, the
diffusion coefficient is 0.180 cm2/s. Critical constants are

Tc, K Pc, atm

Argon 151.0 48.0
Xenon 289.8 58.0

SOLUTION

Calculate reduced conditions:

Tc = 0.25(151) + 0.75(289.8) = 255.1 K;
Tr = T/Tc = 378/255.1 = 1.48

Pc = 0.25(48) + 0.75(58) = 55.5;
Pr = P/Pc = 200/55.5 = 3.6

From Figure 3.3, 
DAB P

(DAB P)LP
= 0.82

DAB = (DAB P)LP

P

[
DAB P

(DAB P)LP

]
= (0.180)(1)

200
(0.82)

= 7.38 × 10−4 cm/s

EXAMPLE 3.4

Table 3.2 Experimental Binary Diffusivities of Some Gas Pairs
at 1 atm

Gas pair, A-B Temperature, K DAB, cm2/s

Air—carbon dioxide 317.2 0.177
Air—ethanol 313 0.145
Air—helium 317.2 0.765
Air—n-hexane 328 0.093
Air—water 313 0.288
Argon—ammonia 333 0.253
Argon—hydrogen 242.2 0.562
Argon—hydrogen 806 4.86
Argon—methane 298 0.202
Carbon dioxide—nitrogen 298 0.167
Carbon dioxide—oxygen 293.2 0.153
Carbon dioxide—water 307.2 0.198
Carbon monoxide—nitrogen 373 0.318
Helium—benzene 423 0.610
Helium—methane 298 0.675
Helium—methanol 423 1.032
Helium—water 307.1 0.902
Hydrogen—ammonia 298 0.783
Hydrogen—ammonia 533 2.149
Hydrogen—cyclohexane 288.6 0.319
Hydrogen—methane 288 0.694
Hydrogen—nitrogen 298 0.784
Nitrogen—benzene 311.3 0.102
Nitrogen—cyclohexane 288.6 0.0731
Nitrogen—sulfur dioxide 263 0.104
Nitrogen—water 352.1 0.256
Oxygen—benzene 311.3 0.101
Oxygen—carbon tetrachloride 296 0.0749
Oxygen—cyclohexane 288.6 0.0746
Oxygen—water 352.3 0.352

From Marrero, T. R., and E. A. Mason, J. Phys. Chem. Ref. Data, 1, 3–118
(1972).

Figure 3.3 Takahashi [4] correlation for effect of high pressure
on binary gas diffusivity.
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Estimate the diffusion coefficient for the system oxygen (A)/
benzene (B) at 38◦C and 2 atm using the method of Fuller et al.

SOLUTION

From (3-37),

MAB = 2

(1/32) + (1/78.11)
= 45.4

From Table 3.1, (
∑

V )A = 16.3 and (
∑

V )B = 6(15.9) +
6(2.31) − 18.3 = 90.96

From (3-36), at 2 atm and 311.2 K,

DAB = DBA = 0.00143(311.2)1.75

(2)(45.4)1/2[16.31/3 + 90.961/3]2
= 0.0495 cm2/s

At 1 atm, the predicted diffusivity is 0.0990 cm2/s, which is about
2% below the experimental value of 0.101 cm2/s in Table 3.2. The
experimental value for 38◦C can be extrapolated by the temperature
dependency of (3-36) to give the following prediction at 200◦C:

DAB at 200◦C and 1 atm = 0.102

(
200 + 273.2

38 + 273.2

)1.75

= 0.212 cm2/s

EXAMPLE 3.3



dilute conditions to more concentrated conditions, exten-
sions of (3-38) have been restricted to binary liquid mixtures
dilute in A, up to 5 and perhaps 10 mol%.

One such extension, which gives reasonably good
predictions for small solute molecules, is the empirical
Wilke–Chang [6] equation:

(DAB)∞ = 7.4 × 10−8(�B MB)1/2T

�Bv0.6
A

(3-39)

where the units are cm2/s for DAB; cP (centipoises) for the
solvent viscosity, �B; K for T; and cm3/mol for vA, the liquid
molar volume of the solute at its normal boiling point. The
parameter �B is an association factor for the solvent, which
is 2.6 for water, 1.9 for methanol, 1.5 for ethanol, and 1.0 for
unassociated solvents such as hydrocarbons. Note that the
effects of temperature and viscosity are identical to the pre-
diction of the Stokes–Einstein equation, while the effect of
the radius of the solute molecule is replaced by vA, which
can be estimated by summing the atomic contributions in
Table 3.3, which also lists values of vA for dissolved light
gases. Some representative experimental values of diffusivity
in dilute binary liquid solutions are given in Table 3.4.
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Diffusivity in Liquid Mixtures

Diffusion coefficients in binary liquid mixtures are difficult
to estimate because of the lack of a rigorous model for the
liquid state. An exception is the case of a dilute solute (A) of
very large, rigid, spherical molecules diffusing through a
stationary solvent (B) of small molecules with no slip of the
solvent at the surface of the solute molecules. The resulting
relation, based on the hydrodynamics of creeping flow to
describe drag, is the Stokes–Einstein equation:

(DAB)∞ = RT

6��B RA NA
(3-38)

where RA is the radius of the solute molecule and NA is
Avagadro’s number. Although (3-38) is very limited in its
application to liquid mixtures, it has long served as a starting
point for more widely applicable empirical correlations for
the diffusivity of solute (A) in solvent (B), where both A and
B are of the same approximate molecular size. Unfortu-
nately, unlike the situation in binary gas mixtures, DAB =
DBA in binary liquid mixtures can vary greatly with compo-
sition as shown in Example 3.7. Because the Stokes–
Einstein equation does not provide a basis for extending

Table 3.3 Molecular Volumes of Dissolved Light Gases and Atomic Contributions for Other Molecules at the
Normal Boiling Point

Atomic Volume Atomic Volume 
(m3/kmol) × 103 (m3/kmol) × 103

C 14.8 Ring
H 3.7 Three-membered, as in −6
O (except as below) 7.4 ethylene oxide

Doubly bonded as carbonyl 7.4 Four-membered −8.5
Coupled to two other elements: Five-membered −11.5

In aldehydes, ketones 7.4 Six-membered −15
In methyl esters 9.1 Naphthalene ring −30
In methyl ethers 9.9 Anthracene ring −47.5
In ethyl esters 9.9

Molecular Volume
In ethyl ethers 9.9
In higher esters 11.0

(m3/kmol) × 103

In higher ethers 11.0 Air 29.9
In acids (—OH) 12.0 O2 25.6

Joined to S, P, N 8.3 N2 31.2
N Br2 53.2

Doubly bonded 15.6 Cl2 48.4
In primary amines 10.5 CO 30.7
In secondary amines 12.0 CO2 34.0

Br 27.0 H2 14.3
Cl in RCHClR′ 24.6 H2O 18.8
Cl in RCl (terminal) 21.6 H2S 32.9
F 8.7 NH3 25.8
I 37.0 NO 23.6
S 25.6 N2O 36.4
P 27.0 SO2 44.8

Source: G. Le Bas, The Molecular Volumes of Liquid Chemical Compounds, David McKay, New York (1915).
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Use the Wilke–Chang equation to estimate the diffusivity of aniline
(A) in a 0.5 mol% aqueous solution at 20◦C. At this temperature,
the solubility of aniline in water is about 4 g/100 g of water or
0.77 mol% aniline. The experimental diffusivity value for an infi-
nitely dilute mixture is 0.92 × 10−5 cm2/s.

SOLUTION

�B = �H2O = 1.01 cP at 20◦C

vA = liquid molar volume of aniline at its normal boiling
point of 457.6 K = 107 cm3/mol

�B = 2.6 for water MB = 18 for water T = 293 K

From (3-39),

DAB = (7.4 × 10−8)[2.6(18)]0.5(293)

1.01(107)0.6
= 0.89 × 10−5 cm2/s

This value is about 3% less than the experimental value for an infi-
nitely dilute solution of aniline in water.

More recent liquid diffusivity correlations due to Hayduk
and Minhas [7] give better agreement than the Wilke–Chang

EXAMPLE 3.5

equation with experimental values for nonaqueous solutions.
For a dilute solution of one normal paraffin (C5 to C32) in
another (C5 to C16),

(DAB)∞ = 13.3 × 10−8 T 1.47��
B

v0.71
A

(3-40)

where

� = 10.2

vA
− 0.791 (3-41)

and the other variables have the same units as in (3-39).
For general nonaqueous solutions,

(DAB)∞ = 1.55 × 10−8
T 1.29

(
�0.5

B /�0.42
A

)
�0.92

B v0.23
B

(3-42)

where � is the parachor, which is defined as

� = v�1/4 (3-43)

When the units of the liquid molar volume, v, are cm3/mol
and the surface tension, �, are g/s2 (dynes/cm), then the units
of the parachor are cm3-g1/4/s1/2-mol. Normally, at near-
ambient conditions, � is treated as a constant, for which an
extensive tabulation is available from Quayle [8], who also
provides a group-contribution method for estimating para-
chors for compounds not listed. Table 3.5 gives values of
parachors for a number of compounds, while Table 3.6 con-
tains structural contributions for predicting the parachor in
the absence of data.

The following restrictions apply to (3-42):

1. Solvent viscosity should not exceed 30 cP.

2. For organic acid solutes and solvents other than water,
methanol, and butanols, the acid should be treated as a
dimer by doubling the values of �A and vA.

3. For a nonpolar solute in monohydroxy alcohols, val-
ues of vB and �B should be multiplied by 8�B, where
the viscosity is in centipoise.

Liquid diffusion coefficients for a solute in a dilute binary
system range from about 10−6 to 10−4 cm2/s for solutes of
molecular weight up to about 200 and solvents with viscos-
ity up to about 10 cP. Thus, liquid diffusivities are five orders
of magnitude less than diffusivities for binary gas mixtures
at 1 atm. However, diffusion rates in liquids are not neces-
sarily five orders of magnitude lower than in gases because,
as seen in (3-5), the product of the concentration (molar den-
sity) and the diffusivity determines the rate of diffusion for a
given concentration gradient in mole fraction. At 1 atm, the
molar density of a liquid is three times that of a gas and, thus,
the diffusion rate in liquids is only two orders of magnitude
lower than in gases at 1 atm.

Table 3.4 Experimental Binary Liquid Diffusivities for Solutes,
A, at Low Concentrations in Solvents, B

Diffusivity,
Solvent, Solute, Temperature, DAB,
B A K cm2/s × 105

Water Acetic acid 293 1.19
Aniline 293 0.92
Carbon dioxide 298 2.00
Ethanol 288 1.00
Methanol 288 1.26

Ethanol Allyl alcohol 293 0.98
Benzene 298 1.81
Oxygen 303 2.64
Pyridine 293 1.10
Water 298 1.24

Benzene Acetic acid 298 2.09
Cyclohexane 298 2.09
Ethanol 288 2.25
n-Heptane 298 2.10
Toluene 298 1.85

n-Hexane Carbon tetrachloride 298 3.70
Methyl ethyl ketone 303 3.74
Propane 298 4.87
Toluene 298 4.21

Acetone Acetic acid 288 2.92
Formic acid 298 3.77
Nitrobenzene 293 2.94
Water 298 4.56

From Poling et al. [2].



However, because formic acid is an organic acid, �A is doubled
to 187.4.

From (3-42),

(DAB)∞ = 1.55 × 10−8
[

2981.29(205.30.5/187.40.42)

0.60.92960.23

]
= 2.15 × 10−5 cm2/s

which is within 6% of the the experimental value.

Estimate the diffusivity of formic acid (A) in benzene (B) at 25◦C
and infinite dilution, using the appropriate correlation of Hayduk
and Minhas [7]. The experimental value is 2.28 × 10−5 cm2/s.

SOLUTION

Equation (3-42) applies, with T = 298 K

�A = 93.7 cm3-g1/4/s1/2-mol �B = 205.3 cm3-g1/4/s1/2-mol
�B = 0.6 cP at 25◦C vB = 96 cm3/mol at 80◦C

EXAMPLE 3.6
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Table 3.6 Structural Contributions for Estimating the Parachor

Carbon–hydrogen: R—[—CO—]—R′(ketone)
C 9.0 R + R′ = 2 51.3
H 15.5 R + R′ = 3 49.0
CH3 55.5 R + R′ = 4 47.5
CH2 in —(CH2)n R + R′ = 5 46.3

n < 12 40.0 R + R′ = 6 45.3
n > 12 40.3 R + R′ = 7 44.1

—CHO 66
Alkyl groups

1-Methylethyl 133.3 O (not noted above) 20
1-Methylpropyl 171.9 N (not noted above) 17.5
1-Methylbutyl 211.7 S 49.1
2-Methylpropyl 173.3 P 40.5
1-Ethylpropyl 209.5 F 26.1
1,1-Dimethylethyl 170.4 Cl 55.2
1,1-Dimethylpropyl 207.5 Br 68.0
1,2-Dimethylpropyl 207.9 I 90.3
1,1,2-Trimethylpropyl 243.5 Ethylenic bonds:

C6H5 189.6 Terminal 19.1
2,3-position 17.7

Special groups: 3,4-position 16.3
—COO— 63.8
—COOH 73.8 Triple bond 40.6
—OH 29.8
—NH2 42.5 Ring closure:
—O— 20.0 Three-membered 12
—NO2 74 Four-membered 6.0
—NO3 (nitrate) 93 Five-membered 3.0
—CO(NH2) 91.7 Six-membered 0.8

Source: Quale [8].

Table 3.5 Parachors for Representative Compounds

Parachor, Parachor, Parachor,
cm3-g1/4/s1/2-mol cm3-g1/4/s1/2-mol cm3-g1/4/s1/2-mol

Acetic acid 131.2 Chlorobenzene 244.5 Methyl amine 95.9
Acetone 161.5 Diphenyl 380.0 Methyl formate 138.6
Acetonitrile 122 Ethane 110.8 Naphthalene 312.5
Acetylene 88.6 Ethylene 99.5 n-Octane 350.3
Aniline 234.4 Ethyl butyrate 295.1 1-Pentene 218.2
Benzene 205.3 Ethyl ether 211.7 1-Pentyne 207.0
Benzonitrile 258 Ethyl mercaptan 162.9 Phenol 221.3
n-Butyric acid 209.1 Formic acid 93.7 n-Propanol 165.4
Carbon disulfide 143.6 Isobutyl benzene 365.4 Toluene 245.5
Cyclohexane 239.3 Methanol 88.8 Triethyl amine 297.8

Source: Meissner, Chem. Eng. Prog., 45, 149–153 (1949).
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The Stokes–Einstein and Wilke–Chang equations predict
an inverse dependence of liquid diffusivity with viscosity.
The Hayduk–Minhas equations predict a somewhat smaller
dependence on viscosity. From data covering several orders
of magnitude variation of viscosity, the liquid diffusivity is
found to vary inversely with the viscosity raised to an expo-
nent closer to 0.5 than to 1.0. The Stokes–Einstein and
Wilke–Chang equations also predict that DAB�B/T is a
constant over a narrow temperature range. Because �B de-
creases exponentially with temperature, DAB is predicted to
increase exponentially with temperature. For example, for a
dilute solution of water in ethanol, the diffusivity of water
increases by a factor of almost 20 when the absolute temper-
ature is increased 50%. Over a wide temperature range, it is
preferable to express the effect of temperature on DAB by an
Arrhenius-type expression,

(DAB)∞ = A exp

(−E

RT

)
(3-44)

where, typically the activation energy for liquid diffusion, E,
is no greater than 6,000 cal/mol.

Equations (3-39), (3-40), and (3-42) for estimating diffu-
sivity in binary liquid mixtures only apply to the solute, A, in
a dilute solution of the solvent, B. Unlike binary gas mix-
tures in which the diffusivity is almost independent of com-
position, the effect of composition on liquid diffusivity is
complex, sometimes showing strong positive or negative
deviations from linearity with mole fraction.

Based on a nonideal form of Fick’s law, Vignes [9] has
shown that, except for strongly associated binary mixtures
such as chloroform/acetone, which exhibit a rare negative de-
viation from Raoult’s law, infinite-dilution binary diffusivi-
ties, (D)∞, can be combined with mixture activity-coefficient
data or correlations thereof to predict liquid binary diffusion
coefficients DAB and DBA over the entire composition range.
The Vignes equations are:

DAB = (DAB)xB∞(DBA)xA∞

(
1 + ∂ ln �A

∂ ln xA

)
T ,P

(3-45)

DBA = (DBA)xA∞(DAB)xB∞

(
1 + ∂ ln �B

∂ ln xB

)
T ,P

(3-46)

At 298 K and 1 atm, infinite-dilution diffusion coefficients for
the methanol (A)/water (B) system are 1.5 × 10−5 cm2/s and
1.75 × 10−5 cm2/s for AB and BA, respectively.

Activity-coefficient data for the same conditions as estimated
from the UNIFAC method are as follows:

xA �A xB �B

0.0 2.245 1.0 1.000
0.1 1.748 0.9 1.013
0.2 1.470 0.8 1.044
0.3 1.300 0.7 1.087
0.4 1.189 0.6 1.140

EXAMPLE 3.7

xA �A xB �B

0.5 1.116 0.5 1.201
0.6 1.066 0.4 1.269
0.7 1.034 0.3 1.343
0.8 1.014 0.2 1.424
0.9 1.003 0.1 1.511
1.0 1.000 0.0 1.605

Use the Vignes equations to estimate diffusion coefficients over
the entire composition range.

SOLUTION

Using a spreadsheet to compute the derivatives in (3-45) and
(3-46), which are found to be essentially equal at any composition,
and the diffusivities from the same equations, the following results
are obtained with DAB = DBA at each composition. The calcula-
tions show a minimum diffusivity at a methanol mole fraction
of 0.30.

xA DAB, cm2/s DBA, cm2/s

0.20 1.10 × 10−5 1.10 × 10−5

0.30 1.08 × 10−5 1.08 × 10−5

0.40 1.12 × 10−5 1.12 × 10−5

0.50 1.18 × 10−5 1.18 × 10−5

0.60 1.28 × 10−5 1.28 × 10−5

0.70 1.38 × 10−5 1.38 × 10−5

0.80 1.50 × 10−5 1.50 × 10−5

If the diffusivity is assumed linear with mole fraction, the value at
xA = 0.50 is 1.625 × 10−5, which is almost 40% higher than the
predicted value of 1.18 × 10−5.

Diffusivities of Electrolytes

In an electrolyte solute, the diffusion coefficient of the dis-
solved salt, acid, or base depends on the ions, since they are
the diffusing entities. However, in the absence of an electric
potential, only the molecular diffusion of the electrolyte
molecule is of interest. The infinite-dilution diffusivity of a
single salt in an aqueous solution in cm2/s can be estimated
from the Nernst–Haskell equation:

(DAB)∞ = RT [(1/n+) + (1/n−)]

F2[(1/�+) + (1/�−)]
(3-47)

where

n+ and n− = valences of the cation and anion,
respectively

�+ and �− = limiting ionic conductances in (A/cm2)
(V/cm)(g-equiv/cm3), where A = amps and
V = volts

F = Faraday’s constant 
= 96,500 coulombs/g-equiv

T = temperature, K

R = gas constant = 8.314 J/mol-K

Values of �+ and �− at 25◦C are listed in Table 3.7. At other
temperatures, these values are multiplied by T/334�B,



where T and �B are in kelvins and centipoise, respectively.
As the concentration of the electrolyte increases, the diffu-
sivity at first decreases rapidly by about 10% to 20% and
then rises to values at a concentration of 2 N (normal) that
approximate the infinite-dilution value. Some representative
experimental values from Volume V of the International
Critical Tables are given in Table 3.8.

Estimate the diffusivity of KCl in a dilute solution of water
at 18.5◦C. The experimental value is 1.7 × 10−5 cm2/s. At concen-
trations up to 2N, this value varies only from 1.5 × 10−5 to
1.75 × 10−5 cm2/s.

SOLUTION

At 18.5◦C, T/334� = 291.7/[(334)(1.05)] = 0.832. Using Table
3.7, at 25◦C, the corrected limiting ionic conductances are

�+ = 73.5(0.832) = 61.2 and �− = 76.3(0.832) = 63.5

From (3-47),

D∞ = (8.314)(291.7)[(1/1) + (1/1)]

96,5002[(1/61.2) + (1/63.5)]
= 1.62 × 10−5cm2/s

which is close to the experimental value.

Diffusivity of Biological Solutes in Liquids

For dilute, aqueous, nonelectrolyte solutions, the Wilke–Chang
equation (3-39) can be used for small solute molecules of
liquid molar volumes up to 500 cm3/mol, which corresponds
to molecular weights to almost 600. In biological applica-
tions, diffusivities of water-soluble protein macromolecules
having molecular weights greater than 1,000 are of interest.
In general, molecules with molecular weights to 500,000
have diffusivities at 25◦C that range from 1 × 10−7 to
8 × 10−7 cm2/s, which is two orders of magnitude smaller
than values of diffusivity for molecules with molecular
weights less than 1,000. Data for many globular and fibrous
protein macromolecules are tabulated by Sorber [10] with a
few diffusivities given in Table 3.9. In the absence of data,
the following semiempirical equation given by Geankoplis
[11] and patterned after the Stokes–Einstein equation can be
used:

DAB = 9.4 × 10−15T

�B(MA)1/3
(3-48)

where the units are those of (3-39).
Also of interest in biological applications are diffusivities

of small, nonelectrolyte molecules in aqueous gels contain-
ing up to 10 wt% of molecules such as certain polysaccha-
rides (agar), which have a great tendency to swell. Diffusiv-
ities are given by Friedman and Kraemer [12]. In general,
the diffusivities of small solute molecules in gels are not less
than 50% of the values for the diffusivity of the solute in
water, with values decreasing with increasing weight percent
of gel.

Diffusivity in Solids

Diffusion in solids takes place by different mechanisms de-
pending on the diffusing atom, molecule, or ion; the nature
of the solid structure, whether it be porous or nonporous,

EXAMPLE 3.8

78 Chapter 3 Mass Transfer and Diffusion

Table 3.8 Experimental Diffusivities of Electrolytes in Aqueous
Solutions

Concentration, Diffusivity, DAB,
Solute Mol/L Temperature, ◦C cm2/s × 105

HCl 0.1 12 2.29
HNO3 0.05 20 2.62

0.25 20 2.59

H2SO4 0.25 20 1.63

KOH 0.01 18 2.20
0.1 18 2.15
1.8 18 2.19

NaOH 0.05 15 1.49

NaCl 0.4 18 1.17
0.8 18 1.19
2.0 18 1.23

KCl 0.4 18 1.46
0.8 18 1.49
2.0 18 1.58

MgSO4 0.4 10 0.39
Ca(NO3)2 0.14 14 0.85

Table 3.7 Limiting Ionic Conductances in Water at 25°C, in
(A/cm2)(V/cm)(g-equiv/cm3)

Anion �− Cation �+

OH− 197.6 H+ 349.8
Cl− 76.3 Li+ 38.7
Br− 78.3 Na+ 50.1
I− 76.8 K+ 73.5
NO−

3 71.4 NH+
4 73.4

ClO−
4 68.0 Ag+ 61.9

HCO−
3 44.5 Tl+ 74.7

HCO−
2 54.6 ( 1

2 )Mg2+ 53.1
CH3CO−

2 40.9 ( 1
2 )Ca2+ 59.5

ClCH2CO−
2 39.8 ( 1

2 )Sr2+ 50.5
CNCH2CO−

2 41.8 ( 1
2 )Ba2+ 63.6

CH3CH2CO−
2 35.8 ( 1

2 )Cu2+ 54
CH3(CH2)2CO−

2 32.6 ( 1
2 )Zn2+ 53

C6H5CO−
2 32.3 ( 1

3 )La3+ 69.5
HC2O−

4 40.2 ( 1
3 )Co(NH3)3+

6 102
( 1

2 )C2O2−
4 74.2

( 1
2 )SO2−

4 80
( 1

3 )Fe(CN)3−
6 101

( 1
4 )Fe(CN)4−

6 111

Source: Poling, Prausnitz, and O’Connell [2].
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crystalline, or amorphous; and the type of solid material,
whether it be metallic, ceramic, polymeric, biological, or
cellular. Crystalline materials may be further classified ac-
cording to the type of bonding, as molecular, covalent, ionic,
or metallic, with most inorganic solids being ionic. How-
ever, ceramic materials can be ionic, covalent, or most often
a combination of the two. Molecular solids have relatively
weak forces of attraction among the atoms or molecules. In
covalent solids, such as quartz silica, two atoms share two or
more electrons equally. In ionic solids, such as inorganic
salts, one atom loses one or more of its electrons by transfer
to one or more other atoms, thus forming ions. In metals,
positively charged ions are bonded through a field of elec-
trons that are free to move. Unlike diffusion coefficients in
gases and low-molecular-weight liquids, which each cover a
range of only one or two orders of magnitude, diffusion co-
efficients in solids cover a range of many orders of magni-
tude. Despite the great complexity of diffusion in solids,
Fick’s first law can be used to describe diffusion if a mea-
sured diffusivity is available. However, when the diffusing
solute is a gas, its solubility in the solid must also be known.
If the gas dissociates upon dissolution in the solid, the
concentration of the dissociated species must be used in
Fick’s law. In this section, many of the mechanisms of diffu-
sion in solids are mentioned, but because they are exceed-
ingly complex to quantify, the mechanisms are considered
only qualitatively. Examples of diffusion in solids are con-
sidered, together with measured diffusion coefficients that
can be used with Fick’s first law. Emphasis is on diffusion of
gas and liquid solutes through or into the solid, but move-
ment of the atoms, molecules, or ions of the solid through it-
self is also considered.

Porous Solids

When solids are porous, predictions of the diffusivity of
gaseous and liquid solute species in the pores can be made.
These methods are considered only briefly here, with details
deferred to Chapters 14, 15, and 16, where applications are
made to membrane separations, adsorption, and leaching. This
type of diffusion is also of great importance in the analysis and
design of reactors using porous solid catalysts. It is sufficient
to mention here that any of the following four mass-transfer

mechanisms or combinations thereof may take place:

1. Ordinary molecular diffusion through pores, which
present tortuous paths and hinder the movement of
large molecules when their diameter is more than 10%
of the pore diameter

2. Knudsen diffusion, which involves collisions of diffus-
ing gaseous molecules with the pore walls when the
pore diameter and pressure are such that the molecular
mean free path is large compared to the pore diameter

3. Surface diffusion involving the jumping of molecules,
adsorbed on the pore walls, from one adsorption site to
another based on a surface concentration-driving force

4. Bulk flow through or into the pores

When treating diffusion of solutes in porous materials
where diffusion is considered to occur only in the fluid in the
pores, it is common to refer to an effective diffusivity, Deff,
which is based on (1) the total cross-sectional area of the
porous solid rather than the cross-sectional area of the pore
and (2) on a straight path, rather than the pore path, which
may be tortuous. If pore diffusion occurs only by ordinary
molecular diffusion, Fick’s law (3-3) can be used with an
effective diffusivity. The effective diffusivity for a binary
mixture can be expressed in terms of the ordinary diffusion
coefficient, DAB, by

Deff = DAB�

	
(3-49)

where � is the fractional porosity (typically 0.5) of the solid
and 	 is the pore-path tortuosity (typically 2 to 3), which is
the ratio of the pore length to the length if the pore were
straight in the direction of diffusion. The effective diffusivity
is either determined experimentally, without knowledge of
the porosity or tortuosity, or predicted from (3-49) based on
measurement of the porosity and tortuosity and use of the
predictive methods for ordinary molecular diffusivity. As an
example of the former, Boucher, Brier, and Osburn [13] mea-
sured effective diffusivities for the leaching of processed soy-
bean oil (viscosity = 20.1 cP at 120◦F) from 1/16-in.-thick
porous clay plates with liquid tetrachloroethylene solvent.
The rate of extraction was controlled by the rate of diffusion
of the soybean oil in the clay plates. The measured value of

Table 3.9 Experimental Diffusivities of Large Biological Proteins in Aqueous Solutions

Diffusivity, DAB,
Protein MW Configuration Temperature, °C cm2/s × 105

Bovine serum albumin 67,500 globular 25 0.0681
�–Globulin, human 153,100 globular 20 0.0400
Soybean protein 361,800 globular 20 0.0291
Urease 482,700 globular 25 0.0401
Fibrinogen, human 339,700 fibrous 20 0.0198
Lipoxidase 97,440 fibrous 20 0.0559



Deff was 1.0 × 10−6 cm2/s. As might be expected from the
effects of porosity and tortuosity, the effective value is about
one order of magnitude less than the expected ordinary mol-
ecular diffusivity, D, of oil in the solvent.

Crystalline Solids

Diffusion through nonporous crystalline solids depends
markedly on the crystal lattice structure and the diffusing
entity. As discussed in Chapter 17 on crystallization, only
seven different lattice structures are possible. For the cubic
lattice (simple, body-centered, and face-centered), the dif-
fusivity is the same in all directions (isotropic). In the six
other lattice structures (including hexagonal and tetragonal),
the diffusivity can be different in different directions
(anisotropic). Many metals, including Ag, Al, Au, Cu, Ni,
Pb, and Pt, crystallize into the face-centered cubic lattice
structure. Others, including Be, Mg, Ti, and Zn, form
anisotropic, hexagonal structures. The mechanisms of diffu-
sion in crystalline solids include:

1. Direct exchange of lattice position by two atoms or
ions, probably by a ring rotation involving three or
more atoms or ions

2. Migration by small solutes through interlattice spaces
called interstitial sites

3. Migration to a vacant site in the lattice

4. Migration along lattice imperfections (dislocations),
or gain boundaries (crystal interfaces)

Diffusion coefficients associated with the first three
mechanisms can vary widely and are almost always at least
one order of magnitude smaller than diffusion coefficients in
low-viscosity liquids. As might be expected, diffusion by the
fourth mechanism can be faster than by the other three
mechanisms. Typical experimental diffusivity values, taken
mainly from Barrer [14], are given in Table 3.10. The diffu-
sivities cover gaseous, ionic, and metallic solutes. The val-
ues cover an enormous 26-fold range. Temperature effects
can be extremely large.

Metals

Important practical applications exist for diffusion of light
gases through metals. To diffuse through a metal, a gas must
first dissolve in the metal. As discussed by Barrer [14], all
light gases do not dissolve in all metals. For example,
hydrogen dissolves in such metals as Cu,Al, Ti, Ta, Cr, W, Fe,
Ni, Pt, and Pd, but not in Au, Zn, Sb, and Rh. Nitrogen dis-
solves in Zr, but not in Cu, Ag, or Au. The noble gases do not
dissolve in any of the common metals. When H2, N2, and O2

dissolve in metals, they dissociate and may react to form hy-
drides, nitrides, and oxides, respectively. More complex mol-
ecules such as ammonia, carbon dioxide, carbon monoxide,
and sulfur dioxide also dissociate. The following example
illustrates how pressurized hydrogen gas can slowly leak
through the wall of a small, thin pressure vessel.

Gaseous hydrogen at 200 psia and 300◦C is stored in a small,
10-cm-diameter, steel pressure vessel having a wall thickness of
0.125 in. The solubility of hydrogen in steel, which is proportional
to the square root of the hydrogen partial pressure in the gas, is
equal to 3.8 × 10−6 mol/cm3 at 14.7 psia and 300◦C. The diffusiv-
ity of hydrogen in steel at 300◦C is 5 × 10−6 cm2/s. If the inner sur-
face of the vessel wall remains saturated at the existing hydrogen
partial pressure and the hydrogen partial pressure at the outer sur-
face is zero, estimate the time, in hours, for the pressure in the ves-
sel to decrease to 100 psia because of hydrogen loss by dissolving
in and diffusing through the metal wall.

SOLUTION

Integrating Fick’s first law, (3-3), where A is H2 and B is the metal,
assuming a linear concentration gradient, and equating the flux to
the loss of hydrogen in the vessel,

−dnA

dt
= DAB A�cA

�z
(1)

Because pA = 0 outside the vessel, �cA = cA = solubility of A at
the inside wall surface in mol/cm3 and cA = 3.8 × 10−6

( pA
14.7

)0.5
,

where pA is the pressure of A in psia inside the vessel. Let pAo

and nAo be the initial pressure and moles of A, respectively, in the
vessel. Assuming the ideal-gas law and isothermal conditions,

nA = nAo pA/pAo (2)

EXAMPLE 3.9
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Table 3.10 Diffusivities of Solutes in Crystalline Metals
and Salts

Metal/Salt Solute T, °C D, cm2/s

Ag Au 760 3.6 × 10−10

Sb 20 3.5 × 10−21

Sb 760 1.4 × 10−9

Al Fe 359 6.2 × 10−14

Zn 500 2 × 10−9

Ag 50 1.2 × 10−9

Cu Al 20 1.3 × 10−30

Al 850 2.2 × 10−9

Au 750 2.1 × 10−11

Fe H2 10 1.66 × 10−9

H2 100 1.24 × 10−7

C 800 1.5 × 10−8

Ni H2 85 1.16 × 10−8

H2 165 1.05 × 10−7

CO 950 4 × 10−8

W U 1727 1.3 × 10−11

AgCl Ag+ 150 2.5 × 10−14

Ag+ 350 7.1 × 10−8

Cl− 350 3.2 × 10−16

KBr H2 600 5.5 × 10−4

Br2 600 2.64 × 10−4
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Differentiating (2) with respect to time,

dnA

dt
= nAo

pAo

dpA

dt
(3)

Combining (1) and (3),

dpA

dt
= − DA A(3.8 × 10−6) p0.5

A pAo

nAo�z(14.7)0.5
(4)

Integrating and solving for t,

t = 2nAo�z(14.7)0.5

3.8 × 10−6 DA ApAo

(
p0.5

Ao
− p0.5

A

)
Assuming the ideal-gas law,

nAo = (200/14.7)[(3.14 × 103)/6)]

82.05(300 + 273)
= 0.1515 mol

The mean-spherical shell area for mass transfer, A, is

A = 3.14

2
[(10)2 + (10.635)2] = 336 cm2

The time for the pressure to drop to 100 psia is

t = 2(0.1515)(0.125 × 2.54)(14.7)0.5

3.8 × 10−6(5 × 10−6)(336)(200)
(2000.5 − 1000.5)

= 1.2 × 106 s = 332 h

Silica and Glass

Another area of great interest is the diffusion of light gases
through various forms of silica, whose two elements, Si and
O, make up about 60% of the earth’s crust. Solid silica can
exist in three principal crystalline forms (quartz, tridymite,
and cristobalite) and in various stable amorphous forms,
including vitreous silica (a noncrystalline silicate glass or
fused quartz). Table 3.11 includes diffusivities, D, and solu-
bilities as Henry’s law constants, H, at 1 atm for helium and
hydrogen in fused quartz as calculated from correlations of
experimental data by Swets, Lee, and Frank [15] and Lee
[16], respectively. The product of the diffusivity and the sol-
ubility is called the permeability, PM. Thus,

PM = DH (3-50)

Unlike metals, where hydrogen usually diffuses as the
atom, hydrogen apparently diffuses as a molecule in glass.

For both hydrogen and helium, diffusivities increase rapidly
with increasing temperature. At ambient temperature the
diffusivities are three orders of magnitude lower than in liq-
uids. At elevated temperatures the diffusivities approach
those observed in liquids. Solubilities vary only slowly with
temperature. Hydrogen is orders of magnitude less soluble
in glass than helium. For hydrogen, the diffusivity is some-
what lower than in metals. Diffusivities for oxygen are also
included in Table 3.11 from studies by Williams [17] and
Sucov [18]. At 1000◦C, the two values differ widely be-
cause, as discussed by Kingery, Bowen, and Uhlmann [19],
in the former case, transport occurs by molecular diffusion;
while in the latter case, transport is by slower network diffu-
sion as oxygen jumps from one position in the silicate net-
work to another. The activation energy for the latter is much
larger than for the former (71,000 cal/mol versus 27,000
cal/mol). The choice of glass can be very critical in high-
vacuum operations because of the wide range of diffusivity.

Ceramics

Diffusion rates of light gases and elements in crystalline
ceramics are very important because diffusion must precede
chemical reactions and causes changes in the microstructure.
Therefore, diffusion in ceramics has been the subject of
numerous studies, many of which are summarized in
Figure 3.4, taken from Kingery et al. [19], where diffusivity
is plotted as a function of the inverse of temperature in the
high-temperature range. In this form, the slopes of the
curves are proportional to the activation energy for diffu-
sion, E, where

D = Do exp

(
− E

RT

)
(3-51)

An insert at the middle-right region of Figure 3.4 relates the
slopes of the curves to activation energy. The diffusivity
curves cover a ninefold range from 10−6 to 10−15 cm2/s,
with the largest values corresponding to the diffusion of
potassium in 
-Al2O3 and one of the smallest values for car-
bon in graphite. In general, the lower the diffusivity, the
higher is the activation energy. As discussed in detail by
Kingery et al. [19], diffusion in crystalline oxides depends
not only on temperature but also on whether the oxide is stoi-
chiometric or not (e.g., FeO and Fe0.95O) and on impurities.
Diffusion through vacant sites of nonstoichiometric oxides
is often classified as metal-deficient or oxygen-deficient.
Impurities can hinder diffusion by filling vacant lattice or
interstitial sites.

Polymers

Thin, dense, nonporous polymer membranes are widely
used to separate gas and liquid mixtures. As discussed in
detail in Chapter 14, diffusion of gas and liquid species
through polymers is highly dependent on the type of poly-
mer, whether it be crystalline or amorphous and, if the latter,
glassy or rubbery. Commercial crystalline polymers are

Table 3.11 Diffusivities and Solubilities of Gases in Amorphous
Silica at 1 atm

Gas Temp, C Diffusivity, cm2/s Solubility mol/cm3-atm

He 24 2.39 × 10−8 1.04 × 10−7

300 2.26 × 10−6 1.82 × 10−7

500 9.99 × 10−6 9.9 × 10−8

1,000 5.42 × 10−5 1.34 × 10−7

H2 300 6.11 × 10−8 3.2 × 10−14

500 6.49 × 10−7 2.48 × 10−13

1,000 9.26 × 10−6 2.49 × 10−12

O2 1,000 6.25 × 10−9

(molecular)
1,000 9.43 × 10−15

(network)



about 20% amorphous. It is mainly through the amorphous
regions that diffusion occurs. As with the transport of
gases through metals, transport of gaseous species through
polymer membranes is usually characterized by the solution-
diffusion mechanism of (3-50). Fick’s first law, in the fol-
lowing integrated forms, is then applied to compute the mass
transfer flux.

Gas species:

Ni = Hi Di

z2 − z1
( pi1 − pi2 ) = PMi

z2 − z1
( pi1 − pi2 ) (3-52)

where pi is the partial pressure of the gas species at a poly-
mer surface.

Liquid species:

Ni = Ki Di

z2 − z1
(ci1 − ci2 ) (3-53)

where Ki, the equilibrium partition coefficient, is equal to the
ratio of the concentration in the polymer to the concentration,
ci, in the liquid adjacent to the polymer surface. The product
KiDi is the liquid permeability.

Values of diffusivity for light gases in four polymers, given
in Table 14.6, range from 1.3 × 10−9 to 1.6 × 10−6 cm2/s,
which is orders of magnitude less than for diffusion of the
same species in a gas.

Diffusivities of liquids in rubbery polymers have been
studied extensively as a means of determining viscoelastic
parameters. In Table 3.12, taken from Ferry [20], diffusivi-
ties are given for different solutes in seven different rubber
polymers at near-ambient conditions. The values cover a
sixfold range, with the largest diffusivity being that for
n-hexadecane in polydimethylsiloxane. The smallest diffu-
sivities correspond to the case where the temperature is
approaching the glass-transition temperature, where the
polymer becomes glassy in structure. This more rigid struc-
ture hinders diffusion. In general, as would be expected,

82 Chapter 3 Mass Transfer and Diffusion

Figure 3.4 Diffusion coefficients for single-
and polycrystalline ceramics.
[From W.D. Kingery, H.K. Bowen, and D.R.
Uhlmann, Introduction to Ceramics, 2nd ed., Wiley
Interscience, New York (1976) with permission.]
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smaller molecules have higher diffusivities. A more detailed
study of the diffusivity of n-hexadecane in random styrene/
butadiene copolymers at 25◦C by Rhee and Ferry [21] shows
a large effect on diffusivity of fractional free volume in the
polymer.

Diffusion and permeability in crystalline polymers de-
pend on the degree of crystallinity. Polymers that are 100%
crystalline permit little or no diffusion of gases and liquids.
For example, the diffusivity of methane at 25◦C in poly-
oxyethylene oxyisophthaloyl decreases from 0.30 × 10−9 to
0.13 × 10−9 cm2/s when the degree of crystallinity in-
creases from 0 (totally amorphous) to 40% [22]. A measure
of crystallinity is the polymer density. The diffusivity of
methane at 25◦C in polyethylene decreases from
0.193 × 10−6 to 0.057 × 10−6 cm2/s when the specific grav-
ity increases from 0.914 (low density) to 0.964 (high den-
sity) [22]. A plasticizer can cause the diffusivity to increase.
For example, when polyvinylchloride is plasticized with
40% tricresyl triphosphate, the diffusivity of CO at 27◦C in-
creases from 0.23 × 10−8 to 2.9 × 10−8 cm2/s [22].

Hydrogen diffuses through a nonporous polyvinyltrimethylsilane
membrane at 25◦C. The pressures on the sides of the membrane are
3.5 MPa and 200 kPa. Diffusivity and solubility data are given in
Table 14.9. If the hydrogen flux is to be 0.64 kmol/m2-h, how thick
in micrometers should the membrane be?

SOLUTION

Equation (3-52) applies. From Table 14.9,

D = 160 × 10−11 m2/s H = S = 0.54 × 10−4 mol/m3-Pa

EXAMPLE 3.10

From (3-50),

PM = DH = (160 × 10−11)(0.54 × 10−4)
= 86.4 × 10−15 mol/m-s-Pa

p1 = 3.5 × 106 Pa p2 = 0.2 × 106 Pa

Membrane thickness = z2 − z1 = �z = PM ( p1 − p2)/N

�z = 86.4 × 10−15(3.5 × 106 − 0.2 × 106)

[0.64(1000)/3600]

= 1.6 × 10−6 m = 1.6 �m

As discussed in Chapter 14, polymer membranes must be very
thin to achieve reasonable gas permeation rates.

Cellular Solids and Wood

As discussed by Gibson and Ashby [23], cellular solids
consist of solid struts or plates that form edges and faces of
cells, which are compartments or enclosed spaces. Cellular
solids such as wood, cork, sponge, and coral exist in nature.
Synthetic cellular structures include honeycombs, and
foams (some with open cells) made from polymers, metals,
ceramics, and glass. The word cellulose means “full of little
cells.”

A widely used cellular solid is wood, whose annual world
production of the order of 1012 kg is comparable to the pro-
duction of iron and steel. Chemically, wood consists of
lignin, cellulose, hemicellulose, and minor amounts of or-
ganic chemicals and elements. The latter are extractable, and
the former three, which are all polymers, give wood its struc-
ture. Green wood also contains up to 25 wt% moisture in the
cell walls and cell cavities. Adsorption or desorption of
moisture in wood causes anisotropic swelling and shrinkage.

Table 3.12 Diffusivities of Solutes in Rubbery Polymers

Diffusivity,
Polymer Solute Temperature, K cm2/s

Polyisobutylene n-Butane 298 1.19 × 10−9

i-Butane 298 5.3 × 10−10

n-Pentane 298 1.08 × 10−9

n-Hexadecane 298 6.08 × 10−10

Hevea rubber n-Butane 303 2.3 × 10−7

i-Butane 303 1.52 × 10−7

n-Pentane 303 2.3 × 10−7

n-Hexadecane 298 7.66 × 10−8

Polymethylacrylate Ethyl alcohol 323 2.18 × 10−10

Polyvinylacetate n-Propyl alcohol 313 1.11 × 10−12

n-Propyl chloride 313 1.34 × 10−12

Ethyl chloride 343 2.01 × 10−9

Ethyl bromide 343 1.11 × 10−9

Polydimethylsiloxane n-Hexadecane 298 1.6 × 10−6

1,4-Polybutadiene n-Hexadecane 298 2.21 × 10−7

Styrene-butadiene rubber n-Hexadecane 298 2.66 × 10−8



The structure of wood, which often consists of (1) highly
elongated hexagonal or rectangular cells, called tracheids in
softwood (coniferous species, e.g., spruce, pine, and fir) and
fibers in hardwood (deciduous or broad-leaf species, e.g.,
oak, birch, and walnut); (2) radial arrays of rectangular-like
cells, called rays, which are narrow and short in softwoods
but wide and long in hardwoods; and (3) enlarged cells with
large pore spaces and thin walls, called sap channels because
they conduct fluids up the tree. The sap channels are less
than 3 vol% of softwood, but as much as 55 vol% of
hardwood.

Because the structure of wood is directional, many of its
properties are anisotropic. For example, stiffness and
strength are 2 to 20 times greater in the axial direction of the
tracheids or fibers than in the radial and tangential directions
of the trunk from which the wood is cut. This anisotropy ex-
tends to permeability and diffusivity of wood penetrants,
such as moisture and preservatives. According to Stamm
[24], the permeability of wood to liquids in the axial direc-
tion can be up to 10 times greater than in the transverse
direction.

Movement of liquids and gases through wood and wood
products takes time during drying and treatment with preser-
vatives, fire retardants, and other chemicals. This movement
takes place by capillarity, pressure permeability, and
diffusion. Nevertheless, wood is not highly permeable be-
cause the cell voids are largely discrete and lack direct
interconnections. Instead, communication among cells is
through circular openings spanned by thin membranes with
submicrometer-sized pores, called pits, and to a smaller ex-
tent, across the cell walls. Rays give wood some permeabil-
ity in the radial direction. Sap channels do not contribute to
permeability. All three mechanisms of movement of gases
and liquids in wood are considered by Stamm [24]. Only dif-
fusion is discussed here.

The simplest form of diffusion is that of a water-soluble
solute through wood saturated with water, such that no di-
mensional changes occur. For the diffusion of urea, glycer-
ine, and lactic acid into hardwood, Stamm [24] lists diffu-
sivities in the axial direction that are about 50% of ordinary
liquid diffusivities. In the radial direction, diffusivities are
about 10% of the values in the axial direction. For example,
at 26.7◦C the diffusivity of zinc sulfate in water is
5 × 10−6 cm2/s. If loblolly pine sapwood is impregnated
with zinc sulfate in the radial direction, the diffusivity is
found to be 0.18 × 10−6 cm2/s [24].

The diffusion of water in wood is more complex. Mois-
ture content determines the degree of swelling or shrinkage.
Water is held in the wood in different ways: It may be
physically adsorbed on cell walls in monomolecular layers,
condensed in preexisting or transient cell capillaries, or
absorbed in cell walls to form a solid solution.

Because of the practical importance of lumber drying
rates, most diffusion coefficients are measured under drying
conditions in the radial direction across the fibers. Results
depend on temperature and swollen-volume specific gravity.

Typical results are given by Sherwood [25] and Stamm [24].
For example, for beech with a swollen specific gravity of
0.4, the diffusivity increases from a value of about
1 × 10−6 cm2/s at 10◦C to 10 × 10−6 cm2/s at 60°C.

3.3 ONE-DIMENSIONAL, STEADY-STATE
AND UNSTEADY-STATE, MOLECULAR
DIFFUSION THROUGH STATIONARY MEDIA

For conductive heat transfer in stationary media, Fourier’s
law is applied to derive equations for the rate of heat transfer
for steady-state and unsteady-state conditions in shapes such
as slabs, cylinders, and spheres. Many of the results are plot-
ted in generalized charts. Analogous equations can be de-
rived for mass transfer, using simplifying assumptions.

In one dimension, the molar rate of mass transfer of A in
a binary mixture with B is given by a modification of (3-12),
which includes bulk flow and diffusion:

nA = xA(nA + nB) − cDAB A

(
dxA

dz

)
(3-54)

If A is a dissolved solute undergoing mass transfer, but B is
stationary, nB = 0. It is common to assume that c is a constant
and xA is small. The bulk-flow term is then eliminated and
(3-54) accounts for diffusion only, becoming Fick’s first law:

nA = −cDAB A

(
dxA

dz

)
(3-55)

Alternatively, (3-55) can be written in terms of concentration
gradient:

nA = −DAB A

(
dcA

dz

)
(3-56)

This equation is analogous to Fourier’s law for the rate of
heat conduction, Q:

Q = −k A

(
dT

dz

)
(3-57)

Steady State

For steady-state, one-dimensional diffusion, with constant
DAB, (3-56) can be integrated for various geometries, the
most common results being analogous to heat conduction.

1. Plane wall with a thickness, z2 − z1:

nA = DAB A

(
cA1 − cA2

z2 − z1

)
(3-58)

2. Hollow cylinder of inner radius r1 and outer radius r2,
with diffusion in the radial direction outward:

nA = 2�L
DAB(cA1 − cA2 )

ln(r2/r1)
(3-59)

or

nA = DAB ALM

(
cA1 − cA2

r2 − r1

)
(3-60)
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where

ALM = log mean of the areas 2�r L at r1 and r2

L = length of the hollow cylinder

3. Spherical shell of inner radius r1 and outer radius r2,
with diffusion in the radial direction outward:

nA = 4�r1r2 DAB(cA1 − cA2 )

r2 − r1
(3-61)

or

nA = DAB AGM

(
cA1 − cA2

r2 − r1

)
(3-62)

where AGM = geometric mean of the areas 4�r2 at
r1 and r2.

When r1/r2 < 2, the arithmetic mean area is no more
than 4% greater than the log mean area. When r1/r2 < 1.33,
the arithmetic mean area is no more than 4% greater than the
geometric mean area.

Unsteady State

Equation (3-56) is applied to unsteady-state molecular diffu-
sion by considering the accumulation or depletion of a
species with time in a unit volume through which the species
is diffusing. Consider the one-dimensional diffusion of
species A in B through a differential control volume with dif-
fusion in the z-direction only, as shown in Figure 3.5.
Assume constant total concentration, c = cA + cB, constant
diffusivity, and negligible bulk flow. The molar flow rate of
species A by diffusion at the plane z = z is given by (3-56):

nAz = −DAB A

(
∂cA

∂z

)
z

(3-63)

At the plane, z = z + �z, the diffusion rate is

nAz+�z = −DAB A

(
∂cA

∂z

)
z+�z

(3-64)

The accumulation of species A in the control volume is

A
∂cA

∂t
�z (3-65)

Since rate in − rate out = accumulation,

−DAB A

(
∂cA

∂z

)
z

+ DAB A

(
∂cA

∂z

)
z+�z

= A

(
∂cA

∂t

)
�z

(3-66)

Rearranging and simplifying,

DAB

[
(∂cA/∂z)z+�z − (∂cA/∂z)z

�z

]
= ∂cA

∂t
(3-67)

In the limit, as �z → 0,

∂cA

∂t
= DAB

∂2cA

∂z2
(3-68)

Equation (3-68) is Fick’s second law for one-dimensional
diffusion. The more general form, for three-dimensional rec-
tangular coordinates, is

∂cA

∂t
= DAB

(
∂2cA

∂x2
+ ∂2cA

∂y2
+ ∂2cA

∂z2

)
(3-69)

For one-dimensional diffusion in the radial direction only,
for cylindrical and spherical coordinates, Fick’s second law
becomes, respectively,

∂cA

∂t
= DAB

r

∂

∂r

(
r
∂cA

∂r

)
(3-70)

and
∂cA

∂t
= DAB

r2

∂

∂r

(
r2 ∂cA

∂r

)
(3-71)

Equations (3-68) to (3-71) are analogous to Fourier’s sec-
ond law of heat conduction where cA is replaced by temper-
ature, T, and diffusivity, DAB, is replaced by thermal diffu-
sivity, � = k/�CP . The analogous three equations for heat
conduction for constant, isotropic properties are, respec-
tively:

∂T

∂t
= �

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
(3-72)

∂T

∂t
= �

r

∂

∂r

(
r
∂T

∂r

)
(3-73)

∂T

∂t
= �

r2

∂

∂r

(
r2 ∂T

∂r

)
(3-74)

Analytical solutions to these partial differential equations in
either Fick’s law or Fourier’s law form are available for a
variety of boundary conditions. Many of these solutions are
derived and discussed by Carslaw and Jaeger [26] and Crank
[27]. Only a few of the more useful solutions are presented
here.

Semi-infinite Medium

Consider the semi-infinite medium shown in Figure 3.6,
which extends in the z-direction from z = 0 to z = ∞. The x
and y coordinates extend from −∞ to +∞, but are not of
interest because diffusion takes place only in the z-direction.
Thus, (3-68) applies to the region z ≥ 0. At time t ≤ 0, the
concentration is cAo for z ≥ 0. At t = 0, the surface of the
semi-infinite medium at z = 0 is instantaneously brought to
the concentration cAs > cAo and held there for t > 0. There-
fore, diffusion into the medium occurs. However, because

Figure 3.5 Unsteady-state diffusion through a differential
volume A dz.
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the medium is infinite in the z-direction, diffusion cannot
extend to z = ∞ and, therefore, as z → ∞, cA = cAo for all
t ≥ 0. Because the partial differential equation (3-68) and its
one boundary (initial) condition in time and two boundary
conditions in distance are linear in the dependent variable,
cA, an exact solution can be obtained. Either the method of
combination of variables [28] or the Laplace transform
method [29] is applicable. The result, in terms of the frac-
tional accomplished concentration change, is

� = cA − cAo

cAs − cAo

= erfc

(
z

2
√

DABt

)
(3-75)

where the complementary error function, erfc, is related to
the error function, erf, by

erfc(x) = 1 − erf(x) = 1 − 2√
�

∫ x

0
e−2

d (3-76)

The error function is included in most spreadsheet programs
and handbooks, such as Handbook of Mathematical Func-
tions [30]. The variation of erf(x) and erfc(x) is as follows:

x erf(x) erfc(x)

0 0.0000 1.0000
0.5 0.5205 0.4795
1.0 0.8427 0.1573
1.5 0.9661 0.0339
2.0 0.9953 0.0047
∞ 1.0000 0.0000

Equation (3-75) is used to compute the concentration in
the semi-infinite medium, as a function of time and distance
from the surface, assuming no bulk flow. Thus, it applies most
rigorously to diffusion in solids, and also to stagnant liquids
and gases when the medium is dilute in the diffusing solute.

In (3-75), when (z/2
√

DABt) = 2, the complementary
error function is only 0.0047, which represents less than a
1% change in the ratio of the concentration change at z = z
to the change at z = 0. Thus, it is common to refer to
z = 4

√
DABt as the penetration depth and to apply (3-75) to

media of finite thickness as long as the thickness is greater
than the penetration depth.

The instantaneous rate of mass transfer across the surface
of the medium at z = 0 can be obtained by taking the deriv-
ative of (3-75) with respect to distance and substituting it
into Fick’s first law applied at the surface of the medium.

Thus, using the Leibnitz rule for differentiating the integral
of (3-76), with x = z/2

√
DABt ,

nA = −DAB A

(
∂cA

∂z

)
z=0

= DAB A

(
cAs − cAo√

�DABt

)
exp

(
− z2

4DABt

)∣∣∣∣
z=0

(3-77)

Thus,

nA|z=0 =
√

DAB

�t
A(cAs − cAo ) (3-78)

We can also determine the total number of moles of
solute, NA, transferred into the semi-infinite medium by in-
tegrating (3-78) with respect to time:

NA =
∫ t

o
nA|z=0 dt =

√
DAB

�
A(cAs − cAo )

∫ t

o

dt√
t

= 2A(cAs − cAo )

√
DABt

�

(3-79)

Determine how long it will take for the dimensionless concentra-
tion change, � = (cA − cAo )/(cAs − cAo ) , to reach 0.01 at a depth
z = 1 m in a semi-infinite medium, which is initially at a solute
concentration cAo , after the surface concentration at z = 0 increases
to cAs , for diffusivities representative of a solute diffusing through
a stagnant gas, a stagnant liquid, and a solid.

SOLUTION

For a gas, assume DAB = 0.1 cm2/s. We know that z = 1 m = 100 cm.

From (3-75) and (3-76),

� = 0.01 = 1 − erf

(
z

2
√

DABt

)
Therefore,

erf

(
z

2
√

DABt

)
= 0.99

From tables of the error function,(
z

2
√

DABt

)
= 1.8214

Solving,

t =
[

100

1.8214(2)

]2 1

0.10
= 7,540 s = 2.09 h

In a similar manner, the times for typical gas, liquid, and solid
media are:

Semi-infinite
Medium DAB, cm2/s Time for � = 0.01 at 1 m

Gas 0.10 2.09 h
Liquid 1 × 10−5 2.39 year
Solid 1 × 10−9 239 centuries

These results show that molecular diffusion is very slow, espe-
cially in liquids and solids. In liquids and gases, the rate of mass

EXAMPLE 3.11
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Figure 3.6 One-dimensional diffusion into a semi-infinite
medium.

z Direction of
diffusion
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transfer can be greatly increased by agitation to induce turbulent
motion. For solids, it is best to reduce the diffusion path to as small
a dimension as possible by reducing the size of the solid.

Medium of Finite Thickness with Sealed Edges

Consider a rectangular, parallelepiped medium of finite
thickness 2a in the z-direction, and either infinitely long
dimensions in the y- and x-directions or finite lengths of 2b
and 2c, respectively, in those directions. Assume that in Fig-
ure 3.7a the edges parallel to the z-direction are sealed, so
diffusion occurs only in the z-direction and initially the con-
centration of the solute in the medium is uniform at cAo . At
time t = 0, the two unsealed surfaces of the medium at z =
�a are brought to and held at concentration cAs > cAo . Be-
cause of symmetry, ∂cA/∂z = 0 at z = 0. Assume constant
DAB. Again (3-68) applies, and an exact solution can be ob-
tained because both (3-68) and the boundary conditions are
linear in cA. By the method of separation of variables [28] or
the Laplace transform method [29], the result from Carslaw
and Jaeger [26], in terms of the fractional, unaccomplished
concentration change, E, is

E = 1 − � = cAs − cA

cAs − cAo

= 4

�

∞∑
n=0

(−1)n

(2n + 1)

× exp[−DAB(2n + 1)2�2t/4a2] cos
(2n + 1)�z

2a

or, in terms of the complementary error function,

E = 1 − � = cAs − cA

cAs − cAo

=
∞∑

n=0

(−1)n

×
[

erfc
(2n + 1)a − z

2
√

DABt
+ erfc

(2n + 1)a + z

2
√

DABt

] (3-81)

For large values of DABt/a2, which is referred to as the
Fourier number for mass transfer, the infinite series solutions
of (3-80) and (3-81) converge rapidly, but for small values

(e.g., short times), they do not. However, in the latter case,
the solution for the semi-infinite medium applies for
DABt/a2 < 1

16 . A convenient plot of the exact solution is
given in Figure 3.8.

The instantaneous rate of mass transfer across the surface
of either unsealed face of the medium (i.e., at z = �a) is ob-
tained by differentiating (3-80) with respect to z, evaluating
the result at z = a, followed by substitution into Fick’s first
law to give

nA|z=a = 2DAB(cAs − cAo ) A

a
×

∞∑
n=0

exp

[
− DAB(2n + 1)2�2t

4a2

] (3-82)
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Figure 3.7 Unsteady-state diffusion in media
of finite dimensions.
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Figure 3.8 Concentration profiles for unsteady-state diffusion in
a slab.
[Adapted from H.S. Carslaw and J.C. Jaeger, Conduction of Heat in
Solids, 2nd ed., Oxford University Press, London (1959).]
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We can also determine the total number of moles transferred
across either unsealed face by integrating (3-82) with respect
to time. Thus,

NA =
∫ t

o
nA|z=a dt = 8(cAs − cAo ) Aa

�2

×
∞∑

n=0

1

(2n + 1)2

{
1 − exp

[
− DAB(2n + 1)2�2t

4a2

]}

(3-83)

In addition, the average concentration of the solute in the
medium, cAavg , as a function of time, can be obtained in the
case of a slab from:

cAs − cAavg

cAs − cAo

=
∫ a

o (1 − �) dz

a
(3-84)

Substitution of (3-80) into (3-84) followed by integration
gives

Eavgslab
= (1 − �ave)slab = cAs − cAavg

cAs − cAo

= 8

�2

∞∑
n=0

1

(2n + 1)2
exp

[
− DAB(2n + 1)2�2t

4a2

]
(3-85)

This equation is plotted in Figure 3.9. It is important to note
that concentrations are in mass of solute per mass of dry
solid or mass of solute/volume. This assumes that during dif-
fusion the solid does not shrink or expand so that the mass of
dry solid per unit volume of wet solid will remain constant.
Then, we can substitute a concentration in terms of mass or
moles of solute per mass of dry solid, i.e., the moisture con-
tent on the dry basis.

When the edges of the slab in Figure 3.7a are not sealed,
the method of Newman [31] can be used with (3-69) to
determine concentration changes within the slab. In this
method, E or Eavg is given in terms of the E values from the
solution of (3-68) for each of the coordinate directions by

E = Ex Ey Ez (3-86)

Corresponding solutions for infinitely long, circular cylin-
ders and spheres are available in Carslaw and Jaeger [26]
and are plotted in Figures 3.9, 3.10, and 3.11, respectively.
For a short cylinder, where the ends are not sealed, E or Eave

is given by the method of Newman as

E = Er Ex (3-87)

Some materials such as crystals and wood, have thermal
conductivities and diffusivities that vary markedly with
direction. For these anisotropic materials, Fick’s second law
in the form of (3-69) does not hold. Although the general
anisotropic case is exceedingly complex, as shown in the
following example, the mathematical treatment is relatively
simple when the principal axes of diffusivity coincide with
the coordinate system.
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Figure 3.9 Average concentrations for unsteady-state diffusion.
[Adapted from R.E. Treybal, Mass-Transfer Operations, 3rd ed., McGraw-
Hill, New York (1980).]
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Figure 3.10 Concentration profiles for unsteady-state diffusion
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[Adapted from H.S. Carslaw and J.C. Jaeger, Conduction of Heat in
Solids, 2nd ed., Oxford University Press, London (1959).]
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A piece of lumber, measuring 5 × 10 × 20 cm, initially contains
20 wt% moisture. At time 0, all six faces are brought to an equilib-
rium moisture content of 2 wt%. Diffusivities for moisture at 25◦C
are 2 × 10−5 cm2/s in the axial (z) direction along the fibers and
4 × 10−6 cm2/s in the two directions perpendicular to the fibers.
Calculate the time in hours for the average moisture content to drop
to 5 wt% at 25◦C. At that time, determine the moisture content at
the center of the piece of lumber. All moisture contents are on a dry
basis.

SOLUTION

In this case, the solid is anisotropic, with Dx = Dy = 4 × 10−6 cm2/s
and Dz = 2 × 10−5 cm2/s, where dimensions 2c, 2b, and 2a in the
x, y, and z directions are 5, 10, and 20 cm, respectively. Fick’s sec-
ond law for an isotropic medium, (3-69), must be rewritten for this
anisotropic material as

∂cA

∂t
= Dx

[
∂2cA

∂x2
+ ∂2cA

∂y2

]
+ Dz

∂2cA

∂z2
(1)

as discussed by Carslaw and Jaeger [26].
To transform (1) into the form of (3-69), let

x1 = x

√
D

Dx
y1 = y

√
D

Dx
z1 = z

√
D

Dz
(2)

where D is chosen arbitrarily. With these changes in variables,
(1) becomes

∂cA

∂t
= D

(
∂2cA

∂x2
1

+ ∂2cA

∂y2
1

+ ∂2cA

∂z2
1

)
(3)

EXAMPLE 3.12

Since this is the same form as (3-69) and since the boundary condi-
tions do not involve diffusivities, we can apply Newman’s method,
using Figure 3.9, where concentration, cA, is replaced by weight-
percent moisture on a dry basis.

From (3-86) and (3-85),

Eaveslab = Eavgx
Eavgy

Eavgz
= cAave − cAs

cAo − cAs

= 5 − 2

20 − 2
= 0.167

Let D = 1 × 10−5 cm2/s.

z1 Direction (axial):

a1 = a

(
D

Dz

)1/2

= 20

2

(
1 × 10−5

2 × 10−5

)1/2

= 7.07 cm

Dt

a2
1

= 1 × 10−5t

7.072
= 2.0 × 10−7t , s

y1 Direction:

b1 = b

(
D

Dy

)1/2

= 10

2

(
1 × 10−5

4 × 10−6

)1/2

= 7.906 cm

Dt

b2
1

= 1 × 10−5t

7.9062
= 1.6 × 10−7t , s

x1-Direction:

c1 = c

(
D

Dx

)1/2

= 5

2

(
1 × 10−5

4 × 10−6

)1/2

= 3.953 cm

Dt

c2
1

= 1 × 10−5t

3.9532
= 6.4 × 10−7t , s

Use Figure 3.9 iteratively with assumed values of time in seconds
to obtain values of Eavg for each of the three coordinates until
(3-86) equals 0.167.

t, h t, s Eavgz1
Eavgy1

Eavgx1
Eavg

100 360,000 0.70 0.73 0.46 0.235
120 432,000 0.67 0.70 0.41 0.193
135 486,000 0.65 0.68 0.37 0.164

Therefore, it takes approximately 136 h.
For 136 h = 490,000 s, the Fourier numbers for mass transfer

are

Dt

a2
1

= (1 × 10−5)(490,000)

7.072
= 0.0980

Dt

b2
1

= (1 × 10−5)(490,000)

7.9062
= 0.0784

Dt

c2
1

= (1 × 10−5)(490,000)

3.9532
= 0.3136

From Figure 3.8, at the center of the slab,

Ecenter = Ez1 Ey1 Ex1 = (0.945)(0.956)(0.605) = 0.547

= cAs − cAcenter

cAs − cAo

= 2 − cAcenter

2 − 20
= 0.547

Solving,

cA at the center = 11.8 wt% moisture
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Figure 3.11 Concentration profiles for unsteady-state diffusion in
a sphere.
[Adapted from H.S. Carslaw and J.C. Jaeger, Conduction of Heat in
Solids, 2nd ed., Oxford University Press, London (1959).]



3.4 MOLECULAR DIFFUSION
IN LAMINAR FLOW

Many mass-transfer operations involve diffusion in fluids in
laminar flow. The fluid may be a film flowing slowly down a
vertical or inclined surface, a laminar boundary layer that
forms as the fluid flows slowly past a thin plate, or the fluid
may flow through a small tube or slowly through a large pipe
or duct. Mass transfer may occur between a gas and a liquid
film, between a solid surface and a fluid, or between a fluid
and a membrane surface.

Falling Liquid Film

Consider a thin liquid film, of a mixture of volatile A and
nonvolatile B, falling in laminar flow at steady state down
one side of a vertical surface and exposed to pure gas, A, on
the other side of the film, as shown in Figure 3.12. The sur-
face is infinitely wide in the x-direction (normal to the page).
In the absence of mass transfer of A into the liquid film, the
liquid velocity in the z-direction, uz, is zero. In the absence of
end effects, the equation of motion for the liquid film in fully
developed laminar flow in the downward y-direction is

�
d2uy

dz2
+ �g = 0 (3-88)

Usually, fully developed flow, where uy is independent of the
distance y, is established quickly. If � is the thickness of the
film and the boundary conditions are uy = 0 at z = � (no-
slip condition at the solid surface) and duy/dz = 0 at z = 0
(no drag at the liquid–gas interface), (3-88) is readily inte-
grated to give a parabolic velocity profile:

uy = �g�2

2�

[
1 −

( z

�

)2
]

(3-89)

Thus, the maximum liquid velocity, which occurs at z = 0, is

(uy)max = �g�2

2�
(3-90)

The bulk-average velocity in the liquid film is

ū y =
∫ �

0 uy dz

�
= �g�2

3�
(3-91)

Thus, the film thickness for fully developed flow is indepen-
dent of location y and is

� =
(

3ū y�

�g

)1/2

=
(

3��

�2g

)1/3

(3-92)

where � = liquid film flow rate per unit width of film, W.
For film flow, the Reynolds number, which is the ratio of

the inertial force to the viscous force, is

NRe = 4rH ūy�

�
= 4�ū y�

�
= 4�

�
(3-93)

where rH = hydraulic radius = (flow cross section)/(wetted
perimeter) = (W�)/W = � and, by the equation of continu-
ity, � = ū y��.

As reported by Grimley [32], for NRe < 8 to 25, depend-
ing on the surface tension and viscosity, the flow in the film
is laminar and the interface between the liquid film and the
gas is flat. The value of 25 is obtained with water. For 8 to
25 < NRe < 1,200, the flow is still laminar, but ripples and
waves may appear at the interface unless suppressed by the
addition of wetting agents to the liquid.

For a flat liquid–gas interface and a small rate of mass
transfer of A into the liquid film, (3-88) to (3-93) hold and
the film velocity profile is given by (3-89). Now consider a
mole balance on A for an incremental volume of liquid film
of constant density, as shown in Figure 3.12. Neglect bulk
flow in the z-direction and axial diffusion in the y-direction.
Then, at steady state, neglecting accumulation or depletion
of A in the incremental volume,

−DAB(�y)(�x)

(
∂cA

∂z

)
z

+ uycA|y(�z)(�x)

= −DAB(�y)(�x)

(
∂cA

∂z

)
z+�z

+ uycA|y+�y(�z)(�x)

(3-94)

Rearranging and simplifying (3-94),[
uycA|y+�y − uycA|y

�y

]
= DAB

[
(∂cA/∂z)z+�z − (∂cA/∂z)z

�z

]
(3-95)

In the limit, as �z → 0 and �y → 0,

uy
∂cA

∂y
= DAB

∂2cA

∂z2
(3-96)

Substituting (3-89) into (3-96),

�g�2

2�

[
1 −

( z

�

)2
]

∂cA

∂y
= DAB

∂2cA

∂z2
(3-97)
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Figure 3.12 Mass transfer from a gas into a falling, laminar
liquid film.
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This equation was solved by Johnstone and Pigford [33]
and later by Olbrich and Wild [34], for the following bound-
ary conditions:

cA = cAi at z = 0 for y > 0
cA = cA0 at y = 0 for 0 < z < �

∂cA/∂z = 0 at z = � for 0 < y < L

where L = height of the vertical surface. The solution of
Olbrich and Wild is in the form of an infinite series, giving
cA as a function of z and y. However, of more interest is the
average concentration at y = L, which, by integration, is

c̄Ay = 1

ū y�

∫ �

0
uycAy dz (3-98)

For the condition y = L, the result is
cAi − c̄AL

cAi − cA0

= 0.7857e−5.1213 + 0.09726e−39.661

+ 0.036093−106.25 + · · ·
(3-99)

where

 = 2DABL

3�2ū y
= 8/3

NRe NSc(�/L)
= 8/3

(�/L)NPeM

(3-100)

NSc = Schmidt number = �

� DAB

= momentum diffusivity,�/�

mass diffusivity, DAB

(3-101)

NPeM = NRe NSc = Peclet number for mass transfer

= 4�ū y

DAB

(3-102)

The Schmidt number is analogous to the Prandtl number,
used in heat transfer:

NPr = CP�

k
= (�/� )

(k/�CP )
= momentum diffusivity

thermal diffusivity

The Peclet number for mass transfer is analogous to the
Peclet number for heat transfer:

NPeH = NRe NPr = 4�ū yCP�

k
Both Peclet numbers are ratios of convective transport to
molecular transport.

The total rate of absorption of A from the gas into the
liquid film for height L and width W is

nA = ū y�W (c̄AL − cA0 ) (3-103)

Mass-Transfer Coefficients

Mass-transfer problems involving fluids are most often
solved using mass-transfer coefficients, analogous to heat-
transfer coefficients. For the latter, Newton’s law of cooling
defines a heat-transfer coefficient, h:

Q = h A �T (3-104)
where

Q = rate of heat transfer

A = area for heat transfer (normal to the direction of
heat transfer)

�T = temperature-driving force for heat transfer

For mass transfer, a composition driving force replaces
�T . As discussed later in this chapter, because composition
can be expressed in a number of ways, different mass-
transfer coefficients are defined. If we select �cA as the dri-
ving force for mass transfer, we can write

nA = kc A �cA (3-105)

which defines a mass-transfer coefficient, kc, in mol/
time-area-driving force, for a concentration driving force.
Unfortunately, no name is in general use for (3-105).

For the falling laminar film, we take �cA = cAi − c̄A,
which varies with vertical location, y, because even though
cAi is independent of y, the average film concentration, c̄A,
increases with y. To derive an expression for kc, we equate
(3-105) to Fick’s first law at the gas–liquid interface:

kc A(cAi − c̄A) = −DAB A

(
∂cA

∂z

)
z=0

(3-106)

Although this is the most widely used approach for defin-
ing a mass-transfer coefficient, in this case of a falling film it
fails because (∂cA/∂z) at z = 0 is not defined. Therefore, for
this case we use another approach as follows. For an incre-
mental height, we can write for film width W,

nA = ū y�W dc̄A = kc(cAi − c̄A)W dy (3-107)

This defines a local value of kc, which varies with distance y
because c̄A varies with y. An average value of kc, over a
height L, can be defined by separating variables and inte-
grating (3-107):

kcavg =
∫ L

0 kc dy

L
=

ū y�
∫ cAL

cA0
[dc̄A/(cAi − c̄A)]

L

= ū y�

L
ln

cAi − cA0

cAi − c̄AL

(3-108)

In general, the argument of the natural logarithm in
(3-108) is obtained from the reciprocal of (3-99). For values
of  in (3-100) greater than 0.1, only the first term in (3-99)
is significant (error is less than 0.5%). In that case,

kcavg = ū y�

L
ln

e5.1213

0.7857
(3-109)

Since ln ex = x,

kcavg = ū y�

L
(0.241 + 5.1213) (3-110)

In the limit, for large , using (3-100) and (3-102), (3-110)
becomes

kcavg = 3.414
DAB

�
(3-111)

In a manner suggested by the Nusselt number,
NNu = h�/k for heat transfer, where � = a characteristic
length, we define a Sherwood number for mass transfer,
which for a falling film of characteristic length � is

NShavg = kcavg �

DAB
(3-112)



From (3-111), NShavg = 3.414, which is the smallest value
that the Sherwood number can have for a falling liquid film.

The average mass-transfer flux of A is given by

NAavg = nAavg

A
= kcavg (cAi − c̄A)mean (3-113)

For values  < 0.001 in (3-100), when the liquid-film
flow regime is still laminar without ripples, the time of con-
tact of the gas with the liquid is short and mass transfer is
confined to the vicinity of the gas–liquid interface. Thus, the
film acts as if it were infinite in thickness. In this limiting
case, the downward velocity of the liquid film in the region
of mass transfer is just uymax , and (3-96) becomes

uymax

∂cA

∂y
= DAB

∂2cA

∂z2
(3-114)

Since from (3-90) and (3-91), uymax = 3ū y/2, (3-114) can be
rewritten as

∂cA

∂y
=

(
2DAB

3ū y

)
∂2cA

∂z2
(3-115)

where the boundary conditions are

cA = cA0 for z > 0 and y > 0

cA = cAi for z = 0 and y > 0

cA = cA0 for large z and y > 0

Equation (3-115) and the boundary conditions are equivalent
to the case of the semi-infinite medium, as developed above.
Thus, by analogy to (3-68), (3-75), and (3-76) the solution is

E = 1 − � = cAi − cA

cAi − cA0

= erf

(
z

2
√

2DAB y/3ū y

)
(3-116)

Assuming that the driving force for mass transfer in the film
is cAi − cA0 , we can use Fick’s first law at the gas–liquid
interface to define a mass-transfer coefficient:

NA = −DAB
∂cA

∂z

∣∣∣∣
z=0

= kc(cAi − cA0 ) (3-117)

The error function is defined as

erf z = 2√
�

∫ z

0
e−t2

dt (3-118)

Using the Leibnitz rule with (3-116) to differentiate this in-
tegral function,

∂cA

∂z

∣∣∣∣
z=0

= −(cAi − cA0 )

√
3ū y

2�DAB y
(3-119)

Substituting (3-119) into (3-117) and introducing the Peclet
number for mass transfer from (3-102), we obtain an expres-
sion for the local mass-transfer coefficient as a function of
distance down from the top of the wall:

kc =
√

3D2
AB NPeM

8�y�
=

√
3DAB�

2�y��
(3-120)

The average value of kc over the height of the film, L, is ob-
tained by integrating (3-120) with respect to y, giving

kcavg =
√

6DAB�

��� L
=

√
3D2

AB

2��L
NPeM (3-121)

Combining (3-121) with (3-112) and (3-102),

NShavg =
√

3�

2�L
NPeM =

√
4

�
(3-122)

where, by (3-108), the proper mean to use with kcavg is the log
mean. Thus,

(cAi − c̄A)mean = (cAi − c̄A)LM

= (cAi − cA0 ) − (cAi − cAL )

ln[(cAi − cA0 )/(cAi − c̄AL )]

(3-123)

When ripples are present, values of kcavg and NShavg can be
considerably larger than predicted by these equations.

In the above development, asymptotic, closed-form solu-
tions are obtained with relative ease for large and small
values of , defined by (3-100). These limits, in terms of the
average Sherwood number, are shown in Figure 3.13. The

92 Chapter 3 Mass Transfer and Diffusion

Figure 3.13 Limiting and general solutions for
mass transfer to a falling, laminar liquid film.
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general solution for intermediate values of  is not available
in closed form. Similar limiting solutions for large and small
values of appropriate parameters, usually dimensionless
groups, have been obtained for a large variety of transport
and kinetic phenomena, as discussed by Churchill [35].
Often the two limiting cases can be patched together to pro-
vide a reasonable estimate of the intermediate solution, if a
single intermediate value is available from experiment or the
general numerical solution. The procedure is discussed by
Churchill and Usagi [36]. The general solution of Emmert
and Pigford [37] to the falling, laminar liquid film problem is
included in Figure 3.13.

Water (B) at 25◦C, in contact with pure CO2 (A) at 1 atm, flows as
a film down a vertical wall 1 m wide and 3 m high at a Reynolds
number of 25. Using the following properties, estimate the rate of
adsorption of CO2 into water in kmol/s:

DAB = 1.96 × 10−5 cm2/s; � = 1.0 g/cm3;
�L = 0.89 cP = 0.00089 kg/m-s

Solubility of CO2 in water at 1 atm and 25◦C = 3.4 ×
10−5 mol/cm3.

SOLUTION

From (3-93),

� = NRe�

4
= 25(0.89)(0.001)

4
= 0.00556

kg

m − s

From (3-101),

NSc = �

� DAB
= (0.89)(0.001)

(1.0)(1,000)(1.96 × 10−5)(10−4)
= 454

From (3-92),

� =
[

3(0.89)(0.001)(0.00556)

1.02(1,000)2(9.807)

]1/3

= 1.15 × 10−4 m

From (3-90) and (3-91), ū y = (2/3)uymax . Therefore,

ū y = 2

3

[
(1.0)(1,000)(9.807)(1.15 × 10−4)2

2(0.89)(0.001)

]
= 0.0486 m/s

From (3-100),

 = 8/3

(25)(454)[(1.15 × 10−4)/3]
= 6.13

Therefore, (3-111) applies, giving

kcavg = 3.41(1.96 × 10−5)(10−4)

1.15 × 10−4
= 5.81 × 10−5 m/s

To determine the rate of absorption, c̄AL must be determined. From
(3-103) and (3-113),

nA = ū y�W (c̄AL − cA0 ) = kcavg A
(c̄AL − cA0 )

ln[(cAi − cA0 )/(cAi − cAL )]

EXAMPLE 3.13

Thus,

ln

(
cAi − cA0

cAi − c̄AL

)
= kcavg A

ūy�W

Solving for c̄AL ,

c̄AL = cAi − (cAi − cA0 ) exp

(
− kcavg A

ūy�W

)
L = 3 m, W = 1 m, A = W L = (1)(3) = 3 m2

cA0 = 0, cAi = 3.4 × 10−5 mol/cm3 = 3.4 × 10−2 kmol/m3

c̄AL = 3.4 × 10−2
{

1 − exp

[
− (5.81 × 10−5)(3)

(0.0486)(1.15 × 10−4)(1)

]}

= 3.4 × 10−2 kmol/m3

Thus, the exiting liquid film is saturated with CO2, which implies
equilibrium at the gas–liquid interface. From (3-103),

nA = 0.0486(1.15 × 10−4)(3.4 × 10−2) = 1.9 × 10−7 kmol/s

Boundary-Layer Flow on a Flat Plate

Consider the flow of a fluid (B) over a thin, flat plate parallel
with the direction of flow of the fluid upstream of the plate,
as shown in Figure 3.14. A number of possibilities for mass
transfer of another species, A, into B exist: (1) The plate
might consist of material A, which is slightly soluble in B.
(2) Component A might be held in the pores of an inert solid
plate, from which it evaporates or dissolves into B. (3) The
plate might be an inert, dense polymeric membrane, through
which species A can pass into fluid B. Let the fluid velocity
profile upstream of the plate be uniform at a free-system ve-
locity of uo. As the fluid passes over the plate, the velocity ux

in the direction of flow is reduced to zero at the wall, which
establishes a velocity profile due to drag. At a certain dis-
tance z, normal to and out from the solid surface, the fluid ve-
locity is 99% of uo. This distance, which increases with
increasing distance x from the leading edge of the plate, is
arbitrarily defined as the velocity boundary-layer thickness,
�. Essentially all flow retardation occurs in the boundary
layer, as first suggested by Prandtl [38]. The buildup of this
layer, the velocity profile in the layer, and the drag force can
be determined for laminar flow by solving the equations
of continuity and motion (Navier–Stokes equations) for the
x-direction. For a Newtonian fluid of constant density and
viscosity, in the absence of pressure gradients in the x- and

Figure 3.14 Laminar boundary-layer development for flow across
a flat plate.
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y- (normal to the x–z plane) directions, these equations for
the region of the boundary layer are

∂ux

∂x
+ ∂uz

∂z
= 0 (3-124)

ux
∂ux

∂x
+ uz

∂ux

∂z
= �

�

(
∂2ux

∂z2

)
(3-125)

The boundary conditions are

ux = uo at x = 0 for z > 0 ux = 0 at z = 0 for x > 0
ux = uo at z = ∞ for x > 0 uz = 0 at z = 0 for x > 0

The solution of (3-124) and (3-125) in the absence of heat
and mass transfer, subject to these boundary conditions, was
first obtained by Blasius [39] and is described in detail by
Schlichting [40]. The result in terms of a local friction factor,
fx, a local shear stress at the wall, 	wx , and a local drag coef-
ficient at the wall, CDx , is

CDx

2
= fx

2
= 	wx

�u2
o

= 0.322

N 0.5
Rex

(3-126)

where

NRex = xuo�

�
(3-127)

Thus, the drag is greatest at the leading edge of the plate,
where the Reynolds number is smallest. Average values of
the drag coefficient are obtained by integrating (3-126) from
x = 0 to L, giving

CDavg

2
= favg

2
= 0.664

(NReL )0.5
(3-128)

The thickness of the velocity boundary layer increases with
distance along the plate:

�

x
= 4.96

N 0.5
Rex

(3-129)

A reasonably accurate expression for the velocity profile
was obtained by Pohlhausen [41], who assumed the empiri-
cal form ux = C1z + C2z3.

If the boundary conditions,

ux = 0 at z = 0 ux = uo at z = � ∂ux/∂z = 0 at z = �

are applied to evaluate C1 and C2, the result is

ux

uo
= 1.5

( z

�

)
− 0.5

( z

�

)3
(3-130)

This solution is valid only for a laminar boundary layer,
which by experiment persists to NRex = 5 × 105.

When mass transfer of A into the boundary layer occurs,
the following species continuity equation applies at constant
diffusivity:

ux
∂cA

∂x
+ uz

∂cA

∂z
= DAB

(
∂2cA

∂x2

)
(3-131)

If mass transfer begins at the leading edge of the plate and if
the concentration in the fluid at the solid–fluid interface is
constant, the additional boundary conditions are

cA = cAo at x = 0 for z > 0,
cA = cAi at z = 0 for x > 0,

and cA = cAo at z = ∞ for x > 0

If the rate of mass transfer is low, the velocity profiles are
undisturbed. The solution to the analogous problem in heat
transfer was first obtained by Pohlhausen [42] for NPr > 0.5,
as described in detail by Schlichting [40]. The results for
mass transfer are

NShx

NRex N 1/3
Sc

= 0.332

N 0.5
Rex

(3-132)

where

NShx = xkcx

DAB
(3-133)

and the driving force for mass transfer is cAi − cAo .
The concentration boundary layer, where essentially all

of the resistance to mass transfer resides, is defined by

cAi − cA

cAi − cAo

= 0.99 (3-134)

and the ratio of the concentration boundary-layer thickness,
�c, to the velocity boundary thickness, �, is

�c/� = 1/N 1/3
Sc (3-135)

Thus, for a liquid boundary layer, where NSc > 1, the concen-
tration boundary layer builds up more slowly than the veloc-
ity boundary layer. For a gas boundary layer, where NSC ≈ 1,
the two boundary layers build up at about the same rate. By
analogy to (3-130), the concentration profile is given by

cAi − cA

cAi − cAo

= 1.5

(
z

�c

)
− 0.5

(
z

�c

)3

(3-136)

Equation (3-132) gives the local Sherwood number. If
this expression is integrated over the length of the plate, L,
the average Sherwood number is found to be

NShavg = 0.664 N 1/2
ReL

N 1/3
Sc (3-137)

where

NShavg = Lkcavg

DAB
(3-138)

Air at 100◦C, 1 atm, and a free-stream velocity of 5 m/s flows over
a 3-m-long, thin, flat plate of naphthalene, causing it to sublime.

(a) Determine the length over which a laminar boundary layer
persists.

(b) For that length, determine the rate of mass transfer of naphtha-
lene into air.

(c) At the point of transition of the boundary layer to turbulent
flow, determine the thicknesses of the velocity and concentra-
tion boundary layers.

EXAMPLE 3.14
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Assume the following values for physical properties:

Vapor pressure of napthalene = 10 torr
Viscosity of air = 0.0215 cP
Molar density of air = 0.0327 kmol/m3

Diffusivity of napthalene in air = 0.94 × 10−5 m2/s

SOLUTION

(a) NRex = 5 × 105 for transition. From (3-127),

x = L = �NRex

uo�
= [(0.0215)(0.001)](5 × 105)

(5)[(0.0327)(29)]
= 2.27 m

at which transition to turbulent flow begins.

(b) cAo = 0 cAi = 10(0.0327)

760
= 4.3 × 10−4 kmol/m3

From (3-101),

NSc = �

�DAB
= [(0.0215)(0.001)]

[(0.0327)(29)](0.94 × 10−5)
= 2.41

From (3-137),

NShavg = 0.664(5 × 105)1/2(2.41)1/3 = 630

From (3-138),

kcavg = 630(0.94 × 10−5)

2.27
= 2.61 × 10−3m/s

For a width of 1 m,

A = 2.27 m2

nA = kcavg A(cAi − cAo ) = 2.61 × 10−3(2.27)(4.3 × 10−4)

= 2.55 × 10−6 kmol/s

(c) From (3-129), at x = L = 2.27 m,

� = 3.46(2.27)

(5 × 105)0.5
= 0.0111 m

From (3-135),

�c = 0.0111

(2.41)1/3
= 0.0083 m

Fully Developed Flow in a Straight, Circular Tube

Figure 3.15 shows the formation and buildup of a laminar
velocity boundary layer when a fluid flows from a vessel into
a straight, circular tube. At the entrance, plane a, the veloc-
ity profile is flat. A velocity boundary layer then begins to

build up as shown at planes b, c, and d. In this region, the
central core outside the boundary layer has a flat velocity
profile where the flow is accelerated over the entrance ve-
locity. Finally, at plane e, the boundary layer fills the tube.
From here the velocity profile is fixed and the flow is said to
be fully developed. The distance from the plane a to plane e
is the entry region.

For fully developed laminar flow in a straight, circular
tube, by experiment, the Reynolds number, NRe = Dūx �/�,
where ūx is the flow-average velocity in the axial direction,
x, and D is the inside diameter of the tube, must be less than
2,100. For this condition, the equation of motion in the axial
direction for horizontal flow and constant properties is

�

r

∂

∂r

(
r
∂ux

∂r

)
− d P

dx
= 0 (3-139)

where the boundary conditions are

r = 0 (axis of the tube), ∂ux/∂r = 0
and r = rw (tube wall), ux = 0

Equation (3-139) was integrated by Hagen in 1839 and
Poiseuille in 1841. The resulting equation for the velocity
profile, expressed in terms of the flow-average velocity, is

ux = 2ūx

[
1 −

(
r

rw

)2
]

(3-140)

or, in terms of the maximum velocity at the tube axis,

ux = uxmax

[
1 −

(
r

rw

)2
]

(3-141)

From the form of (3-141), the velocity profile is parabolic in
nature.

The shear stress, pressure drop, and Fanning friction fac-
tor are obtained from solutions to (3-139):

	w = −�

(
∂ux

∂r

)∣∣∣∣
r=rw

= 4�ūx

rw
(3-142)

−d P

dx
= 32�ūx

D2
= 2 f� ū2

x

D
(3-143)

with

f = 16

NRe
(3-144)

Figure 3.15 Buildup of a laminar
velocity boundary layer for flow
in a straight, circular tube.
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The entry length to achieve fully developed flow is de-
fined as the axial distance, Le, from the entrance to the point
at which the centerline velocity is 99% of the fully devel-
oped flow value. From the analysis of Langhaar [43] for the
entry region,

Le

D
= 0.0575NRe (3-145)

Thus, at the upper limit of laminar flow, NRe = 2,100, Le/D =
121, a rather large ratio. For NRe = 100, the ratio is only 5.75.
In the entry region, Langhaar’s analysis shows the friction fac-
tor is considerably higher than the fully developed flow value
given by (3-144). At x = 0, f is infinity, but then decreases ex-
ponentially with x, approaching the fully developed flow value
at Le. For example, for NRe = 1,000, (3-144) gives f = 0.016,
with Le/D = 57.5. In the region from x = 0 to x/D = 5.35, the
average friction factor from Langhaar is 0.0487, which is
about three times higher than the fully developed value.

In 1885, Graetz [44] obtained a theoretical solution to
the problem of convective heat transfer between the wall of
a circular tube, held at a constant temperature, and a fluid
flowing through the tube in fully developed laminar flow.
Assuming constant properties and negligible conduction in
the axial direction, the energy equation, after substituting
(3-140) for ux, is

2ūx

[
1 −

(
r

rw

)2
]

∂T

∂x
= k

�CP

[
1

r

∂

∂r

(
r
∂T

∂r

)]
(3-146)

The boundary conditions are

x = 0 (where heat transfer begins), T = T0, for all r

x > 0, r = rw , T = Ti x > 0, r = 0, ∂T/∂r = 0

The analogous species continuity equation for mass
transfer, neglecting bulk flow in the radial direction and dif-
fusion in the axial direction, is

2ūx

[
1 −

(
r

rw

)2
]

∂cA

∂x
= DAB

[
1

r

∂

∂r

(
r
∂cA

∂r

)]
(3-147)

with analogous boundary conditions.

The Graetz solution of (3-147) for the temperature profile
or the concentration profile is in the form of an infinite
series, and can be obtained from (3-146) by the method of
separation of variables using the method of Frobenius. A
detailed solution is given by Sellars, Tribus, and Klein [45].
From the concentration profile, expressions for the mass-
transfer coefficient and the Sherwood number are obtained.
When x is large, the concentration profile is fully developed
and the local Sherwood number, NShx , approaches a limiting
value of 3.656. At the other extreme, when x is small such
that the concentration boundary layer is very thin and con-
fined to a region where the fully developed velocity profile is
linear, the local Sherwood number is obtained from the
classic Leveque [46] solution, presented by Knudsen and
Katz [47]:

NShx = kcx D

DAB
= 1.077

[
NPeM

(x/D)

]1/3

(3-148)

where

NPeM = Dūx

DAB
(3-149)

The limiting solutions, together with the general Graetz
solution, are shown in Figure 3.16, where it is seen that
NShx = 3.656 is valid for NPeM/(x/D) < 4 and (3-148) is
valid for NPeM/(x/D) > 100. The two limiting solutions can
be patched together if one point of the general solution is
available where the two solutions intersect.

Over a length of tube where mass transfer occurs, an av-
erage Sherwood number can be derived by integrating the
general expression for the local Sherwood number. An em-
pirical representation for that average, proposed by Hausen
[48], is

NShavg = 3.66 + 0.0668[NPeM/(x/D)]

1 + 0.04[NPeM/(x/D)]2/3
(3-150)

which is based on a log-mean concentration driving force.
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Figure 3.16 Limiting and general solutions
for mass transfer to a fluid in laminar flow in a
straight, circular tube.
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Linton and Sherwood [49] conducted experiments on the dissolu-
tion of cast tubes of benzoic acid (A) into water (B) flowing through
the tubes in laminar flow. They obtained good agreement with pre-
dictions based on the Graetz and Leveque equations. Consider a
5.23-cm-inside-diameter by 32-cm-long tube of benzoic acid, pre-
ceded by 400 cm of straight metal pipe of the same inside diameter
where a fully developed velocity profile is established. Pure water
enters the system at 25◦C at a velocity corresponding to a Reynolds
number of 100. Based on the following property data at 25◦C, esti-
mate the average concentration of benzoic acid in the water leaving
the cast tube before a significant increase in the inside diameter of
the benzoic acid tube occurs because of dissolution.

Solubility of benzoic acid in water = 0.0034 g/cm3

Viscosity of water = 0.89 cP = 0.0089 g/cm-s

Diffusivity of benzoic acid in water at infinite dilution
= 9.18 × 10−6 cm2/s

SOLUTION

NSc = 0.0089

(1.0)(9.18 × 10−6)
= 970

NRe = Dūx �

�
= 100

from which

ūx = (100)(0.0089)

(5.23)(1.0)
= 0.170 cm/s

From (3-149),

NPeM = (5.23)(0.170)

9.18 × 10−6
= 9.69 × 104

x

D
= 32

5.23
= 6.12

NPeM

(x/D)
= 9.69 × 104

6.12
= 1.58 × 104

From (3-150),

NShavg = 3.66 + 0.0668(1.58 × 104)

1 + 0.04(1.58 × 104)2/3
= 44

kcavg = NShavg

(
DAB

D

)
= 44

(9.18 × 10−6)

5.23
= 7.7 × 10−5 cm/s

Using a log-mean driving force,

nA = ūx S(c̄Ax − cA0 ) = kcavg A
[(cAi − cA0 ) − (cAi − c̄Ax )]

ln[(cAi − cA0 )/(cAi − c̄Ax )]

where S is the cross-sectional area for flow. Simplifying,

ln

(
cAi − cA0

cAi − c̄Ax

)
= kcavg A

ūx S

cA0 = 0 and cAi = 0.0034 g/cm3

S = �D2

4
= (3.14)(5.23)2

4
= 21.5 cm2 and

A = �Dx = (3.14)(5.23)(32) = 526 cm2

ln

(
0.0034

0.0034 − c̄Ax

)
= (7.7 × 10−5)(526)

(0.170)(21.5)

= 0.0111

c̄Ax = 0.0034 − 0.0034

e0.0111
= 0.000038 g/cm3

Thus, the concentration of benzoic acid in the water leaving the cast
tube is far from saturation.

EXAMPLE 3.15 3.5 MASS TRANSFER IN TURBULENT FLOW

In the two previous sections, diffusion in stagnant media and
in laminar flow were considered. For both cases, Fick’s law
can be applied to obtain rates of mass transfer. A more com-
mon occurrence in engineering is turbulent flow, which is
accompanied by much higher transport rates, but for which
theory is still under development and the estimation of mass-
transfer rates relies more on empirical correlations of exper-
imental data and analogies with heat and momentum trans-
fer. A summary of the dimensionless groups used in these
correlations and the analogies is given in Table 3.13.

As shown by the famous dye experiment of Osborne
Reynolds [50] in 1883, a fluid in laminar flow moves paral-
lel to the solid boundaries in streamline patterns. Every par-
ticle of fluid moves with the same velocity along a stream-
line and there are no fluid velocity components normal to
these streamlines. For a Newtonian fluid in laminar flow, the
momentum transfer, heat transfer, and mass transfer are by
molecular transport, governed by Newton’s law of viscosity,
Fourier’s law of heat conduction, and Fick’s law of molecu-
lar diffusion, respectively.

In turbulent flow, the rates of momentum, heat, and mass
transfer are orders of magnitude greater than for molecular
transport. This occurs because streamlines no longer exist
and particles or eddies of fluid, which are large compared to
the mean free path of the molecules in the fluid, mix with
each other by moving from one region to another in fluctuat-
ing motion. This eddy mixing by velocity fluctuations occurs
not only in the direction of flow but also in directions normal
to flow, with the latter being of more interest. Momentum,
heat, and mass transfer now occur by two parallel mecha-
nisms: (1) molecular motion, which is slow; and (2) turbu-
lent or eddy motion, which is rapid except near a solid sur-
face, where the flow velocity accompanying turbulence
decreases to zero. Mass transfer by bulk flow may also occur
as given by (3-1).

In 1877, Boussinesq [51] modified Newton’s law of vis-
cosity to account for eddy motion. Analogous expressions
were subsequently developed for turbulent-flow heat and
mass transfer. For flow in the x-direction and transport in
the z-direction normal to flow, these expressions are written
in the following forms in the absence of bulk flow in the
z-direction:

	zx = −(� + �t )
dux

dz
(3-151)

qz = −(k + kt )
dT

dz
(3-152)

NAz = −(DAB + Dt )
dcA

dz
(3-153)

where the double subscript, zx, on the shear stress, 	 , stands
for x-momentum in the z-direction. The molecular contribu-
tions, �, k, and DAB, are molecular properties of the fluid and
depend on chemical composition, temperature, and pressure;
the turbulent contributions, �t, kt, and Dt, depend on the



mean fluid velocity in the direction of flow and on position
in the fluid with respect to the solid boundaries.

In 1925, in an attempt to quantify turbulent transport,
Prandtl [52] developed an expression for �t in terms of an
eddy mixing length, l, which is a function of position. The
eddy mixing length is a measure of the average distance that
an eddy travels before it loses its identity and mingles with
other eddies. The mixing length is analogous to the mean
free path of gas molecules, which is the average distance a
molecule travels before it collides with another molecule.

By analogy, the same mixing length is valid for turbulent-
flow heat transfer and mass transfer. To use this analogy,
(3-151) to (3-153) are rewritten in diffusivity form:

	zx

�
= −(� + �M )

dux

dz
(3-154)

qz

CP�
= −(� + �H )

dT

dz
(3-155)

NAz = −(DAB + �D)
dcA

dz
(3-156)
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Table 3.13 Some Useful Dimensionless Groups

Name Formula Meaning Analogy

Fluid Mechanics

Drag Coefficient CD = 2FD

Au2�

Drag force

Projected area × Velocity head

Fanning Friction Factor f = �P

L

D

2ū2�

Pipe wall shear stress

Velocity head

Froude Number NFr = ū2

gL

Inertial force

Gravitational force

Reynolds Number NRe = Lū�

�
= Lū

�
= LG

�

Inertial force

Viscous force

Weber Number NWe = ū2� L

�

Inertial force

Surface-tension force

Heat Transfer

j-Factor for Heat Transfer jH = NStH (NPr)
2/3 jM

Nusselt Number NNu = hL

k

Convective heat transfer

Conductive heat transfer
NSh

Peclet Number for Heat Transfer NPeH = NRe NPr = Lū�CP

k

Bulk transfer of heat

Conductive heat transfer
NPeM

Prandtl Number NPr = CP �

k
= v

�

Momentum diffusivity

Thermal diffusivity
NSc

Stanton Number for Heat Transfer NStH = NNu

NRe NPr
= h

CP G

Heat transfer

Thermal capacity
NStM

Mass Transfer

j-Factor for Mass Transfer jM = NStM (NSc)2/3 jH

Lewis Number NLe = NSc

NPr
= k

�CP DAB
= �

DAB

Thermal diffusivity

Mass diffusivity

Peclet Number for Mass Transfer NPeM = NRe NSc = Lū

DAB

Bulk transfer of mass

Molecular diffusion
NPeH

Schmidt Number NSc = �

� DAB
= �

DAB

Momentum diffusivity

Mass diffusivity
NPr

Sherwood Number NSh = kc L

DAB

Convective mass transfer

Molecular diffusion
NNu

Stanton Number for Mass Transfer NStM = NSh

NRe NSc
= kc

ū�

Mass transfer

Mass capacity
NStH

L = characteristic length G = mass velocity = u�

Subscripts: M = mass transfer H = heat transfer
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where �M , �H , are �D are momentum, heat, and mass eddy
diffusivities, respectively; v is the momentum diffusivity
(kinematic viscosity), �/� ; and � is the thermal diffusivity,
k/�CP . As a first approximation, the three eddy diffusivities
may be assumed equal. This assumption is reasonably valid
for �H and �D , but experimental data indicate that
�M/�H = �M/�D is sometimes less than 1.0 and as low as
0.5 for turbulence in a free jet.

Reynolds Analogy

If (3-154) to (3-156) are applied at a solid boundary, they can
be used to determine transport fluxes based on transport
coefficients, with driving forces from the wall, i, at z = 0, to
the bulk fluid, designated with an overbar, –:

	zx

ūx
= −(� + �M )

d(�ux/ūx )

dz

∣∣∣∣
z=0

= f�

2
ūx (3-157)

qz = −(� + �H )
d(�CP T )

dz

∣∣∣∣
z=0

= h(Ti − T̄ ) (3-158)

NAz = −(DAB + �D)
dcA

dz

∣∣∣∣
z=0

= kc(cAi − c̄A) (3-159)

We define dimensionless velocity, temperature, and solute
concentration by

� = ux

ūx
= Ti − T

Ti − T̄
= cAi − cA

cAi − c̄A
(3-160)

If (3-160) is substituted into (3-157) to (3-159),

∂�

∂z

∣∣∣∣
z=0

= f ūx

2(� + �M )
= h

�CP (� + �H )
(3-161)

= kc

(DAB + �D)

This equation defines the analogies among momentum, heat,
and mass transfer. Assuming that the three eddy diffusivities
are equal and that the molecular diffusivities are either
everywhere negligible or equal,

f

2
= h

�CPūx
= kc

ūx
(3-162)

Equation (3-162) defines the Stanton number for heat
transfer,

NStH = h

�CPūx
= h

GCP
(3-163)

where G = mass velocity = ūx � , and the Stanton number
for mass transfer,

NStM = kc

ūx
= kc�

G
(3-164)

both of which are included in Table 3.13.
Equation (3-162) is referred to as the Reynolds analogy.

It can be used to estimate values of heat and mass transfer
coefficients from experimental measurements of the
Fanning friction factor for turbulent flow, but only when

NPr = NSc = 1. Thus, the Reynolds analogy has limited
practical value and is rarely applied in practice. Reynolds
postulated the existence of the analogy in 1874 [53] and
derived it in 1883 [50].

Chilton–Colburn Analogy

A widely used extension of the Reynolds analogy to Prandtl
and Schmidt numbers other than 1 was presented by Colburn
[54] for heat transfer and by Chilton and Colburn [55] for
mass transfer. They showed that the Reynolds analogy for
turbulent flow could be corrected for differences in velocity,
temperature, and concentration distributions by incorporat-
ing NPr and NSc into (3-162) to define the following three
Chilton–Colburn j-factors, included in Table 3.13.

jM ≡ f

2
= jH ≡ h

GCP
(NPr)

2/3

= jD ≡ kc�

G
(NSc)2/3

(3-165)

Equation (3-165) is the Chilton–Colburn analogy or the
Colburn analogy for estimating average transport coeffi-
cients for turbulent flow. When NPr = NSc = 1, (3-165)
reduces to (3-162).

In general, j-factors are uniquely determined by the geo-
metric configuration and the Reynolds number. Based on the
analysis, over many years, of experimental data on momen-
tum, heat, and mass transfer, the following representative
correlations have been developed for turbulent transport to
or from smooth surfaces. Other correlations are presented in
other chapters. In general, these correlations are reasonably
accurate for NPr and NSc in the range of 0.5 to 10, but should
be used with caution outside this range.

1. Flow through a straight, circular tube of inside
diameter D:

jM = jH = jD = 0.023(NRe)−0.2

for 10,000 < NRe = DG/� < 1,000,000
(3-166)

2. Average transport coefficients for flow across a flat
plate of length L:

jM = jH = jD = 0.037(NRe)−0.2

for 5 × 105 < NRe = Luo�/� < 5 × 108
(3-167)

3. Average transport coefficients for flow normal to a
long, circular cylinder of diameter D, where the drag
coefficient includes both form drag and skin friction,
but only the skin friction contribution applies to the
analogy:

( jM )skin friction = jH = jD = 0.193(NRe)−0.382

for 4,000 < NRe < 40,000 (3-168)

( jM )skin friction = jH = jD = 0.0266(NRe)−0.195

for 40,000 < NRe < 250,000 (3-169)

with NRe = DG

�



4. Average transport coefficients for flow past a single
sphere of diameter D:

( jM )skin friction = jH = jD = 0.37(NRe)−0.4

for 20 < NRe = DG

�
< 100,000

(3-170)

5. Average transport coefficients for flow through beds
packed with spherical particles of uniform size DP:

jH = jD = 1.17(NRe)−0.415

for 10 < NRe = DP G

�
< 2,500

(3-171)

The above correlations are plotted in Figure 3.17, where the
curves do not coincide because of the differing definitions of
the Reynolds number. However, the curves are not widely
separated. When using the correlations in the presence of
appreciable temperature and/or composition differences,
Chilton and Colburn recommend that NPr and NSc be evalu-
ated at the average conditions from the surface to the bulk
stream.

Other Analogies

New turbulence theories have led to improvements and ex-
tensions of the Reynolds analogy, resulting in expressions
for the Fanning friction factor and the Stanton numbers for
heat and mass transfer that are less empirical than the
Chilton–Colburn analogy. The first major improvement was
by Prandtl [56] in 1910, who divided the flow into two re-
gions: (1) a thin laminar-flow sublayer of thickness � next to
the wall boundary, where only molecular transport occurs;
and (2) a turbulent region dominated by eddy transport, with
�M = �H = �D .

Further important theoretical improvements to the
Reynolds analogy were made by von Karman, Martinelli,
and Deissler, as discussed in detail by Knudsen and Katz
[47]. The first two investigators inserted a buffer zone be-
tween the laminar sublayer and turbulent core. Deissler
gradually reduced the eddy diffusivities as the wall was
approached.

Other improvements were made by van Driest [64], who
used a modified form of the Prandtl mixing length, Reichardt
[65], who eliminated the zone concept by allowing the eddy
diffusivities to decrease continuously from a maximum to
zero at the wall, and Friend and Metzner [57], who modified
the approach of Reichardt to obtain improved accuracy at
very high Prandtl and Schmidt numbers (to 3,000). Their
results for turbulent flow through a straight, circular tube are

NStH = f/2

1.20 + 11.8
√

f/2(NPr − 1)(NPr)−1/3
(3-172)

NStM = f/2

1.20 + 11.8
√

f/2(NSc − 1)(NSc)−1/3
(3-173)

Over a wide range of Reynolds number (10,000–
10,000,000), the Fanning friction factor is estimated from
the explicit empirical correlation of Drew, Koo, and
McAdams [66],

f = 0.00140 + 0.125(NRe)−0.32 (3-174)

which is in excellent agreement with the experimental data
of Nikuradse [67] and is preferred over (3-165) with (3-166),
which is valid only to NRe = 1,000,000. For two- and three-
dimensional turbulent-flow problems, some success has
been achieved with the � (kinetic energy of turbulence)–�
(rate of dissipation) model of Launder and Spalding [68],
which is widely used in computational fluid dynamics
(CFD) computer programs.

Theoretical Analogy of Churchill and Zajic

An alternative to (3-151) to (3-153) or the equivalent diffu-
sivity forms of (3-154) to (3-156) for the development of
transport equations for turbulent flow is to start with the
time-averaged equations of Newton, Fourier, and Fick. For
example, let us derive a form of Newton’s law of viscosity
for molecular and turbulent transport of momentum in paral-
lel. In a turbulent-flow field in the axial x-direction, instanta-
neous velocity components, ux and uz , are

ux = ūx + u′
x

uz = u′
z
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where the “overbarred” component is the time-averaged
(mean) local velocity and the primed component is the local
fluctuating component that denotes instantaneous deviation
from the local mean value. The mean velocity in the perpen-
dicular z-direction is zero. The mean local velocity in the x-
direction over a long period � of time � is given by

ūx = 1

�

∫ �

0
ux d� = 1

�

∫ �

0
(ūx + u′

x ) d� (3-175)

The time-averaged fluctuating components u′
x and u′

z equal
zero.

The local instantaneous rate of momentum transfer by
turbulence in the z-direction of x-direction turbulent mo-
mentum per unit area at constant density is

�u′
z(ūx + u′

x ) (3-176)

The time-average of this turbulent momentum transfer is
equal to the turbulent component of the shear stress, 	zxt ,

	zxt = �

�

∫ �

0
u′

z(ūx + u′
x ) d�

= �

�

[∫ �

0
u′

z(ūx ) d� +
∫ �

0
u′

z(u
′
x ) d�

] (3-177)

Because the time-average of the first term is zero, (3-177)
reduces to

	zxt = � (u′
zu

′
x ) (3-178)

which is referred to as a Reynolds stress. Combining (3-178)
with the molecular component of momentum transfer gives
the turbulent-flow form of Newton’s law of viscosity,

	zx = −�
dux

dz
+ � (u′

zu
′
x ) (3-179)

If (3-179) is compared to (3-151), it is seen that an alterna-
tive approach to turbulence is to develop a correlating equa-
tion for the Reynolds stress, (u′

zu
′
x ), first introduced by

Churchill and Chan [73], rather than an expression for a tur-
bulent viscosity �t . This stress, which is a complex function
of position and rate of flow, has been correlated quite accu-
rately for fully developed turbulent flow in a straight, circu-
lar tube by Heng, Chan, and Churchill [69]. In generalized
form, with a the radius of the tube and y = (a − z) the dis-
tance from the inside wall to the center of the tube, their
equation is

(u′
zu

′
x )++ =


[

0.7

(
y+

10

)3
]−8/7

+
∣∣∣∣exp

{ −1

0.436y+

}

− 1

0.436a+

(
1 + 6.95y+

a+

)∣∣∣∣
−8/7

)−7/8

(3-180)

where

(u′
zu

′
x )++ = −�u′

zu
′
x/	

a+ = a(	w � )1/2/�

y+ = y(	w � )1/2/�

Equation (3-180) is a highly accurate quantitative represen-
tation of turbulent flow because it is based on experimental
data and numerical simulations described by Churchill and
Zajic [70] and in considerable detail by Churchill [71]. From
(3-142) and (3-143), the shear stress at the wall, 	w , is
related to the Fanning friction factor by

f = 2	w

� ū2
x

(3-181)

where ūx is the flow-average velocity in the axial direction.
Combining (3-179) with (3-181) and performing the required
integrations, both numerically and analytically, lead to the
following implicit equation for the Fanning friction factor as
a function of the Reynolds number, NRe = 2aūx �/�:

(
2

f

)1/2

= 3.2 − 227

(
2

f

)1/2

NRe

2

+ 2500




(
2

f

)1/2

NRe

2




2

+ 1

0.436
ln




NRe

2(
2

f

)1/2




This equation is in excellent agreement with experimental
data over a Reynolds number range of 4,000–3,000,000 and
can probably be used to a Reynolds number of 100,000,000.
Table 3.14 presents a comparison of the Churchill–Zajic
equation, (3-182), with (3-174) of Drew et al. and (3-166)
of Chilton and Colburn. Equation (3-174) gives satis-
factory agreement for Reynolds numbers from 10,000 to
10,000,000, while (3-166) is useful only from 100,000 to
1,000,000.

Churchill and Zajic [70] show that if the equation for the
conservation of energy is time averaged, a turbulent-flow
form of Fourier’s law of conduction can be obtained with the
fluctuation term (u′

zT ′). Similar time averaging leads to a
turbulent-flow form of Fick’s law of diffusion with (u′

zc
′
A).

To extend (3-180) and (3-182) to obtain an expression for
the Nusselt number for turbulent-flow convective heat trans-
fer in a straight, circular tube, Churchill and Zajic employ an
analogy that is free of empircism, but not exact. The result

Table 3.14 Comparison of Fanning Friction Factors for Fully
Developed Turbulent Flow in a Smooth, Straight Circular Tube

f, Drew et al. f, Chilton–Colburn f, Churchill–Zajic
NRe (3-174) (3-166) (3-182)

10,000 0.007960 0.007291 0.008087

100,000 0.004540 0.004600 0.004559

1,000,000 0.002903 0.002902 0.002998

10,000,000 0.002119 0.001831 0.002119

100,000,000 0.001744 0.001155 0.001573

(3-182)



for Prandtl numbers greater than 1 is

NNu = 1(
NPrt

NPr

)
1

NNu1

+
[

1 −
(

NPrt

NPr

)2/3
]

1

NNu∞

(3-183)

where, from Yu, Ozoe, and Churchill [72],

NPrt = turbulent Prandtl number = 0.85 + 0.015

NPr
(3-184)

which replaces (u′
zT ′), as introduced by Churchill [74],

NNu1 = Nusselt number for (NPr = NPrt )

=
NRe

(
f

2

)

1 + 145

(
2

f

)−5/4 (3-185)

NNu∞ = Nusselt number for (NPr = ∞)

= 0.07343

(
NPr

NPrt

)1/3

NRe

(
f

2

)1/2

(3-186)

The accuracy of (3-183) is due to (3-185) and (3-186), which
are known from theoretical considerations. Although (3-184)
is somewhat uncertain, its effect is negligible.

A comparison of the Churchill et al. correlation of
(3-183) with the Nusselt forms of (3-172) of Friend and
Metzner and (3-166) of Chilton and Colburn, where from
Table 3.13, NNu = NSt NRe NPr , is given in Table 3.15 for a
wide range of Reynolds number and Prandtl numbers of
1 and 1,000.

In Table 3.15, at a Prandtl number of 1, which is typical of
low-viscosity liquids and close to that of most gases, the

Chilton–Colburn correlation, which is widely used, is within
10% of the more theoretically based Churchill–Zajic equa-
tion for Reynolds numbers up to 1,000,000. However, beyond
that, serious deviations occur (25% at NRe = 10,000,000 and
almost 50% at NRe = 100,000,000). Deviations of the
Friend–Metzner correlation from the Churchill–Zajic equa-
tion vary from about 15% to 30% over the entire range of
Reynolds number in Table 3.15. At all Reynolds numbers,
the Churchill–Zajic equation predicts higher Nusselt num-
bers and, therefore, higher heat-transfer coefficients.

At a Prandtl number of 1,000, which is typical of high-
viscosity liquids, the Friend–Metzner correlation is in fairly
close agreement with the Churchill–Zajic equation, predict-
ing values from 6 to 13% higher. The Chilton–Colburn cor-
relation is seriously in error over the entire range of
Reynolds number, predicting values ranging from 74 to 27%
of those from the Churchill–Zajic equation as the Reynolds
number increases. It is clear that the Chilton–Colburn corre-
lation should not be used at high Prandtl numbers for heat
transfer or (by analogy) at high Schmidt numbers for mass
transfer.

The Churchill–Zajic equation for predicting the Nusselt
number provides an effective power dependence on the
Reynolds number as the Reynolds number increases. This is
in contrast to the typically cited constant exponent of 0.8, as
in the Chilton–Colburn correlation. For the Churchill–Zajic
equation, at a Prandtl number of 1, the exponent increases
with Reynolds number from 0.79 to 0.88; at a Prandtl num-
ber of 1,000, the exponent increases from 0.87 to 0.93.

Extension of the Churchill–Zajic equation to low Prandtl
numbers, typical of molten metals, and to other geometries,
such as parallel plates, is discussed by Churchill [71], who
also considers the important effect of boundary conditions
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Table 3.15 Comparison of Nusselt Numbers for Fully Developed Turbulent Flow in a
Smooth, Straight Circular Tube

Prandtl number, NPr = 1

NNu, Friend–Metzner NNu, Chilton–Colburn NNu, Churchill–Zajic
NRe (3-172) (3-166) (3-183)

10,000 33.2 36.5 37.8
100,000 189 230 232

1,000,000 1210 1450 1580
10,000,000 8830 9160 11400

100,000,000 72700 57800 86000

Prandtl number, NPr = 1000

NNu, Friend–Metzner NNu, Chilton–Colburn NNu, Churchill–Zajic
NRe (3-172) (3-166) (3-183)

10,000 527 365 491
100,000 3960 2300 3680

1,000,000 31500 14500 29800
10,000,000 267800 91600 249000

100,000,000 2420000 578000 2140000



(e.g., constant wall temperature and uniform heat flux) at
low-to-moderate Prandtl numbers.

For calculation of convective mass-transfer coefficients,
kc, for turbulent flow of gases and liquids in straight,
smooth, circular tubes, it is recommended that the
Churchill–Zajic equation be employed by applying the
analogy between heat and mass transfer. Thus, as illustrated
in the following example, in (3-183) to (3-186), from
Table 3.13, the Sherwood number, NSh, is substituted for the
Nusselt number, NNu; and the Schmidt number, NSc, is sub-
stituted for the Prandtl number, NPr.

Linton and Sherwood [49] conducted experiments on the dissolv-
ing of cast tubes of cinnamic acid (A) into water (B) flowing
through the tubes in turbulent flow. In one run, with a 5.23-cm-i.d.
tube, NRe = 35,800, and NSc = 1,450, they measured a Stanton
number for mass transfer, NStM , of 0.0000351. Compare this exper-
imental value with predictions by the Reynolds, Chilton–Colburn,
and Friend–Metzner analogies, and by the more theoretically-based
Churchill–Zajic equation.

SOLUTION

From either (3-174) or (3-182), the Fanning friction factor is
0.00576.

Reynolds analogy:

From (3-162), NStM = f
2 = 0.00576/2 = 0.00288, which, as ex-

pected, is in poor agreement with the experimental value because
the effect of Schmidt number is ignored.

Chilton–Colburn analogy:

From (3-165),

NStM =
(

f

2

)/
(NSc)2/3 =

(
0.00576

2

)/
(1450)2/3 = 0.0000225 ,

which is 64% of the experimental value.

Friend–Metzner analogy:

From (3-173), NStM = 0.0000350, which is almost identical to the
experimental value.

EXAMPLE 3.16

Churchill–Zajic equation:

Using mass-transfer analogs,

(3-184) gives NSct = 0.850

(3-185) gives NSh1 = 94

(3-186) gives NSh∞ = 1686

(3-183) gives NSh = 1680

From Table 3.13,

NStM = NSh

NRe NSc
= 1680

(35800)(1450)
= 0.0000324,

which is an acceptable 92% of the experimental value.

3.6 MODELS FOR MASS TRANSFER AT
A FLUID–FLUID INTERFACE

In the three previous sections, diffusion and mass transfer
within solids and fluids were considered, where the interface
was a smooth solid surface. Of greater interest in separation
processes is mass transfer across an interface between a gas
and a liquid or between two liquid phases. Such interfaces
exist in absorption, distillation, extraction, and stripping.
At fluid–fluid interfaces, turbulence may persist to the inter-
face. The following theoretical models have been devel-
oped to describe mass transfer between a fluid and such an
interface.

Film Theory

A simple theoretical model for turbulent mass transfer to
or from a fluid-phase boundary was suggested in 1904 by
Nernst [58], who postulated that the entire resistance to mass
transfer in a given turbulent phase is in a thin, stagnant re-
gion of that phase at the interface, called a film. This film is
similar to the laminar sublayer that forms when a fluid flows
in the turbulent regime parallel to a flat plate. This is shown
schematically in Figure 3.18a for the case of a gas–liquid in-
terface, where the gas is pure component A, which diffuses
into nonvolatile liquid B. Thus, a process of absorption of A
into liquid B takes place, without desorption of B into
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Figure 3.18 Theories for mass
transfer from a fluid–fluid inter-
face into a liquid: (a) film theory;
(b) penetration and surface-
renewal theories.
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gaseous A. Because the gas is pure A at total pressure
P = pA, there is no resistance to mass transfer in the gas
phase. At the gas–liquid interface, phase equilibrium is as-
sumed so the concentration of A, cAi , is related to the partial
pressure of A, pA, by some form of Henry’s law, for exam-
ple, cAi = HA pA. In the thin, stagnant liquid film of thick-
ness �, molecular diffusion only occurs with a driving force
of cAi − cAb . Since the film is assumed to be very thin, all of
the diffusing A passes through the film and into the bulk liq-
uid. If, in addition, bulk flow of A is neglected, the concen-
tration gradient is linear as in Figure 3.18a. Accordingly,
Fick’s first law, (3-3a), for the diffusion flux integrates to

JA = DAB

�
(cAi − cAb ) = cDAB

�
(xAi − xAb ) (3-187)

If the liquid phase is dilute in A, the bulk-flow effect can be
neglected and (3-187) applies to the total flux:

NA = DAB

�
(cAi − cAb ) = cDAB

�
(xAi − xAb ) (3-188)

If the bulk-flow effect is not negligible, then, from (3-31),

NA = cDAB

�
ln

[
1 − xAb

1 − xAi

]
= cDAB

�(1 − xA)LM
(xAi − xAb )

(3-189)

where

(1 − xA)LM = xAi − xAb

ln[(1 − xAb )/(1 − xAi )]
= (xB)LM

(3-190)

In practice, the ratios DAB/� in (3-188) and DAB/

�(1 − xA)LM in (3-189) are replaced by mass transfer coeffi-
cients kc and k ′

c, respectively, because the film thickness, �,
which depends on the flow conditions, is not known and the
subscript, c, refers to a concentration driving force.

The film theory, which is easy to understand and apply, is
often criticized because it appears to predict that the rate of
mass transfer is directly proportional to the molecular diffu-
sivity. This dependency is at odds with experimental data,
which indicate a dependency of Dn , where n ranges from
about 0.5 to 0.75. However, if DAB/� is replaced with kc,
which is then estimated from the Chilton–Colburn analogy,
Eq. (3-165), we obtain kc proportional to D2/3

AB
, which is in

better agreement with experimental data. In effect, � de-
pends on DAB (or NSc). Regardless of whether the criticism
of the film theory is valid, the theory has been and continues
to be widely used in the design of mass-transfer separation
equipment.

Sulfur dioxide is absorbed from air into water in a packed absorp-
tion tower. At a certain location in the tower, the mass-transfer flux
is 0.0270 kmol SO2/m2-h and the liquid-phase mole fractions are
0.0025 and 0.0003, respectively, at the two-phase interface and in

EXAMPLE 3.17

the bulk liquid. If the diffusivity of SO2 in water is
1.7 × 10−5 cm2/s, determine the mass-transfer coefficient, kc , and
the film thickness, neglecting the bulk-flow effect.

SOLUTION

NSO2 = 0.027(1,000)

(3,600)(100)2
= 7.5 × 10−7 mol

cm2-s

For dilute conditions, the concentration of water is

c = 1

18.02
= 5.55 × 10−2 mol/cm3

From (3-188),

kc = DAB

�
= NA

c(xAi − xAb )

= 7.5 × 10−7

5.55 × 10−2(0.0025 − 0.0003)
= 6.14 × 10−3 cm/s

Therefore, 

� = DAB

kc
= 1.7 × 10−5

6.14 × 10−3
= 0.0028 cm

which is very small and typical of turbulent-flow mass-transfer
processes.

Penetration Theory

A more realistic physical model of mass transfer from a
fluid–fluid interface into a bulk liquid stream is provided by
the penetration theory of Higbie [59], shown schematically
in Figure 3.18b. The stagnant-film concept is replaced by
Boussinesq eddies that, during a cycle, (1) move from the
bulk to the interface; (2) stay at the interface for a short,
fixed period of time during which they remain static so that
molecular diffusion takes place in a direction normal to the
interface; and (3) leave the interface to mix with the bulk
stream. When an eddy moves to the interface, it replaces an-
other static eddy. Thus, the eddies are alternately static and
moving. Turbulence extends to the interface.

In the penetration theory, unsteady-state diffusion takes
place at the interface during the time the eddy is static. This
process is governed by Fick’s second law, (3-68), with
boundary conditions

cA = cAb at t = 0 for 0 ≤ z ≤ ∞;
cA = cAi at z = 0 for t > 0; and

cA = cAb at z = ∞ for t > 0

These are the same boundary conditions as in unsteady-state
diffusion in a semi-infinite medium. Thus, the solution can
be written by a rearrangement of (3-75):

cAi − cA

cAi − cAb

= erf

(
z

2
√

DABtc

)
(3-191)

where tc = “contact time” of the static eddy at the interface
during one cycle. The corresponding average mass-transfer
flux of A in the absence of bulk flow is given by the
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following form of (3-79):

NA = 2

√
DAB

�tc
(cAi − cAb ) (3-192)

or

NA = kc(cAi − cAb ) (3-193)

Thus, the penetration theory gives

kc = 2

√
DAB

�tc
(3-194)

which predicts that kc is proportional to the square root of the
molecular diffusivity, which is at the lower limit of experi-
mental data.

The penetration theory is most useful when mass transfer
involves bubbles or droplets, or flow over random packing.
For bubbles, the contact time, tc, of the liquid surrounding
the bubble is taken as the ratio of bubble diameter to bubble-
rise velocity. For example, an air bubble of 0.4-cm diameter
rises through water at a velocity of about 20 cm/s. Thus, the
estimated contact time, tc, is 0.4/20 = 0.02 s. For a liquid
spray, where no circulation of liquid occurs inside the
droplets, the contact time is the total time for the droplets to
fall through the gas. For a packed tower, where the liquid
flows as a film over particles of random packing, mixing can
be assumed to occur each time the liquid film passes from
one piece of packing to another. Resulting contact times are
of the order of about 1 s. In the absence of any method of es-
timating the contact time, the liquid-phase mass-transfer co-
efficient is sometimes correlated by an empirical expression
consistent with the 0.5 exponent on DAB, given by (3-194)
with the contact time replaced by a function of geometry and
the liquid velocity, density, and viscosity.

For the conditions of Example 3.17, estimate the contact time for
Higbie’s penetration theory.

SOLUTION

From Example 3.17, kc = 6.14 × 10−3 cm/s and DAB = 1.7 ×
10−5 cm2/s. From a rearrangement of (3-194),

tc = 4DAB

�k2
c

= 4(1.7 × 10−5)

3.14(6.14 × 10−3)2
= 0.57 s

EXAMPLE 3.18

Surface-Renewal Theory

The penetration theory is not satisfying because the as-
sumption of a constant contact time for all eddies that tem-
porarily reside at the surface is not reasonable, especially
for stirred tanks, contactors with random packings, and
bubble and spray columns where the bubbles and droplets
cover a wide range of sizes. In 1951, Danckwerts [60] sug-
gested an improvement to the penetration theory that
involves the replacement of the constant eddy contact
time with the assumption of a residence-time distribution,
wherein the probability of an eddy at the surface being
replaced by a fresh eddy is independent of the age of the
surface eddy.

Following the Levenspiel [61] treatment of residence-
time distribution, let F(t) be the fraction of eddies with a
contact time of less than t. For t = 0, F{t} = 0, and F{t}
approaches 1 as t goes to infinity. A plot of F{t} versus t,
as shown in Figure 3.19, is referred to as a residence-time or
age distribution. If F{t} is differentiated with respect to t, we
obtain another function:

�{t} = d F{t}/dt

where �{t}dt = the probability that a given surface eddy
will have a residence time t. The sum of probabilities is∫ ∞

0
�{t} dt = 1 (3-195)

Typical plots of F{t} and �{t} are shown in Figure 3.19,
where it is seen that �{t} is similar to a normal probability
curve.

For steady-state flow in and out of a well-mixed vessel,
Levenspiel shows that

F{t} = 1 − e−t/t̄ (3-196)

where t̄ is the average residence time. This function forms
the basis, in reaction engineering, of the ideal model of a
continuous, stirred-tank reactor (CSTR). Danckwerts se-
lected the same model for his surface-renewal theory, using
the corresponding �{t} function:

�{t} = se−st (3-197)

where s = 1/t̄ = fractional rate of surface renewal. As
shown in Example 3.19 below, plots of (3-196) and (3-197)
are much different from those in Figure 3.19.

(a)

Total
area = 1

Fraction of
exit stream

older than t1

F{t}
 {t} φ

1

0

0 t
t

(b)

0
0

t1
t

Figure 3.19 Residence-time distrib-
ution plots: (a) typical F curve;
(b) typical age distribution.
[Adapted from O. Levenspiel, Chemical
Reaction Engineering, 2nd ed., John Wiley
and Sons, New York (1972).]



The instantaneous mass-transfer rate for an eddy with an
age t is given by (3-192) for the penetration theory in flux
form as

NAt =
√

DAB

�t
(cAi − cAb ) (3-198)

The integrated average rate is

(NA)avg =
∫ ∞

0
�{t}NAt dt (3-199)

Combining (3-197), (3-198), and (3-199), and integrating:

(NA)avg =
√

DABs(cAi − cAb ) (3-200)

Thus,

kc =
√

DABs (3-201)

The more reasonable surface-renewal theory predicts the
same dependency of the mass-transfer coefficient on molec-
ular diffusivity as the penetration theory. Unfortunately, s,
the fractional rate of surface renewal, is as elusive a parame-
ter as the constant contact time, tc.

For the conditions of Example 3.17, estimate the fractional rate of
surface renewal, s, for Danckwert’s theory and determine the resi-
dence time and probability distributions.

SOLUTION

From Example 3.17,

kc = 6.14 × 10−3 cm/s and DAB = 1.7 × 10−5 cm2/s

From (3-201),

s = k2
c

DAB
= (6.14 × 10−3)2

1.7 × 10−5
= 2.22 s−1

Thus, the average residence time of an eddy at the surface is
1/2.22 = 0.45 s.

From (3-197),

�{t} = 2.22e−2.22t (1)

EXAMPLE 3.19

From (3-196), the residence-time distribution is given by

F{t} = 1 − e−t/0.45, (2)

where t is in seconds. Equations (1) and (2) are plotted in
Figure 3.20. These curves are much different from the curves
of Figure 3.19.

Film-Penetration Theory

Toor and Marchello [62], in 1958, combined features of the
film, penetration, and surface-renewal theories to develop a
film-penetration model, which predicts a dependency of the
mass-transfer coefficient kc, on the diffusivity, that varies
from 

√
DAB to DAB. Their theory assumes that the entire re-

sistance to mass transfer resides in a film of fixed thickness
�. Eddies move to and from the bulk fluid and this film. Age
distributions for time spent in the film are of the Higbie or
Danckwerts type.

Fick’s second law, (3-68), still applies, but the boundary
conditions are now

cA = cAb at t = 0 for 0 ≤ z ≤ ∞,

cA = cAi at z = 0 for t > 0; and

cA = cAb at z = � for t > 0

Infinite-series solutions are obtained by the method of
Laplace transforms. The rate of mass transfer is then ob-
tained in the usual manner by applying Fick’s first law
(3-117) at the fluid–fluid interface. For small t, the solution,
given as

NAt = (cAi − cAb )

(
DAB

�t

)1/2
[

1 + 2
∞∑

n=1

exp

(
− n2�2

DABt

)]

(3-202)

converges rapidly. For large t,

NAt = (cAi − cAb )

(
DAB

�

)

×
[

1 + 2
∞∑

n=1

exp

(
−n2�2 DABt

�2

)] (3-203)

Equation (3-199) with �{t} from (3-197) can then be used
to obtain average rates of mass transfer. Again, we can
write two equivalent series solutions, which converge
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Figure 3.20 Age distribution curves for
Example 3.19: (a) F curve; (b) �{t} curve.
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at different rates. Equations (3-202) and (3-203) become,
respectively,

NAavg = kc(cAi − cAb ) = (cAi − cAb )(s DAB)1/2

×
[

1 + 2
∞∑

n=1

exp

(
−2n�

√
s

DAB

)]
(3-204)

NAavg = kc(cAi − cAb ) = (cAi − cAb )

(
DAB

�

)

×


1 + 2

∞∑
n=1

1

1 + n2�2
DAB

s�2


 (3-205)

In the limit, for a high rate of surface renewal, s�2/DAB,
(3-204) reduces to the surface-renewal theory, (3-200). For
low rates of renewal, (3-205) reduces to the film theory,
(3-188). At conditions in between, kc is proportional to Dn

AB,
where n is in the range of 0.5–1.0. The application of the
film-penetration theory is difficult because of lack of data for
� and s, but the predicted effect of molecular diffusivity
brackets experimental data.

3.7 TWO-FILM THEORY AND OVERALL
MASS-TRANSFER COEFFICIENTS

Separation processes that involve contacting two fluid
phases require consideration of mass-transfer resistances in
both phases. In 1923, Whitman [63] suggested an extension
of the film theory to two fluid films in series. Each film pre-
sents a resistance to mass transfer, but concentrations in the
two fluids at the interface are assumed to be in phase equi-
librium. That is, there is no additional interfacial resistance
to mass transfer. This concept has found extensive applica-
tion in modeling of steady-state, gas–liquid, and liquid–
liquid separation processes.

The assumption of phase equilibrium at the phase inter-
face, while widely used, may not be valid when gradients of
interfacial tension are established during mass transfer be-
tween two fluids. These gradients give rise to interfacial tur-
bulence resulting, most often, in considerably increased
mass-transfer coefficients. This phenomenon, referred to as

the Marangoni effect, is discussed in some detail by Bird,
Stewart, and Lightfoot [28], who cite additional references.
The effect can occur at both vapor–liquid and liquid–liquid
interfaces, with the latter receiving the most attention. By
adding surfactants, which tend to concentrate at the inter-
face, the Marangoni effect may be reduced because of stabi-
lization of the interface, even to the extent that an interfacial
mass-transfer resistance may result, causing the overall
mass-transfer coefficient to be reduced. In this book, unless
otherwise indicated, the Marangoni effect will be ignored
and phase equilibrium will always be assumed at the phase
interface.

Gas–Liquid Case

Consider the steady-state mass transfer of A from a gas
phase, across an interface, into a liquid phase. It could be
postulated, as shown in Figure 3.21a, that a thin gas film ex-
ists on one side of the interface and a thin liquid film exists
on the other side, with the controlling factors being molecu-
lar diffusion through each film. However, this postulation is
not necessary, because instead of writing

NA = (DAB)G

�G
(cAb − cAi )G = (DAB)L

�L
(cAi − cAb )L

(3-206)

we can express the rate of mass transfer in terms of mass-
transfer coefficients determined from any suitable theory,
with the concentration gradients visualized more realisti-
cally as in Figure 3.21b. In addition, we can use any number
of different mass-transfer coefficients, depending on the se-
lection of the driving force for mass transfer. For the gas
phase, under dilute or equimolar counter diffusion (EMD)
conditions, we write the mass-transfer rate in terms of partial
pressures:

NA = kp( pAb − pAi ) (3-207)

where kp is a gas-phase mass-transfer coefficient based on a
partial-pressure driving force.

For the liquid phase, we use molar concentrations:

NA = kc(cAi − cAb ) (3-208)
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Figure 3.21 Concentration
gradients for two-resistance
theory: (a) film theory; (b) more
realistic gradients.



At the phase interface, cAi and pAi are assumed to be in
phase equilibrium. Applying a version of Henry’s law differ-
ent from that in Table 2.3,1

cAi = HA pAi (3-209)

Equations (3-207) to (3-209) are a commonly used combina-
tion for vapor–liquid mass transfer. Computations of mass-
transfer rates are generally made from a knowledge of bulk
concentrations, which in this case are pAb and cAb . To obtain
an expression for NA in terms of an overall driving force for
mass transfer, (3-207) to (3-209) are combined in the fol-
lowing manner to eliminate the interfacial concentrations,
cAi and pAi . Solve (3-207) for pAi :

pAi = pAb − NA

kp
(3-210)

Solve (3-208) for cAi :

cAi = cAb + NA

kc
(3-211)

Combine (3-211) with (3-209) to eliminate cAi and combine
the result with (3-210) to eliminate pAi to give

NA = pAb HA − cAb

(HA/kp) + (1/kc)
(3-212)

It is customary to define: (1) a fictitious liquid-phase
concentration c∗

A = pAb HA, which is the concentration that
would be in equilibrium with the partial pressure in the bulk
gas; and (2) an overall mass-transfer coefficient, KL. Thus,
(3-212) is rewritten as

NA = KL (c∗
A − cAb ) = (c∗

A − cAb )

(HA/kp) + (1/kc)
(3-213)

where

1

KL
= HA

kp
+ 1

kc
(3-214)

in which KL is the overall mass-transfer coefficient based on
the liquid phase. The quantities HA/kp and 1/kc are measures
of the mass-transfer resistances of the gas phase and the
liquid phase, respectively. When 1/kc >> HA/kp, (3-214)
becomes

NA = kc(c∗
A − cAb ) (3-215)

Since resistance in the gas phase is then negligible, the gas-
phase driving force is pAb − pAi ≈ 0 and pAb ≈ pAi .

Alternatively, (3-207) to (3-209) can be combined to
define an overall mass-transfer coefficient, KG, based on the
gas phase. The result is

NA = pAb − cAb/HA

(1/kp) + (1/HAkc)
(3-216)

In this case, it is customary to define: (1) a fictitious gas-
phase partial pressure p∗

A = cAb/HA, which is the partial
pressure that would be in equilibrium with the bulk liquid;
and (2) an overall mass-transfer coefficient for the gas phase,
KG, based on a partial-pressure driving force. Thus, (3-216)
can be rewritten as

NA = KG( pAb − p∗
A) = ( pAb − p∗

A)

(1/kp) + (1/HAkc)
(3-217)

where
1

KG
= 1

kp
+ 1

HAkc
(3-218)

In this, the resistances are 1/kp and 1/(HAkc). When
1/kp >> 1/HAkc,

NA = kp( pAb − p∗
A) (3-219)

Since the resistance in the liquid phase is then negligible, the
liquid-phase driving force is cAi − cAb ≈ 0 and cAi ≈ cAb .

The choice between using (3-213) or (3-217) is arbitrary,
but is usually made on the basis of which phase has the
largest mass-transfer resistance; if the liquid, use (3-213); if
the gas, use (3-217). Another common combination for
vapor–liquid mass transfer uses mole fraction-driving forces,
which define another set of mass-transfer coefficients:

NA = ky(yAb − yAi ) = kx (xAi − xAb ) (3-220)

In this case, phase equilibrium at the interface can be
expressed in terms of the K-value for vapor–liquid equilib-
rium. Thus,

KA = yAi /xAi (3-221)

Combining (3-220) and (3-221) to eliminate yAi and xAi ,

NA = yAb − xAb

(1/KAky) + (1/kx )
(3-222)

This time we define fictitious concentration quantities and
overall mass-transfer coefficients for mole-fraction driving
forces. Thus, x∗

A = yAb/KA and y∗
A = KAxAb . If the two

values of KA are equal, we obtain

NA = Kx (x∗
A − xAb ) = x∗

A − xAb

(1/KAky) + (1/kx )
(3-223)

and

NA = Ky(yAb − y∗
A) = yAb − y∗

A

(1/ky) + (KA/kx )
(3-224)

where Kx and Ky are overall mass-transfer coefficients based
on mole-fraction driving forces with

1

Kx
= 1

KAky
+ 1

kx
(3-225)
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1Many different forms of Henry’s law are found in the literature. They
include

pA = HAxA, pA = cA

HA
, and yA = HAxA

When a Henry’s-law constant, HA, is given without citing the equation that
defines it, the defining equation can be determined from the units of the
constant. For example, if the constant has the units of atm or atm/mole
fraction, Henry’s law is given by pA = HAxA. If the units are mol/L-mmHg,
Henry’s law is pA = cA

HA
.
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and

1

Ky
= 1

ky
+ KA

kx
(3-226)

When using correlations to estimate mass-transfer coeffi-
cients for use in the above equations, it is important to deter-
mine which coefficient (kp, kc, ky, or kx) is correlated. This
can usually be done by checking the units or the form of the
Sherwood or Stanton numbers. Coefficients correlated by
the Chilton–Colburn analogy are kc for either the liquid or
gas phase. The different coefficients are related by the fol-
lowing expressions, which are summarized in Table 3.16.

Liquid phase:

kx = kcc = kc

(�L

M

)
(3-227)

Ideal-gas phase:

ky = kp P = (kc)g
P

RT
= (kc)gc = (kc)g

(�G

M

)
(3-228)

Typical units are

SI American Engineering

kc m/s ft/h
kp kmol/s-m2-kPa lbmol/h-ft2-atm
ky, kx kmol/s-m2 lbmol/h-ft2

When unimolecular diffusion (UMD) occurs under non-
dilute conditions, the effect of bulk flow must be included in
the above equations. For binary mixtures, one method for
doing this is to define modified mass-transfer coefficients,
designated with a prime, as follows.

For the liquid phase, using kc or kx,

k ′ = k

(1 − xA)LM
= k

(xB)LM
(3-229)

For the gas phase, using kp, ky, or kc,

k ′ = k

(1 − yA)LM
= k

(yB)LM
(3-230)

The expressions for k ′ are most readily used when the
mass-transfer rate is controlled mainly by one of the two
resistances. Experimental mass-transfer coefficient data re-
ported in the literature are generally correlated in terms of k
rather than k ′. Mass-transfer coefficients estimated from the
Chilton–Colburn analogy [e.g., equations (3-166) to (3-171)]
are kc, not k ′

c.

Liquid–Liquid Case

For mass transfer across two liquid phases, equilibrium is
again assumed at the interface. Denoting the two phases by
L(1) and L(2), (3-223) and (3-224) can be rewritten as

NA = K (2)
x

(
x (2)*

A − x (2)
Ab

) = x (2)*
A − x (2)

Ab

(1/K DA k(1)
x ) + (1/k(2)

x )

(3-231)
and

NA = K (1)
x

(
x (1)

Ab
− x (1)*

A

) = x (1)
Ab

− x (1)*
A

(1/k(1)
x ) + (K DA/k(2)

x )

(3-232)
where

K DA = x (1)
Ai

x (2)
Ai

(3-233)

Case of Large Driving Forces for Mass Transfer

When large driving forces exist for mass transfer, phase
equilibria ratios such as HA, KA, and K DA may not be con-
stant across the two phases. This occurs particularly when
one or both phases are not dilute with respect to the diffusing
solute, A. In that case, expressions for the mass-transfer flux
must be revised.

For example, if mole-fraction driving forces are used, we
write, from (3-220) and (3-224),

NA = ky(yAb − yAi ) = Ky(yAb − y∗
A) (3-234)

Thus,
1

Ky
= yAb − y∗

A

ky(yAb − yAi )
(3-235)

or

1

Ky
= (yAb − yAi ) + (yAi − y∗

A)

ky(yAb − yAi )
= 1

ky
+ 1

ky

(
yAi − y∗

A

yAb − yAi

)
(3-236)

From (3-220),
kx

ky
= (yAb − yAi )

(xAi − xAb )
(3-237)

Table 3.16 Relationships among Mass-Transfer Coefficients

Equimolar Counterdiffusion (EMD):

Gases: NA = ky�yA = kc�cA = kp�pA

ky = kc
P

RT
= kp P if ideal gas

Liquids: NA = kx�xA = kc�cA

kx = kcc, where c = total molar
concentration (A + B)

Unimolecular Diffusion (UMD):

Gases: Same equations as for EMD with k replaced

by k′ = k

(yB)LM

Liquids: Same equations as for EMD with k replaced by 

k′ = k

(xB)LM

When using concentration units for both phases, it is convenient
to use:

kG (�cG ) = kc(�c) for the gas phase
kL (�cL ) = kc(�c) for the liquid phase



Combining (3-234) and (3-237),

1

Ky
= 1

ky
+ 1

kx

(
yAi − y∗

A

xAi − xAb

)
(3-238)

In a similar manner,

1

Kx
= 1

kx
+ 1

ky

(
x∗

A − xAi

yAb − yAi

)
(3-239)

A typical curved equilibrium line is shown in Figure 3.22
with representative values of yAb , yAi , y

∗
A, x∗

A, xAi , and xAb

indicated. Because the line is curved, the vapor–liquid equi-
librium ratio, KA = yA/xA, is not constant across the two
phases. As shown, the slope of the curve and thus, KA, de-
creases with increasing concentration of A. Denote two
slopes of the equilibrium line by

mx =
(

yAi − y∗
A

xAi − xAb

)
(3-240)

and

my =
(

yAb − yAi

x∗
A − xAi

)
(3-241)

Substituting (3-240) and (3-241) into (3-238) and (3-239),
respectively, gives

1

Ky
= 1

ky
+ mx

kx
(3-242)

and
1

Kx
= 1

kx
+ 1

myky
(3-243)

Sulfur dioxide (A) is absorbed into water in a packed column. At a
certain location, the bulk conditions are 50°C, 2 atm, yAb = 0.085,
and xAb = 0.001. Equilibrium data for SO2 between air and
water at 50°C are

EXAMPLE 3.20

110 Chapter 3 Mass Transfer and Diffusion
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xA

yA

yAi

xAixAb

yAb

xA
* is a fictitious xA in

    equilibrium with yAb.

yA
* is a fictitious yA in

    equilibrium with xAb.

Sl
op

e
m x

yA
*

xA
*

Figure 3.22 Curved equilibrium line.

pSO2 , atm cSO2 , lbmol/ft3

0.0382 0.00193
0.0606 0.00290
0.1092 0.00483
0.1700 0.00676

Experimental values of the mass transfer coefficients are as
follows.

Liquid phase: kc = 0.18 m/h

Gas phase: kp = 0.040
kmol

h-m2-kPa

Using mole-fraction driving forces, compute the mass-transfer
flux by:

(a) Assuming an average Henry’s-law constant and a negligible
bulk-flow effect.

(b) Utilizing the actual curved equilibrium line and assuming a
negligible bulk-flow effect.

(c) Utilizing the actual curved equilibrium line and taking into
account the bulk-flow effect.

In addition,

(d) Determine the relative magnitude of the two resistances and
the values of the mole fractions at the interface from the results
of part (c).

SOLUTION

The equilibrium data are converted to mole fractions by assuming
Dalton’s law, yA = pA/P, for the gas and using xA = cA/c for the
liquid. The concentration of the liquid is close to that of pure water
or 3.43 lbmol/ft3 or 55.0 kmol/m3. Thus, the mole fractions at equi-
librium are:

ySO2 xSO2

0.0191 0.000563
0.0303 0.000846
0.0546 0.001408
0.0850 0.001971

These data are fitted with average and maximum absolute devia-
tions of 0.91% and 1.16%, respectively, by the quadratic equation

ySO2 = 29.74xSO2 + 6,733x2
SO2

(1)

Thus, differentiating, the slope of the equilibrium curve is given by

m = dy

dx
= 29.74 + 13,466xSO2 (2)

The given mass-transfer coefficients can be converted to kx and ky

by (3-227) and (3-228):

kx = kcc = 0.18(55.0) = 9.9
kmol

h-m2

ky = kp P = 0.040(2)(101.3) = 8.1
kmol

h-m2 .

(a) From (1) for xAb = 0.001, y∗
A = 29.74(0.001) + 6,733(0.001)2

= 0.0365. From (1), for yAb = 0.085, we solve the quadratic
equation to obtain x∗

A = 0.001975.
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The average slope in this range is

m = 0.085 − 0.0365

0.001975 − 0.001
= 49.7 .

From an examination of (3-242) and (3-243), the liquid-phase
resistance is controlling because the term in kx is much larger than
the term in ky. Therefore, from (3-243), using m = mx,

1

Kx
= 1

9.9
+ 1

49.7(8.1)
= 0.1010 + 0.0025 = 0.1035

or Kx = 9.66
kmol

h-m2

From (3-223),

NA = 9.66(0.001975 − 0.001) = 0.00942
kmol

h-m2 .

(b) From part (a), the gas-phase resistance is almost negligible.
Therefore, yAi ≈ yAb and xAi ≈ x∗

A.
From (3-241), the slope my must, therefore, be taken at the

point yAb = 0.085 and x∗
A = 0.001975 on the equilibrium line.

From (2), my = 29.74 + 13,466(0.001975) = 56.3. From
(3-243),

Kx = 1

(1/9.9) + [1/(56.3)(8.1)]
= 9.69

kmol

h-m2 ,

giving NA = 0.00945 kmol/h-m2. This is only a slight change from
part (a).

(c) We now correct for bulk flow. From the results of parts (a)
and (b), we have

yAb = 0.085, yAi = 0.085, xAi = 0.1975, xAb = 0.001

(yB)LM = 1.0 − 0.085 = 0.915 and (xB)LM ≈ 0.9986

From (3-229),

k′
x = 9.9

0.9986
= 9.9

kmol

h-m2 and k′
y = 8.1

0.915
= 8.85

kmol

h-m2

From (3-243),

Kx = 1

(1/9.9) + [1/56.3(8.85)]
= 9.71

kmol

h-m2

From (3-223),

NA = 9.71(0.001975 − 0.001) = 0.00947
kmol

h-m2

which is only a very slight change from parts (a) and (b), where the
bulk-flow effect was ignored. The effect is very small because here
it is important only in the gas phase; but the liquid-phase resistance
is controlling.

(d) The relative magnitude of the mass-transfer resistances can be
written as

1/myk′
y

1/k′
x

= 1/(56.3)(8.85)

1/9.9
= 0.02

Thus, the gas-phase resistance is only 2% of the liquid-phase resis-
tance. The interface vapor mole fraction can be obtained from
(3-223), after accounting for the bulk-flow effect:

yAi = yAb − NA

k′
y

= 0.085 − 0.00947

8.85
= 0.084

Similarly,

xAi = NA

k′
x

+ xAb = 0.00947

9.9
+ 0.001 = 0.00196

SUMMARY

1. Mass transfer is the net movement of a component in a mixture
from one region to another region of different concentration, often
between two phases across an interface. Mass transfer occurs by
molecular diffusion, eddy diffusion, and bulk flow. Molecular dif-
fusion occurs by a number of different driving forces, including
concentration (the most important), pressure, temperature, and ex-
ternal force fields.

2. Fick’s first law for steady-state conditions states that the mass-
transfer flux by ordinary molecular diffusion is equal to the product
of the diffusion coefficient (diffusivity) and the negative of the con-
centration gradient.

3. Two limiting cases of mass transfer are equimolar counterdif-
fusion (EMD) and unimolecular diffusion (UMD). The former is
also a good approximation for dilute conditions. The latter must in-
clude the bulk-flow effect.

4. When experimental data are not available, diffusivities in gas
and liquid mixtures can be estimated. Diffusivities in solids, in-
cluding porous solids, crystalline solids, metals, glass, ceramics,
polymers, and cellular solids, are best measured. For some solids—
for example, wood—diffusivity is an anisotropic property.

5. Diffusivity values vary by orders of magnitude. Typical values
are 0.10, 1 × 10−5, and 1 × 10−9 cm2/s for ordinary molecular
diffusion of a solute in a gas, liquid, and solid, respectively.

6. Fick’s second law for unsteady-state diffusion is readily ap-
plied to semi-infinite and finite stagnant media, including certain
anisotropic materials.

7. Molecular diffusion under laminar-flow conditions can be deter-
mined from Fick’s first and second laws, provided that velocity pro-
files are available. Common cases include falling liquid-film flow,
boundary-layer flow on a flat plate, and fully developed flow in a
straight, circular tube. Results are often expressed in terms of a mass-
transfer coefficient embedded in a dimensionless group called the
Sherwood number. The mass-transfer flux is given by the product of
the mass-transfer coefficient and a concentration driving force.

8. Mass transfer in turbulent flow is often predicted by analogy
to heat transfer. Of particular importance is the Chilton–Colburn
analogy, which utilizes empirical j-factor correlations and the
dimensionless Stanton number for mass transfer. A more accurate
equation by Churchill and Zajic should be used for flow in tubes,
particularly at high Schmidt and Reynolds numbers.



9. A number of models have been developed for mass transfer
across a two-fluid interface and into a liquid. These include the film
theory, penetration theory, surface-renewal theory, and the film-
penetration theory. These theories predict mass-transfer coeffi-
cients that are proportional to the diffusivity raised to an exponent
that varies from 0.5 to 1.0. Most experimental data provide expo-
nents ranging from 0.5 to 0.75.

10. The two-film theory of Whitman (more properly referred to as
a two-resistance theory) is widely used to predict the mass-transfer
flux from one fluid phase, across an interface, and into another fluid
phase, assuming equilibrium at the interface. One resistance is often
controlling. The theory defines an overall mass-transfer coefficient
that is determined from the separate coefficients for each of the two
phases and the equilibrium relationship at the interface.
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EXERCISES

Section 3.1

3.1 A beaker filled with an equimolar liquid mixture of ethyl
alcohol and ethyl acetate evaporates at 0°C into still air at 101 kPa
(1 atm) total pressure. Assuming Raoult’s law applies, what will be
the composition of the liquid remaining when half the original ethyl
alcohol has evaporated, assuming that each component evaporates
independently of the other? Also assume that the liquid is always
well mixed. The following data are available:

Vapor Pressure, Diffusivity in Air
kPa at 0°C m2/s

Ethyl acetate (AC) 3.23 6.45 × 10−6

Ethyl alcohol (AL) 1.62 9.29 × 10−6

3.2 An open tank, 10 ft in diameter and containing benzene at
25°C, is exposed to air in such a manner that the surface of the liq-
uid is covered with a stagnant air film estimated to be 0.2 in. thick.
If the total pressure is 1 atm and the air temperature is 25°C, what
loss of material in pounds per day occurs from this tank? The spe-
cific gravity of benzene at 60°F is 0.877. The concentration of ben-
zene at the outside of the film is so low that it may be neglected. For
benzene, the vapor pressure at 25°C is 100 torr, and the diffusivity
in air is 0.08 cm2/s.

3.3 An insulated glass tube and condenser are mounted on a
reboiler containing benzene and toluene. The condenser returns liq-
uid reflux so that it runs down the wall of the tube. At one point in
the tube the temperature is 170°F, the vapor contains 30 mol%
toluene, and the liquid reflux contains 40 mol% toluene. The effec-
tive thickness of the stagnant vapor film is estimated to be 0.1 in.
The molar latent heats of benzene and toluene are equal. Calculate
the rate at which toluene and benzene are being interchanged by
equimolar countercurrent diffusion at this point in the tube in
lbmol/h-ft2.

Diffusivity of toluene in benzene = 0.2 ft2/h.

Pressure = 1 atm total pressure (in the tube).

Vapor pressure of toluene at 170°F = 400 torr.

3.4 Air at 25°C with a dew-point temperature of 0°C flows past
the open end of a vertical tube filled with liquid water maintained at
25°C. The tube has an inside diameter of 0.83 in., and the liquid

level was originally 0.5 in. below the top of the tube. The diffusiv-
ity of water in air at 25°C is 0.256 cm2/s.

(a) How long will it take for the liquid level in the tube to drop 3 in.?
(b) Make a plot of the liquid level in the tube as a function of time
for this period.

3.5 Two bulbs are connected by a tube, 0.002 m in diameter and
0.20 m in length. Initially bulb 1 contains argon, and bulb 2 con-
tains xenon. The pressure and temperature are maintained at 1 atm
and 105°C, at which the diffusivity is 0.180 cm2/s. At time t = 0,
diffusion is allowed to occur between the two bulbs. At a later time,
the argon mole fraction in the gas at end 1 of the tube is 0.75, and
0.20 at the other end. Determine at the later time:

(a) The rates and directions of mass transfer of argon and xenon

(b) The transport velocity of each species

(c) The molar average velocity of the mixture

Section 3.2

3.6 The diffusivity of toluene in air was determined experimen-
tally by allowing liquid toluene to vaporize isothermally into air
from a partially filled vertical tube 3 mm in diameter. At a temper-
ature of 39.4°C, it took 96 × 104 s for the level of the toluene to
drop from 1.9 cm below the top of the open tube to a level of 7.9 cm
below the top. The density of toluene is 0.852 g/cm3, and the vapor
pressure is 57.3 torr at 39.4°C. The barometer reading was 1 atm.
Calculate the diffusivity and compare it with the value predicted
from (3-36). Neglect the counterdiffusion of air.

3.7 An open tube, 1 mm in diameter and 6 in. long, has pure hy-
drogen blowing across one end and pure nitrogen blowing across
the other. The temperature is 75°C.

(a) For equimolar counterdiffusion, what will be the rate of trans-
fer of hydrogen into the nitrogen stream (mol/s)? Estimate the dif-
fusivity from (3-36).

(b) For part (a), plot the mole fraction of hydrogen against distance
from the end of the tube past which nitrogen is blown.

3.8 Some HCl gas diffuses across a film of air 0.1 in. thick at
20°C. The partial pressure of HCl on one side of the film is 0.08
atm and it is zero on the other. Estimate the rate of diffusion, as mol
HCl/s-cm2, if the total pressure is (a) 10 atm, (b) 1 atm, (c) 0.1 atm.

The diffusivity of HCl in air at 20°C and 1 atm is 0.145 cm2/s.



3.9 Estimate the diffusion coefficient for the gaseous binary sys-
tem nitrogen (A)/toluene (B) at 25°C and 3 atm using the method of
Fuller et al.

3.10 For the mixture of Example 3.3, estimate the diffusion coef-
ficient if the pressure is increased to 100 atm using the method of
Takahashi.

3.11 Estimate the diffusivity of carbon tetrachloride at 25°C in a
dilute solution of: (a) Methanol, (b) Ethanol, (c) Benzene, and
(d) n-Hexane by the method of Wilke–Chang and Hayduk–Minhas.
Compare the estimated values with the following experimental
observations:

Solvent Experimental DAB, cm2/s

Methanol 1.69 × 10−5 cm2/s at 15◦C
Ethanol 1.50 × 10−5 cm2/s at 25◦C
Benzene 1.92 × 10−5 cm2/s at 25◦C
n-Hexane 3.70 × 10−5 cm2/s at 25◦C

3.12 Estimate the liquid diffusivity of benzene (A) in formic acid
(B) at 25°C and infinite dilution. Compare the estimated value to
that of Example 3.6 for formic acid at infinite dilution in benzene.

3.13 Estimate the liquid diffusivity of acetic acid at 25°C in a
dilute solution of: (a) Benzene, (b) Acetone, (c) Ethyl acetate, and
(d) Water by an appropriate method. Compare the estimated values
with the following experimental values:

Solvent Experimental DAB, cm2/s

Benzene 2.09 × 10−5 cm2/s at 25◦C
Acetone 2.92 × 10−5 cm2/s at 25◦C
Ethyl acetate 2.18 × 10−5 cm2/s at 25◦C
Water 1.19 × 10−5 cm2/s at 20◦C

3.14 Water in an open dish exposed to dry air at 25°C is found to
vaporize at a constant rate of 0.04 g/h-cm2. Assuming the water
surface to be at the wet-bulb temperature of 11.0°C, calculate the
effective gas-film thickness (i.e., the thickness of a stagnant air film
that would offer the same resistance to vapor diffusion as is actually
encountered at the water surface).

3.15 Isopropyl alcohol is undergoing mass transfer at 35°C and
2 atm under dilute conditions through water, across a phase bound-
ary, and then through nitrogen. Based on the date given below,
estimate for isopropyl alcohol:

(a) The diffusivity in water using the Wilke–Chang equation

(b) The diffusivity in nitrogen using the Fuller et al. equation

(c) The product, DAB�M , in water

(d) The product, DAB�M , in air

where �M is the molar density of the mixture.

Using the above results, compare:

(e) The diffusivities in parts (a) and (b)

(f) The diffusivity-molar density products in Parts (c) and (d)

Lastly:

(g) What conclusions can you come to about molecular diffusion
in the liquid phase versus the gaseous phase?

Data:

Component Tc, °R Pc, psia Zc vL, cm3/mol

Nitrogen 227.3 492.9 0.289 —
Isopropyl alcohol 915 691 0.249 76.5

3.16 Experimental liquid-phase activity-coefficient data are
given in Exercise 2.23 for the ethanol/benzene system at 45°C. Es-
timate and plot diffusion coefficients for both ethanol and benzene
over the entire composition range.

3.17 Estimate the diffusion coefficient of NaOH in a 1-M aqueous
solution at 25°C.

3.18 Estimate the diffusion coefficient of NaCl in a 2-M aqueous
solution at 18°C. Compare your estimate with the experimental
value of 1.28 × 10−5 cm2/s.

3.19 Estimate the diffusivity of N2 in H2 in the pores of a catalyst
at 300°C and 20 atm if the porosity is 0.45 and the tortuosity is 2.5.
Assume ordinary molecular diffusion in the pores.

3.20 Gaseous hydrogen at 150 psia and 80°F is stored in a small,
spherical, steel pressure vessel having an inside diameter of 4 in. and
a wall thickness of 0.125 in. At these conditions, the solubility of hy-
drogen in steel is 0.094 lbmol/ft3 and the diffusivity of hydrogen in
steel is 3.0 × 10−9 cm2/s. If the inner surface of the vessel remains
saturated at the existing hydrogen pressure and the hydrogen partial
pressure at the outer surface is assumed to be zero, estimate:

(a) The initial rate of mass transfer of hydrogen through the metal
wall

(b) The initial rate of pressure decrease inside the vessel

(c) The time in hours for the pressure to decrease to 50 psia,
assuming the temperature stays constant at 80°F

3.21 A polyisoprene membrane of 0.8-�m thickness is to be used
to separate a mixture of methane and H2. Using the data in
Table 14.9 and the following compositions, estimate the mass-
transfer flux of each of the two species.

Partial Pressures, MPa

Membrane Side 1 Membrane Side 2

Methane 2.5 0.05
Hydrogen 2.0 0.20

Section 3.3

3.22 A 3-ft depth of stagnant water at 25°C lies on top of a
0.10-in. thickness of NaCl. At time < 0, the water is pure. At time =
0, the salt begins to dissolve and diffuse into the water. If the con-
centration of salt in the water at the solid–liquid interface is main-
tained at saturation (36 g NaCl/100 g H2O) and the diffusivity of
NaCl in water is 1.2 × 10−5 cm2/s, independent of concentration,
estimate, by assuming the water to act as a semi-infinite medium,
the time and the concentration profile of salt in the water when

(a) 10% of the salt has dissolved

(b) 50% of the salt has dissolved

(c) 90% of the salt has dissolved

3.23 A slab of dry wood of 4-in. thickness and sealed edges is
exposed to air of 40% relative humidity. Assuming that the two
unsealed faces of the wood immediately jump to an equilibrium
moisture content of 10 lb H2O per 100 lb of dry wood, determine
the time for the moisture to penetrate to the center of the slab (2 in.
from either face). Assume a diffusivity of water in the wood as
8.3 × 10−6 cm2/s.

3.24 A wet, clay brick measuring 2 × 4 × 6 in. has an initial uni-
form moisture content of 12 wt%. At time = 0, the brick is exposed
on all sides to air such that the surface moisture content is
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maintained at 2 wt%. After 5 h, the average moisture content is
8 wt%. Estimate:

(a) The diffusivity of water in the clay in cm2/s.

(b) The additional time for the average moisture content to reach
4 wt%. All moisture contents are on a dry basis.

3.25 A spherical ball of clay, 2 in. in diameter, has an initial mois-
ture content of 10 wt%. The diffusivity of water in the clay is
5 × 10−6 cm2/s. At time t = 0, the surface of the clay is brought into
contact with air such that the moisture content at the surface is main-
tained at 3 wt%. Estimate the time for the average moisture content in
the sphere to drop to 5 wt%. All moisture contents are on a dry basis.

Section 3.4

3.26 Estimate the rate of absorption of pure oxygen at 10 atm and
25°C into water flowing as a film down a vertical wall 1 m high and
6 cm in width at a Reynolds number of 50 without surface ripples.
Assume the diffusivity of oxygen in water is 2.5 × 10−5 cm2/s and
that the mole fraction of oxygen in water at saturation for the above
temperature and pressure is 2.3 × 10−4.

3.27 For the conditions of Example 3.13, determine at what
height from the top the average concentration of CO2 would corre-
spond to 50% of saturation.

3.28 Air at 1 atm flows at 2 m/s across the surface of a 2-in.-long
surface that is covered with a thin film of water. If the air and water
are maintained at 25°C, and the diffusivity of water in air at these
conditions is 0.25 cm2/s, estimate the mass flux for the evaporation
of water at the middle of the surface assuming laminar boundary-
layer flow. Is this assumption reasonable?

3.29 Air at 1 atm and 100°C flows across a thin, flat plate of
naphthalene that is 1 m long, causing the plate to sublime. The
Reynolds number at the trailing edge of the plate is at the upper
limit for a laminar boundary layer. Estimate:

(a) The average rate of sublimation in kmol/s-m2

(b) The local rate of sublimation at a distance of 0.5 m from the
leading edge of the plate

Physical properties are given in Example 3.14.

3.30 Air at 1 atm and 100°C flows through a straight, 5-cm-
diameter circular tube, cast from naphthalene, at a Reynolds number
of 1,500.Air entering the tube has an established laminar-flow velocity
profile. Properties are given in Example 3.14. If pressure drop through
the tube is negligible, calculate the length of tube needed for the aver-
age mole fraction of naphthalene in the exiting air to be 0.005.

3.31 A spherical water drop is suspended from a fine thread in
still, dry air. Show:

(a) That the Sherwood number for mass transfer from the surface
of the drop into the surroundings has a value of 2 if the characteris-
tic length is the diameter of the drop.

If the initial drop diameter is 1 mm, the air temperature is 38°C, the
drop temperature is 14.4°C, and the pressure is 1 atm, calculate:

(b) The initial mass of the drop in grams.

(c) The initial rate of evaporation in grams per second.

(d) The time in seconds for the drop diameter to be reduced to
0.2 mm.

(e) The initial rate of heat transfer to the drop. If the Nusselt num-
ber is also 2, is the rate of heat transfer sufficient to supply the heat
of vaporization and sensible heat of the evaporated water? If not,
what will happen?

Section 3.5

3.32 Water at 25°C flows at 5 ft/s through a straight, cylindrical
tube cast from benzoic acid, of 2-in. inside diameter. If the tube is
10 ft long, and fully developed, turbulent flow is assumed, estimate
the average concentration of benzoic acid in the water leaving the
tube. Physical properties are given in Example 3.15.

3.33 Air at 1 atm flows at a Reynolds number of 50,000 normal to
a long, circular, 1-in.-diameter cylinder made of naphthalene.
Using the physical properties of Example 3.14 for a temperature of
100°C, calculate the average sublimation flux in kmol/s-m2.

3.34 For the conditions of Exercise 3.33, calculate the initial
average rate of sublimation in kmol/s-m2 for a spherical particle of
1-in. initial diameter. Compare this result to that for a bed packed
with naphthalene spheres with a void fraction of 0.5.

Section 3.6

3.35 Carbon dioxide is stripped from water by air in a wetted-
wall tube. At a certain location, where the pressure is 10 atm
and the temperature is 25°C, the mass-transfer flux of CO2 is
1.62 lbmol/h-ft2. The partial pressures of CO2 are 8.2 atm at the in-
terface and 0.1 atm in the bulk gas. The diffusivity of CO2 in air at
these conditions is 1.6 × 10−2 cm2/s. Assuming turbulent flow of
the gas, calculate by the film theory, the mass-transfer coefficient kc

for the gas phase and the film thickness.

3.36 Water is used to remove CO2 from air by absorption in a col-
umn packed with Pall rings. At a certain region of the column
where the partial pressure of CO2 at the interface is 150 psia and
the concentration in the bulk liquid is negligible, the absorption rate
is 0.017 lbmol/h-ft2. The diffusivity of CO2 in water is
2.0 × 10−5 cm2/s. Henry’s law for CO2 is p = Hx, where H = 9,000
psia. Calculate:

(a) The liquid-phase mass-transfer coefficient and the film
thickness

(b) Contact time for the penetration theory

(c) Average eddy residence time and the probability distribution
for the surface-renewal theory

3.37 Determine the diffusivity of H2S in water, using the penetra-
tion theory, from the following data for the absorption of H2S into
a laminar jet of water at 20°C.

Jet diameter = 1 cm, Jet length = 7 cm, and Solubility of H2S in
water = 100 mol/m3

The average rate of absorption varies with the flow rate of the jet as
follows:

Jet Flow Rate, Rate of Absorption,
cm3/s mol/s � 106

0.143 1.5
0.568 3.0
1.278 4.25
2.372 6.15
3.571 7.20
5.142 8.75

Section 3.7

3.38 In a test on the vaporization of H2O into air in a wetted-wall
column, the following data were obtained:

Tube diameter, 1.46 cm, Wetted-tube length, 82.7 cm
Air rate to tube at 24°C and 1 atm, 720 cm3/s



Temperature of inlet water, 25.15°C, Temperature of outlet water, 
25.35°C

Partial pressure of water in inlet air, 6.27 torr, and in outlet air, 
20.1 torr

The value for the diffusivity of water vapor in air is 0.22 cm2/s at
0°C and 1 atm. The mass velocity of air is taken relative to the pipe
wall. Calculate:

(a) Rate of mass transfer of water into the air

(b) KG for the wetted-wall column

3.39 The following data were obtained by Chamber and
Sherwood [Ind. Eng. Chem., 29, 1415 (1937)] on the absorption of
ammonia from an ammonia-air system by a strong acid in a wetted-
wall column 0.575 in. in diameter and 32.5 in. long:

Inlet acid (2-N H2SO4) temperature, °F 76
Outlet acid temperature, °F 81
Inlet air temperature, °F 77
Outlet air temperature, °F 84
Total pressure, atm 1.00
Partial pressure NH3 in inlet gas, atm 0.0807
Partial pressure NH3 in outlet gas, atm 0.0205
Air rate, lbmol/h 0.260

The operation was countercurrent, with the gas entering at the bot-
tom of the vertical tower and the acid passing down in a thin film
on the inner wall. The change in acid strength was inappreciable,
and the vapor pressure of ammonia over the liquid may be as-
sumed to have been negligible because of the use of a strong
acid for absorption. Calculate the mass-transfer coefficient, kp,
from the data.

3.40 A new type of cooling-tower packing is being tested in a lab-
oratory column. At two points in the column, 0.7 ft apart, the fol-
lowing data have been taken. Calculate the overall volumetric
mass-transfer coefficient Kya that can be used to design a large,
packed-bed cooling tower, where a is the mass-transfer area, A, per
unit volume, V, of tower.

Bottom Top

Water temperature, °F 120 126
Water vapor pressure, psia 1.69 1.995
Mole fraction H2O in air 0.001609 0.0882
Total pressure, psia 14.1 14.3
Air rate, lbmol/h 0.401 0.401
Column area, ft2 0.5 0.5
Water rate, lbmol/h (approximate) 20 20
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