
&CHAPTER 1

Introduction to Advanced
Computer Architecture and
Parallel Processing

Computer architects have always strived to increase the performance of their

computer architectures. High performance may come from fast dense circuitry,

packaging technology, and parallelism. Single-processor supercomputers have

achieved unheard of speeds and have been pushing hardware technology to the phys-

ical limit of chip manufacturing. However, this trend will soon come to an end,

because there are physical and architectural bounds that limit the computational

power that can be achieved with a single-processor system. In this book we will

study advanced computer architectures that utilize parallelism via multiple proces-

sing units.

Parallel processors are computer systems consisting of multiple processing units

connected via some interconnection network plus the software needed to make the

processing units work together. There are two major factors used to categorize such

systems: the processing units themselves, and the interconnection network that ties

them together. The processing units can communicate and interact with each other

using either shared memory or message passing methods. The interconnection net-

work for shared memory systems can be classified as bus-based versus switch-based.

In message passing systems, the interconnection network is divided into static and

dynamic. Static connections have a fixed topology that does not change while

programs are running. Dynamic connections create links on the fly as the program

executes.

The main argument for using multiprocessors is to create powerful computers by

simply connecting multiple processors. A multiprocessor is expected to reach faster

speed than the fastest single-processor system. In addition, a multiprocessor consist-

ing of a number of single processors is expected to be more cost-effective than build-

ing a high-performance single processor. Another advantage of a multiprocessor is

fault tolerance. If a processor fails, the remaining processors should be able to

provide continued service, albeit with degraded performance.

1

Advanced Computer Architecture and Parallel Processing, by H. El-Rewini and M. Abd-El-Barr
ISBN 0-471-46740-5 Copyright # 2005 John Wiley & Sons, Inc.

1.1 FOUR DECADES OF COMPUTING

Most computer scientists agree that there have been four distinct paradigms or eras

of computing. These are: batch, time-sharing, desktop, and network. Table 1.1 is

modified from a table proposed by Lawrence Tesler. In this table, major character-

istics of the different computing paradigms are associated with each decade of

computing, starting from 1960.

1.1.1 Batch Era

By 1965 the IBM System/360 mainframe dominated the corporate computer cen-

ters. It was the typical batch processing machine with punched card readers, tapes

and disk drives, but no connection beyond the computer room. This single main-

frame established large centralized computers as the standard form of computing

for decades. The IBM System/360 had an operating system, multiple programming

languages, and 10 megabytes of disk storage. The System/360 filled a room with

metal boxes and people to run them. Its transistor circuits were reasonably fast.

Power users could order magnetic core memories with up to one megabyte of

32-bit words. This machine was large enough to support many programs in

memory at the same time, even though the central processing unit had to switch

from one program to another.

1.1.2 Time-Sharing Era

The mainframes of the batch era were firmly established by the late 1960s when

advances in semiconductor technology made the solid-state memory and integrated

circuit feasible. These advances in hardware technology spawned the minicomputer

era. They were small, fast, and inexpensive enough to be spread throughout the

company at the divisional level. However, they were still too expensive and difficult

TABLE 1.1 Four Decades of Computing

Feature Batch Time-Sharing Desktop Network

Decade 1960s 1970s 1980s 1990s

Location Computer room Terminal room Desktop Mobile

Users Experts Specialists Individuals Groups

Data Alphanumeric Text, numbers Fonts, graphs Multimedia

Objective Calculate Access Present Communicate

Interface Punched card Keyboard and CRT See and point Ask and tell

Operation Process Edit Layout Orchestrate

Connectivity None Peripheral cable LAN Internet

Owners Corporate computer

centers

Divisional IS shops Departmental

end-users

Everyone

LAN, local area network.

2 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

to use to hand over to end-users. Minicomputers made by DEC, Prime, and Data

General led the way in defining a new kind of computing: time-sharing. By the

1970s it was clear that there existed two kinds of commercial or business computing:

(1) centralized data processing mainframes, and (2) time-sharing minicomputers. In

parallel with small-scale machines, supercomputers were coming into play. The first

such supercomputer, the CDC 6600, was introduced in 1961 by Control Data

Corporation. Cray Research Corporation introduced the best cost/performance

supercomputer, the Cray-1, in 1976.

1.1.3 Desktop Era

Personal computers (PCs), which were introduced in 1977 by Altair, Processor

Technology, North Star, Tandy, Commodore, Apple, and many others, enhanced

the productivity of end-users in numerous departments. Personal computers from

Compaq, Apple, IBM, Dell, and many others soon became pervasive, and changed

the face of computing.

Local area networks (LAN) of powerful personal computers and workstations

began to replace mainframes and minis by 1990. The power of the most capable

big machine could be had in a desktop model for one-tenth of the cost. However,

these individual desktop computers were soon to be connected into larger complexes

of computing by wide area networks (WAN).

1.1.4 Network Era

The fourth era, or network paradigm of computing, is in full swing because of rapid

advances in network technology. Network technology outstripped processor tech-

nology throughout most of the 1990s. This explains the rise of the network paradigm

listed in Table 1.1. The surge of network capacity tipped the balance from a

processor-centric view of computing to a network-centric view.

The 1980s and 1990s witnessed the introduction of many commercial parallel

computers with multiple processors. They can generally be classified into two

main categories: (1) shared memory, and (2) distributed memory systems. The

number of processors in a single machine ranged from several in a shared

memory computer to hundreds of thousands in a massively parallel system.

Examples of parallel computers during this era include Sequent Symmetry, Intel

iPSC, nCUBE, Intel Paragon, Thinking Machines (CM-2, CM-5), MsPar (MP),

Fujitsu (VPP500), and others.

1.1.5 Current Trends

One of the clear trends in computing is the substitution of expensive and specialized

parallel machines by the more cost-effective clusters of workstations. A cluster is a

collection of stand-alone computers connected using some interconnection network.

Additionally, the pervasiveness of the Internet created interest in network computing

and more recently in grid computing. Grids are geographically distributed platforms

1.1 FOUR DECADES OF COMPUTING 3

of computation. They should provide dependable, consistent, pervasive, and inex-

pensive access to high-end computational facilities.

1.2 FLYNN’S TAXONOMY OF COMPUTER ARCHITECTURE

The most popular taxonomy of computer architecture was defined by Flynn in 1966.

Flynn’s classification scheme is based on the notion of a stream of information. Two

types of information flow into a processor: instructions and data. The instruction

stream is defined as the sequence of instructions performed by the processing

unit. The data stream is defined as the data traffic exchanged between the memory

and the processing unit. According to Flynn’s classification, either of the instruction

or data streams can be single or multiple. Computer architecture can be classified

into the following four distinct categories:

. single-instruction single-data streams (SISD);

. single-instruction multiple-data streams (SIMD);

. multiple-instruction single-data streams (MISD); and

. multiple-instruction multiple-data streams (MIMD).

Conventional single-processor von Neumann computers are classified as SISD

systems. Parallel computers are either SIMD or MIMD. When there is only

one control unit and all processors execute the same instruction in a synchronized

fashion, the parallel machine is classified as SIMD. In a MIMD machine, each

processor has its own control unit and can execute different instructions on differ-

ent data. In the MISD category, the same stream of data flows through a linear

array of processors executing different instruction streams. In practice, there is

no viable MISD machine; however, some authors have considered pipe-

lined machines (and perhaps systolic-array computers) as examples for MISD.

Figures 1.1, 1.2, and 1.3 depict the block diagrams of SISD, SIMD, and

MIMD, respectively.

An extension of Flynn’s taxonomy was introduced by D. J. Kuck in 1978. In his

classification, Kuck extended the instruction stream further to single (scalar and

array) and multiple (scalar and array) streams. The data stream in Kuck’s clas-

sification is called the execution stream and is also extended to include single

Control
Unit

Instruction Stream

Processor
(P)

Memory
(M)I/O

Instruction Stream Data Stream

Figure 1.1 SISD architecture.

4 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

(scalar and array) and multiple (scalar and array) streams. The combination of these

streams results in a total of 16 categories of architectures.

1.3 SIMD ARCHITECTURE

The SIMD model of parallel computing consists of two parts: a front-end computer

of the usual von Neumann style, and a processor array as shown in Figure 1.4. The

processor array is a set of identical synchronized processing elements capable of

simultaneously performing the same operation on different data. Each processor

in the array has a small amount of local memory where the distributed data resides

while it is being processed in parallel. The processor array is connected to the

memory bus of the front end so that the front end can randomly access the local

Figure 1.2 SIMD architecture.

P1
Control
Unit-1

M1

Data StreamInstruction Stream

Instruction Stream

Pn
Control
Unit-n Mn

Data StreamInstruction Stream

Instruction Stream

Figure 1.3 MIMD architecture.

1.3 SIMD ARCHITECTURE 5

processor memories as if it were another memory. Thus, the front end can issue

special commands that cause parts of the memory to be operated on simultaneously

or cause data to move around in the memory. A program can be developed and

executed on the front end using a traditional serial programming language. The

application program is executed by the front end in the usual serial way, but

issues commands to the processor array to carry out SIMD operations in parallel.

The similarity between serial and data parallel programming is one of the strong

points of data parallelism. Synchronization is made irrelevant by the lock–step syn-

chronization of the processors. Processors either do nothing or exactly the same

operations at the same time. In SIMD architecture, parallelism is exploited by apply-

ing simultaneous operations across large sets of data. This paradigm is most useful

for solving problems that have lots of data that need to be updated on a wholesale

basis. It is especially powerful in many regular numerical calculations.

There are two main configurations that have been used in SIMD machines (see

Fig. 1.5). In the first scheme, each processor has its own local memory. Processors

can communicate with each other through the interconnection network. If the inter-

connection network does not provide direct connection between a given pair of

processors, then this pair can exchange data via an intermediate processor. The

ILLIAC IV used such an interconnection scheme. The interconnection network in

the ILLIAC IV allowed each processor to communicate directly with four neighbor-

ing processors in an 8 � 8 matrix pattern such that the i th processor can communi-

cate directly with the (i2 1)th, (iþ 1)th, (i2 8)th, and (iþ 8)th processors. In the

second SIMD scheme, processors and memory modules communicate with each

other via the interconnection network. Two processors can transfer data between

each other via intermediate memory module(s) or possibly via intermediate

processor(s). The BSP (Burroughs’ Scientific Processor) used the second SIMD

scheme.

1.4 MIMD ARCHITECTURE

Multiple-instruction multiple-data streams (MIMD) parallel architectures are made

of multiple processors and multiple memory modules connected together via some

Von Neumann Computer

Virtual Processors

Figure 1.4 SIMD architecture model.

6 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

interconnection network. They fall into two broad categories: shared memory or

message passing. Figure 1.6 illustrates the general architecture of these two cat-

egories. Processors exchange information through their central shared memory in

shared memory systems, and exchange information through their interconnection

network in message passing systems.

A shared memory system typically accomplishes interprocessor coordination

through a global memory shared by all processors. These are typically server sys-

tems that communicate through a bus and cache memory controller. The bus/
cache architecture alleviates the need for expensive multiported memories and inter-

face circuitry as well as the need to adopt a message-passing paradigm when devel-

oping application software. Because access to shared memory is balanced, these

systems are also called SMP (symmetric multiprocessor) systems. Each processor

has equal opportunity to read/write to memory, including equal access speed.

Control Unit

P1

M1

P2

M2

P3

M3

Pn

Mn

Pn-1

Mn-1

Interconnection Network

Control Unit

P1

M1

P2

M2

P3

M3

Pn

Mn

Pn-1

Mn-1

Interconnection Network

Figure 1.5 Two SIMD schemes.

1.4 MIMD ARCHITECTURE 7

Commercial examples of SMPs are Sequent Computer’s Balance and Symmetry,

Sun Microsystems multiprocessor servers, and Silicon Graphics Inc. multiprocessor

servers.

Amessage passing system (also referred to as distributed memory) typically com-

bines the local memory and processor at each node of the interconnection network.

There is no global memory, so it is necessary to move data from one local memory to

another by means of message passing. This is typically done by a Send/Receive pair
of commands, which must be written into the application software by a programmer.

Thus, programmers must learn the message-passing paradigm, which involves data

copying and dealing with consistency issues. Commercial examples of message pas-

sing architectures c. 1990 were the nCUBE, iPSC/2, and various Transputer-based

systems. These systems eventually gave way to Internet connected systems whereby

the processor/memory nodes were either Internet servers or clients on individuals’

desktop.

It was also apparent that distributed memory is the only way efficiently to

increase the number of processors managed by a parallel and distributed system.

If scalability to larger and larger systems (as measured by the number of processors)

was to continue, systems had to use distributed memory techniques. These two

forces created a conflict: programming in the shared memory model was easier,

and designing systems in the message passing model provided scalability. The

Interconnection Network

P

MM M M

P P P

Interconnection Network

P P P P

MM M M

Shared Memory MIMD Architecture

Message Passing MIMD Architecture

Figure 1.6 Shared memory versus message passing architecture.

8 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

distributed-shared memory (DSM) architecture began to appear in systems like the

SGI Origin2000, and others. In such systems, memory is physically distributed; for

example, the hardware architecture follows the message passing school of design,

but the programming model follows the shared memory school of thought. In

effect, software covers up the hardware. As far as a programmer is concerned, the

architecture looks and behaves like a shared memory machine, but a message pas-

sing architecture lives underneath the software. Thus, the DSM machine is a hybrid

that takes advantage of both design schools.

1.4.1 Shared Memory Organization

A shared memory model is one in which processors communicate by reading and

writing locations in a shared memory that is equally accessible by all processors.

Each processor may have registers, buffers, caches, and local memory banks as

additional memory resources. A number of basic issues in the design of shared

memory systems have to be taken into consideration. These include access control,

synchronization, protection, and security. Access control determines which process

accesses are possible to which resources. Access control models make the required

check for every access request issued by the processors to the shared memory,

against the contents of the access control table. The latter contains flags that

determine the legality of each access attempt. If there are access attempts to

resources, then until the desired access is completed, all disallowed access attempts

and illegal processes are blocked. Requests from sharing processes may change the

contents of the access control table during execution. The flags of the access control

with the synchronization rules determine the system’s functionality. Synchroniza-

tion constraints limit the time of accesses from sharing processes to shared

resources. Appropriate synchronization ensures that the information flows properly

and ensures system functionality. Protection is a system feature that prevents pro-

cesses from making arbitrary access to resources belonging to other processes. Shar-

ing and protection are incompatible; sharing allows access, whereas protection

restricts it.

The simplest shared memory system consists of one memory module that can be

accessed from two processors. Requests arrive at the memory module through its

two ports. An arbitration unit within the memory module passes requests through

to a memory controller. If the memory module is not busy and a single request

arrives, then the arbitration unit passes that request to the memory controller and

the request is granted. The module is placed in the busy state while a request is

being serviced. If a new request arrives while the memory is busy servicing a

previous request, the requesting processor may hold its request on the line until

the memory becomes free or it may repeat its request sometime later.

Depending on the interconnection network, a shared memory system leads to

systems can be classified as: uniform memory access (UMA), nonuniform

memory access (NUMA), and cache-only memory architecture (COMA). In the

UMA system, a shared memory is accessible by all processors through an intercon-

nection network in the same way a single processor accesses its memory. Therefore,

1.4 MIMD ARCHITECTURE 9

all processors have equal access time to any memory location. The interconnection

network used in the UMA can be a single bus, multiple buses, a crossbar, or a

multiport memory. In the NUMA system, each processor has part of the shared

memory attached. The memory has a single address space. Therefore, any processor

could access any memory location directly using its real address. However, the

access time to modules depends on the distance to the processor. This results in a

nonuniform memory access time. A number of architectures are used to interconnect

processors to memory modules in a NUMA. Similar to the NUMA, each processor

has part of the shared memory in the COMA. However, in this case the shared

memory consists of cache memory. A COMA system requires that data be migrated

to the processor requesting it. Shared memory systems will be discussed in more

detail in Chapter 4.

1.4.2 Message Passing Organization

Message passing systems are a class of multiprocessors in which each processor has

access to its own local memory. Unlike shared memory systems, communications in

message passing systems are performed via send and receive operations. A node in

such a system consists of a processor and its local memory. Nodes are typically able

to store messages in buffers (temporary memory locations where messages wait until

they can be sent or received), and perform send/receive operations at the same time

as processing. Simultaneous message processing and problem calculating are

handled by the underlying operating system. Processors do not share a global

memory and each processor has access to its own address space. The processing

units of a message passing system may be connected in a variety of ways ranging

from architecture-specific interconnection structures to geographically dispersed

networks. The message passing approach is, in principle, scalable to large pro-

portions. By scalable, it is meant that the number of processors can be increased

without significant decrease in efficiency of operation.

Message passing multiprocessors employ a variety of static networks in local

communication. Of importance are hypercube networks, which have received

special attention for many years. The nearest neighbor two-dimensional and

three-dimensional mesh networks have been used in message passing systems as

well. Two important design factors must be considered in designing interconnection

networks for message passing systems. These are the link bandwidth and the net-

work latency. The link bandwidth is defined as the number of bits that can be trans-

mitted per unit time (bits/s). The network latency is defined as the time to complete

a message transfer. Wormhole routing in message passing was introduced in 1987 as

an alternative to the traditional store-and-forward routing in order to reduce the size

of the required buffers and to decrease the message latency. In wormhole routing, a

packet is divided into smaller units that are called flits (flow control bits) such that

flits move in a pipeline fashion with the header flit of the packet leading the way to

the destination node. When the header flit is blocked due to network congestion, the

remaining flits are blocked as well. More details on message passing will be

introduced in Chapter 5.

10 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

1.5 INTERCONNECTION NETWORKS

Multiprocessors interconnection networks (INs) can be classified based on a number

of criteria. These include (1) mode of operation (synchronous versus asynchronous),

(2) control strategy (centralized versus decentralized), (3) switching techniques

(circuit versus packet), and (4) topology (static versus dynamic).

1.5.1 Mode of Operation

According to the mode of operation, INs are classified as synchronous versus asyn-

chronous. In synchronous mode of operation, a single global clock is used by all

components in the system such that the whole system is operating in a lock–step

manner. Asynchronous mode of operation, on the other hand, does not require a

global clock. Handshaking signals are used instead in order to coordinate the

operation of asynchronous systems. While synchronous systems tend to be slower

compared to asynchronous systems, they are race and hazard-free.

1.5.2 Control Strategy

According to the control strategy, INs can be classified as centralized versus decen-

tralized. In centralized control systems, a single central control unit is used to over-

see and control the operation of the components of the system. In decentralized

control, the control function is distributed among different components in the

system. The function and reliability of the central control unit can become the bottle-

neck in a centralized control system. While the crossbar is a centralized system, the

multistage interconnection networks are decentralized.

1.5.3 Switching Techniques

Interconnection networks can be classified according to the switching mechanism as

circuit versus packet switching networks. In the circuit switching mechanism,

a complete path has to be established prior to the start of communication between

a source and a destination. The established path will remain in existence during

the whole communication period. In a packet switching mechanism, communication

between a source and destination takes place via messages that are divided into

smaller entities, called packets. On their way to the destination, packets can be

sent from a node to another in a store-and-forward manner until they reach their des-

tination. While packet switching tends to use the network resources more efficiently

compared to circuit switching, it suffers from variable packet delays.

1.5.4 Topology

An interconnection network topology is a mapping function from the set of pro-

cessors and memories onto the same set of processors and memories. In other

words, the topology describes how to connect processors and memories to other

1.5 INTERCONNECTION NETWORKS 11

processors and memories. A fully connected topology, for example, is a mapping in

which each processor is connected to all other processors in the computer. A ring

topology is a mapping that connects processor k to its neighbors, processors

(k2 1) and (kþ 1).

In general, interconnection networks can be classified as static versus dynamic

networks. In static networks, direct fixed links are established among nodes to

form a fixed network, while in dynamic networks, connections are established as

needed. Switching elements are used to establish connections among inputs and

outputs. Depending on the switch settings, different interconnections can be estab-

lished. Nearly all multiprocessor systems can be distinguished by their inter-

connection network topology. Therefore, we devote Chapter 2 of this book to

study a variety of topologies and how they are used in constructing a multiprocessor

system. However, in this section, we give a brief introduction to interconnection

networks for shared memory and message passing systems.

Shared memory systems can be designed using bus-based or switch-based INs.

The simplest IN for shared memory systems is the bus. However, the bus may get

saturated if multiple processors are trying to access the shared memory (via the

bus) simultaneously. A typical bus-based design uses caches to solve the bus conten-

tion problem. Other shared memory designs rely on switches for interconnection.

For example, a crossbar switch can be used to connect multiple processors to

multiple memory modules. A crossbar switch, which will be discussed further in

Chapter 2, can be visualized as a mesh of wires with switches at the points of

intersection. Figure 1.7 shows (a) bus-based and (b) switch-based shared memory

systems. Figure 1.8 shows bus-based systems when a single bus is used versus the

case when multiple buses are used.

Message passing INs can be divided into static and dynamic. Static networks

form all connections when the system is designed rather than when the connection

is needed. In a static network, messages must be routed along established links.

P

C

P

C

P

C

P

C

M M M M

Global Memory

 P

 C

 P

 C

 P

 C

(a) (b)

Figure 1.7 Shared memory interconnection networks.

12 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Dynamic INs establish a connection between two or more nodes on the fly as mess-

ages are routed along the links. The number of hops in a path from source to destina-

tion node is equal to the number of point-to-point links a message must traverse to

reach its destination. In either static or dynamic networks, a single message may

have to hop through intermediate processors on its way to its destination. Therefore,

the ultimate performance of an interconnection network is greatly influenced by the

number of hops taken to traverse the network. Figure 1.9 shows a number of popular

static topologies: (a) linear array, (b) ring, (c) mesh, (d) tree, (e) hypercube.

Figure 1.10 shows examples of dynamic networks. The single-stage interconnec-

tion network of Figure 1.10a is a simple dynamic network that connects each of the

inputs on the left side to some, but not all, outputs on the right side through a single

layer of binary switches represented by the rectangles. The binary switches can

direct the message on the left-side input to one of two possible outputs on the

right side. If we cascade enough single-stage networks together, they form a

completely connected multistage interconnection network (MIN), as shown in

Figure 1.10b. The omega MIN connects eight sources to eight destinations. The con-

nection from the source 010 to the destination 010 is shown as a bold path in

Figure 1.10b. These are dynamic INs because the connection is made on the fly,

as needed. In order to connect a source to a destination, we simply use a function

of the bits of the source and destination addresses as instructions for dynamically

selecting a path through the switches. For example, to connect source 111 to desti-

nation 001 in the omega network, the switches in the first and second stage must be

set to connect to the upper output port, while the switch at the third stage must be set

P P P

M M M

P P

M M M

P

Figure 1.8 Single bus and multiple bus systems.

Linear Array Ring Mesh Tree Hypercube

Figure 1.9 Examples of static topologies.

1.5 INTERCONNECTION NETWORKS 13

to connect to the lower output port (001). Similarly, the crossbar switch of

Figure 1.10c provides a path from any input or source to any other output or destina-

tion by simply selecting a direction on the fly. To connect row 111 to column 001

requires only one binary switch at the intersection of the 111 input line and 011

output line to be set.

The crossbar switch clearly uses more binary switching components; for

example, N 2 components are needed to connect N � N source/destination pairs.

The omega MIN, on the other hand, connects N � N pairs with N/2 (log N) com-

ponents. The major advantage of the crossbar switch is its potential for speed. In

one clock, a connection can be made between source and destination. The diameter

of the crossbar is one. (Note: Diameter, D, of a network having N nodes is defined as

the maximum shortest paths between any two nodes in the network.) The omega

Figure 1.10 Example dynamic INs: (a) single-stage, (b) multistage, and (c) crossbar switch.

14 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

MIN, on the other hand requires log N clocks to make a connection. The diameter of

the omega MIN is therefore log N. Both networks limit the number of alternate paths

between any source/destination pair. This leads to limited fault tolerance and net-

work traffic congestion. If the single path between pairs becomes faulty, that pair

cannot communicate. If two pairs attempt to communicate at the same time along

a shared path, one pair must wait for the other. This is called blocking, and such

MINs are called blocking networks. A network that can handle all possible connec-

tions without blocking is called a nonblocking network.

Table 1.2 shows a performance comparison among a number of different dynamic

INs. In this table, m represents the number of multiple buses used, while N represents

the number of processors (memory modules) or input/output of the network.
Table 1.3 shows a performance comparison among a number of static INs. In this

table, the degree of a network is defined as the maximum number of links (channels)

connected to any node in the network. The diameter of a network is defined as the

maximum path, p, of the shortest paths between any two nodes. Degree of a node, d,

is defined as the number of channels incident on the node. Performance measures

will be discussed in more detail in Chapter 3.

1.6 CHAPTER SUMMARY

In this chapter, we have gone over a number of concepts and system configurations

related to obtaining high-performance computing via parallelism. In particular, we

have provided the general concepts and terminology used in the context of multipro-

cessors. The popular Flynn’s taxonomy of computer systems has been provided. An

introduction to SIMD and MIMD systems was given. Both shared-memory and the

message passing systems and their interconnection networks were introduced. The

TABLE 1.2 Performance Comparison of Some

Dynamic INs

Network Delay Cost (Complexity)

Bus O(N) O(1)

Multiple-bus O(mN) O(m)

MINs O(log N) O(N log N)

TABLE 1.3 Performance Characteristics of Static INs

Network Degree Diameter Cost (#links)

Linear array 2 N2 1 N2 1

Binary tree 3 2([log2 N]2 1) N2 1

n-cube log2 N log2 N nN/2
2D-mesh 4 2(n2 1) 2(N2 n)

1.6 CHAPTER SUMMARY 15

rest of the book is organized as follows. In Chapter 2 interconnection networks will

be covered in detail. We will study performance metrics in Chapter 3. Shared-

memory and message passing architectures are explained in Chapters 4 and 5,

respectively. We cover abstract models to study shared memory and message pas-

sing systems in Chapter 6. We then study network computing in Chapter 7. Chapters

8 and 9 are dedicated to the parallel virtual machine (PVM) and message passing

interface (MPI), respectively. The last chapter gives a comprehensive coverage of

the challenging problem of task scheduling and task allocation.

PROBLEMS

1. What has been the trend in computing from the following points of views:

(a) cost of hardware;

(b) size of memory;

(c) speed of hardware;

(d) number of processing elements; and

(e) geographical locations of system components.

2. Given the trend in computing in the last 20 years, what are your predictions

for the future of computing?

3. What is the difference between cluster computing and grid computing?

4. Assume that a switching component such as a transistor can switch in zero-

time. We propose to construct a disk-shaped computer chip with such a com-

ponent. The only limitation is the time it takes to send electronic signals from

one edge of the chip to the other. Make the simplifying assumption that elec-

tronic signals can travel at 300,000 km/s. What is the limitation on the diam-

eter of a round chip so that any computation result can by used anywhere on

the chip at a clock rate of 1 GHz? What are the diameter restrictions if the

whole chip should operate at 1 THz ¼ 1012 Hz? Is such a chip feasible?

5. Compare uniprocessor systems with multiprocessor systems for the follow-

ing aspects:

(a) ease of programming;

(b) the need for synchronization;

(c) performance evaluation; and

(d) run time system.

6. Provide a list of the main advantages and disadvantages of SIMD and MIMD

machines.

7. Provide a list of the main advantages and disadvantages of shared-memory

and message-passing paradigm.

8. List three engineering applications, with which you are familiar, for which

SIMD is most efficient to use, and another three for which MIMD is most

efficient to use.

16 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

9. Assume that a simple addition of two elements requires a unit time. You are

required to compute the execution time needed to perform the addition of a

40 � 40 elements array using each of the following arrangements:

(a) A SIMD system having 64 processing elements connected in nearest-

neighbor fashion. Consider that each processor has only its local

memory.

(b) A SIMD system having 64 processing elements connected to a shared

memory through an interconnection network. Ignore the communication

time.

(c) A MIMD computer system having 64 independent elements accessing a

shared memory through an interconnection network. Ignore the com-

munication time.

(d) Repeat (b) and (c) above if the communication time takes two time units.

10. Conduct a comparative study between the following interconnection net-

works in their cost, performance, and fault tolerance:

(a) bus;

(b) hypercube;

(c) mesh;

(d) fully connected;

(e) multistage dynamic network;

(f) crossbar switch.

REFERENCES

Abraham, S. and Padmanabhan, K. Performance of the direct binary n-cube network for

multiprocessors. IEEE Transactions on Computers, 38 (7), 1000–1011 (1989).

Agrawal, P., Janakiram, V. and Pathak, G. Evaluating the performance of multicomputer

configurations. IEEE Transaction on Computers, 19 (5), 23–27 (1986).

Almasi, G. and Gottlieb, A. Highly Parallel Computing, Benjamin Cummings, 1989.

Al-Tawil, K., Abd-El-Barr, M. and Ashraf, F. A survey and comparison of wormhole routing

techniques in mesh networks. IEEE Network, March/April 1997, 38–45 (1997).

Bhuyan, L. N. (ed.) Interconnection networks for parallel and distributed processing.

Computer (Special issue), 20 (6), 9–75 (1987).

Bhuyan, L. N., Yang, Q. and Agrawal, D. P. Performance of multiprocessor interconnection

networks. Computer, 22 (2), 25–37 (1989).

Chen, W.-T. and Sheu, J.-P. Performance analysis of multiple bus interconnection networks

with hierarchical requesting model. IEEE Transactions on Computers, 40 (7), 834–842

(1991).

Dasgupta, S. Computer Architecture: A Modern Synthesis, vol. 2; Advanced Topics,

John Wiley, 1989.

Decegama, A. The Technology of Parallel Processing: Parallel Processing Architectures and

VLSI Hardware, Vol. 1, Prentice-Hall, 1989.

REFERENCES 17

Dongarra, J. Experimental Parallel Computing Architectures, North-Holland, 1987.

Duncan, R. A survey of parallel computer architectures. Computer, 23 (2), 5–16 (1990).

El-Rewini, H. and Lewis, T. G. Distributed and Parallel Computing, Manning & Prentice

Hall, 1998.

Flynn. Computer Architecture: Pipelined and Parallel Processor Design, Jones and Bartlett,

1995.

Goodman, J. R. Using cache memory to reduce processor-memory traffic. Proceedings 10th

Annual Symposium on Computer Architecture, June 1983, pp. 124–131.

Goyal, A. and Agerwala, T. Performance analysis of future shared storage systems. IBM

Journal of Research and Development, 28 (1), 95–107 (1984).

Hennessy, J. and Patterson, D. Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 1990.

Hwang, K. and Briggs, F. A. Computer Architecture and Parallel Processing, McGraw-Hill,

1984.

Ibbett, R. N. and Topham, N. P. Architecture of High Performance Computers II, Springer-

Verlag, 1989.

Juang, J.-Y. and Wah, B. A contention-based bus-control scheme for multiprocessor systems.

IEEE Transactions on Computers, 40 (9), 1046–1053 (1991).

Lewis, T. G. and El-Rewini, H. Introduction to Parallel Computing, Prentice-Hall, 1992.

Linder, D. and Harden, J. An adaptive and fault tolerant wormhole routing strategy for k-ary

n-cubes. IEEE Transactions on Computers, 40 (1), 2–12 (1991).

Moldovan, D. Parallel Processing, from Applications to Systems, Morgan Kaufmann

Publishers, 1993.

Ni, L. and McKinely, P. A survey of wormhole routing techniques in direct networks. IEEE

Computer, February 1993, 62–76 (1993).

Patel, J. Performance of processor–memory interconnections for multiprocessor computer

systems. IEEE Transactions, 28 (9), 296–304 (1981).

Reed, D. and Fujimoto, R. Multicomputer Networks: Message-Based Parallel Processing,

MIT Press, 1987.

Serlin, O. The Serlin Report On Parallel Processing, No. 54, pp. 8–13, November 1991.

Sima, E., Fountain, T. and Kacsuk, P. Advanced Computer Architectures: A Design Space

Approach, Addison-Wesley, 1996.

Stone, H. High-Performance Computer Architecture, 3rd ed., Addison-Wesley, 1993.

The Accelerated Strategic Computing Initiative Report, Lawrence Livermore National

Laboratory, 1996.

Wilkinson, B. Computer Architecture: Design and Performance, 2nd ed., Prentice-Hall, 1996.

Yang, Q. and Zaky, S. Communication performance in multiple-bus systems. IEEE Trans-

actions on Computers, 37 (7), 848–853 (1988).

Youn, H. and Chen, C. A comprehensive performance evaluation of crossbar networks. IEEE

Transactions on Parallel and Distribute Systems, 4 (5), 481–489 (1993).

Zargham, M. Computer Architecture: Single and Parallel Systems, Prentice-Hall, 1996.

18 INTRODUCTION TO ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

