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General Incomplete Block Design

1.1 INTRODUCTION AND EXAMPLES

One of the basic principles in experimental design is that of reduction of experi-
mental error. We have seen (see Chapters I.9 and I.10) that this can be achieved
quite often through the device of blocking. This leads to designs such as ran-
domized complete block designs (Section I.9.2) or Latin square type designs
(Chapter I.10). A further reduction can sometimes be achieved by using blocks
that contain fewer experimental units than there are treatments.

The problem we shall be discussing then in this and the following chapters is
the comparison of a number of treatments using blocks the size of which is less
than the number of treatments. Designs of this type are called incomplete block
designs (see Section I.9.8). They can arise in various ways of which we shall
give a few examples.

In the case of field plot experiments, the size of the plot is usually, though
by no means always, fairly well determined by experimental and agronomic
techniques, and the experimenter usually aims toward a block size of less than
12 plots. If this arbitrary rule is accepted, and we wish to compare 100 varieties
or crosses of inbred lines, which is not an uncommon situation in agronomy,
we will not be able to accommodate all the varieties in one block. Instead, we
might use, for example 10 blocks of 10 plots with different arrangements for
each replicate (see Chapter 18).

Quite often a block and consequently its size are determined entirely on bio-
logical or physical grounds, as, for example, a litter of mice, a pair of twins,
an individual, or a car. In the case of a litter of mice it is reasonable to assume
that animals from the same litter are more alike than animals from different lit-
ters. The litter size is, of course, restricted and so is, therefore, the block size.
Moreover, if one were to use female mice only for a certain investigation, the
block size would be even more restricted, say to four or five animals. Hence,
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2 GENERAL INCOMPLETE BLOCK DESIGN

comparing more than this number of treatments would require some type of
incomplete block design.

Suppose we wish to compare seven treatments, T1, T2, T3, T4, T5, T6, T7, say,
using female mice, and suppose we have several litters with four females. We
then could use the following incomplete block design, which, as will be explained
later, is a balanced incomplete block design:

Animal

Litter 1 2 3 4

1 T1 T4 T7 T6
2 T3 T6 T5 T7
3 T7 T1 T2 T5
4 T1 T2 T3 T6
5 T2 T7 T3 T4
6 T5 T3 T4 T1
7 T2 T4 T5 T6

Notice that with this arrangement every treatment is replicated four times, and
every pair of treatments occurs together twice in the same block; for example,
T1 and T2 occur together in blocks 3 and 4.

Many sociological and psychological studies have been done on twins because
they are “alike” in many respects. If they constitute a block, then the block
size is obviously two. A number of incomplete block designs are available
for this type of situation, for example, Kempthorne (1953) and Zoellner and
Kempthorne (1954).

Blocks of size two arise also in some medical studies, when a patient is
considered to be a block and his eyes or ears or legs are the experimental units.

With regard to a car being a block, this may occur if we wish to compare
brands of tires, using the wheels as the experimental units. In this case one may
also wish to take the effect of position of the wheels into account. This then
leads to an incomplete design with two-way elimination of heterogeneity (see
Chapters 6 and I.10).

These few examples should give the reader some idea why and how the need
for incomplete block designs arises quite naturally in different types of research.
For a given situation it will then be necessary to select the appropriate design
from the catalogue of available designs. We shall discuss these different types
of designs in more detail in the following chapters along with the appropriate
analysis.

Before doing so, however, it seems appropriate to trace the early history
and development of incomplete block designs. This development has been a
remarkable achievement, and the reader will undoubtedly realize throughout the
next chapters that the concept of incomplete block designs is fundamental to the
understanding of experimental design as it is known today.
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The origins of incomplete block designs go back to Yates (1936a) who intro-
duced the concept of balanced incomplete block designs and their analysis utiliz-
ing both intra- and interblock information (Yates, 1940a). Other incomplete block
designs were also proposed by Yates (1936b, 1937a, 1940b), who referred to these
designs as quasi-factorial or lattice designs. Further contributions in the early his-
tory of incomplete block designs were made by Bose (1939, 1942) and Fisher
(1940) concerning the structure and construction of balanced incomplete block
designs. The notion of balanced incomplete block design was generalized to that
of partially balanced incomplete block designs by Bose and Nair (1939), which
encompass some of the lattice designs introduced earlier by Yates. Further exten-
sions of the balanced incomplete block designs and lattice designs were made
by Youden (1940) and Harshbarger (1947), respectively, by introducing balanced
incomplete block designs for eliminating heterogeneity in two directions (gener-
alizing the concept of the Latin square design) and rectangular lattices some of
which are more general designs than partially balanced incomplete block designs.
After this there has been a very rapid development in this area of experimental
design, and we shall comment on many results more specifically in the following
chapters.

1.2 GENERAL REMARKS ON THE ANALYSIS OF INCOMPLETE
BLOCK DESIGNS

The analysis of incomplete block designs is different from the analysis of com-
plete block designs in that comparisons among treatment effects and comparisons
among block effects are no longer orthogonal to each other (see Section I.7.3).
This is referred to usually by simply saying that treatments and blocks are not
orthogonal. This nonorthogonality leads to an analysis analogous to that of the
two-way classification with unequal subclass numbers. However, this is only
partly true and applies only to the analysis that has come to be known as the
intrablock analysis.

The name of the analysis is derived from the fact that contrasts in the treat-
ment effects are estimated as linear combinations of comparisons of observations
in the same block. In this way the block effects are eliminated and the estimates
are functions of treatment effects and error (intrablock error) only. Coupled with
the theory of least squares and the Gauss–Markov theorem (see I.4.16.2), this
procedure will give rise to the best linear unbiased intrablock estimators for treat-
ment comparisons. Historically, this has been the method first used for analyzing
incomplete block designs (Yates, 1936a). We shall derive the intrablock analysis
in Section 1.3.

Based upon considerations of efficiency, Yates (1939) argued that the intra-
block analysis ignores part of the information about treatment comparisons,
namely that information contained in the comparison of block totals. This analysis
has been called recovery of interblock information or interblock analysis.
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Yates (1939, 1940a) showed for certain types of lattice designs and for the
balanced incomplete block design how these two types of analyses can be com-
bined to yield more efficient estimators of treatment comparisons. Nair (1944)
extended these results to partially balanced incomplete block designs, and Rao
(1947a) gave the analysis for any incomplete block design showing the similarity
between the intrablock analysis and the combined intra- and interblock analysis.

The intrablock analysis, as it is usually presented, is best understood by assum-
ing that the block effects in the underlying linear model are fixed effects. But for
the recovery of interblock information the block effects are then considered to
be random effects. This leads sometimes to confusion with regard to the assump-
tions in the combined analysis, although it should be clear from the previous
remark that then the block effects have to be considered random effects for both
the intra- and interblock analysis. To emphasize it again, we can talk about intra-
block analysis under the assumption of either fixed or random block effects. In
the first case ordinary least squares (OLS) will lead to best linear unbiased esti-
mators for treatment contrasts. This will, at least theoretically, not be true in the
second case, which is the reason for considering the interblock information in
the first place and using the Aitken equation (see I.4.16.2), which is also referred
to as generalized (weighted ) least squares.

We shall now derive the intrablock analysis (Section 1.3), the interblock
analysis (Section 1.7), and the combined analysis (Section 1.8) for the general
incomplete block design. Special cases will then be considered in the following
chapters.

1.3 THE INTRABLOCK ANALYSIS

1.3.1 Notation and Model

Suppose we have t treatments replicated r1, r2, . . . , rt times, respectively, and
b blocks with k1, k2, . . . , kb units, respectively. We then have

t∑
i=1

ri =
b∑

j=1

kj = n

where n is the total number of observations.
Following the derivation of a linear model for observations from a random-

ized complete block design (RCBD), using the assumption of additivity in the
broad sense (see Sections I.9.2.2 and I.9.2.6), an appropriate linear model for
observations from an incomplete block design is

yij� = µ + τi + βj + eij� (1.1)

(i = 1, 2, . . . , t; j = 1, 2, . . . , b; � = 0, 1, . . . , nij ), where τi is the effect of the
ith treatment, βj the effect of the j th block, and eij� the error associated with the
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observation yij�. As usual, the eij� contain both experimental and observational
(sampling) error, that is, using notation established in Volume 1,

eij� = εij� + ηij�

with εij� representing experimental error and ηij� representing observational
error. Also, based on previous derivations (see I.6.3.4), we can treat the eij�

as i.i.d. random variables with mean zero and variance σ 2
e = σ 2

ε + σ 2
η . Note that

because nij , the elements of the incidence matrix N , may be zero, not all treat-
ments occur in each block which is, of course, the definition of an incomplete
block design.

Model (1.1) can also be written in matrix notation as

y = µI + Xττ + Xββ + e (1.2)

where I is a column vector consisting of n unity elements, Xβ is the observation-
block incidence matrix

Xβ =


Ik1

Ik2

. . .

Ikb


with Ikj

denoting a column vector of kj unity elements (j = 1, 2, . . . , b) and

Xτ = (x1, x2, . . . , xt )

is the observation-treatment incidence matrix, where xi is a column vector with
ri unity elements and (n − ri) zero elements such that x′

ixi = ri and x ′
ixi′ = 0

for i �= i′(i, i′ = 1, 2, . . . , t).

1.3.2 Normal and Reduced Normal Equations

The normal equations (NE) for µ, τi , and βj are then

nµ̂ +
t∑

i=1

ri τ̂i +
b∑

j=1

kj β̂j = G

riµ̂ + ri τ̂i +
b∑

j=1

nij β̂j = Ti (i = 1, 2, . . . , t) (1.3)

kj µ̂ +
t∑

i=1

nij τ̂i + kj β̂j = Bj (j = 1, 2, . . . , b)
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where
Ti =

∑
j�

yij� = ith treatment total

Bj =
∑
i�

yij� = j th block total

G =
∑

i

Ti =
∑
j

Bj = overall total

Equations (1.3) can be written in matrix notation as
I′

nIn I′
nXτ I′

nXβ

X′
τIn X′

τXτ X′
τXβ

X′
βIn X′

βXτ X′
βXβ




µ̂

τ̂

β̂

 =


I′

ny

X′
τy

X′
βy

 (1.4)

which, using the properties of I, Xτ , Xβ , can be written as


I′

nIn I′
τR I′

bK

RIt R N

KIb N ′ K

 ·


µ̂

τ̂

β̂

 =


G

T

B

 (1.5)

where
R = diag (ri) t × t

K = diag
(
kj

)
b × b

N = (
nij

)
t × b (the incidence matrix)

T ′ = (T1, T2, . . . , Tt )

B ′ = (B1, B2, . . . , Bb)

τ ′ = (τ1, τ2, . . . , τt )

β ′ = (β1, β2, . . . , βb)

and the I’s are column vectors of unity elements with dimensions indicated by
the subscripts. From the third set of equations in (1.5) we obtain

µ̂Ib + β̂ = K−1(B − N ′τ̂ ) (1.6)
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Substituting (1.6) into the second set of (1.5), which can also be expressed
as NIbµ̂ + Nβ̂ + Rτ̂ = T (since NIb = RIt ), leads to the reduced normal
equations (RNE) (see Section I.4.7.1) for τ

(R − NK−1N ′)̂τ = T − NK−1B (1.7)

Standard notation for (1.7) is

Cτ̂ = Q (1.8)

where
C = R − NK−1N ′ (1.9)

and
Q = T − NK−1B (1.10)

the (i, i′) element of C being

cii′ = δii′ri −
b∑

j=1

nijni′j
kj

with δii′ = 1 for i = i′ and = 0 otherwise, and the ith element of Q being

Qi = Ti −
b∑

j=1

nijBj

kj

And Qi is called the ith adjusted treatment total, the adjustment being due to
the fact that the treatments do not occur the same number of times in the blocks.

1.3.3 The C Matrix and Estimable Functions

We note that the matrix C of (1.9) is determined entirely by the specific design,
that is, by the incidence matrix N . It is, therefore, referred to as the C matrix
(sometimes also as the information matrix ) of that design. The C matrix is
symmetric, and the elements in any row or any column of C add to zero, that
is, CI = 0, which implies that r(C) = rank(C) ≤ t − 1. Therefore, C does not
have an inverse and hence (1.8) cannot be solved uniquely. Instead we write a
solution to (1.8) as

τ̂ = C−Q (1.11)

where C− is a generalized inverse for C (see Section 1.3.4).
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If we write C = (c1, c2, . . . , ct ), where ci is the ith column of C, then the
set of linear functions

{c′
iτ , i = 1, 2, . . . , t}

which span the totality of estimable functions of the treatment effects, has dimen-
sionality r(C). Let c′τ be an estimable function and c′τ̂ its estimator, with τ̂

from (1.11). Then

E(c′τ̂ ) = E
(
c′C−Q

)
= c′C−E(Q)

= c′C−Cτ

For c′τ̂ to be an unbiased estimator for c′τ for any τ , we then must have

c′C−C = c′ (1.12)

Since CI = 0, it follows from (1.12) that c′I = 0. Hence, only treatment con-
trasts are estimable. If r(C) = t − 1, then all treatment contrasts are estimable.
In particular, all differences τi − τi′(i �= i′) are estimable, there being t − 1 lin-
early independent estimable functions of this type. Then the design is called a
connected design (see also Section I.4.13.3).

1.3.4 Solving the Reduced Normal Equations

In what follows we shall assume that the design is connected; that is, r(C) =
t − 1. This means that C has t − 1 nonzero (positive) eigenvalues and one zero
eigenvalue. From

C


1
1
...

1

 = 0 = 0


1
1
...

1


it follows then that (1, 1, . . . , 1)′ is an eigenvector corresponding to the zero
eigenvalue. If we denote the nonzero eigenvalues of C by d1, d2, . . . , dt−1
and the corresponding eigenvectors by ξ1, ξ2, . . . , ξ t−1 with ξ ′

iξ i = 1 (i =
1, 2, . . . , t − 1) and ξ ′

iξ i′ = 0(i �= i′), then we can write C in its spectral decom-
position as

C =
t−1∑
i=1

diξ iξ
′
i (1.13)
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or with dt = 0 and ξ ′
t = 1/

√
t(1, 1, . . . , 1), alternatively as

C =
t∑

i=1

diξ iξ
′
i (1.14)

We note that ξ ′
tξ t = 1 and ξ ′

iξ t = 0 for i = 1, 2, . . . , t − 1.
We now return to (1.8) and consider a solution to these equations of the

form given by (1.11). Although there are many methods of finding generalized
inverses, we shall consider here one particular method, which is most useful
in connection with incomplete block designs, especially balanced and partially
balanced incomplete block designs (see following chapters). This method is based
on the following theorem, which is essentially due to Shah (1959).

Theorem 1.1 Let C be a t × t matrix as given by (1.9) with r(C) = t − 1.

Then C̃ = C + aII′, where a �= 0 is a real number, admits an inverse C̃
−1

, and
C̃

−1
is a generalized inverse for C.

Proof

(a) We can rewrite C̃ as

C̃ = C + aII′ = C + a


1
1
...

1

 (1, 1, . . . , 1) = C + at ξ tξ
′
t

and because of (1.13)

C̃ =
t−1∑
i=1

diξ iξ
′
i + at ξ tξ

′
t (1.15)

Clearly, C̃ has nonzero roots d1, d2, . . . , dt−1, dt = at and hence is non-
singular. Then

C̃
−1 =

t−1∑
i=1

1

di

ξ iξ
′
i + 1

at
ξ tξ

′
t (1.16)

(b) To show that C̃
−1 = C− we consider CC̃

−1
C. From (1.13), (1.15), and

(1.16) we have

C̃C̃
−1 = I =

t∑
i=1

ξ iξ
′
i
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and

CC̃
−1 =

t−1∑
i=1

ξ iξ
′
i = I − ξ tξ

′
t = I − 1

t
II′ (1.17)

CC̃
−1

C = C

which implies

C̃
−1 = C−

We remark here already that determining C− for the designs in the following
chapters will be based on (1.17) rather than on (1.14).

Substituting C̃
−1

into (1.13) then yields a solution of the RNE (1.8); that is,

τ̂ = C̃
−1

Q (1.18)

We note that because of (1.8) and (1.16)

E (̂τ ) = E
(
C̃

−1
Q

)
= C̃

−1
E (Q)

= C̃
−1

E (Cτ̂ )

= C̃
−1

Cτ

=
(

I − 1

t
II′

)
τ

=


τ1 − τ

τ2 − τ
...

τt − τ


with τ = 1/t

∑
i τi ; that is, E(̂τ ) is the same as if we had obtained a generalized

inverse of C by imposing the condition
∑

i τ̂i = 0. �

1.3.5 Estimable Functions of Treatment Effects

We know from the Gauss–Markov theorem (see Section I.4.16.2) that for any
linear estimable function of the treatment effects, say c′τ ,

E(c′τ̂ ) = c′τ (1.19)

is independent of the solution to the NE (see Section I.4.4.4). We have further

var(c′τ̂ ) = c′ C̃−1
c σ 2

e (1.20)
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with a corresponding result (but same numerical value) for any other solution
obtained, using an available software package (see Section 1.14). We shall elab-
orate on this point briefly.

Let us rewrite model (1.2) as

y = µI + Xββ + Xττ + e

= (I Xβ Xτ )

µ

β

τ

 + e

≡ X� + e (1.21)

with
X = (I : Xβ : Xτ ) (1.22)

and
�′ = (µ, β ′, τ ′)

The NE for model (1.21) are

X′X�∗ = X′y (1.23)

A solution to (1.23) is given by, say,

�∗ = (X′X)−X′y

for some (X′X)−. Now (X′X)− is a (1 + b + t) × (1 + b + t) matrix that we
can partition conformably, using the form of X as given in (1.22), as

(X′X)− =
Aµµ Aµβ Aµτ

A′
µβ Aββ Aβτ

A′
µτ A′

βτ Aττ

 (1.24)

Here, Aττ is a t × t matrix that serves as the variance–covariance matrix for
obtaining

var(c′τ ∗) = c′ Aττ c σ 2
e (1.25)

For any estimable function c′τ we have c′τ̂ = c′τ∗ and also the numerical

values for (1.20) and (1.25) are the same. If we denote the (i, i′) element of Ĉ
−1

by cii′ and the corresponding element of Aττ in (1.24) by aii′ , then we have, for
example, for c′τ = τi − τi′

var (̂τi − τ̂i′) =
(
cii − 2cii′ + ci′i′

)
σ 2

e =
(
aii − 2aii′ + ai′i′

)
σ 2

e (1.26)

For a numerical example and illustration of computational aspects, see
Section 1.13.
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1.3.6 Analyses of Variance

It follows from general principles (see Section I.4.7.1) that the two forms of
analysis of variance are as given in Tables 1.1 and 1.2. We shall henceforth refer
to the analysis of variance in Table 1.1 as the treatment-after-block ANOVA or
T | B-ANOVA as it is associated with the ordered model

y = µI + Xββ + Xττ + e

whereas the analysis of variance in Table 1.2 is associated with the ordered model

y = µI + Xττ + Xββ + e

and hence shall be referred to as the block-after-treatment ANOVA or B | T-
ANOVA. To indicate precisely the sources of variation and the associated sums
of squares, we use the notation developed in Section I.4.7.2 for the general case
as it applies to the special case of the linear model for the incomplete block

Table 1.1 T|B-ANOVA for Incomplete Block Design

Source d.f.a SS E(MS)

Xβ |I b − 1
b∑

j=1

B2
j

kj

− G2

n

Xτ |I,Xβ t − 1
t∑

i=1

τ̂iQi σ 2
e + τ ′Cτ

t − 1

I |I,Xβ,Xτ n − b − t + 1 Difference σ 2
e

Total n − 1
∑
ij�

y2
ij� − G2

n

ad.f. = degrees of freedom.

Table 1.2 B|T-ANOVA for Incomplete Block Design

Source d.f. SS

Xτ |I t − 1
t∑

i=1

T 2
i

ri
− G2

n

Xβ |I, Xτ b − 1 Difference

I |I,Xβ,Xτ n − b − t + 1 From Table 1.1

Total n − 1
∑
ij�

y2
ij� − G2

n
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design, thereby avoiding the commonly used but not always clearly understood
terms blocks ignoring treatments for (Xβ |I), treatments eliminating blocks for
(Xτ |I, Xβ), and blocks eliminating treatments for (Xβ |I, Xτ ).

The T | B-ANOVA follows naturally from the development of the RNE for the
treatment effects. It is the appropriate ANOVA for the intrablock analysis as it
allows to test the hypothesis

H0: τ1 = τ2 = · · · = τt

by means of the (approximate) F test (see I.9.2.5)

F = SS(Xτ |I, Xβ)/(t − 1)

SS(I |I, Xβ, Xτ )/(n − b − t + 1)
(1.27)

Also MS(Error)= SS(I |I,Xβ, Xτ )/(n − b − t + 1) is an estimator for σ 2
e to

be used for estimating var(c′τ̂ ) of (1.20).
The usefulness of the B | T-ANOVA in Table 1.2 will become apparent when

we discuss specific aspects of the combined intra- and interblock analysis in
Section 1.10. At this point we just mention that SS(Xβ |, I, Xτ ) could have been
obtained from the RNE for block effects. Computationally, however, it is more
convenient to use the fact that SS(I |I, Xβ, Xτ ) = SS(I |I, Xτ ,Xβ) and then
obtain SS(Xβ |I,Xτ ) by subtraction.

Details of computational procedures using SAS PROC GLM and SAS PROC
Mixed (SAS1999–2000) will be described in Section 1.14.

1.4 INCOMPLETE DESIGNS WITH VARIABLE BLOCK SIZE

In the previous section we discussed the intrablock analysis of the general incom-
plete block design; that is, a design with possibly variable block size and possibly
variable number of replications. Although most designed experiments use blocks
of equal size, k say, there exist, however, experimental situations where blocks of
unequal size arise quite naturally. We shall distinguish between two reasons why
this can happen and why caution may have to be exercised before the analysis
as outlined in the previous section can be used:

1. As pointed out by Pearce (1964, p. 699):

With much biological material there are natural units that can be used as blocks and
they contain plots to a number not under the control of the experimenter. Thus, the
number of animals in a litter or the number of blossoms in a truss probably vary
only within close limits.

2. Although an experiment may have been set up using a proper design, that
is, a design with equal block size, missing plots due to accidents during
the course of investigation will leave one for purpose of analysis with a
design of variable block size.
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In both cases there are two alternatives to handle the situation. In case 1 one
may wish to reduce all blocks to a constant size, thereby reducing the number of
experimental units available. If experimental units are at a premium, this may not
be the most desirable course of action. The other alternative is to use the natural
blocks and then use the analysis as given in the previous section. Before doing
so we mention that its validity will depend on one very important assumption,
and that is the constancy of the variance σ 2

e for all blocks. In general, the size
of σ 2

e will depend on the size of the blocks: The larger the blocks, the larger σ 2
e

will be since it is in part a measure of the variability of the experimental units
within blocks (see I.9.2.4). In fact, this is the reason for reducing the block size
since it may also reduce the experimental error. Experience shows that such a
reduction in σ 2

e is not appreciable for only modest reduction in block size. It is
therefore quite reasonable to assume that σ 2

e is constant for blocks of different
size if the number of experimental units varies only slightly.

In case 2 one possibility is to estimate the missing values and then use the
analysis for the proper design. Such a procedure, however, would only be approxi-
mate. The exact analysis then would require the analysis with variable block size
as in case 1. Obviously, the assumption of constancy of experimental error is
satisfied here if is was satisfied for the original proper design.

1.5 DISCONNECTED INCOMPLETE BLOCK DESIGNS

In deriving the intrablock analysis of an incomplete block design in Section 1.3.4
we have made the assumption that the C matrix of (1.9) has maximal rank t − 1,
that is, the corresponding design is a connected design. Although connectedness
is a desirable property of a design and although most designs have this property,
we shall encounter designs (see Chapter 8) that are constructed on purpose as
disconnected designs. We shall therefore comment briefly on this class of designs.

Following Bose (1947a) a treatment and a block are said to be associated if
the treatment is contained in that block. Two treatments are said to be connected
if it is possible to pass from one to the other by means of a chain consisting alter-
nately of treatments and blocks such that any two adjacent members of the chain
are associated. If this holds true for any two treatments, then the design is said to
be connected, otherwise it is said to be disconnected (see Section I.4.13.3 for a
more formal definition and Srivastava and Anderson, 1970). Whether a design is
connected or disconnected can be checked easily by applying the definition given
above to the incidence matrix N : If one can connect two nonzero elements of
N by means of vertical and horizontal lines such that the vertices are at nonzero
elements, then the two treatments are connected. In order to check whether a
design is connected, it is sufficient to check whether a given treatment is con-
nected to all the other t − 1 treatments. If a design is disconnected, it follows
then that (possibly after suitable relabeling of the treatments) the matrix NN ′
and hence C consist of disjoint block diagonal matrices such that the treatments
associated with one of these submatrices are connected with each other.
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Suppose C has m submatrices, that is,

C =


C1

C2
. . .

Cm


where Cν is tν × tν

(∑m
ν=1 tν = t

)
. It then follows that rank (Cν) = tν − 1(ν =

1, 2, . . . , m) and hence rank(C) = t − m. The RNE is still of the form (1.8)
with a solution given by (1.11), where in C− = C̃

−1
we now have, modifying

Theorem 1.1,

C̃ = C +


a1II′

a2II′
. . .

amII′



Table 1.3 T|B-ANOVA for Disconnected Incomplete Block Design

Source d.f. SS

Xβ |I b − 1
∑
j

B2
j

kj

− G2

n

Xτ |I,Xβ t − m
∑

i

τ̂iQi

I |I,Xβ,Xτ n − b − t + m Difference

Total n − 1
∑
ij�

y2
ij� − G2

n

Table 1.4 B|T-ANOVA for Disconnected Incomplete Block Design

Source d.f. SS

Xτ |I t − 1
∑

i

T 2
i

ri
− G2

n

Xβ |I,Xτ b − m Difference

I |I, Xτ , Xβ n − t − b + m From Table 1.3

Total n − 1
∑
ij�

y2
ij� − G2

n
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with aν(ν = 1, 2, . . . , m) arbitrary constants (�= 0) and the II′ matrices are of
appropriate dimensions. Following the development in Section 1.3.6, this then
leads to the ANOVA tables as given in Tables 1.3 and 1.4.

1.6 RANDOMIZATION ANALYSIS

So far we have derived the analysis of data from incomplete block designs using
a Gauss–Markov linear model as specified in (1.1). We have justified the appro-
priate use of such an infinite population theory model in our earlier discussions
of error control designs (see, e.g., Sections I.6.3 and I.9.2) as a substitute for
a derived, that is, finite, population theory model that takes aspects of random-
ization into account. In this section we shall describe in mathematical terms the
randomization procedure for an incomplete block design, derive an appropriate
linear model, and apply it to the analysis of variance. This will show again, as
we have argued in Section I.9.2 for the RCBD, that treatment effects and block
effects cannot be considered symmetrically for purposes of statistical inference.

1.6.1 Derived Linear Model

Following Folks and Kempthorne (1960) we shall confine ourselves to proper
(i.e., all kj = k), equireplicate (i.e., all ri = r) designs. The general situation is
then as follows: We are given a set of b blocks, each of constant size k ; a master
plan specifies b sets of k treatments; these sets are assigned at random to the
blocks; in each block the treatments are assigned at random to the experimental
units (EU). This randomization procedure is described more formally by the
following design random variables:

αu
j =

{
1 if the uth set is assigned to the j th block

0 otherwise
(1.28)

and

δuv
j� =


1 if the uv treatment is assigned to the

�th unit of the j th block

0 otherwise
(1.29)

The uv treatment is one of the t treatments that, for a given design, has been
assigned to the uth set.

Assuming additivity in the strict sense (see Section I.6.3), the conceptual
response of the uv treatment assigned to the �th EU in the j th block can be
written as

Tj�uv = Uj� + Tuv (1.30)
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where Uj� is the contribution from the �th EU in the j th block and Tuv is the
contribution from treatment uv. We then write further

Tj�uv = U.. + (Uj. − U..) + (Uj� − Uj.) + T .. + (Tuv − T ..)

= µ + bj + τuv + uj� (1.31)

where
µ = U.. + T .. is the overall mean

bj = Uj. − U.. is the effect of the j th block
(j = 1, 2, . . . , b)

τuv = tuv − T .. is the effect of the uv treatment
(u = 1, 2, . . . , b; v = 1, 2, . . . , k)

uj� = Uj� − Uj. is the unit error
(� = 1, 2, . . . , k)

with
∑

j bj = 0 = ∑
uv τuv = ∑

� uj�. We then express the observed response
for the uv treatment, yuv , as

yuv =
∑
j

∑
�

αu
j δuv

j� Tj�uv

= µ + τuv +
∑
j

αu
j bj +

∑
j

∑
�

αu
j δuv

j� uj�

= µ + τuv + βu + ωuv (1.32)

where
βu =

∑
j

αu
j bj (1.33)

is a random variable with

E(βu) = 0 E(β2
u) = 1

b

∑
j

b2
j E(βuβu′) = 1

b(b − 1)

∑
j

b2
j (u �= u′)

Also,
ωuv =

∑
j

∑
�

αu
j δuv

j� uj� (1.34)
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is a random variable with

E(ωuv) = 0 E(ω2
uv) = 1

bk

∑
j�

u2
j�

E(ωuvωuv′) = − 1

bk(k − 1)

∑
j

∑
�

u2
j� (v �= v′)

E(ωuvωu′v′) = 0 (u �= u′)

In deriving the properties of the random variables βu and ωuv we have used, of
course, the familiar distributional properties of the design random variables αu

j

and δuv
j� , such as

P(αu
j = 1) = 1

b

P (αu
j = 1 |αu

j ′ = 1) = 0 (j �= j ′)

P (αu
j = 1 |αu′

j ′ = 1) = 1

b(b − 1)
(u �= u′, j �= j ′)

P (δuv
j� = 1) = 1

k

P (δuv
j� = 1) | (δuv

j�′ = 1) = 0 (� �= �′)

P (δuv
j� = 1) | (δuv′

j�′ = 1) = 1

k(k − 1)
(� �= �′, v �= v′)

P (δuv
j� = 1) | (δu′v′

j ′�′ = 1) = 1

k2
(j �= j ′, u �= u′)

and so on.

1.6.2 Randomization Analysis of ANOVA Tables

Using model (1.32) and its distributional properties as induced by the design
random variables αu

j and δuv
j� , we shall now derive expected values of the sums

of squares in the analyses of variance as given in Tables 1.1 and 1.2:

1. E(SS Total) = E
∑
uv

(yuv − y..)
2

= E
∑
uv

(τuv + βu + ωuv)
2

=
∑
uv

τ 2
uv + k

∑
j

b2
j +

∑
j�

u2
j�
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2. E[SS(Xβ |I)] = E
∑
uv

(yu. − y..)
2

= k E
∑
u

(τu. + βu + 1

k

∑
v

ωuv)
2

= k
∑
u

τ 2
u. + k

∑
j

b2
j

3. E[SS (I |I,Xβ, Xτ )] = n − t − b + 1

b(k − 1)

∑
j�

u2
j�

since the incomplete block designs considered are unbiased.
4. E[SS(Xτ |I, Xβ)] can be obtained by subtraction.
5. To obtain E[SS(Xτ |I)] let

γ w
uv =


1 if the wth treatment corresponds to the

uv index (w = 1, 2, . . . , t)

0 otherwise

γ w
u =

{
1 if the wth treatment occurs in the uth block

0 otherwise

where ∑
ν

γ w
uv = γ w

u

and ∑
u

γ w
u = r

Then

E[SS(Xτ |I)] = E

1

r

∑
w

(∑
uv

γ w
uvyuv − 1

t

∑
w

∑
uv

γ w
uvyuv

)2


= E

1

r

∑
w

(
rτw +

∑
u

γ w
u βu +

∑
uv

γ w
uv ωuv

)2


= r
∑
w

τ 2
w + 1

r

∑
w

E

(∑
u

γ w
u βu

)2

+ 1

r

∑
w

E

(∑
uv

γ w
uv ωuv

)2
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= r
∑
w

τ 2
w + 1

r

∑
w

E

∑
u

γ w
u β2

u +
∑
uu′

u �=u′

γ w
u γ w

u′ βuβu′


+ 1

r

∑
w

E

∑
uv

γ w
uv ω2

uv +
∑
u

∑
vv′

u �=v′

γ w
uvγ

w
uv′ ωuvωuv′

+
∑
uu′

u �=u′

∑
vv′

γ w
uvγ

w
u′v′ ωuvωu′v′


Now

E

[∑
u

γ w
u β2

u

]
= r

1

b

∑
j

b2
j

E

 ∑
uu′

u �=u′

γ w
u γ w

u′ βuβu′
 = −

∑
uu′

u �=u′

γ w
u γ w

u′
1

b(b − 1)

∑
j

b2
j

= −
∑
u

γ w
u (r − γ w

u )
1

b(b − 1)

∑
j

b2
j

= − r(r − 1)

b(b − 1)

∑
j

b2
j

E

[∑
uv

γ w
uv ω2

uv

]
= r

1

bk

∑
j�

u2
u�

E

∑
u

∑
νν′

ν �=ν′

γ w
uvγ

w
uv′ ωw

uvωuv′
 = 0 since γ w

uvγ
w
uv′ = 0

E

 ∑
uu′

u �=u′

γ w
uvγ

w
u′v′ ωuvωu′v′

 = 0

and hence

E[(Xτ |I] = r
∑
w

τ 2
w + t (b − r)

b(b − 1)

∑
j

b2
j + t

bk

∑
j�

u2
j�

Thus, we have for the mean squares (MS) from Tables 1.1 and 1.2 the expected
values under randomization theory as given in Tables 1.5 and 1.6, respectively.
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Table 1.5 E(MS) for T|B-ANOVA

Source E(MS)

Xβ |I k

b − 1

∑
u

τ 2
u. + k

b − 1

∑
j

b2
j

Xτ | I, Xβ
1

b(k − 1)

∑
j�

u2
j� +

(∑
uv

τ 2
uv − k

∑
u

τ 2
u.

)/
(t − 1)

I | I, Xβ,Xτ
1

b(k − 1)

∑
j�

u2
j�

Table 1.6 E(MS) for B|T-ANOVA

Source E(MS)

Xτ | I t

bk(t − 1)

∑
j�

u2
j� + t (b − r)

b(b − 1)(t − 1)

∑
j

b2
j + r

t − 1

∑
w

τ 2
w

Xβ |I,Xτ

t − k

b(b − 1)k(k − 1)

∑
j�

u2
j� + bk − t

(b − 1)2

∑
j

b2
j

I | I, Xβ, Xτ

1

b(k − 1)

∑
j�

u2
j�

If we define
1

b(k − 1)

∑
j�

u2
j� = σ 2

u

and
1

b − 1

∑
j

b2
j = σ 2

β

we can then express the expected values for the three important mean squares in
ANOVA Tables 1.5 and 1.6 as

E
[
MS(Xτ |I, Xβ)

] = σ 2
u +

∑
uv τ 2

uv − k
∑

u τ 2
u.

t − 1
(1.35)

E
[
MS(Xβ |I, Xτ )

] = t − k

(b − 1)k
σ 2

u + n − t

b − 1
σ 2

β (1.36)

E
[
MS(I |I, Xβ, Xτ )

] = σ 2
u (1.37)
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We make the following observations:

1. The quadratic form in the τuv in (1.35) is just a different way of writing τ ′Cτ

in Table 1.1. Both expressions indicate that the quadratic form depends on the
particular design chosen, and both equal zero when all the treatment effects
are the same.

2. It follows from (1.35) and (1.37) that, based on the equality of the E(MS)
under H0 : τ1 = τ2 = · · · = τt , the ratio

MS(Xτ |I, Xβ)/MS(I |I, Xβ,Xτ ) (1.38)

provides a test criterion for testing the above hypothesis. In fact, Ogawa
(1974) has shown that the asymptotic randomization distribution of (1.38) is
an F distribution with t − 1 and n − t − b + 1 d.f. We interpret this again
to mean that the usual F test is an approximation to the randomization test
based on (1.38).

3. Considering (1.36) and (1.37), there does not exist an exact test for testing
the equality of block effects. This is in agreement with our discussion in
Section I.9.2 concerning the asymmetry of treatment and block effects.

4. For k = t and r = b, that is, for the RCBD, the results of Tables 1.5 and 1.6
agree with those in Table 9.1 of Section I.9.2.

5. With treatment-unit additivity in the broad sense (see Section I.6.3.3) the
expressions in (1.35), (1.36), and (1.37) are changed by adding σ 2

ν + σ 2
η to

the right-hand sides (recall that σ 2
u + σ 2

ν + σ 2
η ≡ σ 2

ε + σ 2
η ≡ σ 2

e ). Remarks
(2) and (3) above remain unchanged.

6. For the recovery of interblock information (to be discussed in Section 1.7),
we need to estimate σ 2

β (or a function of σ 2
β ). Clearly, under the assumption

of additivity in the broad sense, this cannot be done considering that

E
[
MS

(
Xβ |I,Xτ

)] = σ 2
ν + σ 2

η + t − k

(b − 1)k
σ 2

u + n − t

b − 1
σ 2

β

It is for this reason only that we shall resort to the approximation

E
[
MS

(
Xβ |I, Xτ

)] ≈ σ 2
ν + σ 2

η + σ 2
u + n − t

b − 1
σ 2

β = σ 2
e + n − t

b − 1
σ 2

β

(1.39)

which is the expected value based on an infinite population theory model
[see (1.49) and (1.50)].

For a different approach to randomization analysis, see Calinski and Kageyama
(2000).
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1.7 INTERBLOCK INFORMATION IN AN INCOMPLETE
BLOCK DESIGN

1.7.1 Introduction and Rationale

As mentioned earlier, Yates (1939, 1940a) has argued that for incomplete block
designs comparisons among block totals (or averages) contain some information
about treatment comparisons, and he referred to this as recovery of interblock
information. The basic idea is as follows.

Consider, for purposes of illustration, the following two blocks and their obser-
vations from some design:

Block 1: y51, y31, y11

Block 2: y22, y42, y32

Let
B1 = y51 + y31 + y11

and
B2 = y22 + y42 + y32

represent the block totals. Using model (1.1) we can write

B1 − B2 = (τ5 + τ2 + τ1) − (τ2 + τ4 + τ3)

+ 3β1 − 3β2 + (e51 + e31 + e11)

− (e22 + e42 + e32)

Assuming now that the βj are random effects with mean zero, we find

E(B1 − B2) = τ1 + τ5 − τ2 − τ4

It is in this sense that block comparisons contain information about treatment
comparisons. We shall now formalize this procedure.

1.7.2 Interblock Normal Equations

Consider the model equation (1.1)

y = µI + Xττ + Xββ + e

where β is now assumed to be a random vector with E(β) = 0 and var(β) =
σ 2

β I . As pointed out above the interblock analysis is based on block totals rather
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than on individual observations, that is, we now consider

X′
βy =


k1
k2
...

kb

µ + N ′τ + Kβ + X′
β e (1.40)

We then have

E(X′
βy) =


k1
k2
...

kb

µ + N ′τ (1.41)

and the variance–covariance matrix under what we might call a double error
structure with both β and e being random vectors

var(X′
βy) = K2σ 2

β + Kσ 2
e

= K

(
I +

σ 2
β

σ 2
e

K

)
σ 2

e

= Lσ 2
e (say)

and

L = diag{�j } = diag

{
kj

(
1 +

σ 2
β

σ 2
e

kj

)}
= diag

{(
kj

w

w′
j

)}
= diag{kjρj }

with
w = 1

σ 2
e

(1.42)

and
w′

j = 1

σ 2
e + kjσ

2
β

(1.43)

and

ρj = w

w′
j

=
σ 2

e + kjσ
2
β

σ 2
e

(1.44)

The quantities w and w′
j of (1.42) and (1.43) are referred to as intrablock and

interblock weights, respectively, as w is the reciprocal of the intrablock variance,
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σ 2
e , and w′

j is the reciprocal of the interblock variance, that is, var(Bj ) on a per

observation basis, or var(Bj /kj ) = σ 2
e + kjσ

2
β . We then use as our “observation”

vector
z = L−1/2X′

βy (1.45)

which has
var(z) = Iσ 2

e

and hence satisfies the Gauss–Markov conditions.
If we write (1.41) as

E(X′
βy) = (k N ′)

(
µ

τ

)

with k = (k1, k2, . . . , kb)
′, we have from (1.45) that

E(z) = L−1/2(k N ′)
(

µ

τ

)

The resulting NE, which we shall refer to as the interblock NE, is then given by

(
k′

N

)
L−1(k N ′)

(
µ∗

τ ∗

)
=

(
k′

N

)
L−1X′

βy (1.46)

or explicitly as



∑
j

k2
j

�j

∑
j

n1j

kj

�j

· · ·
∑
j

ntj

kj

�j∑
j

n1j

kj

�j

∑
j

n2
1j

�j

· · ·
∑
j

n1j ntj

�j

...
...

...∑
j

ntj

kj

�j

∑
j

n1j ntj

�j

· · ·
∑
j

n2
tj

�j




µ∗

τ ∗
1
...

τ ∗
t

 =



∑
j

kj

�j

Bj∑
j

n1j

�j

Bj

...∑
j

nt j

�j

Bj


(1.47)

It can be seen easily that the rank of the coefficient matrix in (1.47) is t . To solve
the interblock NE, we take µ∗ = 0 and hence reduce the set to the following t
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equations in τ ∗
1 , τ ∗

2 , . . . , τ ∗
t where we have used the fact that �j = kjρj :



∑
j

n2
1j

ρ−1
j

kj

∑
j

n1j n2j

ρ−1
j

kj

· · ·
∑
j

n1jntj

ρ−1
j

kj∑
n2j n1j

ρ−1
j

kj

∑
n2

2j

ρ−1
j

kj

· · ·
∑

n2jntj

ρ−1
j

kj

...
...

...∑
ntjn1j

ρ−1
j

kj

∑
ntjn2j

ρ−1
j

kj

· · ·
∑

n2
tj

ρ−1
j

kj




τ ∗

1

τ ∗
2
...

τ ∗
t



=



∑
j

ρ−1
j

kj

n1jBj

∑
j

ρ−1
j

kj

n2jBj

...∑
j

ρ−1
j

kj

ntjBj


(1.48)

The solution to the equations (1.48) is referred to as the interblock information
about the treatment effects, with

E(τ ∗
i ) = µ + τi + const. ·

t∑
i′=1

(µ + τi′)

Hence

E

(∑
i

ciτ
∗
i

)
=

∑
i

ciτi for
∑

ci = 0

We note here that typically (see Kempthorne, 1952) the interblock analysis
is derived not in terms of the “observations” z [as given in (1.45)] but rather
in terms of the block totals X′

βy. The resulting NE are then simply obtained
by using L = I in (1.46) and subsequent equations. The reason why we prefer
our description is the fact that then the intra- and interblock information can be
combined additively to obtain the so-called combined analysis (see Section 1.8)
rather than in the form of a weighted average (see Kempthorne, 1952).
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1.7.3 Nonavailability of Interblock Information

We conclude this section with the following obvious remarks:

1. For the special case kj = t for all j, ri = b for all i and all nij = 1, we
have, of course, the RCBD. Then the elements in the coefficient matrix of
(1.48) are all identical, and so are the right-hand sides. Consequently, (1.48)
reduces to a single equation

b
∑

i

τ ∗
i =

∑
j

Bj

and no contrasts among the τi are estimable. Expressed differently, any con-
trast among block totals estimates zero, that is, no interblock information is
available.

2. For a design with b < t (and such incomplete block designs exist as we shall
see in Chapter 4; see also the example in Section 1.7.1), the rank of the
coefficient matrix of (1.48), NL−1N ′, is less than t . Hence not all µ + τi

are estimable using block totals, which means that interblock information is
not available for all treatment contrasts.

1.8 COMBINED INTRA- AND INTERBLOCK ANALYSIS

1.8.1 Combining Intra- and Interblock Information

The two types of information about treatment effects that we derived in Sections
1.3.2 and 1.7.2 can be combined to yield the “best” information about estimable
functions of treatment effects. All we need to do is to add the coefficient matrices
from the intrablock RNE (1.8) and the interblock NE (1.48) and do the same
for the corresponding right-hand sides. This will lead to a system of equations
in τ ∗∗

1 , τ ∗∗
2 , . . . , τ ∗∗

t , say, and the solution to these equations will lead to the
combined intra- and interblock estimators for treatment contrasts.

In the following section we shall derive the equations mentioned above more
directly using the method of generalized least squares, that is, by using the Aitken
equations described in Section I.4.16.2

1.8.2 Linear Model

In order to exhibit the double error structure that characterizes the underlying
assumptions for the combined analysis, we rewrite model (1.1) as

yj� = µ + τj� + βj + ej� (1.49)

where j = 1, 2, . . . , b; � = 1, 2, . . . , kj ; τj� denotes the effect of the treatment
applied to the �th experimental unit in the j th block, the βj are assumed to
be i.i.d. random variables with E(βj ) = 0, var(βj ) = σ 2

β , and the ej� are i.i.d.
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random variables with E(ej�) = 0, var(ej�) = σ 2
e . We then have

E(yj�) = µ + τj� (1.50)

and

cov
(
yj�, yj ′�′

) =


σ 2

β + σ 2
e for j = j ′, � = �′

σ 2
β for j = j ′, � �= �′

0 otherwise

(1.51)

To use matrix notation it is useful to arrange the observations according to blocks,
that is, write the observation vector as

y = (
y11, y12, . . . , y1k1, y21, y22, . . . , yb1, yb2, . . . , ybkb

)′
Letting

X = (I Xτ )

we rewrite (1.50) as

E(y) = X

(
µ

τ

)
(1.52)

and the variance–covariance (1.51) as

var(y) =


V 1

V 2 0
. . .

0 V b

 σ 2
e ≡ V σ 2

e (1.53)

where V j is given by

V j = I kj
+

σ 2
β

σ 2
e

Ikj
I′

kj
(1.54)

1.8.3 Normal Equations

Applying now the principles of least squares to the model (1.52) with covariance
structure (1.53) yields the Aitken equations (see Section I.4.16):

(X′V −1X)

( ̂̂µ̂̂τ
)

= X′V −1y (1.55)

where

V −1 = diag
(
V −1

1 , V −1
2 , . . . , V −1

b

)
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and

V −1
j = I kj

−
σ 2

β

σ 2
e + kjσ

2
β

Ikj
I′

kj
(1.56)

With
1

σ 2
e

= w
1

σ 2
e + kjσ

2
β

= w′
j

and
w′

j

w
= ρ−1

j

Eq. (1.56) can be written as

V −1
j = I kj

−
1 − ρ−1

j

kj

Ikj
I′

kj

and hence

V −1 = In − diag

(
1 − ρ−1

1

k1
Ik1I

′
k1

,

1 − ρ−1
2

k2
Ik2I

′
k2

, . . . ,
1 − ρ−1

b

kb

Ikb
I′

kb

)
(1.57)

Further, if we let
(

1 − p−1
j

)
/kj = δj (j = 1, 2, . . . , b), we have

X′V −1 = X′ −



(
1 − ρ−1

1

)
I′

k1

(
1 − ρ−1

2

)
I′

k2
· · ·

(
1 − ρ−1

b

)
I′

kb

δ1n11I
′
k1

δ2n12I
′
k2

· · · δbn1bI
′
kb

· · · · · · · · · · · · · · ·
δ1nt1I

′
k1

δ2nt2I
′
k2

· · · δbntbI
′
kb


and

X′V −1X

=



∑
kjρ

−1
j

∑
n1j ρ

−1
j

∑
n2j ρ

−1
j · · ·

∑
ntjρ

−1
j∑

n1jρ
−1
j r1 −

∑
δjn

2
1j −

∑
δjn1jn2j · · · −

∑
δjn1j ntj

· · · · · · · · · · · · · · ·∑
ntjρ

−1
j −

∑
δjn1j ntj −

∑
δjn2jntj · · · rt −

∑
δjn

2
tj


(1.58)
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X′V−1y =



∑
ρ−1

j Bj

T1 −
∑

δjn1jBj

...

Tt −
∑

δjNtjBj


(1.59)

By inspection one can verify that in the coefficient matrix (1.58) the elements
in rows 2 to t + 1 add up to the elements in row 1, which shows that (1.55) is
not of full rank; in fact, it is of rank t . The easiest way to solve these equations
then is to impose the condition ̂̂µ = 0. This means that we eliminate the first
row and first column from (1.58) and the first element in (1.59) and solve the
resulting system of t equations in the t unknowns ̂̂τ 1,̂̂τ 2, . . . ,̂̂τ t . If we define
S = diag(ρj ), then this system of equations resulting from (1.58) and (1.59) can
be written as[

R − NK−1
(
I − S−1

)]̂̂τ = T − NK−1
(
I − S−1

)
B (1.60)

which we write for short as

Â̂τ = P (1.61)

with A and P as described above. The solution then is

̂̂τ = A−1P (1.62)

or, in terms of a generalized inverse for the original set of NE (1.55)[̂̂µ̂̂τ
]

=
[

0 0′
0 A−1

]
X′V −1y (1.63)

with

E
(̂̂τ i

) = µ + τi (i = 1, 2, . . . , t)

If we denote the (i, i′) element of A−1 by aii′ , then

var

(
̂̂

τi − τi′

)
= var

(̂̂
τ i − ̂̂τ i′

) =
(
aii + ai′i′ − 2aii′

)
σ 2

e (1.64)

More generally, the treatment contrast c′τ is estimated by c′̂̂τ with variance

var
(
c′̂̂τ) = c′A−1cσ 2

e (1.65)



RELATIONSHIPS AMONG INTRABLOCK, INTERBLOCK, AND COMBINED ESTIMATION 31

Expression (1.65) looks deceptively simple, but the reader should keep in mind
that the elements of A−1 depend on σ 2

β and σ 2
e . We shall return to estimating

(1.65) in Section 1.10.
Finally, we note that the equations (1.60) show a striking similarity to the

intrablock NE (1.7), except that the system (1.60) is of full rank and the elements
of its coefficient matrix depend on the unknown parameters σ 2

β and σ 2
e .

1.8.4 Some Special Cases

As a special case of the above derivations we mention explicitly the equireplicate,
proper design, that is, the design with all ri = r and all kj = k. We then define

w′ = 1

σ 2
e + kσ 2

β

(1.66)

and

ρ = w

w′ (1.67)

and write (1.60) as[
rI − 1

k

(
1 − ρ−1

)
NN ′

]̂̂τ = T − 1

k

(
1 − ρ−1

)
NB (1.68)

We shall comment briefly on the set of equations (1.68) for two special cases:

1. If ρ−1 = 0, that is, σ 2
β = ∞, then (1.68) reduces to the NE (1.7) for the

intrablock analysis. This means, of course, that in this case no interblock
information is available. This is entirely plausible and suggests further that
for “large” σ 2

β the interblock information is very weak and perhaps not worth-
while considering.

2. If ρ−1 = 1, that is, σ 2
β = 0, the solution to (1.68) is the same as that obtained

for the completely randomized design (CRD) with the restriction µ̂ = 0. This,
of course, is a formal statement and should not imply that in this case the
observations should be analyzed as if a CRD had been used.

1.9 RELATIONSHIPS AMONG INTRABLOCK, INTERBLOCK, AND
COMBINED ESTIMATION

On several occasions we have pointed out that there exist certain relationships
among the different types of analysis for incomplete block designs. It is worth-
while to exposit this in a little detail.
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1.9.1 General Case

For the full model

y = Inµ + Xττ + Xββ + e

with the double error structure we have

E(y) = Iµ + Xττ

and

var(y) = XβX′
βσ 2

β + Iσ 2
e

= (I + γXβX′
β)σ 2

e

≡ V σ 2
e

as in (1.53) with γ = σ 2
β/σ 2

e . Then, as explained in Section 1.8, the estimators
of estimable functions are obtained from the Aitken equations by minimizing

(y − Iµ − Xττ )′V −1(y − Iµ − Xττ ) (1.69)

with respect to µ and τ . To simplify the algebra, let � = Iµ + Xττ and then
write ψ = y − �. Expression (1.69) can now be written simply as ψ ′V −1ψ . We
then write

ψ = Pψ + (I − P )ψ

where, again for brevity, we write

P = P xβ = Xβ(X′
βXβ)−1X′

β

= XβK−1X′
β (1.70)

Then

ψ ′V −1ψ = [ψ ′P + ψ ′(I − P )]V −1[Pψ + (I − P )ψ] (1.71)

In order to expand the right-hand side of (1.71) we make use of the following
results. From

(I − P )V = (I − P )(I + γXβX′
β) = (I − P )

[using (1.70)] it follows that

(I − P )V −1 = (I − P )
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and hence

(I − P )V −1P = (I − P )P = 0

Thus, (1.71) reduces to

ψ ′V −1ψ = ψ ′PV −1Pψ + ψ ′(I − P )ψ (1.72)

To handle the term ψ ′PV −1Pψ we note that V −1 in (1.57) can be rewritten as

V −1 = I − γXβ(I + γX′
βXβ)−1X′

β

so that

PV −1P = P − γXβ(I + γX′
βXβ)−1X′

β

= Xβ

[
K−1 − γ (I + γK)−1

]
X′

β

= Xβ diag

[
1

kj (1 + γ kj )

]
X′

β

= Xβ(K + γK2)−1X′
β

Hence

ψ ′PV −1Pψ =
(
X′

βψ
)′ (

K + γK2
)−1 (

X′
βψ

)
(1.73)

Then we note that X′
βψ is the vector of block totals of the vector ψ . Since

ψ = y − �, we have

var
(
X′

βψ
)

= var
(
X′

βy
)

=
(
X′

βXβ

)2
σ 2

β + X′
βXβσ 2

e

= σ 2
e

(
K + γK2

)
Hence ψ ′PV −1Pψ is equal to

Q2 ≡ [B − E(B)]′
(
K + γK2

)−1
[B − E(B)] (1.74)

with B = X′
βy being the vector of block totals.
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The second expression in (1.72) is actually the quadratic form that needs to be
minimized to obtain the RNE for � (see Section I.4.7.1), and this is equivalent
to minimizing

Q1 ≡ (y − Xττ )′(I − P )(y − Xττ ) (1.75)

We thus summarize: To obtain the intrablock estimator, we minimize Q1; to
obtain the interblock estimator, we minimize Q2; and to obtain the combined
estimator, we minimize Q1 + Q2.

1.9.2 Case of Proper, Equireplicate Designs

We now consider the case with R = rI and K = kI . The intrablock NE are [see
(1.7)] (

rI − 1

k
NN ′

)
τ̂ = Q

For the interblock observational equations

B = kIµ + N ′τ + error

or, absorbing µ into τ , that is, replacing Iµ + τ by τ ,

B = N ′τ + error

we have the interblock NE [see (1.47)]

NN ′τ ∗ = NB

As we have pointed out earlier (see Section 1.8) and as is obvious from (1.72),
the combined NE are[(

rI − 1

k
NN ′

)
+ 1

k(1 + γ k)
NN ′

]̂̂τ = Q + 1

k(1 + γ k)
NB (1.76)

The form of (1.76) shows again two things:

1. The intrablock and interblock NE are related.
2. The matrix NN ′ determines the nature of the estimators, both intrablock and

interblock.
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The properties of NN ′ can be exploited to make some statements about
estimable functions of treatment effects. Being real symmetric, NN ′ is orthogo-
nally diagonalizable. We know that(

rI − 1

k
NN ′

)
I = 0

or

NN ′I = rkI

so that one root of NN ′ is rk ≡ δt , say, with associated eigenvector (1/
√

t) I ≡
ξ t , say. Suppose ξ1, ξ2, . . . , ξ t−1 complete the full set of orthonormal eigenvec-
tors with associated eigenvalues δ1, δ2, . . . , δt−1. Then with

O = (ξ1, ξ2, . . . , ξ t )

and

NN ′ξ i = δiξ i

the NE are equivalent to

O ′
(

rI − 1

k
NN ′

)
OO ′ τ̂ = O ′Q (1.77)

and

O ′NN ′OO ′τ ∗ = O ′NB (1.78)

respectively. If we write

ν =


ν1
ν2
...

νt

 = O ′τ

then Eq. (1.77) and (1.78) reduce to(
r − δi

k

)
ν̂i = ai

and

δiν
∗
i = bi

respectively, where

a = (a1, a2, . . . , at )
′ = O ′Q
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and

b = (b1, b2, . . . , bt )
′ = O ′NB

We see then that we have both intrablock and interblock estimators of νi if δi

is not equal to 0 or to rk. For the component νt , only the interblock estimator
exists. If other roots are equal to rk, then the intrablock estimators for the corre-
sponding treatment parameters do not exist. Similarly, if other roots are equal to
zero, then the interblock estimators for the corresponding treatment parameters
do not exist. The treatment parameters ν1, ν2, . . . , νt−1 are necessarily treatment
contrasts. If the design is connected, then no δi(i = 1, 2, . . . , t − 1) will equal rk.

The combined NE (1.76) are now transformed to[(
r − δi

k

)
+ 1

k(1 + γ k)
δi

]̂̂νi = ai + bi

k(1 + γ k)
(i = 1, 2, . . . , t) (1.79)

We know that

var(Q) =
(

rI − 1

k
NN ′

)
σ 2

e

and

var(NB) = N var(B)N ′

= N
k

σ 2
e

(1 + γ k)IN ′

Hence

var(a) = σ 2
e diag

(
r − δi

k

)
and

var(b) = σ 2
e k(1 + γ k)diag(δi)

So we see from (1.79) that combined estimation of the parameter vector ν consists
of combining intrablock and interblock estimators of components of ν, weighting
inversely as their variances.

1.10 ESTIMATION OF WEIGHTS FOR THE COMBINED ANALYSIS

The estimator for the treatment effects as given by (1.61) depends on the weights
w and w′

j as can be seen from (1.58) and (1.59). If these weights were known,
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or alternatively as is apparent from (1.68), if the ratios of the interblock variance
and the intrablock variance,

ρj = w

w′
j

=
σ 2

e + kjσ
2
β

σ 2
e

were known, then the solution (1.63) to the NE (1.55) would lead to best linear
unbiased estimators for estimable functions of treatment effects. Usually, how-
ever, these parameters are not known and have to be estimated from the data. If
the estimators are used instead of the unknown parameters, then the solutions to
the normal equations (1.55) lose some of their good properties. It is for this rea-
son that the properties of the combined estimator have to be examined critically,
in particular with regard to their dependence on the type of estimator for the
ρj ’s, and with regard to the question of how the combined estimator compares
with the intrablock estimator. Before we discuss these questions in some more
detail, we shall outline the “classical” procedure for estimating the ρj . Since
this method was proposed first by Yates (1940a) we shall refer to it as the Yates
procedure or to the estimators as the Yates estimators.

1.10.1 Yates Procedure

One way to estimate w and w′
j is to first estimate σ 2

e and σ 2
β and then use these

estimators to estimate w and w′
j . If the estimators are denoted by σ̂ 2

e and σ̂ 2
β ,

respectively, then we estimate w and w′
j as

ŵ = 1

σ̂ 2
e

ŵ′
j = 1

σ̂ 2
e + kj σ̂

2
β

(j = 1, 2, . . . , b) (1.80)

Obviously, from Table 1.1

σ̂ 2
e = MS(I |I, Xβ, Xτ ) (1.81)

To estimate σ 2
β we turn to Table 1.2. Under model (1.50) with covariance structure

(1.51) we find [see also (1.39)]

E[SS(Xβ |I,Xτ )] = (b − 1)σ 2
e +

n −
∑
ij

1

ri
n2

ij

 σ 2
β (1.82)

Hence it follows from (1.81) and (1.82) that

σ̂ 2
β = b − 1

n − ∑ 1
ri

n2
ij

[
SS(Xβ |I, Xτ ) − SS(I |I, Xβ, Xτ )

]
(1.83)
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The estimators (1.81) and (1.83) are then substituted into (1.80) to obtain ŵ and
ŵj (j = 1, 2, . . . , b). If in (1.83) σ̂ 2

β ≤ 0 for a given data set, we take

ŵ′
j = ŵ = 1

MS(I |I, Xβ, Xτ )

In either case ŵ and ŵ′
j are substituted into (1.58) and (1.59) and hence into

the solution (1.61). Also, var
(̂̂
τ i − ̂̂τ i′

)
is estimated by substituting ŵ, ŵ′

j and

σ̂ 2
e into (1.62) and (1.64).

For alternative estimation procedures see Section 1.11, and for a numerical
example see Section 1.14.3.

1.10.2 Properties of Combined Estimators

As we have already pointed out, the fact that the unknown parameters in (1.61)
are replaced by their estimators will have an effect on the properties of the
estimators for treatment effects. The two properties we are concerned about here
are unbiasedness and minimum variance.

Let c′τ be an estimable function of the treatment effects, let t = c′τ̂ be its
intrablock estimator, t (ρ) = c′̂̂τ its combined (Aitken) estimator with ρ known
(for the present discussion we shall confine ourselves to proper designs), and
t (ρ̂) = c′τ̃ the combined estimator when in (1.68) ρ is replaced by ρ̂ = ŵ/ŵ′.

Roy and Shah (1962) have shown that for the general incomplete block design,
although the Yates procedure leads to a biased estimator for ρ, the estimators for
treatment contrasts obtained by the method just described are unbiased, that is,

E [t (ρ̂ )] = c′τ

With regard to var[t (ρ̂ )], it is clear that due to sampling fluctuations of ρ̂ we
have

var[t (ρ)] < var[t (ρ̂ )]

that is, the combined estimators no longer have minimum variance. The crucial
question in this context, however, is: When is var[t (ρ̂)] < var(t)? In other words:
When is the combined estimator more efficient than the intrablock estimator?

The answer to this question depends on several things such as (1) the true
value of ρ, (2) the type of estimator for ρ, and (3) the number of treatments and
blocks. It is therefore not surprising that so far no complete answer has been
given.

The most general result for the Yates estimator (and a somewhat larger class
of estimators) is that of Shah (1964) based upon some general results by Roy
and Shah (1962) [see also Bhattacharya (1998) for proper designs]. It is shown
there that the combined estimator for any treatment contrast in any (proper)
incomplete block design has variance smaller than that of the corresponding
intrablock estimator if ρ does not exceed 2, or, equivalently, if σ 2

β ≤ σ 2
e /k. This
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is a condition that, if blocking is effective at all, one would not in general expect
to be satisfied. The problem therefore remains to find methods of construct-
ing estimators for ρ such that the combined estimator for treatment contrasts is
uniformly better than the corresponding intrablock estimator, in the sense of hav-
ing smaller variances for all values of ρ. For certain incomplete block designs
this goal has been achieved. We shall mention these results in the following
chapters.

The only general advice that we give at this point in conjunction with the use of
the Yates estimator is the somewhat imprecise advice to use the intrablock rather
than the combined estimator if the number of treatments is “small.” The reason
for this is that in such a situation the degrees of freedom for MS(I |I,Xβ, Xτ )

and MS(Xβ |I, Xτ ) are likely to be small also, which would imply that σ 2
e and

σ 2
β , and hence ρ, cannot be estimated very precisely.

1.11 MAXIMUM-LIKELIHOOD TYPE ESTIMATION

In this section we discuss alternatives to the Yates procedure (see Section 1.10)
of estimating the variance components σ 2

β and σ 2
e for the combined analy-

sis. These estimators are maximum-likelihood type estimators. This necessi-
tates the assumption of normality, which is not in agreement with our under-
lying philosophy of finite population randomization analysis. The reason for
discussing them, however, is the fact that they can easily be implemented in
existing software, in particular SAS PROC MIXED (SAS, 1999–2000) (see
Section 1.14).

1.11.1 Maximum-Likelihood Estimation

It is convenient to rewrite model (1.49) with its covariance structure (1.51) in
matrix notation as follows:

y = µI + Xττ + Xββ + e

= Xα + Uβ + e (1.84)

where Xα represents the fixed part, with X = (I Xτ ), α′ = (µ, τ ′), and Uβ + e

represents the random part. Thus

E(y) = Xα
and

var(y) = UU ′σ 2
β + Inσ

2
e

= V σ 2
e (1.85)
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with V = γUU ′ + In and γ = σ 2
β/σ 2

e [see also (1.53), (1.54)]. We then assume
that

y ∼ Nn(Xα, V σ 2
e ) (1.86)

that is, y follows as a multivariate normal distribution (see I.4.17.1).
The logarithm of the likelihood function for y of (1.86) is then given by

λ = − 1
2n log π − 1

2nσ 2
e − 1

2 log|V | − 1
2 (y − Xα)′V −1(y − Xα)/σ 2

e (1.87)

Hartley and Rao (1967) show that the maximum-likelihood (ML) estimator of α,
γ , and σ 2

e are obtained by solving the following equations:

1

σ 2
e

(X′V −1y − X′V −1Xα) = 0 (1.88)

−1

2
tr(V −1UU ′) + 1

2σ 2
e

(y − Xα)′V −1UU ′V −1(By − Xα) = 0

− n

2σ 2
e

+ 1

2σ 4
e

(y − Xα)′V −1(y − Xα) = 0

where tr(A) represents the trace of the matrix A.
The basic feature of this method is that the fixed effects and the variance com-

ponents associated with the random effects are estimated simultaneously in an
iterative procedure. We shall not go into the details of the numerical implemen-
tation (see, e.g., Hemmerle and Hartley, 1973), but refer to the example given in
Section 1.14.4 using SAS.

1.11.2 Restricted Maximum-Likelihood Estimation

Specifically for the estimation of weights for the purpose of recovery of interblock
information, Patterson and Thompson (1971) introduced a modified maximum-
likelihood procedure. The basic idea is to obtain estimators for the variance
components that are free of the fixed effects in the sense that the likelihood does
not contain the fixed effect. Operationally this is accomplished by dividing the
likelihood function (1.87) into two parts, one being based on treatment contrasts
and the other being based on error contrasts, that is, contrasts with expected value
zero. Maximizing this second part will lead to estimates of functions of σ 2

β and

σ 2
e . Because of the procedure employed, these estimates are by some referred

to as residual maximum-likelihood estimates (REML), by others as restricted
maximum likelihood estimates (REML). The latter name is derived from the
fact that maximizing the part of the likelihood free of the fixed effects can be
thought of as maximizing the likelihood over a restricted parameter set, an idea
first proposed by Thompson (1962) for random effects models and generalized
for the general linear mixed model by Corbeil and Searle (1976), based on the
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work by Patterson and Thompson (1971). We shall give below a brief outline of
the basic idea of REML estimation following Corbeil and Searle (1976).

Consider model (1.84) and assume that the observations are ordered by treat-
ments, where the ith treatment is replicated ri times (i = 1, 2, . . . , t). Then the
matrix X can simply be written as

X =


Ir1

Ir2 0
. . .

0 Irt

 ≡
t∑+

i=1

Iri
(1.89)

To separate the log-likelihood function (1.87) into the two parts mentioned above,
we employ the transformation (as proposed by Patterson and Thompson, 1971)

y′[S
...V −1X] (1.90)

where

S = I − X(X′X)−1X′

=
t∑+

i=1

(
I ri − 1

ri
IriI

′
ri

)
(1.91)

is symmetric and idempotent. Furthermore, SX = 0, and hence Sy is distributed
N(0, SV Sσ 2

e ) independently of X′V −1y.
It follows from (1.91) that S is singular. Hence, instead of S we shall use

in (1.90) a matrix, T say, which is derived from S by deleting its r1th, (r1 +
r2)th, (r1 + r2 + r3)th, . . ., (r1 + r2 + · · · + rt )th rows, thereby reducing an n × n

matrix to an (n − t) × n matrix (with n − t representing the number of linearly
independent error contrasts). More explicitly, we can write T as

T =
t∑+

i=1

[
I ri−1

... 0ri−1 − 1

ri
Iri−1I

′
ri

]

=
t∑+

i=1

[
I ri−1 − 1

ri
Iri−1 I′

ri−1

... − 1

ri
Iri−1

]
(1.92)

It follows from (1.89) and (1.92) that

T X = 0 (1.93)
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Considering now the transformation

z =
(

T

X′V −1

)
y

it follows from (1.86) and (1.93) that

z ∼ N

[(
0

X′V −1Xα

)
,

(
T V T ′σ 2

e 0

0 X′V −1Xσ 2
e

)]
(1.94)

Clearly, the likelihood function of z consists of two parts, one for T y, which
is free of fixed effects, and one for X′V −1y pertaining to the fixed effects. In
particular, the log likelihood of T y then is

λ1 = 1
2 (n − t)log 2π − 1

2 (n − t)log σ 2
e

− 1
2 log |T V T ′ | − 1

2y ′T ′(T V T ′)−1y/σ 2
e (1.95)

The REML estimators for γ = σ 2
β/σ 2

e and σ 2
e are obtained by solving the

equations

∂λ1

∂γ
= 0 (1.96)

∂λ1

∂σ 2
e

= 0 (1.97)

The resulting equations have no analytic solutions and have to be solved itera-
tively. We denote the solutions, that is, estimates by γ̃ and σ̃ 2

e , respectively.
The fixed effects, represented by α in (1.84), can be estimated by considering

the log likelihood of X′V −1y, which is given by

λ2 = − 1
2 t log 2π − 1

2 t log σ 2
e

− 1
2 log |X′V −1X|

− 1
2 (y − Xα)′ V −1X(X′V −1X)−1X′V −1(y − Xα)/σ 2

e (1.98)

Solving

∂λ2

∂α
= 0

leads to the estimator

α̂ = (X′V −1X)−1X′V −1y (1.99)
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This, of course, assumes that V is known. Since it is not, we substitute γ̃ from
(1.96) and (1.97) for γ in (1.99) and obtain the estimate

α̃ = (X′Ṽ −1
X)−1X′Ṽ −1

y (1.100)

where Ṽ denotes V with γ replaced by γ̃ .
An approximate estimate of the variance of α̃ is given by

ṽar(̃α) ∼= (X′Ṽ −1
X)−1σ̃ 2

e (1.101)

For a numerical example using REML see Section 1.14.4.

1.12 EFFICIENCY FACTOR OF AN INCOMPLETE BLOCK DESIGN

We have seen in Sections I.9.3 and I.10.2.9, for example, how we can compare
different error control designs with each other by using the notion of relative
efficiency. In this case, we compare two error control designs after we have per-
formed the experiment using a particular error control design. For example, after
we have used an RCBD we might ask: How would we have done with a corre-
sponding CRD? In other cases, however, we may want to compare error control
designs before we begin an experiment. In particular, we may want to compare
an incomplete block design (IBD) with either a CRD or an RCBD, or we may
want to compare competing IBDs with each other. For this purpose we shall use
a quantity that is referred to as the efficiency factor of the IBD. It compares,
apart from the residual variance, σ 2

e , the average variance of simple treatment
comparisons for the two competing designs.

1.12.1 Average Variance for Treatment Comparisons for an IBD

Let us now consider

av.
i �=i′

var(̂τi − τ̂i′) (1.102)

for a connected IBD. We know, of course, that (1.102) is a function of C−, a
generalized inverse of the C matrix. Suppose now that all the block sizes are
equal to k. Then we have

C = R − 1

k
NN ′
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and we know that C has one zero root, dt = 0 say, with associated normalized
eigenvector ξ t = (1/

√
t)I. Let the other roots be d1, d2, . . . , dt−1 with associated

orthonormal eigenvectors ξ1, ξ2, . . . , ξ t−1. Then

ξ ′
iC = diξ

′
i (i = 1, 2, . . . , t − 1)

and from

ξ ′
iCτ = diξ

′
iτ

it follows that

ξ̂ ′
iτ = 1

di

ξ ′
iQ

and

var(ξ ′
i τ̂ ) = 1

d2
i

ξ ′
iCξ iσ

2
e = 1

di

σ 2
e (1.103)

Using the fact that ξ t = (1/
√

t)I, that ξ1, ξ2, . . . , ξ t−1 are mutually perpendic-
ular and perpendicular to ξ1, and that

t∑
i=1

ξ i ξ ′
i = I

we have with z′ = (z1, z2, . . . , zt )

t−1∑
i=1

(ξ ′
iz)

2 = z′
(

t−1∑
i=1

ξ i ξ ′
i

)
z

= z′(I − ξ t ξ ′
t )z

=
t∑

i=1

z2
i − 1

t

(
t∑

i=1

zi

)2

=
t∑

i=1

(zi − z)2 (1.104)

It is also easy to verify that

1

t (t − 1)

∑
i �=i′

(zi − zi′)
2 = 2

t − 1

t∑
i=1

(zi − z)2 (1.105)
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Taking zi = τ̂i − τi , substituting into (1.105) using (1.104) and then taking expec-
tations and using (1.103), yields for (1.102)

av.
i �=i′

var(̂τi − τ̂i′) = 2

t − 1

t−1∑
i=1

1

di

σ 2
e (1.106)

1.12.2 Definition of Efficiency Factor

It is natural in attempting to evaluate the efficiency of an IBD to compare it
with a CRD since this is always a possible competing design. For a CRD with
ri replications for treatment i, the average variance of treatment differences is

av.
i �=i′

var(̂τi − τ̂i′) = av.
i �=i′

(
1

ri
+ 1

r ′
i

)
σ 2

e(CRD) = 2

rh

σ 2
e(CRD) (1.107)

where rh is the harmonic mean of the ri , that is,

1

rh

= 1

t

∑
i

1

ri

We shall digress here for a moment and show that the best CRD is the one
with all ri = r , and that is the design with which we shall compare the IBD. For
this and later derivations we need the “old” result that the harmonic mean of a
set of positive numbers is not greater than the arithmetic mean. It seems useful
to give an elementary proof of this.

Let the set of numbers be {xi, i = 1, 2, . . . , m}. Consider the quadratic

q(β) =
m∑

i=1

(√
xi − β

1√
xi

)2

Clearly q(β) ≥ 0 for all β. The minimizing value of β is obtained by using least
squares which gives the NE ∑

i

1

xi

β̃ = m

The minimum sum of squares is ∑
i

xi − β̃m

Hence ∑
i

xi − m2∑
i

1

xi

≥ 0
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or (
1

m

∑
i

xi

)(
1

m

∑
i

1

xi

)
≥ 1

or

x

xh

≥ 1

with equality if and only if xi = x for all i.
This result implies that the best CRD will have ri = r and r = n/t where n is

the total numbers of EUs. This can happen, of course, only if n/t is an integer.
If n/t is not an integer so that n = pt + q (0 < q < t), then the best CRD will
have q treatments replicated p + 1 times.

Consider now the case of an IBD with b blocks of size k and ri replications
for the ith treatment. Then the total number of EUs is n = bk = ∑

ri . Suppose
also that n = rt , so that an equireplicate CRD is possible. The average variance
for such a design is 2σ 2

e(CRD)
/r , whereas the average variance for the IBD is

2σ 2
e(IBD)

/c where, as shown in (1.106), c is the harmonic mean of the positive
eigenvalues of

(
R − (1/k) NN ′) (see Kempthorne, 1956). It is natural to write

c = rE, so that with σ 2
e(CRD) = σ 2

e(IBD) we have

av. var(̂τi − τ̂i′)CRD

av. var(̂τi − τ̂i′)IBD
= 2/r

2/rE
= E (1.108)

The quantity E thus defined is called the efficiency factor of the IBD. It is
clearly a numerical property of the treatment-block configuration only and hence
a characteristic of a given IBD.

We add the following remarks:

1. The same definition of E in (1.108) could have been obtained by using the
average variance for an RCBD with b = r blocks instead of the average
variance for an equireplicate CRD assuming that σ 2

e(RCBD)
= σ 2

e(IBD)
.

2. Although E is a useful quantity to compare designs, it does not, of course,
give the full story. It compares average variances only under the assump-
tion of equality of residual variances, whereas we typically expect σ 2

e(IBD)
<

σ 2
e(CRD)

and σ 2
e(IBD)

< σ 2
e(RCBD)

.
3. The efficiency factor pertains only to the intrablock analysis and ignores the

interblock information.
4. Each IBD will have associated with it an efficiency factor E. In order to

compare two competing IBDs with the same n and with efficiency factors
E1 and E2, respectively, we would typically choose the one with the higher
E value.
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1.12.3 Upper Bound for the Efficiency Factor

Using again the fact that the harmonic mean of positive numbers is not greater
than the arithmetic mean, we have

(t − 1)c ≤
t−1∑
i=1

di = trace

(
R − 1

k
NN ′

)

=
t∑

i=1

ri − 1

k

∑
ij

n2
ij

= n − 1

k

∑
ij

n2
ij (1.109)

The largest value of the right-hand side of (1.109) is obtained for the smallest
value of

∑
ij n2

ij . Since nij is one of the numbers 0, 1, 2, . . . , k, the minimum

value of
∑

n2
ij will be achieved when n of the nij ’s are 1 and the remaining are

zero. Since then n2
ij = nij and

∑
j nij = ri , it follows from (1.109) that

(t − 1)c ≤
∑

i

ri − 1

k

∑
i

ri = k − 1

k
tr

or, since c = rE,

E ≤ (k − 1)t/(t − 1)k

r/r

But since tr = n = tr , we have finally

E ≤ (k − 1)t

(t − 1)k
(1.110)

Since for an IBD k < t , we can write further

E ≤ (k − 1)t

(t − 1)k
< 1 (1.111)

We shall see later (see Chapter 2, also Section I.9.8.2) that the upper bound given
in (1.110) will be achieved for the balanced incomplete block design.

Sharper upper bounds for certain classes of IBDs are given by Jacroux (1984),
Jarrett (1983), Paterson (1983), and Tjur (1990); see also John and Williams
(1995).
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1.13 OPTIMAL DESIGNS

We have argued in the previous section that in order to compare two designs, d1
and d2 say, we may consider their efficiency factors E1 and E2, respectively, and
choose the design with the higher efficiency factor. In particular, if the efficiency
factor of one of those designs achieves the upper bound for that class of designs,
we would consider that design to be optimal in some sense. Such considerations
have led to the development of the notion of optimal designs and to various
criteria for optimality. We shall describe briefly some of these criteria.

1.13.1 Information Function

Initial contributions to the formal discussion of optimal designs were made by
Wald (1943) and Ehrenfeld (1953). Extending their results, Kiefer (1958) pro-
vided a systematic account of different optimality criteria. These can be discussed
either in terms of maximizing a suitable function of the information matrix or
minimizing a corresponding function of the dispersion matrix of a maximal set
of orthonormal treatment contrast estimates.

In the context of our discussion the information matrix is given by C in (1.9).
Let P ′τ represent a set of t − 1 orthonormal contrasts of the treatment effects.
Using intrablock information from a connected design d , the estimator for P ′τ is
given by P ′τ̂ with τ̂ from (1.18). The dispersion matrix for P ′τ̂ is then given by

V d σ 2
e = P ′C−

d Pσ 2
e = (P ′CdP )−1σ 2

e (1.112)

[see (1.20)], where C−
d and hence Cd refer to the specific design d used. The

information matrix for the design d is then defined as

C∗
d = (P ′C−

d P )−1 (1.113)

which shows, of course, the connection between C∗
d and Cd .

An information function or optimality criterion is then a real-valued function
φ that has the following properties (see Pukelsheim, 1993):

1. Function φ is a monotonic function; that is, an information matrix C∗ is at
least as good as another information matrix D∗ if φ(C∗) ≥ φ(D∗);

2. Function φ is a concave function, that is, φ[(1 − α) C∗ + αD∗] = (1 −
α)φ(C∗) + α φ(D∗) for α ∈ (0, 1);

3. Function φ is positively homogeneous, that is, φ(δC∗) = δ φ(C∗).

Condition (2) says that information cannot be increased by interpolation. And
condition (3) says that even if we define the information matrix to be directly
proportional to the number of observations, n, and inversely proportional to σ 2

e ,
that is, the information matrix is of the form (n/σ 2

e )C∗, we need to consider
only C∗.
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Let D be the set of competing designs. The problem of finding an optimal
design d in D can then be reduced to finding a design that maximizes φ(C∗

d)

over d in D (see Cheng, 1996). Such a design is called φ-optimal.
As indicated above, an alternative, and historically original, approach to find-

ing an optimal design is to consider minimization of some convex and non-
increasing function � of dispersion matrices, as indicated by the relationship
between (1.112) and (1.113). Accordingly, we shall then talk about a �-optimal
design.

1.13.2 Optimality Criteria

Several optimality criteria, that is, several functions φ or � have been considered
for studying optimal designs. These criteria can be expressed conveniently in
terms of the eigenvalues of C∗

d or, equivalently, the nonzero eigenvalues of Cd ,
say µd1 ≥ µd2 ≥ · · · ≥ µd,t−1.

The most commonly used optimality criteria are D-, A-, and E-optimality,
which maximize the following information functions:

1. D-optimality: Determinant criterion or

φ(C∗
d) =

t−1∏
i=1

µdi

2. A-optimality: Average variance criterion or

φ(C∗
d) =

(
1

t − 1

t−1∑
i=1

µ−1
di

)−1

3. E-optimality: Smallest eigenvalue criterion or

φ(C∗
d) = µd,t−1

In terms of the corresponding � function, these optimality criteria can be
expressed as minimizing

1. �(Vd) = det Vd =
t−1∏
i=1

µ−1
di (1.114)

2. �(Vd) = tr Vd =
t−1∑
i=1

µ−1
di (1.115)

3. �(Vd) = maximum eigenvalue of Vd = µ−1
d,t−1 (1.116)
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The statistical meaning of these criteria is that minimizing (1.114) minimizes
the generalized variance of P ′τ̂ , (1.115) minimizes the average variance of the
set P ′τ̂ , and (1.116) minimizes the maximum variance of a single normalized
contrast.

1.13.3 Optimal Symmetric Designs

There exist special classes of designs for which all the nonzero eigenvalues of
the information matrix Cd are equal. Such designs are called symmetric designs.
Examples of symmetric designs are balanced incomplete block designs (Chapter
2), Latin square designs (Section I.10.2), Youden squares (Section I.10.5), and so
forth. The information matrix of a symmetric design is of the form aI + b II′,
which is referred to as a completely symmetric matrix.

In general, if a design is �1 optimal, it may not be �2 optimal for two
different optimality criteria �1 and �2. However, for symmetric designs Kiefer
(1958) showed that they are A-, D-, and E-optimal. This led to the definition of
universal optimality (Kiefer, 1975a) or Kiefer optimality (Pukelsheim, 1993).

Definition 1.1 (Kiefer, 1975a) Let Bt,0 be the set of all t × t nonnegative
definite matrices with zero row and column sums, and let � be a real-valued
function on Bt,0 such that

(a) � is convex,
(b) �(δC) is nonincreasing in the scalar δ ≥ 0, and
(c) � is invariant under each simultaneous permutation of rows and columns.

A design d∗ is called universally optimal in D if d∗ minimizes �(Cd) for every
� satisfying conditions (a), (b), and (c). �

To help identify universally optimal designs we have the following fundamen-
tal theorem.

Theorem 1.2 (Kiefer, 1975a) Suppose a class C = {Cd , d ∈ D} of matri-
ces in Bt,0 contains a Cd∗ for which

(a) Cd∗ is completely symmetric, and
(b) tr Cd∗ = maxd ∈ D tr Cd ,

Then d∗ is universally optimal in D.

1.13.4 Optimality and Research

We have just discussed the notion of design optimality and some of the avail-
able optimality criteria. Other criteria have been introduced in other contexts, in
particular, in the area of regression or response surface designs (see, e.g., Atkin-
son and Donev, 1992). And thus optimality has become a powerful concept, but
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we need to remember that, although it has statistical meaning, it is a mathemat-
ical concept. It has a definite and restricted connotation and it may be difficult
to apply it in the larger context of designing a “very good” experiment for a
researcher who has a scientific or technological problem.

An immediate difficulty is that there is no simple classification of real prob-
lems. There are discovery problems, for example, finding the point in factor
space at which yield is maximum. There are exploration problems, for example,
to obtain a “good” representation of the nature of the dependence of a noisy
dependent variable on a given set of independent variables. There is the math-
ematical problem in that same context that the dependence is known to be of
a definite functional form with some specified but unknown parameters, which
are to be determined from observations at some locations in the factor space.
A common problem in technology and some scientific areas is what is called
screening of factors. It is useful and important to think about this overall picture
because there is a tendency to interpret the term “optimality of design” in a very
limited context, a context that is very valuable, but misleading, in the sphere of
total human investigation.

The moral of the situation is multifold: (1) Researchers have to make a choice
about problems and often work on unrealistic ones as the closest workable approx-
imation to real live problems and should not be criticized for so doing; (2) almost
any optimality problem is to some extent artificial and limited because criteria
of value of designs must be introduced, and in almost any investigative situation
it is difficult to map the possible designs valuewise into the real line; and (3)
a solution to a mathematically formulated problem may have limited value, so
to promote one design that is optimal only with respect to a particular criterion
of value, C1, and to declare another design to be of poor value because it is
not optimal may be unfair because that design may be better with respect to a
different criterion of value, C2 say. And for one researcher C1 may be irrelevant,
whereas C2 may be more appropriate.

Considerations of optimality involve, of course, comparison of designs. But
how does one do this when error reduction needs to be taken into account?
For example, how does one compare the randomized complete block and the
Latin square design? Or how does one compare designs when different aspects
of statistical inference are involved? This was at the basis of heated discussion
between Neyman, who was interested in hypothesis testing, and Fisher and Yates,
who were interested in precision of estimation (see Neyman, Iwaszkiewicz, and
Kolodziejczyk, 1935).

Informal optimality considerations early on gave probably rise to the heuristic
(or perhaps mathematical) idea of symmetry and balancedness, and we shall
encounter these characteristics throughout much of the book. Even though these
properties do not always guarantee optimality in many cases they lead to near
optimality. And from a practical point of view that may be good enough. On the
other hand, if a balanced design is an optimal design, but we cannot use that
design because of practical constraints and need to use instead a near-balanced
design, then we have a way to evaluate the efficiency of the design we are going
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to use. For example, we know that a balanced incomplete block design (Chapter
2) is optimal. However, we cannot use the design and need to use a partially
balanced incomplete block design (Chapter 4). We may then choose, if possible,
a design with efficiency “close” to that of the optimal design.

Thus, the insistence on an optimal design may be frustrating for the user
because practical reasons may dictate otherwise and because an experimenter
rarely has one criterion of value. Rather, he has many criteria of value and is
in a mathematical programming situation in which he wishes the design to have
“reasonable” efficiencies with respect to criteria C1, C2, . . . , CK . The dilemma is
often that the design that is optimal with respect to C1 is completely nonoptimal
with respect to C2.

In summary, mathematical ideals and requirements of empirical science do
not always meet, but it is worth trying to find common ground. In the end, prac-
tical considerations may dictate compromises in many instances of experimental
research.

1.14 COMPUTATIONAL PROCEDURES

In this section we shall discuss some computational aspects of performing the
intrablock analysis and the combined intra- and interblock analysis, mainly in the
context of SAS procedures (SAS, 2000). For the intrablock analysis (see Section
1.3) we shall use SAS PROC GLM, and for the combined analysis (see Section
1.8) we shall use SAS PROC MIXED.

1.14.1 Intrablock Analysis Using SAS PROC GLM

Consider the following data set IBD (Table 1.7) with t = 4 treatments in b = 5
blocks of size k = 2, such that treatments 1 and 4 are replicated 3 times, and
treatments 2 and 3 are replicated 2 times. An example might be 5 pairs of
identical twins representing the blocks, each twin being an experimental unit to
whom different drugs are assigned according to the given plan.

The SAS PROC GLM input statements for the intrablock analysis and the
results are given in Table 1.8. We shall comment briefly on some aspects of the
SAS output (see Table 1.8):

1. The coefficient matrix as well as the right-hand side (RHS) of (1.5) are given
under the heading “The X′X Matrix.”

2. A generalized inverse for the coefficient matrix X′X is obtained by first
eliminating the rows and columns for β5 and τ4 from X′X as a consequence
of imposing the conditions β∗

5 = 0 and τ ∗
4 = 0 (we shall denote the SAS

solutions to the NE by β∗ and τ ∗). The reduced matrix is of full rank and
thus can be inverted. The inverted matrix is restored to the original dimension
by inserting zeros in the rows and columns corresponding to β∗

5 and τ ∗
4 . This

matrix, together with σ̂ 2
e =MS(Error) from the ANOVA table, can be used to

find the standard errors for the estimators of estimable functions for treatment
effects.
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Table 1.7 Data for Incomplete Block Design (t = 4, b = 5, k = 2, r1 = 3,
r2 = r3 = 2, r4 = 3)

options pageno=1 nodate;
data IBD;
input TRT BLOCK Y @@;
datalines;
1 1 10 2 1 12
3 2 23 4 2 28
1 3 13 3 3 27
2 4 14 4 4 20
1 5 15 4 5 32
;
run;

proc print data=IBD;
title1 'TABLE 1.7';
title2 'DATA FOR INCOMPLETE BLOCK DESIGN';
title3 '(t=4, b=5, k=2, r1=3, r2=r3=2, r4=3)';
run;

Obs TRT BLOCK Y

1 1 1 10
2 2 1 12
3 3 2 23
4 4 2 28
5 1 3 13
6 3 3 27
7 2 4 14
8 4 4 20
9 1 5 15
10 4 5 32

3. The general form of an estimable function for treatment effects is given by

L7τ1 + L8τ2 + L9τ3 − (L7 + L8 + L9)τ4

for any values of L7, L8, and L9; that is, only contrasts are estimable.
4. The general form of estimable functions can also be used to identify the

solutions to the NE by putting sequentially (and in order) each Li = 1 and
the remaining Lj = 0, (j �= i). For example, the “Estimate” of “Intercept”
is actually the estimate of µ + β5 + τ4; that is, L1 = 1, Lj = 0, (j �= 1).
Expressed in terms of the SAS solutions we thus have

µ∗ = µ+̂ β5+ τ4 = 31.125

Another example, putting L7 = 1, Lj = 0(j �= 7), yields

τ ∗
1 = τ̂1 − τ4 = −15.25



54 GENERAL INCOMPLETE BLOCK DESIGN

Table 1.8 Intrablock Analysis with Post-hoc Comparisons

proc glm data=IBD;

class BLOCK TRT;

model Y = BLOCK TRT/XPX inverse solution e;

1smeans TRT/stderr e;

estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -.5 0;

estimate 'TRT1 - TRT4' TRT 1 0 0 -1;

estimate 'TRT2 - TRT3' TRT 0 1 -1 0;

title1 'TABLE 1.8';

title2 'INTRA-BLOCK ANALYSIS';

title3 'WITH POST-HOC COMPARISONS';

run;

The GLM Procedure

Class Level Information

Class Levels Values

BLOCK 5 1 2 3 4 5

TRT 4 1 2 3 4

Number of observations 10

The X'X Matrix

Intercept BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5

Intercept 10 2 2 2 2 2

BLOCK 1 2 2 0 0 0 0

BLOCK 2 2 0 2 0 0 0

BLOCK 3 2 0 0 2 0 0

BLOCK 4 2 0 0 0 2 0

BLOCK 5 2 0 0 0 0 2

TRT 1 3 1 0 1 0 1

TRT 2 2 1 0 0 1 0

TRT 3 2 0 1 1 0 0

TRT 4 3 0 1 0 1 1

Y 194 22 51 40 34 47



COMPUTATIONAL PROCEDURES 55

Table 1.8 (Continued )

The X’X Matrix

TRT 1 TRT 2 TRT 3 TRT 4 Y

Intercept 3 2 2 3 194
BLOCK 1 1 1 0 0 22
BLOCK 2 0 0 1 1 51
BLOCK 3 1 0 1 0 40
BLOCK 4 0 1 0 1 34
BLOCK 5 1 0 0 1 47
TRT 1 3 0 0 0 38
TRT 2 0 2 0 0 26
TRT 3 0 0 2 0 50
TRT 4 0 0 0 3 80
Y 38 26 50 80 4300

X’X Generalized Inverse (g2)

Intercept BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK 5

Intercept 0.75 -0.375 -0.625 -0.375 -0.625 0
BLOCK 1 -0.375 1.3125 0.4375 0.5625 0.6875 0
BLOCK 2 -0.625 0.4375 1.3125 0.6875 0.5625 0
BLOCK 3 -0.375 0.5625 0.6875 1.3125 0.4375 0
BLOCK 4 -0.625 0.6875 0.5625 0.4375 1.3125 0
BLOCK 5 0 0 0 0 0 0
TRT 1 -0.5 -0.25 0.25 -0.25 0.25 0
TRT 2 -0.25 -0.625 0.125 -0.125 -0.375 0
TRT 3 -0.25 -0.125 -0.375 -0.625 0.125 0
TRT 4 0 0 0 0 0 0
Y 31.125 -7.6875 -4.0625 -1.9375 -9.3125 0

X’X Generalized Inverse (g2)

TRT 1 TRT 2 TRT 3 TRT 4 Y

Intercept -0.5 -0.25 -0.25 0 31.125
BLOCK 1 -0.25 -0.625 -0.125 0 -7.6875
BLOCK 2 0.25 0.125 -0.375 0 -4.0625
BLOCK 3 -0.25 -0.125 -0.625 0 -1.9375
BLOCK 4 0.25 -0.375 0.125 0 -9.3125
BLOCK 5 0 0 0 0 0
TRT 1 1 0.5 0.5 0 -15.25
TRT 2 0.5 1.25 0.25 0 -9.625
TRT 3 0.5 0.25 1.25 0 -3.125
TRT 4 0 0 0 0 0
Y -15.25 -9.625 -3.125 0 18.1875
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Table 1.8 (Continued )

General Form of Estimable Functions

Effect Coefficients

Intercept L1

BLOCK 1 L2

BLOCK 2 L3

BLOCK 3 L4

BLOCK 4 L5

BLOCK 5 L1-L2-L3-L4-L5

TRT 1 L7

TRT 2 L8

TRT 3 L9

TRT 4 L1-L7-L8-L9

The GLM Procedure

Dependent Variable: Y

Source DF Sum of Squares Mean Square F Value Pr > F

Model 7 518.2125000 74.0303571 8.14 0.1137

Error 2 18.1875000 9.0937500

Corrected Total 9 536.4000000

R-Square Coeff Var Root MSE Y Mean

0.966093 15.54425 3.015585 19.40000

Source DF Type I SS Mean Square F Value Pr > F

BLOCK 4 261.4000000 65.3500000 7.19 0.1259

TRT 3 256.8125000 85.6041667 9.41 0.0975

Source DF Type III SS Mean Square F Value Pr > F

BLOCK 4 79.1458333 19.7864583 2.18 0.3388

TRT 3 256.8125000 85.6041667 9.41 0.0975
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Table 1.8 (Continued )

Parameter Estimate Standard Error t Value Pr > |t|

Intercept 31.12500000 B 2.61157280 11.92 0.0070
BLOCK 1 -7.68750000 B 3.45478608 -2.23 0.1560
BLOCK 2 -4.06250000 B 3.45478608 -1.18 0.3607
BLOCK 3 -1.93750000 B 3.45478608 -0.56 0.6314
BLOCK 4 -9.31250000 B 3.45478608 -2.70 0.1145
BLOCK 5 0.00000000 B . . .
TRT 1 -15.25000000 B 3.01558452 -5.06 0.0369
TRT 2 -9.62500000 B 3.37152599 -2.85 0.1039
TRT 3 -3.12500000 B 3.37152599 -0.93 0.4518
TRT 4 0.00000000 B . . .

NOTE: The X'X matrix has been found to be singular, and a gen-

eralized inverse was used to solve the normal equations.

Terms whose estimates are followed by the letter 'B' are not

uniquely estimable.

Least Squares Means

Coefficients for TRT Least Square Means

TRT Level

Effect 1 2 3 4

Intercept 1 1 1 1
BLOCK 1 0.2 0.2 0.2 0.2
BLOCK 2 0.2 0.2 0.2 0.2
BLOCK 3 0.2 0.2 0.2 0.2
BLOCK 4 0.2 0.2 0.2 0.2
BLOCK 5 0.2 0.2 0.2 0.2
TRT 1 1 0 0 0
TRT 2 0 1 0 0
TRT 3 0 0 1 0
TRT 4 0 0 0 1

TRT Y LSMEAN Standard Error Pr > |t|

1 11.2750000 1.9774510 0.0294
2 16.9000000 2.6632921 0.0239
3 23.4000000 2.6632921 0.0127
4 26.5250000 1.9774510 0.0055

Dependent Variable: Y

Parameter Estimate Standard Error t Value Pr > |t|

TRT1 - (TRT2+TRT3)/2 -8.8750000 2.61157280 -3.40 0.0768
TRT1 - TRT4 -15.2500000 3.01558452 -5.06 0.0369
TRT2 - TRT3 -6.5000000 4.26468053 -1.52 0.2670
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5. The top part of the ANOVA table provides the partition

SS(MODEL) + SS(ERROR) = SS(TOTAL)

and from that produces

MS(ERROR) = σ̂ 2
e = 9.094

6. The lower part of the ANOVA table provides type I SS (sequential SS for
ordered model; see I.4.7.2) and type III SS (partial SS). From the latter we
obtain the P value (.0975) for the test of

H0: τ1 = τ2 = · · · = τt

versus

H1: not all τi are the same

We stress that the P value for blocks should be ignored (see I.9.2).
7. The e-option of LSMEANS gives the coefficients for the solution vector to

compute the treatment least squares means, for example,

LSMEAN(TRT 1) = µ∗ + .2
∑

β∗
i + τ ∗

1

= 31.125 + .2(−7.6875 − 4.0625 − 1.9375

− 9.3125 + 0) − 15.25

= 11.275

The standard error is computed by making use of the G inverse (see item 2)
and MS(ERROR).

8. The t tests are performed for the prespecified contrasts among the least-
squares means; for example,

TRT2-TRT3 = τ ∗
2 − τ ∗

3 = 9.625 + 3.125 = − 6.5

se(τ ∗
2 − τ ∗

3 ) = [(1.25 + 1.25 − 2 × .25) × 9.094]1/2 = 4.265

t = − 6.5

4.265
= −1.52

1.14.2 Intrablock Analysis Using the Absorb Option in SAS PROC GLM

A computational method as described in Section 1.3 using the RNE can be imple-
mented in SAS PROC GLM by using the ABSORB OPTION. This is illustrated
in Table 1.9.
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Table 1.9 Intra Block Analysis Using Reduced Normal Equations
With Post-hoc Comparisons

proc glm data=IBD;

class BLOCK TRT;

absorb BLOCK;

model Y = TRT/XPX inverse solution e;

estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -.5 0;

estimate 'TRT1 - TRT4' TRT 1 0 0 -1;

estimate 'TRT2 - TRT3' TRT 0 1 -1 0;

title1 'TABLE 1.9';

title2 'INTRA-BLOCK ANALYSIS USING REDUCED NORMAL EQUATIONS';

title3 'WITH POST-HOC COMPARISONS';

run;

The GLM Procedure

Class Level Information

Class Levels Values

BLOCK 5 1 2 3 4 5

TRT 4 1 2 3 4

Number of observations 10

The X'X Matrix

TRT 1 TRT 2 TRT 3 TRT 4 Y

TRT 1 1.5 -0.5 -0.5 -0.5 -16.5

TRT 2 -0.5 1 0 -0.5 -2

TRT 3 -0.5 0 1 -0.5 4.5

TRT 4 -0.5 -0.5 -0.5 1.5 14

Y -16.5 -2 4.5 14 275

The GLM Procedure

X'X Generalized Inverse (g2)

TRT 1 TRT 2 TRT 3 TRT 4 Y

TRT 1 1 0.5 0.5 0 -15.25

TRT 2 0.5 1.25 0.25 0 -9.625

TRT 3 0.5 0.25 1.25 0 -3.125

TRT 4 0 0 0 0 0

Y -15.25 -9.625 -3.125 0 18.1875

General Form of Estimable Functions

Given that the coefficients for all absorbed effects are zero
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Table 1.9 (Continued )

Effect Coefficients

TRT 1 L1
TRT 2 L2
TRT 3 L3
TRT 4 -L1-L2-L3

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 7 518.2125000 74.0303571 8.14 0.1137

Error 2 18.1875000 9.0937500

Corrected Total 9 536.4000000

R-Square Coeff Var Root MSE Y Mean

0.966093 15.54425 3.015585 19.40000

Source DF Type I SS Mean Square F Value Pr > F

BLOCK 4 261.4000000 65.3500000 7.19 0.1259
TRT 3 256.8125000 85.6041667 9.41 0.0975

Source DF Type III SS Mean Square F Value Pr > F

TRT 3 256.8125000 85.6041667 9.41 0.0975

Standard
Parameter Estimate Error t Value Pr > |t|

TRT1 - (TRT2+TRT3)/2 -8.8750000 2.61157280 -3.40 0.0768
TRT1 - TRT4 -15.2500000 3.01558452 -5.06 0.0369
TRT2 - TRT3 -6.5000000 4.26468053 -1.52 0.2670

Standard
Parameter Estimate Error t Value Pr > |t|

TRT 1 -15.25000000 B 3.01558452 -5.06 0.0369
TRT 2 -9.62500000 B 3.37152599 -2.85 0.1039
TRT 3 -3.12500000 B 3.37152599 -0.93 0.4518
TRT 4 0.00000000 B . . .

NOTE: The X'X matrix has been found to be singular, and a gen-

eralized inverse was used to solve the normal equations.

Terms whose estimates are followed by the letter 'B' are not

uniquely estimable.
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We make the following comments about the SAS output:

1. The X′X matrix is now the C-matrix of (1.9).
2. The X′X generalized inverse is obtained by the SAS convention of setting

τ ∗
4 = 0. This g inverse is therefore different from C̃

−1
of (1.16).

3. The ANOVA table provides the same information as in Table 1.8, except that
it does not give solutions for the intercept and blocks. Hence, this analysis
cannot be used to obtain treatment least-squares means and their standard
error.

1.14.3 Combined Intra- and Interblock Analysis Using the
Yates Procedure

Using SAS PROC VARCOMP illustrates the estimation of σ 2
β according to the

method described in Section 1.10.1. The result is presented in Table 1.10. The
option type I produces Table 1.2 with

E[MS(BLOCK)] = E
[
MS(Xβ |I,Xτ )

]
as given in (1.82). This yields σ̂ 2

e = 9.09 (as in Table 1.8) and σ̂ 2
β = 7.13.

Substituting ρ̂ = 9.09 + 2 × 7.13

9.09
= 2.57 into (1.60) we obtain

Ã =


2.0814 −0.3062 −0.3062 −0.3062

−0.3062 1.3877 0.0000 −0.3062
−0.3062 0.0000 1.3877 −0.3062
−0.3062 −0.3062 −0.3062 2.0814


and

Ã
−1 =


0.541654 0.146619 0.146619 0.122823
0.146619 0.785320 0.064704 0.146619
0.146619 0.064704 0.785320 0.146619
0.122823 0.146619 0.146619 0.541654


and

P̃ =


4.6242
8.8528

22.1358
39.5816


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We then obtain

τ̃ = Ã
−1

P̃ =


11.9097
14.8659
24.4379
26.5510


We note that the elements of τ̃ are actually the treatment least-squares means.
Their estimated variances and the estimated variances for the treatment contrasts
are obtained from Ã

−1 × 9.09 (see Tables 1.13 and 1.14).

1.14.4 Combined Intra- and Interblock Analysis Using SAS
PROC MIXED

We illustrate here the numerical implementation of the ML and REML proce-
dures as described in Sections 1.11.1 and 1.11.2, respectively, using SAS PROC
MIXED. The results of the ML estimation are given in Table 1.11.

It takes four interations to obtain the solutions, yielding σ̂ 2
β = 7.45 and σ̂ 2

e =
4.14 and hence γ̂ = 1.80 (Notice that these are quite different from the estimates
obtained by the Yates procedure (Section 1.14.3) and the REML procedure as
given below).

Since SAS uses a different parametrization than the one used in (1.84) it
obtains “estimates” of µ and τi(i = 1, 2, 3, 4) separately. The type 3 coefficients
indicate that the solutions for µ, τi(i = 1, 2, 3, 4) are actually estimates of µ +
τ4, τ1 − τ4, τ2 − τ4, τ3 − τ4, respectively. From these solutions the least-squares
means are then obtained as

LSMEAN(TRT 1) = µ̂ + τ̂1 = 11.65 = α̂1

LSMEAN(TRT 2) = µ̂ + τ̂2 = 15.63 = α̂2

LSMEAN(TRT 3) = µ̂ + τ̂3 = 24.09 = α̂3

LSMEAN(TRT 4) = µ̂ = 26.53 = α̂4

where the α̂i denote the solutions to (1.87).
The REML procedure is illustrated in Table 1.12. It takes three iterations to

obtain the estimates σ̃ 2
β = 6.35 and σ̃ 2

e = 10.17, and hence γ̃ = 0.62. We note
that the REML and ML least-squares means are numerically quite similar even
though γ̂ and σ̂ 2

e are substantially different from γ̃ and σ̃ 2
e , respectively.

1.14.5 Comparison of Estimation Procedures

For a small proper incomplete block design we have employed the above four
methods of estimating treatment least-squares means and treatment comparisons:

M1: Intrablock analysis

M2: Combined analysis: Yates
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Table 1.11 Combined Analysis Using Maximum Likelihood
With Post-hoc Comparisons

proc mixed data=IBD method=ML;

class BLOCK TRT;

model Y = TRT/ solution E3 ddfm=Satterth;

random BLOCK;

lsmeans TRT;

estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -.5 0;

estimate 'TRT1 - TRT4' TRT 1 0 0 -1;

estimate 'TRT2 - TRT3' TRT 0 1 -1 0;

title1 'TABLE 1.11';

title2 'COMBINED ANALYSIS USING MAXIMUM LIKELIHOOD';

title3 'WITH POST-HOC COMPARISONS';

run;

The Mixed Procedure

Model Information

Data Set WORK.IBD

Dependent Variable Y

Covariance Structure Variance Components

Estimation Method ML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

BLOCK 5 1 2 3 4 5

TRT 4 1 2 3 4

Dimensions

Covariance Parameters 2

Columns in X 5

Columns in Z 5

Subjects 1

Max Obs Per Subject 10

Observations Used 10

Observations Not Used 0

Total Observations 10
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Table 1.11 (Continued )

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 51.13433487

1 2 50.29813032 0.00396161

2 1 50.22541829 0.00030283

3 1 50.22033455 0.00000230

4 1 50.22029773 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

BLOCK 7.4528

Residual 4.1426

Fit Statistics

-2 Log Likelihood 50.2

AIC (smaller is better) 62.2

AICC (smaller is better) 90.2

BIC (smaller is better) 59.9

Solution for Fixed Effects

Standard

Effect TRT Estimate Error DF t Value Pr > |t|

Intercept 26.5329 1.7767 8.87 14.93 <.0001

TRT 1 -14.8822 1.9330 4.75 -7.70 0.0007

TRT 2 -10.9029 2.1495 4.82 -5.07 0.0043

TRT 3 -2.4380 2.1495 4.82 -1.13 0.3099

TRT 4 0 . . . .

Type 3 Coefficients for TRT

Effect TRT Row1 Row2 Row3

Intercept

TRT 1 1

TRT 2 1

TRT 3 1

TRT 4 -1 -1 -1
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Table 1.11 (Continued )

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

TRT 3 4.76 23.37 0.0028

Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

TRT1 - (TRT2+TRT3)/2 -8.2117 1.7085 4.3 -4.81 0.0072

TRT1 - TRT4 -14.8822 1.9330 4.75 -7.70 0.0007

TRT2 - TRT3 -8.4650 2.6087 5.86 -3.24 0.0182

Least Squares Means

Standard

Effect TRT Estimate Error DF t Value Pr > |t|

TRT 1 11.6506 1.7767 8.87 6.56 0.0001

TRT 2 15.6299 2.0786 9.98 7.52 <.0001

TRT 3 24.0949 2.0786 9.98 11.59 <.0001

TRT 4 26.5329 1.7767 8.87 14.93 <.0001

M3: Combined analysis: ML

M4: Combined analysis: REML

In Tables 1.13 and 1.14 we present the estimates and their standard errors (exact
or approximate) for these methods for purely numerical comparisons.

Based on the numerical results, we make the following observations, which
should not necessarily be generalized:

1. For the least-squares means, M1 produces slightly smaller standard errors
than M2, but the result is reversed for the contrast estimates.

2. The results for M2 and M4 are very similar, both with respect to estimates
and standard errors.

3. In both tables M3 produces the smallest standard errors.

1.14.6 Testing of Hypotheses

To test the hypothesis

H0:τ1 = τ2 = · · · = τt
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Table 1.12 Combined Analysis Using Residual Maximum Likelihood With
Post-hoc Comparisons

proc mixed data=IBD;

class BLOCK TRT;

model Y = TRT/ solution E3 ddfm=Satterth;

random BLOCK;

lsmeans TRT;

estimate 'TRT1 - (TRT2+TRT3)/2' TRT 1 -.5 -.5 0;

estimate 'TRT1 - TRT4' TRT 1 0 0 -1;

estimate 'TRT2 - TRT3' TRT 0 1 -1 0;

title1 'TABLE 1.12';

title2 'COMBINED ANALYSIS USING RESIDUAL MAXIMUM LIKELIHOOD';

title3 'WITH POST-HOC COMPARISONS';

run;

The Mixed Procedure

Model Information

Data Set WORK.IBD

Dependent Variable Y

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

BLOCK 5 1 2 3 4 5

TRT 4 1 2 3 4

Dimensions

Covariance Parameters 2

Columns in X 5

Columns in Z 5

Subjects 1

Max Obs Per Subject 10

Observations Used 10

Observations Not Used 0

Total Observations 10
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Table 1.12 (Continued )

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 37.32907360

1 2 37.14557447 0.00022052

2 1 37.14253025 0.00000186

3 1 37.14250585 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

BLOCK 6.3546

Residual 10.1681

Fit Statistics

-2 Res Log Likelihood 37.1

AIC (smaller is better) 41.1

AICC (smaller is better) 45.1

BIC (smaller is better) 40.4

Solution for Fixed Effects

Standard

Effect TRT Estimate Error DF t Value Pr > |t|

Intercept 26.5596 2.2615 5.93 11.74 <.0001

TRT 1 -14.5682 2.8843 2.68 -5.05 0.0196

TRT 2 -11.9152 3.2045 2.66 -3.72 0.0415

TRT 3 -2.0305 3.2045 2.66 -0.63 0.5766

TRT 4 0 . . . .

Type 3 Coefficients for TRT

Effect TRT Row1 Row2 Row3

Intercept

TRT 1 1

TRT 2 1

TRT 3 1

TRT 4 -1 -1 -1
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Table 1.12 (Continued )

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

TRT 3 2.42 10.82 0.0615

Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

TRT1 - (TRT2+TRT3)/2 -7.5953 2.5979 2.2 -2.92 0.0891

TRT1 - TRT4 -14.5682 2.8843 2.68 -5.05 0.0196

TRT2 - TRT3 -9.8847 3.7522 3.82 -2.63 0.0607

Least Squares Means

Standard

Effect TRT Estimate Error DF t Value Pr > |t|

TRT 1 11.9914 2.2615 5.93 5.30 0.0019

TRT 2 14.6444 2.7365 5.52 5.35 0.0023

TRT 3 24.5291 2.7365 5.52 8.96 0.0002

TRT 4 26.5596 2.2615 5.93 11.74 <.0001

versus

H1: not all τi are equal

we consider a set of t − 1 linearly independent contrasts, say Cτ , and test equiv-
alently

H0: Cτ = 0

Table 1.13 Comparison of Least-Squares Means

TRT M1 M2 M3 M4

i LSM(TRTi) SE LSM(TRTi) SE LSM(TRTi) SE LSM(TRTi) SE

1 11.28 1.98 11.91 2.22 11.65 1.78 11.99 2.26
2 16.90 2.66 14.87 2.67 15.63 2.08 14.64 2.74
3 23.40 2.66 24.44 2.67 24.09 2.08 24.53 2.74
4 26.53 1.98 26.55 2.22 26.53 1.78 26.56 2.26
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Table 1.14 Comparison of Contrast Estimates

M1 M2 M3 M4

CONTRASTa Ĉ SE C̃ SE C̃ SE C̃ SE

C1 −8.88 2.61 −7.75 2.47 −8.21 1.71 −7.59 2.60
C2 −15.25 3.02 −14.64 2.76 −14.88 1.93 −14.57 2.88
C3 −6.50 4.26 −9.57 3.62 −8.47 2.61 −9.88 3.75

aC1 = TRT1 − (TRT2 + TRT3)/2
C2 = TRT1 − TRT4
C3 = TRT2 − TRT3

Table 1.15 Comparison of Testing H0:τ1 = τ2 = τ3 = τ4

Denominator

Method F Ratio d.f. P Value Source

M1 9.41 2 .0975 Table 1.8
M2 11.73 2 .0796 See below
M3 23.37 4.76 .0028 Table 1.11
M4 10.82 2.42 .0615 Table 1.12

versus

H1: Cτ �= 0

We then compute the test statistic

F = (Cτ̃ )′[CÃ
−1

C]−1Cτ̃/[(t − 1) MS(E)]

which follows approximately an F distribution with t − 1 and n − t − b + 1 d.f.
For the data set in Table 1.7, using

C =
1 −1 0 0

1 0 −1 0
1 0 0 −1


with the Yates procedure we obtain F = 11.73 with 3 and 2 d.f.

A comparison of the four methods of analysis [as described in (Section 1.13.5)]
concerning the test of treatment effects is given in Table 1.15

It is interesting to note that the results for M1, M2, and M4 are in close
agreement, whereas the result for M3 is quite different. This appears due to the
fact that the estimate of σ 2

e for M3, namely 4.1426, is quite different from the
corresponding estimates using M2, namely, 9.09375, and M4, namely 10.1681.


