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INTRODUCTION

Molecular quantum chemistry and quantum mechanical simulation of
solids have followed substantially independent paths and strategies for many
years, with almost no reciprocal influence. In the implementation of computa-
tional schemes and formalisms, they started from different elementary models:
either the hydrogen or helium atom like, for example, the parameterization of
a correlation functional based on accurate He atom calculations by Colle and
Salvetti,1 or the electron gas, which is the reference system of the local density
approximation2–7 (LDA) to density functional theory (DFT). Moreover, if we
compare the simplest real crystals, like lithium metal or sodium chloride, with
the smallest molecule, H2, the much greater complexity of the solid system is
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sufficient to explain the long delay of about 20 years, or more, in the develop-
ment of ab initio simulation strategies in the two directions.

Molecular quantum chemistry evolved to maturity in many respects in
the early 1970s, where the ab initio calculation of the molecular total energy
became the key to understanding the chemical behavior of molecules, within a
well-established, proper methodology, including the use of Gaussian functions
as a basis set,8,9 sophisticated approximations to the wave function,10–14 and
analytical gradients for geometry optimization.15,16 Computer programs, such
as IBMOL17 and GAUSSIAN70,18 were already available to the scientific com-
munity, at that time or even before, and many molecular properties could be
predicted with excellent accuracy, although at the beginning severe limita-
tions, involving the algorithm efficiency and scaling with the system size,
restricted the applicability of ab initio quantum-chemical methods to small
molecules with relatively poor basis sets.

The approach to solving problems in the solid state was completely dif-
ferent and coincided essentially with developments in solid state physics,
which at the time focused on comprehending fundamental properties such
as the band structure, the effective mass, the Fermi surface shape, and their
relationship to the electrical behavior of materials or to the interpretation of
excitation spectra. The popular textbooks by Bassani 19 and Moruzzi et al.20

document well the state-of-the-art in solid state simulation during that period.
Computer programs were mainly based on semi-empirical methods using
‘‘muffin-tin’’ potentials and the analytical simplicity of plane-wave (PW) basis
sets. In late 1970s, ab initio pseudopotentials (PP), determined with reference
to atomic calculations with the same Hamiltonian (see, for example, refer-
ences 21–24), replaced previous empirical and semi-empirical PPs. Regarding
the Hamiltonian, in the same years, the popular X-a25 method was replaced by
the parameter-free LDA.3–5,7 As a matter of fact, the combination PP-PW-
LDA became, and remains, the most popular ‘‘recipe’’ for the calculation of
the electronic structure of crystalline compounds, although other schemes
were also largely adopted, such as Korringa–Kohn–Rostoker (KKR),26,27

orthogonalized plane waves (OPW),28 augmented plane waves (APW),29,30

linearized augmented plane waves (LAPW),31 spherical cellular schemes,32

and diophantine integration schemes.33

Conversely, structural and elastic properties of ionic and semi-ionic
solids were studied successfully in a completely different context with semi-
classical methods,34 based on force-field model potentials.

Preliminary attempts at introducing the quantum-chemical viewpoint
into solid state modeling date to the late 1960s through the generalization
of the Hartree–Fock (HF) equations for crystalline systems with a local basis
set.35–41 These were, however, in most cases, only formal equations or partial
solutions to some of the many computational problems implicit in these equa-
tions. Only at the beginning of the 1970s were Ewema42,43 and collaborators
able to run a fully ab initio all-electron calculation for a crystalline compound
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in a local basis, with reasonably good results for binding energies and lattice
parameters of diamond,42 boron nitride,43 and a few other systems. Unfortu-
nately, this research project was abandoned and the related experience was lost
for a while. Reliable ab initio algorithms, capable of computing not only
the band structure but also relatively accurate binding energies, equilibrium
geometries, and elastic properties were implemented shortly before 1980.
Most of them were based on LDA with PW combined with PP. CRYSTAL44

was the only periodic ab initio all-electron program based on the HF
Hamiltonian and the use of Gaussian functions at that time.

In all cases, the access to programs for solid state simulation was exclu-
sive to the research groups developing them. For this reason and because of the
differences in the computational programs and their implementation, a com-
parison of the methods by performance was difficult. CRYSTAL was the first
periodic ab initio code to be distributed to the scientific community beginning
in 1989.45 Afterward, the evolution in the field was rapid, and now several ab
initio codes are available to users (see Appendix 1 for a list of some of these
codes, with short indication of their main features).

Nowadays, simulation of infinite systems relies on an ensemble of stra-
tegies and methods differing in many respects. By simply looking at the list of
solid state programs reported in Appendix 1, one has an idea of the large vari-
ety of approaches available. Illustrating the features of the various codes, or
their merits and limits, is not the aim of this chapter. Instead, we provide
here only a brief summary of the main ‘‘ingredients’’ in the ‘‘recipe’’ of a
code for solid state simulation that includes:

1. The model. Many different models can be proposed for the simulation of a
single physical or chemical phenomenon. For example, a point defect in a
crystalline system can be simulated either with a finite cluster with a defect
at the center of the cluster and by assuming that the cluster is big enough
and border effects are small, or with a periodic supercell approach, with the
defects repeated periodically in such a way that the defect–defect
interaction is small, if the supercell is big enough.

2. The Hamiltonian. Although most of the periodic calculations are
performed with reference to DFT, the debate is still open about the most
appropriate functional to use for different systems and properties, ranging
from LDA (that is still popular in solid state physics) to various generalized
gradient approximation (GGA) formulations and hybrid schemes like
B3LYP. In a few cases, HF is still preferred.

3. The basis set. Codes based on plane waves, local functions, and mixed
(local functions in atomic spheres, plane waves in the interstices) or
numeric basis sets are available.

4. The overall computational scheme, in all its features, such as direct or
reciprocal space representation, all-electron versus pseudo-potential

Introduction 3



formulation, and analytical versus numerical calculation of matrix
elements and relevant integrals.

A reader is probably interested in finding answers to the following ques-
tions: What additional basic information is needed for proper use of periodic
codes by a scientist with a molecular quantum chemistry background? Are
there features peculiar to the solid state, with no analogy to the gas phase?
In this chapter, we shall provide answers to these questions as well as provide
a tutorial for the nonspecialist wanting to learn about solid state calculations.

The solid under study with a periodic program is infinite and translation
invariant; it is a perfect crystal. Despite that no real crystal is a perfect crystal,
this model is suitable in most cases, and indeed, experimental evidence of crys-
tal periodicity exists in x-ray, neutron, and electron diffraction patterns, which
are hardly affected by the presence of the surface, unless the experiment is
done in special conditions. Translation invariance has a series of interesting
properties with important consequences on simplification of the problem
and the implementation of efficient algorithms.

Even in those cases where the model of a perfect crystal appears as inap-
propriate does one try to simulate partially nonperiodic systems with some
nearly equivalent, formally periodic structure, whenever possible, as happens
in the descriptions of local defects with the supercell approximation (see the
section on defects) or in the treatment of substitutionally disordered sys-
tems.46,47 Therefore, the use of a periodic program by a scientist requires basic
knowledge of crystallography, such as the definitions of lattice, direct and reci-
procal space, unit cell, Brillouin zone, and the main concepts of the solid state
language. These ideas are described briefly in the next section. Other more spe-
cific points will be mentioned with almost no discussion, because comprehen-
sion of their details is beyond the scope of this chapter. For example, the
evaluation of electrostatic interactions in a solid48–51 is more complicated
than would appear at first sight and it represents one of the more crucial
aspects of the computational problem. The formulation of a convenient meth-
od to compute the electrostatic potential generated by a three-dimensional
array of charge distributions41,52–55 required more than 50 years’ work; cover-
age of this topic is thus ill-advised.

Apart from the methodological aspects, solid state systems possess many
interesting properties that are immaterial for single molecules. In single mole-
cules, point symmetry usually decreases as the size of the molecule increases.
Molecules with more than, say, 20 atoms often lack symmetry. Crystalline sys-
tems, contrarily, usually maintain high point symmetry, even in the case of
large unit cell systems, like zeolites and garnets.

Another important difference between nonamorphous solids and single
molecules is anisotropy (different space directions are not equivalent). No ani-
sotropic effect is observed in the gas phase with no applied field because of the
averaging process caused by the random orientation of molecules. In contrast,
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crystals are macroscopic objects that can be oriented with respect to a refer-
ence frame and their properties generally depend on orientation. All properties
related to crystal anisotropy are then described by tensors of various rank. For
example, the relationship between stress and strain (second-order tensors
each) cannot be expressed with a single constant, but it can be expressed as
a fourth-order tensor, whereas piezoelectricity is described by a third-order
tensor. In most cases, the physical and technological interest in materials
science is focused on the possibility of increasing or reducing anisotropy in
materials.

Throughout this chapter, we will illustrate some of the possibilities
offered by ab initio simulation in the area of solid state chemistry, physics,
materials science, surface science, and catalysis. The examples are mainly
focused on simple properties like energy and its derivatives, band structure,
and charge density, to give the reader who is not acquainted with solid state
simulation an introductory overview. For consistency of the data and their
representations, all examples have been generated with the CRYSTAL
code,56 implemented by the present authors and collaborators. All cases
reported here refer to the static limit, and temperature effects are not dis-
cussed. Temperature effects can be taken into account by calculating thermo-
dynamic functions from the vibration spectrum following a methodology
common to most molecular codes (see, for example, reference 57 for a recent
review). Alternatively, in solid state physics, the Car–Parrinello58 methodol-
ogy is popular, because it is an efficient way of finding equilibrium electron
and nuclear coordinates at once.

Many important and interesting systems and properties could not be
considered in this presentation either for conciseness, as they would require
some preliminary long explanation, or because they are not yet available in
CRYSTAL, although they have been implemented in other codes. The calcula-
tion of NMR tensors,59 Raman intensity tensors,60 and electro-optic tensors61

are only a few examples from this long list of omissions.
Two relevant topics have been ignored completely in this short chapter:

the treatment of electron correlation with more sophisticated methods than
DFT (that remains unsatisfactory from many points of view) and the related
subject of excited states. Wave function-based methods for the calculation of
electron correlation, like the perturbative Møller–Plesset (MP) expansion or
the coupled cluster approximation, have registered an impressive advancement
in the molecular context. The computational cost increases with the molecular
size (as the fifth power in the most favorable cases), especially for molecules
with low symmetry. That increase was the main disadvantage of these electron
correlation methods, and it limited their application to tiny molecules. This
scaling problem has been improved dramatically by modern reformulation
of the theory by localized molecular orbitals, and now a much more favorable
scaling is possible with the appropriate approximations. Linear scaling
with such low prefactors has been achieved62,63 with MP schemes that the
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feasibility of this kind of calculation has been extended to molecules of med-
ium and large size.

In principle, this electron correlation strategy is transferable from single
molecules to solids, after the crystalline orbitals have been transformed to an
equivalent set of well-localized functions (Wannier functions). Procedures for
orbital localization have been proposed and implemented only recently,64,65

and the first MP2 calculations are becoming possible in the case of simple crys-
talline compounds.66

Alternative strategies have also been proposed for estimating correlation
energies, including quantum Monte Carlo methods (see reference 67 and refer-
ences therein), MP2 schemes, either canonical68,69 or based on the Laplace
transform algorithm,70 and the molecular-like incremental method applied
by Stoll.71–75 However, none of these methods seems to have arrived at a suffi-
ciently advanced stage of development to be of general use to the scientist at
the moment.

Regarding excited states, time-dependent density functional theory76–78

(TDDFT) is considered a relatively accurate method (see, for example, refer-
ence 79) for the study of the low-lying excited states, with results by far super-
ior to the simple virtual-occupied DFT energy difference. The most recent
formulations of the GW formalism, originally proposed about 20 years
ago,80 seem to provide good band gaps, optical spectra, and electron-hole
excitations81–84 (the GW acronym arises from the name of the two matrices
the method is based on: the Green function matrix, G, and the screened
Coulomb matrix, W).

TRANSLATION INVARIANCE PROPERTIES
IN A CRYSTAL

Because a crystal can be regarded as a huge molecule consisting of about
as many as Avogadro’s number of atoms or ions, calculation of the crystalline
electronic structure and properties may appear as an unattainable problem.
Fortunately, however, crystals exhibit a very important symmetry property:
They are translation invariant by definition. In fact, a perfect crystal consists
of a three-dimensional array of atoms, ions, or molecules, a few of which form
a spatial pattern that is repeated identically throughout the crystal. Clever
exploitation of this symmetry property makes the computational problem sol-
vable, and the theory, on which the solution is based, is known as band theory.
The application of band theory to the study of periodic systems requires the
knowledge of a specific language and some understanding of the properties
of translation symmetry. In this section, a few basic concepts of crystallogra-
phy and band theory will be introduced with reference to some elementary
definitions as well as the discussion of a few simple examples, which are aimed
to show how band structure and properties originate and to provide a little
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insight into the methods applied in the calculation of the electronic structure of
matter in the condensed phase.

What is the main difference between studying the electronic structure of
a molecule in the gas phase and in condensed phase? In the gas phase, because
of the low density and large kinetic energies, molecules interact only during
collisions, which may promote them to an excited state. However, either
before or after such a brief collision, a molecule is essentially not influenced
by the other molecules. Thus, as far as we are not interested in molecular
dynamics and thermodynamic properties, the electronic structure in the
ground or in any excited state can be studied for only one isolated molecule.

For example, if we are interested in studying ammonia in the gas phase,
we can consider only one ammonia molecule, like in Figure 1. The positions of
the nitrogen and hydrogen atoms, defined in the Cartesian coordinates or
through a set of internal coordinates, are the only information necessary to
compute the molecular wave function by ab initio methods.

On the contrary, at very high pressure or low temperature, ammonia
molecules interact with each other and pack together to form a crystalline
phase, known as phase I,85 where the number of molecules involved is indeed
large. Even the definition of the composition and geometry of a crystal is not as
simple as for molecules. However, the arrangement of the molecules in a crys-
tal must satisfy the condition of maximizing intermolecular attractive interac-
tions, which imposes some severe constraints on their mutual orientations. In
fact, observing an ammonia crystal carefully (Figure 2), it is possible to iden-
tify a set of four molecules that, when translated along each side of the cube by
a multiple of the entire length, overlap with another set of four identical mole-
cules exactly, because of translation invariance. Crystallography provides a
mathematical description of this kind of object along with the tools for mana-
ging such complex systems.

The Direct Lattice

The crystallographer’s view of a crystal86 starts from the definition of a
lattice: A lattice is a collection of points repeated at intervals of length a1, a2

and a3 along three non-coplanar directions, indefinitely. The three constants
a1, a2, and a3 are called lattice parameters, and the vectors a1, a2, and a3,
oriented in the same three non-coplanar directions with the lattice parameters

Figure 1 Ammonia molecule.
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as norms, are the basis vectors. Lattice parameters and angles between the lat-
tice vectors are collectively called cell parameters.
A vector g joining any two lattice points is a lattice vector. Every lattice vector
can always be expressed by the basis vectors and three integer coefficients n1,
n2, and n3:

g ¼ n1a1 þ n2a2 þ n3a3 ½1�

Basis vectors a1, a2, and a3 define a parallelepiped called the unit cell, which is
primitive, because it contains one lattice point. All cells that are obtained by
translation of this unit cell, the origin cell, through the application of all vec-
tors g in Eq. [1], fill the space completely. Then, the entire lattice can be sub-
divided into cells and every vector g can be used to label a cell with respect to
the origin cell, or 0-cell. Actually, the definition of a unit cell is arbitrary, and
many (an infinite number) different possible choices exist, because all cells
containing the same number of lattice points are equivalent. The actual shape
of a unit cell depends on the lattice type.

Primitive three-dimensional lattices have been classified into seven crys-
talline systems: triclinic, monoclinic, orthorombic, tetragonal, cubic, trigo-
nal, and hexagonal. They are different in the relative lengths of the basis
vectors as well as in the angles they form. An additional seven nonprimitive
lattices, belonging to the same crystalline systems, are added to the seven pri-
mitive lattices, which thus completes the set of all conceivable lattices in ordin-
ary space. These 14 different types of lattices are known as Bravais lattices
(Figure 3).

Figure 2 Crystal packing for phase I of solid ammonia.

8 Ab Initio Quantum Simulation in Solid State Chemistry



Figure 3 Bravais lattices. Symbols P, F, and I denote primitive, face-centered, and body-
centered lattices, respectively. a, b, and g are the angles between the b and c, a and c, and
a and b basis vectors.
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Filling the unit cell of a lattice with matter in a well-defined geometrical
arrangement and applying the translation pattern permits the creation of an
ideal crystal. Crystals usually exhibit point symmetry in addition to the set
of translations. Point and translation symmetries combine to form a space
group. It has been demonstrated that in ordinary space, only 230 of these dif-
ferent possible combinations exist and every space group refers to only one
particular Bravais lattice. Space groups are fully characterized in the Interna-
tional Tables of Crystallography.87 Every group is identified by a symbol (Her-
mann–Mauguin) that specifies it completely (the Schönflies notation, which is
more frequently used for molecules, is also available, but it is less adequate to
describe translational properties). Some points in the cell are invariant to one
or more symmetry operations of the space group. In those cases, the number of
symmetry equivalent points in a cell, or multiplicity, is smaller than the total
number of symmetry operations. Such a point is called a special position,
whereas every other point is referred to as a general position. The minimal
set of atoms, either in special or general positions, which generates the com-
plete unit cell after application of all space group symmetry operations, is
referred to as the asymmetric unit.
In summary, specifying the geometry of a crystal requires the following infor-
mation:

� Space group

� Cell parameters

� Type and position of the atoms in the asymmetric unit

The position r of an atom in the unit cell is usually not expressed in terms
of Cartesian coordinates, but in terms of fractional coordinates x1, x2, x3 such
that

r ¼ x1a1 þ x2a2 þ x3a3 ½2�

x1, x2, and x3 are pure numbers, as coefficients of the lattice basis vectors.
Atoms with fractional coordinates all in the range between 0 and 1 belong
to the 0-cell.

The parallelepiped in Figure 2 is the unit cell of the ammonia crystal
phase I. Thus, the ammonia crystal can be regarded as the combination of a
pattern of four ammonia molecules (16 atoms) in the unit cell with all possible
translations in a cubic primitive lattice. Considerations about crystalline sym-
metry lead to the conclusion that ammonia in phase I crystallizes according to
space group P213. Letter P in the symbol stands for primitive lattice, and the
other symbols denote the main symmetry operations. The last element in the
symbol, 3, indicates the presence of a three-fold axis not aligned with the prin-
cipal rotation axis (if it was, it would follow letter P), which further indicates
that the lattice is cubic. A cubic unit cell is completely specified by just one
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lattice parameter, with the basis vectors all at right angles having the same
norm. Because of the symmetry, only two atoms are in the asymmetric unit:
one N and one H atom, so that only six fractional coordinates need to be spe-
cified. N is in a special position (along a three-fold axis) with multiplicity 4,
whereas H is in a general position and has multiplicity 12, i.e., the number of
point symmetry operations in the group.

When modeling a polymer or a surface, translation invariance is
restricted to only one or two independent directions, instead of three. Space
groups cannot characterize the symmetry of one-dimensional and two-dimen-
sional periodic systems, and we need to refer to special subgroups of the space
groups, the 75 rod groups and the 80 layer groups, respectively, which include
the symmetry of all possible arrangements of three-dimensional objects (mole-
cules or sets of atoms) in one-dimensional and two-dimensional lattices. Most
of the considerations about the space groups are still valid for the rod and
layer groups, with the exception of the classification of lattices, which is inti-
mately related to the type of periodicity.

From here on, we will refer to ordinary space as the direct space, in order
to contrast it to the reciprocal space, which is introduced in the next para-
graph.

The Reciprocal Lattice

Every direct lattice admits a geometric construction, the reciprocal lat-
tice, by the prescription that the reciprocal lattice basis vectors (b1, b2, b3)
obey the following important orthogonality rules relative to the direct lattice
basis vectors (a1, a2, a3):

ai � bj ¼ 2p dij ½3�

which implies that every reciprocal lattice basis vector (normalization to 2p) is
orthogonal to the plane of the corresponding direct lattice basis vectors with
unequal indices (dij is 1 if i equals j and 0 when i is different from j).

Like in direct space, any reciprocal lattice vector can be expressed as a
linear combination of the basis vectors with integer coefficients such as

K ¼ K1b1 þ K2b2 þ K3b3 ½4�

Among all possible equivalent choices of a unit cell in the reciprocal lattice,
one is particularly useful. It can be obtained by connecting one reciprocal lat-
tice point to all its nearest neighbors and letting orthogonal planes pass
through their midpoints. The volume within these planes is known as the first
Brillouin zone. It includes all points that are closer to that reciprocal lattice
point than to any other lattice point.
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Bloch Theorem and the Periodic Boundary Conditions

A real crystal is a finite macroscopic object made of a finite, although
extremely large, number of atoms. However, the ratio of the number of atoms
at the surface to the total number of atoms in the crystal, N, is very small, and
proportional to N�1=3. When N is large and the surface is neutral, the pertur-
bation caused by the presence of the boundary is limited to only a few surface
layers and, therefore, has no influence on the bulk properties. For this reason,
a macroscopic crystal mostly exhibits properties and features of the bulk mate-
rial, and unless attention is deliberately focused onto the crystal boundary,
surface effects can be thoroughly neglected. If this is the case, the crystallo-
graphic model of an infinite and translation-invariant crystal fits in the aim
of studying bulk properties.

The potential energy of such a crystal must be a periodic function with
the same periodicity as the lattice, so that for a translation by any direct lattice
vector g, the potential energy does not change

Vðr� gÞ ¼ VðrÞ ½5�

Because of symmetry requirements, the Schrödinger equation

ĤHðrÞ�ðrÞ ¼ E�ðrÞ ½6�

must also be translation invariant, which is equivalent to the requirement
that, after a translation of the entire crystal by g, the solutions of equation

ĤHðr� gÞ�ðr� gÞ ¼ E�ðr� gÞ ½7�

coincide with those of Eq. [6]. It has been demonstrated88 that eigenfunctions
with the correct symmetry relative to a potential of the form of Eq. [5] must
obey the Bloch theorem, stating that

�ðrþ g; kÞ ¼ eik�g �ðr; kÞ ½8�

and providing a relation between the values of an eigenfunction at equivalent
points in the lattice, which indicates that its periodicity is generally different
from that of the lattice. As � verifies the Bloch theorem, it is called the Bloch
function and is a function of the position in space r and the wave vector k.
Parameter k labels the different solutions to Eq. [6].

The equivalence of Eq. [6] and Eq. [7] can be verified easily, by suppos-
ing that the Bloch function �ðr; kÞ be an eigenfunction of the Hamiltonian in
Eq. [6]. In this case, Eq. [7] can be rewritten as

ĤHðr� gÞ�ðr� g; kÞ ¼ EðkÞ�ðr� g; kÞ ½9�
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However, by using the Bloch theorem and considering that ĤHðr� gÞ is equiva-
lent to ĤHðrÞ as an obvious consequence of the form of the crystalline potential
(Eq. [5]), we obtain Eq. [6] again

ĤHðrÞe�ik�g �ðr; kÞ ¼ EðkÞe�ik�g �ðr; kÞ ½10�

where e�ik�g is simply a constant factor with unitary module (the eigenfunc-
tions of an operator can always be multiplied by any arbitrary constant fac-
tor).

What is the form of Bloch functions? Equation [8] implies that a Bloch
function can be written as the product of a plane wave and a periodic function
uðr; kÞ with the same periodicity of the lattice:

�ðr; kÞ ¼ eik�r uðr; kÞ ½11�

In fact, Eq. [8] is immediately verified in this case:

�ðrþ g; kÞ ¼ eik�ðrþgÞ uðrþ g; kÞ ¼ eik�g eik�r uðr; kÞ ¼ eik�g �ðr; kÞ ½12�

Bloch functions span an infinite crystal and do not decay to zero at infinity. To
circumvent the problem of normalizing a wave function with infinite extent, it
is easier to consider a finite crystal consisting of N ¼ N1 
N2 
N3 cells and
then let N grow to infinity. To preserve periodicity, periodic boundary condi-
tions are imposed, which can be stated in the following form: If Nj cells exist
along the j-th direction ðj ¼ 1; 2; 3Þ in the macroscopic crystal, it must happen
that for any integer m and every j

�ðrþm Njaj; kÞ ¼ �ðr; kÞ ½13�

as if the crystal was a three-dimensional infinite array of identical and contig-
uous finite crystals with the shape of a parallelepiped, each consisting of N pri-
mitive cells. However, according to the Bloch theorem (Eq. [8])

�ðrþm Njaj; kÞ ¼ ei m Njk�aj�ðr; kÞ ½14�

and, on comparing these two expressions, it is evident that the phase factor
must be equal to one

ei m Nj k�aj ¼ ei m Nj kj�aj ¼ 1 ½15�

But, if the component kj of the wave vector is defined as

kj ¼
nj

Nj
bj ½16�
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with nj being an integer, by Eq. [3], k can be interpreted as a point in the reci-
procal lattice. Therefore, N of k points exist in every reciprocal lattice cell,
each of which can be written by the reciprocal lattice basis vectors as

k ¼ n1

N1
b1 þ

n2

N2
b2 þ

n3

N3
b3

� �
½17�

If nj is such that f � nj < Nj for every j k belongs to the origin cell of the reci-
procal lattice.

When N1, N2, N3 are allowed to approach infinity, the number of k
points in every reciprocal lattice cell also tends to infinity until they completely
fill the space, so that k can be considered as a continuous variable.

Bloch functions also have interesting translational properties in the reci-
procal space, which can be investigated by considering a new point h ¼ kþ K,
obtained by a translation of the wave vector k by any reciprocal lattice vector
K (Eq. [4]), and then applying Eq. [8] to the corresponding Bloch function
�ðr; hÞ. By comparison with Eq. [8] and with Eq. [3], it is evident that
�ðr; hÞ exhibits the same translational properties as �ðr; kÞ

�ðrþ g; hÞ ¼ eiðkþKÞ�g �ðr; kþ KÞ ¼ eik�g �ðr; hÞ ½18�

so that both �ðr; hÞ and �ðr; kÞ can be referred to the same k and are accep-
table eigenfunctions for that k in Eq. [6]. This behavior of Bloch functions in
reciprocal space has the important consequence that the analysis can be
restricted to the first Brillouin zone.

Another very important property of Bloch functions is related to the eva-
luation of the following integral extended to the entire space, which involves a
function f(r) with the same periodicity of the lattice:

f ðk; k0Þ ¼
ð
�ðr; k0Þ½ � f ðrÞ�ðr; kÞdr ½19�

with k and k
0 being points in the first Brillouin zone. In accordance with

the property of Bloch functions in the reciprocal space just shown, the perio-
dic component of a Bloch function referred to as k (Eq. [11]) can be expanded
into a linear combination of those plane waves for which the wave vector
is obtained by addition of all reciprocal lattice vectors to the corresponding
k:

uðr; kÞ ¼
X

K

cKeiðkþKÞ�r

uðr; k0Þ ¼
X
K0

cK0e
iðk0þK0Þ�r

½20�
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where cK and cK0 are the expansion coefficients. Similarly, also f ðrÞ, having the
same periodicity as uðr; kÞ and uðr; k0Þ, can be expanded in terms of plane
waves, with k ¼ 0

f ðrÞ ¼
X
K00

dK00e
iK00 �r ½21�

Now the integral can be calculated through the evaluation of the following
three infinite sums of integrals involving plane waves only:

f ðk; k0Þ ¼
X

K

cK

X
K0

cK0
X
K00

dK00

ð
ei kþKþK00ð Þ�rei k0þK0ð Þ�rdr ½22�

and for the orthogonality of plane waves, these terms are zero unless
kþ Kþ K00 ¼ k

0 þ K0. By Eq. [4] and Eq. [17], it is clear that this condition
is fulfilled only if k ¼ k

0.
All integrals that need to be calculated in Eq. [6] are of this kind, as the

potential energy term is a periodic function of the lattice, like f ðrÞ, and the
kinetic energy term involves second derivatives of uðr; kÞ with respect to r,
which have the same periodicity as uðr; kÞ.

We could also arrive at the same conclusion in a different way by obser-
ving that Bloch functions are the eigenfunctions of translation operators and of
all operators commuting with translation operators, like the Hamiltonian for a
periodic system. Then, Bloch functions are bases for the irreducible represen-
tations for the group of the lattice translations, each one corresponding to one
wave vector k, and it is known from group theory that basis functions belong-
ing to different irreducible representations are mutually orthogonal.

Therefore, great advantage exists in representing the Hamiltonian of a
periodic system, where the potential energy operator has the form of Eq. [5],
in Bloch functions. In fact, in this basis, the Hamiltonian matrix is block-diag-
onal (Figure 4), with each block referring to one particular point k in the reci-
procal space.

Suppose we have a finite basis set of nf Bloch functions. The Hamilto-
nian matrix represented in this basis, then, consists of diagonal blocks of

Figure 4 Transformation of the infinite Hamiltonian matrix when expressed in the basis
of Bloch functions.
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nf 
 nf elements, with each block referring to an individual k point and being
completely independent of all the others, such that the elements of a block do
not interact with those of others blocks and can, therefore, be treated sepa-
rately. Unfortunately, an infinite number of such factorized finite-sized blocks
exists. In other words, Bloch functions as a basis set allows us to transform a
problem of infinite size into an infinite number of problems of finite size.
Nevertheless, what may appear as a poor advantage actually represents a great
improvement, owing to the usually smooth change of the eigenvalues and the
eigenvectors with k. Therefore, it is generally possible to sample matrix H at a
finite number of points and solve the Schrödinger equation for a periodic sys-
tem at different points in the first Brillouin zone:

ĤH �nðr; kÞ ¼ EnðkÞ�nðr; kÞ ½23�

If sampling is convenient, the number of k points to be considered is usually
relatively small and solving the Schrödinger equation in the reciprocal space is
a feasible method.

One-Electron Electrostatic Hamiltonian

If ĤH is the one-electron electrostatic Hamiltonian, based on the Born–
Oppenheimer approximation, the solutions to Eq. [23] are called crystalline
orbitals (CO). They are linear combinations of one-electron Bloch functions
(Eq. [8])

�nðr; kÞ ¼
X

j

cjnðkÞ�jðr; kÞ ½24�

with coefficients cjn to be determined. In the basis of Bloch functions, Eq. [23]
can be written in the form of a matrix equation:

HðkÞCðkÞ ¼ SðkÞCðkÞEðkÞ ½25�

where the size of all matrices is equal to the number of Bloch functions in the
basis and SðkÞ is the overlap matrix, which accounts for nonorthogonal basis
sets. C(k), the matrix of coefficients, is constrained by the following orthonor-
malization condition (I is the identity matrix):

CðkÞ SðkÞCyðkÞ ¼ I ½26�

Atomic orbitals (AO) and plane waves are common choices to represent Bloch
functions. Both choices would be equivalent, in principle, if an infinite basis set
was considered, but they are not equivalent in the practical case of a finite
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basis set. The use of AOs is better linked to the chemical experience of mole-
cular codes and is particularly suitable to the description of crystals with che-
mical bonds. On the contrary, the description of free or nearly free electrons in
conductors is hard to achieve in local functions and the addition of new func-
tions to the AO basis set rapidly leads to saturation, which causes numerical
instability because of quasi-linear dependence problems. Plane waves are more
suitable to the case of metals and, in general, to the description of delocalized
electrons. Another advantage of using plane waves is that the mathematics
involved in the use of plane waves is usually much easier.

Any method of solution of Eq. [25] is specific of the kind of basis set
used. In the remaining part of this chapter, we will always refer to the use
of one-electron local basis sets within the linear combination of atomic orbi-
tals (LCAO) method. Accordingly, nf AOs in the 0-cell are chosen and repli-
cated in the other cells of the crystal to form the periodic component uðr; kÞ of
nf Bloch functions. In particular, by denoting the m-th AO, with the origin at rm
in the 0-cell, as wmðr� rmÞ and the corresponding AO in a different cell, the g-
cell, as wmðr� rm � gÞ or, equivalently, wg

mðr� rmÞ, the expression used for
umðr; kÞ consists of a linear combination of the equivalent AOs in all N cells
of the crystal:

umðr; kÞ ¼
1ffiffiffiffiffi
N
p e�ik�r

X
g

eik�gwg
mðr� rmÞ ½27�

The translation invariance of umðr; kÞ is obvious because the sum is extended to
all cells in the crystal. In fact, if a translation by lattice vector l is applied

umðr� l; kÞ ¼ 1ffiffiffiffiffi
N
p e�ik�r

X
g

eik�ðgþlÞ wgþl
m ðr� rmÞ ¼

1ffiffiffiffiffi
N
p e�ik�r

X
m

eik�mwm
m ðr� rmÞ

¼ umðr; kÞ ½28�

umðr; kÞ is verified to be periodic throughout the direct lattice (the equivalence
of the sum over lattice vectors m ¼ gþ l and the sum over g originates from
translation invariance and the periodic boundary conditions).

The corresponding Bloch function is immediately obtained from Eq. [11]
after substitution of umðr; kÞ:

�mðr; kÞ ¼
1ffiffiffiffiffi
N
p

X
g

eik�gwg
mðr� rmÞ ½29�

Apart from a few starting elementary examples, all results that will be pre-
sented in this chapter have been obtained with the approximations presently
available in the CRYSTAL code.56 The method 89 of solving the Schrödinger
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equation in CRYSTAL is similar in many respects to that used in molecular
codes based on the usage of Gaussian basis sets. For example, finding
Hartree–Fock eigenvalues and eigenvectors for a molecule requires the follow-
ing steps:

1. Forming the basis of the AOs from contractions of Gaussian functions
(linear combinations of a set of functions with constant coefficients)
times angular functions followed by evaluating the overlap matrix S in this
basis set.

2. Evaluating Fock matrix elements ðFmnÞ for all pairs of AOs in the local basis
set, consisting of a sum of the following contributions: kinetic energy (T)
terms, electron–nuclear (Z) interactions, and electron–electron Coulomb
(C) and exchange (X) interactions

Fmn ¼ Tmn þ Zmn þ Cmn þXmn ½30�

3. Solving Roothaan equations, FC ¼ SCE, for E and C with the normal-
ization condition

CySC ¼ I ½31�

4. Forming the density matrix from the eigenvectors of the occupied states
with generic element

Pmn ¼
Xocc:

n

CmnCnn ½32�

5. Calculating the total energy according to the formula

Et ¼ N þ 1

2

X
m;n

PmnðTmn þ Zmn þ FmnÞ ½33�

which contains the internuclear repulsion energy N and a double sum over
the AOs of one-electron terms.

Because the calculation of the electron–electron contributions to F in step
2 involves knowledge of the density matrix, the Roothaan equations are solved
iteratively by repeating steps 2–4 to self-consistency.

It is now possible to compare the molecular scheme with the main steps
of the CRYSTAL program:

1. Forming the basis of Bloch functions as linear combinations of the local
basis of the AOs (Eq. [29]), in turn expressed as contractions of Gaussian
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functions times angular functions, followed by evaluating the overlap
matrix in the local basis set.

2. Evaluating Fock ðFg
mnÞ matrix elements in direct space in the local basis set;

the average value of the Fock operator with respect to the AOs wmðr� rmÞ in
the 0-cell and wg

nðr� rnÞ in the g-cell is calculated as a sum of the following
contributions:

Fg
mn ¼

�
wm
��F̂F��wg

n

�
¼ Tg

mn þ Zg
mn þ Cg

mn þXg
mn ½34�

Every matrix element is properly identified by the three indices m, n, and g,
which specify the two AOs and the direct lattice vector g labeling the cell
where the n-th AO is centered because, in principle, the origin of wg

nðr� rnÞ
can be anywhere in the crystal. The possibility of always referring wm to the
0-cell is because of translation invariance of the integrals in the local basis,
for example:

�
wg0

m

��F̂F��wg
n

�
¼
�
w0
mjF̂Fjwg�g0

n

�
¼
�
w0
mjF̂Fjwm

n

�
½35�

with m ¼ g� g0 being a direct lattice vector.
3. Representing S and F matrices in the Bloch function basis set at every k

point of the sampling set. In this basis, the expression of the matrix
elements contains a double sum over the direct lattice vectors. For example,
a generic element of the Fock matrix represented in the reciprocal space is
given by

FmnðkÞ ¼
�
�mðkÞ

��F̂F���nðkÞ
�
¼ 1

N

X
g0

X
g

eik�ðg�g0Þ�wg0

m

��F̂F��wg
n

�

Nevertheless, by taking Eq. [35] into account, the double sum reduces to N
times a single sum and the expression can be simplified to

FmnðkÞ ¼
X

m

eik�m�w0
mjF̂F
��wm

n

�
½36�

This last equation can be interpreted as a Fourier transform of the Fock
matrix from direct to reciprocal space.

4. Solving the Schrödinger equation with the orthonormality condition [26] at
every k

FðkÞCðkÞ ¼ SðkÞCðkÞEðkÞ ½37�

5. Determining the Fermi energy, EF, which is the highest energy value of an
occupied state in the system inside the first Brillouin zone.
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6. Forming the density matrix P and Fourier anti-transforming it to direct
space

Pg
mn ¼

1

VBZ

X
n

ð
BZ

eik�gCmnðkÞCnnðkÞy EF � EnðkÞð Þdk ½38�

Here the sum over k points has become an integral over the first Brillouin
zone (with volume VBZ), because it has already been shown that k can be
considered as a continuous variable. By limiting the integration to states
with energy below EF, a Heaviside step function y permits us to exclude
the eigenvectors relative to empty states from the sum. The reason why
this cannot be achieved by simply truncating the sum over the eigenvectors,
like in the molecular case, will be clear when the main features of band
structure are illustrated later on in this chapter.

7. Calculating the total energy per cell as

Et ¼ N þ 1

2

X
m;n

X
g

Pg
mnðT

g
mn þ Zg

mn þ Fg
mnÞ ½39�

The total energy of an infinite crystal is obviously infinite and has no phy-
sical meaning, but the total energy per cell, which includes the interaction
of the nuclei and electrons in the 0-cell with all nuclei and electrons in the
crystal, is finite. In this expression, a new sum over the infinite direct lattice
vectors appears.

Again, steps 2–6 are iterated to self-consistency. Basically, two aspects
are specific for the application of this method to solids: the calculation of
matrices in direct space, which involve multiple sums over all the infinite direct
lattice vectors, and the integration in reciprocal space. This latter aspect will
be discussed with reference to a few specific examples in the next sections.

As an example of the problems involved in the evaluation of matrix ele-
ments for a periodic system, we consider the explicit form of the Coulomb
electron–electron repulsion term in Eq. [34]

Cg
mn ¼

X
l

X
l

X
r

X
m

Pm�l
lr wmw

l
l

1

r12

����
����wg

nw
m
r

	 

½40�

where the three-index notation can be used for the density matrix elements, as
a consequence of translation invariance, and wm and wg

n in the two-electron
integrals refer to electron 1, whereas wl

l and wm
r refer to electron 2, with r12

being the mutual distance between electrons. The presence of the two infinite
sums over the direct lattice vectors in Eq. [40] complicates the calculation of
these terms dramatically. Thus, it is really the system size and the amount of
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long-range interactions involved that make high accuracy and numerical
stability important and more demanding targets than in molecular cases.
Finding a solution to this problem has required a deep analysis of the
convergence properties48–50,54,55 of the series to be evaluated. This analysis
has resulted both in the formulation of convenient truncation criteria and in
the application of Ewald’s52 method to the calculation of long-range
interactions in the slowly convergent Coulomb series. Fortunately, a local
basis set is suitable to the definition of series truncation schemes, because an
estimate of the importance of interparticle interactions is relatively easy in
direct space.

DISCUSSION OF BAND STRUCTURE THROUGH A
FEW SIMPLE EXAMPLES

A Monoatomic Linear Chain

The simplest case of a periodic model that one can imagine is a polymer
with an atom per cell and one electron per atom, as depicted in Figure 5.

All atoms are equivalent by translation a. Although this is only a simpli-
fied ideal situation, it is used as a first example in many introductory textbooks
on physical chemistry and solid state physics, because it is a problem simple
enough to be treated analytically, especially if an easy approximation such
as Hückel’s model Hamiltonian is applied. Several important simplifications
in Hückel’s model make the calculation very easy, while preserving the main
topological characteristics of the system. In this simple model, only one pz AO
is considered for each atom. The different orbitals will be identified by the g
lattice vector of the cell in which they are centered and denoted as pg

z . Hückel’s
approximation prescribes simple rules for the determination of the overlap and
the Hamiltonian matrices with two parameters, a and b:

�
pg

z j pl
z

�
¼ dgl

�
pg

z

��ĤH��pl
z

�
¼

a g ¼ l
b jl� gj ¼ a
0 jl� g > aj

8<
: ½41�

Before evaluating HðkÞ and SðkÞ following Hückel’s prescriptions, a basis set of
Bloch functions must be defined in the local basis of the pz AOs in the polymer

a

Figure 5 Schematic representation of a Bloch function for a monoatomic linear chain.
A black circle represents a pz AO.
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according to Eq. [29]. However, this case is particularly simple, because there
is only one atom in each cell and we are considering only one AO per atom
(Figure 5). Therefore, only one Bloch function can be generated

�ðr; kÞ ¼ 1ffiffiffiffiffi
N
p

X
g

eik�gpg
zðrÞ ½42�

and all matrices are one-dimensional, i.e., all terms in Eq. [25] are actually sin-
gle-variable functions of k.

Because the basis set is minimal (only one Bloch function per k point),
this Bloch function is itself an eigenfunction of the Hamiltonian. With this
basis set, S takes the form:

SðkÞ ¼ h�ðkÞj�ðkÞi ¼ 1

N

X
g;l

eik�ðl�gÞ�pg
z jpl

z

�
½43�

but, because of translation invariance, the overlap depends only on the dis-
tance between the AOs, so that any integral can be translated into the refer-
ence cell and any linear combination of lattice vectors is, again, a lattice
vector, say m ¼ l� g. For these reasons, the double sum in the expression of
SðkÞ reduces to N times a single sum (like in Eq. [36]), and on the basis of
Hückel’s rules, SðkÞ results to be constant in k

SðkÞ ¼ 1

N

X
g;l

eik�ðl�gÞ�p0
z

��pl�g
z

�
¼
X

m

eik�m�p0
z

��pm
z

�
¼
X

m

eik�mdm0 ¼ 1 ½44�

Function HðkÞ is obtained in a similar way

HðkÞ ¼
�
�ðkÞ

��ĤH���ðkÞ� ¼ 1

N

X
g;l

eik�ðl�gÞ�pg
z

��ĤH��pl
z

�
¼

¼ eik�0aþ eik�abþ e�ik�ab ¼ aþ 2b cosðkaÞ
½45�

In this simple case, both CðkÞ and SðkÞ are constant and equal to 1; thus, the
eigenvalue E(k) coincides with HðkÞ. It is apparent that the eigenvalue spec-
trum of a periodic system like this polymer does not consist of discrete energy
levels as occurring in the case of an atom or a molecule (it would consist of a
single level for one atom of this polymer). Instead, the eigenvalue spectrum
includes all possible energy values within a definite range (between aþ 2b
and a� 2b), forming a band, as represented in Figure 6 (parameters a and b
are both negative).
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A Two-Dimensional Periodic Example: Graphite

As a second example, we consider graphite. Although graphite in a pencil
consists of a large number of layers of the type represented in Figure 7, it is
well known that we can use a pencil for writing or drawing because the inter-
layer interactions are weak, much weaker than the intralayer interactions, and
difficult to render computationally if we are not using sophisticated methods.
For this reason, a single layer of graphite is a good model, which will be used
in this example.

A layer of graphite can be considered as infinite and periodic in two
dimensions. Graphite has a planar hexagonal structure. It belongs to a layer
group that is derivable from the P6/mmm space group, containing 24 symme-
try operations.

The unit cell has the shape of a rhomb with angles of 60� and 120� (Fig-
ure 7). The point symmetry elements (six-fold axis normal to the plane, six
two-fold rotation axes in the plane, six mirrors normal to the plane, and
one in the plane, inversion) pass through the unit cell origin, at the center of
the hexagons. There are two symmetry-related carbon atoms in the unit cell,
labeled as A and B in Figures 7 and 9, with fractional coordinates (1/3, 2/3) and

Figure 6 Hückel p-band of a monoatomic linear chain in the first Brillouin zone.

Figure 7 Graphite layer.
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(2/3, 1/3), respectively. Each atom of type A is surrounded by three atoms of
type B, and vice versa.

The reciprocal lattice is again hexagonal, as an obvious consequence of
the basis vectors b1 and b2 being orthogonal to a1 and a2, according to Eq. [3].
The first Brillouin zone has the shape of a hexagon as in Figure 8, with its cen-
ter at the lattice origin, where k ¼ 0. The shaded triangle in the picture repre-
sents the asymmetric unit in the Brillouin zone. Special symbols have been
assigned to the points at the vertices of the triangle, which correspond to spe-
cial positions in the reciprocal lattice. Denoting k points by their components
along b1 and b2 as (b1, b2), M identifies the point at the top of the triangle with
components (½, 0), K denotes point (1/3,1/3), and � is the lattice origin (0, 0).
Actually, � identifies the origin in any reciprocal lattice.

Also in this case, p electron bands can be studied with Hückel’s approx-
imation by representing all matrices in a basis set of two Bloch functions from

Figure 8 Graphite reciprocal lattice.

Figure 9 Representation of Bloch functions for graphite. A circle represents a pz AO.
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pzA and pzB AOs according to Eq. [29]

�Aðr; kÞ ¼
1ffiffiffiffiffi
N
p

X
g

eik�gpg
zAðrÞ �Bðr; kÞ ¼

1ffiffiffiffiffi
N
p

X
g

eik�gpg
zBðrÞ ½46�

At each k point, H, S, C, and E in Eq. [25] are 2
 2 matrices in the basis of �A

and �B. Again, H and S must be computed to find the unknown matrices C
and E. For symmetry reasons, only the asymmetric part of the Brillouin
zone needs to be explored instead of the entire zone, and because the full repre-
sentation of a p-type band structure for graphite would be three-dimensional,
we can start by exploring a representative monodimensional path (as is usually
done for three-dimensional structures). The most obvious choice is the triangle
perimeter, and in particular, the special positions �, M, and K are expected to
be topologically interesting for their symmetry properties.

During the calculation of S and H, it must be taken into account that,
because of the symmetry equivalence of the carbon atoms, SAAðkÞ ¼ SBBðkÞ
and HAAðkÞ ¼ HBBðkÞ, whereas HABðkÞ ¼ H

y
BAðkÞ for hermiticity. Moreover,

Hückel’s rules imply that SðkÞ is the identity matrix of order 2, completely
independent of k. In fact, diagonal elements can be computed in exactly the
same way as for the linear chain, even though the geometry is different in
this case, and the off-diagonal elements are zero because of Hückel’s ortho-
gonality assumption. Consequently, Eq. [25] becomes

HðkÞCðkÞ ¼ CðkÞEðkÞ ½47�

We start by computing matrix H at �. This is a peculiar point because each of
the two Bloch functions in Eq. [46] reduces to a simple sum of all AOs of that
type (A or B) in the lattice (all factor phases are 1 when k ¼ 0).

HAA can be calculated in a similar way as for the linear chain, because a
carbon atom does not have any nearest neighbor of the same type, as can be
easily seen in Figure 9. Applying Hückel’s rules, we find:

HAAð0Þ ¼
�
�Að0Þ

��ĤH���Að0Þ
�
¼ 1

N

X
g;l

�
pg

zA

��ĤH��pl
zA

�
¼
X

m

�
p0

zA

��ĤH��pm
zA

�
¼
�
p0

zA

��ĤH�� p0
zA

�
¼ a ½48�

This result is actually unrelated to the choice of �, but it comes from the fact
that all three nearest neighbours of atom A are type-B atoms. Therefore, the
same value of HAA is to be expected at any k point. For this reason, the calcu-
lation of this element will not be repeated in the following cases.

The value of HAB(0) is, again, determined by the number of neighboring
atoms of carbon A. In fact, only the pzB AOs in the 0, �a1, and a2 cells can
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contribute a nonzero interaction with pzA in the 0-cell:

HABð0Þ ¼
�
�Að0Þ

��ĤH���Bð0Þ
�
¼
X

m

�
p0

zA

��ĤH��pm
zB

�
¼ 3b ½49�

Equation [25] at � can now be solved by imposing the condition that the fol-
lowing determinant annihilates:

Hð0Þ � E�I
�� �� ¼ a� E� 3b

3b a� E�

����
���� ¼ 0 ½50�

which implies that two possible energy values exist at �

E�
� ¼ a� 3b ½51�

The corresponding eigenfunctions are obtained by replacing each of the two
values of E� in Eq. [47] in turn (Eþ and E� to obtain �þ and ��, respectively)
and imposing the normalization condition of

c2
A þ c2

B ¼ 1 ½52�

The solution of this two-equation system with two unknown coefficients is a
fully constrained algebraic problem, which leads to a symmetric and an anti-
symmetric linear combination of Bloch functions, as a consequence of the
equivalence of carbon atoms of types A and B. These solutions correspond
to p-bonding and p-antibonding COs having the following form:

��
þðrÞ ¼

1ffiffiffi
2
p �Aðr; 0Þ þ �Bðr; 0Þ½ � ��

�ðrÞ ¼
1ffiffiffi
2
p �Aðr; 0Þ � �Bðr; 0Þ½ � ½53�

which are represented schematically in Figure 10. The AOs in ��
þ are all in

phase and define a totally symmetric combination, which is known to corre-
spond to the most stable state. Contrarily, the antibonding CO represents the
most unstable state, where the number of nodal planes is maximum.

At point M, taking Eq. [3] into account, Bloch functions can be written
as

�A r;Mð Þ ¼ 1ffiffiffiffiffi
N
p

X
n1;n2

e
i
2b1�ðn1a1þn2a2Þpn1a1þn2a2

zA ðrÞ ¼ 1ffiffiffiffiffi
N
p

X
n1;n2

ein1ppn1a1þn2a2

zA ðrÞ ½54�
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Because n1 and n2 are integers, the phase factor can be evaluated straight-
forwardly, as

�A r;Mð Þ ¼ 1ffiffiffiffiffi
N
p

X
n1;n2

ð�1Þn1pn1a1þn2a2

zA ðrÞ ½55�

and similarly for �B. The form of �A implies an inversion of the sign of the
AOs at M when n1 is odd, so that the AOs change their signs every time n1

is incremented by 1. This change corresponds to the alternation of the rows
of the AOs with positive and negative signs along the direction of a1, like a
wave, as shown in the left picture in Figure 11, where �A and �B are combined
in phase.

In this basis set and considering that two of the nearest neighbors of
atom A (see Figure 11) are associated with a phase factor with the same
sign, whereas the third nearest neighbor has opposite sign:

HABðMÞ ¼ h�AðMÞjĤHj�BðMÞi ¼
X

m1;m2

ð�1Þm1
�
p0

zA

��ĤH�� pm1a1þm2a2

zB

�
¼ ð2� 1Þb ¼ b ½56�

In this case, the solution of Eq. [47] implies the fulfilment of the following con-
dition:

a� EM b
b a� EM

����
���� ¼ 0 ½57�

Figure 10 Representations of bonding ��
þðrÞ and antibonding ��

�ðrÞ p-crystalline orbi-
tals at � in graphite. Black and gray circles represent the positive and negative signs of
each pz AO in the linear combination, respectively.
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leading to the following eigenvalues at point M:

EM
� ¼ a� b ½58�

The corresponding bonding and antibonding eigenfunctions are, again, a sym-
metric and an antisymmetric combination of �A and �B, depicted schemati-
cally in Figure 11. The in-phase interactions among AOs of chains along the
direction of a2 confer stability to the bonding CO, although not as large as the
completely in-phase combination in �. Conversely, the antibonding CO is less
destabilized at M than at �, which owes to one in-phase interaction between
pzA and pzB in the former.

The third highly symmetric point is K. In this case

�A r;Kð Þ ¼ 1ffiffiffiffiffi
N
p

X
n1;n2

e
i
3ðb1þb2Þ�ðn1a1þn2a2Þpn1a1þn2a2

zA ðrÞ

¼ 1ffiffiffiffiffi
N
p

X
n1

ei2p3 ðn1þn2Þpn1a1þn2a2

zA ðrÞ ½59�

The phase factor in this expression can only have three possible values,
depending on the sum of the two integers n1 and n2. In fact, for any integer m,

ei2p3 ðn1þn2Þ ¼
1 n1 þ n2 ¼ 3m

� 1
2þ i

ffiffi
3
p

2 8 n1 þ n2 ¼ 3mþ 1

� 1
2� i

ffiffi
3
p

2 n1 þ n2 ¼ 3mþ 2

8><
>: ½60�

Figure 11 Representation of bonding and antibonding p-crystalline orbitals at M
in graphite.
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At point K, the Bloch function basis also contains an imaginary part, in addi-
tion to the real part, which is not the case at � or M. The evaluation of the HAB

interaction element of the Hamiltonian matrix leads to the following result:

HABðKÞ ¼ h�AðKÞjĤHj�BðKÞi ¼
X

m1;m2

ei2p3 ðm1þm2Þ
�
p0

zA

��ĤH��pm1a1þm2a2

zB

�
¼

¼ � 1

2
� 1

2
þ 1þ i

ffiffiffi
3
p

2
�

ffiffiffi
3
p

2

 !" #
b ¼ 0

½61�

and the Hamiltonian is already in the diagonal form. The equation to be
solved is

a� EK 0
0 a� EK

����
���� ¼ 0 ½62�

Thus, clearly a degeneracy of the bonding and the antibonding states at K
occurs

EK
� ¼ a ½63�

The real and imaginary parts of the corresponding COs are represented in
Figure 12.

So far, the energy of bonding and antibonding p-COs are degenerate at K
and split at � and M, with the splitting being larger at �.

What happens at other points, for instance, at k¼ (1
4, 0), midway the �-

M path? In this case, it is easily seen that

�A r;
1

4
b1

� �
¼ 1ffiffiffiffiffi

N
p

X
n1;n2

in1pn1a1þn2a2

zA ðrÞ ½64�

and

HAB
1

4
b1

� �
¼
X

m1;m2

im1
�
p0

zA

��ĤH��pm1a1þm2a2

zB

�
¼ ð2� iÞb ½65�

The eigenvalues can then be found by solving the following equation:

a� E
1
4;0ð Þ ð2� iÞb

ð2þ iÞb a� E
1
4;0ð Þ

�����
����� ¼ 0 ½66�
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The two possible energy values at this point

E
1
4;0ð Þ ¼ a�

ffiffiffi
5
p

b ½67�

are intermediate between the corresponding bonding and antibonding EM and
E�, in fact bj j <

ffiffiffi
5
p

bj j < 3 bj j. The topology of the wave function at this point
(see Figure 13) resembles that in M, with the main differences being that in this
case, an imaginary component exists, as well, and that the period of the wave
doubles, when k is midway to the �-M path.

The values of E� found at special k points in the reciprocal lattice are
actually special forms of a general expression for E�, which is a simple func-
tion of k ¼ k1b1 þ k2b2 also in this case:

Ek
� ¼ a� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosð2k1pÞ þ cosð2k2pÞ½ �2þ sinð2k2pÞ � sinð2k1pÞ½ �2

q
½68�

Figure 12 Representation of bonding and antibonding p-crystalline orbitals at K in
graphite.
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The graphical representation of Eq. [68] along the contour of the triangle
�KM (Figure 14) clearly shows that the energy of the p bonding and antibond-
ing COs is a continuous and smooth function of k, with K being the only point
with degeneracy and � being the point with maximum energy splitting, where
Eþ is the minimum and E� is the maximum energy. For these characteristics,
graphite is reported to be a zero-gap semiconductor, because in fact bands do
not cross but are tangent in K. Equation [68] allows us to compute E� at any
other point in the triangle, which confirms that all these values vary continu-
ously within the range between EK and E�. Thus, the chosen path is really
representative of the band structure, as expected. The shape of these bands
is qualitatively preserved, even when we abandon the crude parametric
Hückel’s approximation and study the graphite band structure ab initio. The

Figure 13 Representation of bonding and antibonding p-crystalline orbitals at (1
4, 0)

in graphite.
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band structure of graphite in Figure 15 has been obtained with the HF approx-
imation and an extended, all-electron basis set. Direct comparison with bands
in Figure 14 is possible because of the one-electron character of the HF
approximation, which permits the assignment of each band to a well-defined
one-electronic state. The corresponding p and p* bands compare fairly well,

Figure 14 Hückel p-bands of graphite along the K-�-M-K path in reciprocal space.
Energy is measured in units of b (absolute value) and referred to as a. EF stands for
the Fermi energy.

Figure 15 Hartree–Fock valence and conduction band structure of graphite along the
K-�-M-K path.
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although it must be noted that the energy scales used in Figures 14 and 15 are
arbitrarily different. The reason why this correspondence happens is that the
shape of bands is largely determined by topological features; here, where sym-
metry is high, a poor approximation of the interactions affects only the energy
range and the bandwidth. For example, an extended basis set removes the arti-
fact of complete symmetry between p and p bands in Figure 14. However,
qualitative aspects, such as band maxima and minima or points of degeneracy,
are essentially determined by the symmetry properties of the system. Another
remarkable point is that the bandwidth, which is a measure of dispersion in k-
space, clearly depends on the magnitude and the range of the interactions
within the crystal (corresponding to the value of b and the number of interac-
tions among the nearest neighbors in Hückel’s theory).

The band structure reported in Figure 15 has been obtained by consider-
ing all electrons in graphite. Core bands are not represented in the plot because
they are separated by a large energy gap from valence bands. However, they
are completely flat, which implies that core electrons are effectively screened
by valence electrons and do not couple to the rest of the crystal. The four low-
est bands in the figure are valence bands, and above them are the first virtual
(or conduction) bands. The highest energy associated with a populated state of
the crystal in its fundamental state is called the Fermi energy, the analogue of
the highest occupied molecular orbital (HOMO) energy level in molecular
cases. The separation between the top of the valence band and the bottom
of the conduction band is known as the conduction-valence gap (it is zero
in this case). Obviously, transitions from the valence to the conduction band
are not restricted to this energy, but they can also occur, for example, from the
valence band bottom to the conduction band top, so that electron excitation
spectra also exhibit bands of possible electronic transitions.

A comparison of graphite with hexagonal boron nitride illustrates more
clearly how significant topology is in determining the band structure of a com-
pound and in affecting its properties. Planar BN is isostructural and isoelectro-
nic to graphite, with the obvious exception that some symmetry operations are
lost because atoms A and B in the unit cell are no longer equivalent. It belongs
to group P�66m2, consisting of 12 symmetry operations. The great similarity of
the band structure of BN (Figure 16) to that of graphite (Figure 15) is remark-
able: The only important difference is the appearance of a gap between the
valence and conduction bands, because degeneracy is lost at K.

This behavior of p and p bands can easily be interpreted in terms of sim-
ple Hückel’s model. In fact, in this case, two different a parameters would
appear in Eq. [62], aB and aN, and the two solutions would necessarily be dis-
tinct:

Eþ ¼ aN E� ¼ aB ½69�

generating a band gap and making BN a semiconductor with more usual char-
acteristics.
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Three-Dimensional Periodic Examples

Three-dimensional periodicity makes real crystals more complex struc-
tures than polymers and layers, owing to the larger number of the interactions
and geometric arrangements involved. Nevertheless, the basic ideas underlying
the way band structures originate are essentially the same as those previously
mentioned. As it was pointed out, crystals exhibit different properties depend-
ing on the different characteristics of their band structure, and in particular,
one major classification is based on the extension of the gap between the
valence and the conduction bands. Three examples that are representative of
different behaviors from this point of view have been included in Figure 17.

Magnesium oxide is a cubic, almost fully ionic oxide with a large band
gap, and for this reason, it is classified as an insulator because, even if the real
extension of the gap is not as large as is predicted by the HF approximation,
the amount of energy that is required by electrons to undergo a transition to
virtual states is far beyond the thermal energy at room temperature. Also sili-
con, which is a covalent crystal, exhibits a band gap. However, this conduc-
tion-valence gap is smaller than in the case of MgO, so that silicon is a
semiconductor, where virtual states are more easily accessible to electrons.
Conversely, no gap is detectable in beryllium, because valence and conduction
bands intercross each other. Fermi level passes across them, and a large
amount of available empty states are accessible to valence electrons, so that
the conduction phenomenon can be easily induced by applying some potential
difference through the crystal. For this peculiarity, beryllium is a conductor.

Figure 16 Hartree–Fock upper valence and lower conduction band structure of BN
along the K-�-M-K path.
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The role of crystal symmetry properties in determining the shape of the
bands has been emphasized, but the few examples reported have also shown
that the existence of a gap and the energy range of bands depend on the mutual
interactions of all particles, electrons, and nuclei, in the lattice. Therefore, the
correctness of a calculation is largely dependent on the kind of approximation
used in the evaluation of such interactions. In fact, different approximations of
the Hamiltonian can produce a variety of results and, in particular, band struc-
tures that are not only quantitatively but also qualitatively different in some
cases. In Figure 18, the HF band structure of silicon is compared with that
obtained with DFT methods, both in the LDA, in the form of Slater–Vosko–
Wilk–Nusair6,90 functional, and with the Becke 3 (B3) parameter–Lee–Yang–
Parr (LYP) approximation,91 which incorporates a part of the exact exchange

Figure 17 Hartree–Fock upper valence and lower conduction band structure of
magnesium oxide, silicon, and beryllium.

Figure 18 LDA, B3LYP and HF upper valence and lower conduction band structure
of silicon.
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into the exchange-correlation functional based on the generalized gradient
approximation. In spite of the similarity of DFT and HF bands in regard to
their shape, the difference between these band structures concerns the basic
physical properties of the system. Silicon is predicted to be nearly a conductor
by LDA, whereas stimulating conductivity in the HF silicon would be harder.
The band gap predicted by LDA for silicon is extremely narrow (0.59 eV), but
it is much larger (6.25 eV) according to the HF approximation. The experi-
mental 92 value is 1.17 eV. Also, bandwidths scale differently in HF and
DFT. B3LYP bandwidths are close to LDA, but the inclusion of the exact
exchange and gradient corrections increases the gap (1.81 eV).

Please note at this point that the HF and Kohn–Sham (KS) eigenvalues
(and the resulting band structure) can be related to the excitation spectrum
and the conducting properties of a system only in a loose and qualitative
way. In HF theory, Koopmans theorem93 identifies ionization energy Im

with the m-th eigenvalue (with negative sign) of the Hamiltonian, under the
assumption that relaxation effects can be neglected, which is a rough approx-
imation. In KS theory, only the eigenvalue corresponding to the highest occu-
pied pseudo-orbital has a rigorous physical meaning, in the limit of an ‘‘exact’’
exchange-correlation functional: It is �Im.94,95 Virtual ‘‘exact’’ KS pseudo-
orbitals have been shown94,95 to represent good approximations of the excita-
tion energies in finite systems in some cases, but unfortunately none of the
exchange-correlation functionals currently available can reproduce the real
potentials equally well.

More accurate techniques exist for the calculation of excitation energies,
which apply the HF and KS solutions just as the starting point in the calcula-
tion. They are usually indicated as time-dependent DFT76–78 and density func-
tional perturbation theory.96,97 As was already mentioned in the Introduction,
this matter falls beyond the scope of the present chapter.

The overestimation of bandwidths and gaps obtained with HF compared
with the underestimation with LDA is well known. Correct evaluation of the
exchange interactions appears as important in band structure calculations,
when well-localized electrons are involved. An interesting example is nickel
oxide, a compound exhibiting magnetic properties, because of the d-type
unpaired electrons in the configuration of the transition metal ions. The differ-
ent number of spin-up (a) and spin-down (b) electrons per unit cell causes a
polarization in the band structure of NiO. The band structures reported in Fig-
ure 19 account for the effect of incorporating different percentages of exact
exchange into the Becke–Lee–Yang–Parr exchange-correlation potential.98,99

B3LYP parameterization corresponds to the inclusion of 20% exact exchange.
The edge cases correspond to a pure GGA approximation (on the right end)
and to HF corrected by the inclusion of the LYP correlation potential. The
width of the gap is clearly proportional to the amount of exact exchange in
the exchange-correlation potential, and this term is particularly important in
this case to get a correct characterization of NiO as an insulator.
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These behaviors and the different performance of the different approxi-
mations in this respect are well known. Nevertheless, research over the last 20
years has shown that, despite these large errors in the determination of gaps
and bandwidths, these methods perform well in predicting a large variety of
observables within an error bar that is in most cases acceptable and helping
to draw conclusions about interesting physical and chemical properties of mat-
ter in the solid state.

From the Band Structure to the Total Energy

Solving the HF or KS equations in the present (CRYSTAL) scheme
requires numerical integration over the first Brillouin zone because, in general,
we do not possess an analytic expression for the eigenvalues and eigenvectors,
as is the case of Hückel’s approximation. The question then becomes: How
many points need to be sampled, that is, in how many points must Eq. [25]
be solved to get sufficiently accurate values of the observables of interest?

The total energy is important and useful to us for answering this ques-
tion. As discussed, the total energy of an infinite crystal, like in our model, is
infinite. Therefore, the total energy per cell is definitely a preferable choice, for
it is a finite well-defined property, because of translation invariance. For the
sake of clarity, we remind the reader that, although the total energy per cell
is defined within the direct lattice context (Eq. [39]), its calculation depends
on knowing the density matrix, which in our scheme is obtained from Eq. [38].

Figure 19 Upper valence and lower conduction band structure of nickel oxide
corresponding to different percentages of exact exchange in Becke–Lee–Yang–Parr
exchange-correlation functional. Black and gray lines correspond to spin-up and
spin-down states, respectively.
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Pack and Monkhorst100 have suggested that a commensurate grid of
points is a suitable option for this purpose. In their method, the grid size
depends on a parameter, the shrinking factor s, that specifies how many equi-
distant k points must be taken along each direction of b1, b2, and b3 inside one
reciprocal lattice unit cell so that the total number of points in the grid, ns, is
equal to sn, with n denoting the order of periodicity (n ¼ 3 for three-dimen-
sional crystals).

Magnesium oxide, silicon, and beryllium are three simple and convenient
cases for analyzing the accuracy of ab initio periodic calculations in connec-
tion with the density of points in the grid. Analyzing their band structures,
we can take these systems as representative examples of insulators (MgO),
semiconductors (Si), and metals (Be) that are expected to show differences
in convergence of various properties as a function of the number of k points
in the Brillouin zone.

The values of the total energy per cell reported in Table 1 as a function of
the shrinking factor show that the size of the Pack–Monkhorst grid is related
to the extent of the conduction-valence band gap (16.02, 6.25, 0 eV for the
three cases considered, respectively).

By recalling that 1 mhartree (�2.6 kJ/mol) is less than the amount of
energy involved in weak hydrogen-bonding, it is clear that a coarse grid in reci-
procal space is sufficient to compute the total energy (and wave function) of an
insulator, such as MgO, with high accuracy.

When the gap is smaller, like in silicon, a finer grid is needed to obtain
comparable accuracy in the estimate of total energy. For example, uncertainty
in the determination of the total energy in the order of 10�5 hartree is obtained

Table 1 Total Energy (hartree) per Cell of Magnesium Oxide, Silicon, and Beryllium as
a Function of the Shrinking Factor s

MgO Si Be
——————————— —————————— ————————————

s ns E ns E ns E

4 8 �274.67867182 8 �577.87453872 12 �29.28470884
5 10 �274.67995386 10 �577.87691374 15 �29.27944675
6 16 �274.67996773 16 �577.87760126 28 �29.26513569
7 20 �274.67996874 20 �577.87777915 32 �29.27586234
8 29 �274.67996884 29 �577.87782962 50 �29.27312660
9 35 �274.67996884 35 �577.87784429 60 �29.27158322

10 47 �577.87784847 84 �29.27088006
12 72 �577.87785017 133 �29.27244875
16 145 �577.87785036 270 �29.27240692
20 256 �577.87785036 484 �29.27264824
24 793 �29.27278307
28 1200 �29.27276667
32 1734 �29.27279225

Bold digits reflect the level of inaccuracy in the calculated energy values.
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with s ¼ 8 for silicon and s ¼ 5 for magnesium oxide, whereas s is 16 versus 8
for accuracy below 10�7 hartree.

When no gap exists, as in the case of beryllium, convergence of the total
energy with respect to the grid size is much slower. Data in the last column of
the table show that a gain of one order of magnitude in the total energy accu-
racy implies approximately a factor 3 in s. An additional difficulty in dealing
with conducting systems is related to the determination of the Fermi energy,
which needs to be known accurately enough for the integration over all popu-
lated states, as in the reconstruction of the density matrix (see Eq. [38]). In
these cases, band energy is interpolated at points of a finer grid (Gilat’s
grid101,102) and the new approximated values are used to integrate the number
of electrons per cell. In spite of the grid size, this calculation is still easily man-
ageable from the computational point of view because Be is a light atom and
the unit cell is small and symmetric. However, a more complicated case could
become excessively time consuming. A technique of smearing103 the Fermi sur-
face can be helpful in making convergence faster in these cases, where the
sharp cutoff in occupancy at EF would otherwise cause unphysical oscillations
in the charge density.

No data are reported for s < 4 in Table 1 for a reason. This reason is
connected with the tight correlation of the sets of g direct lattice vectors and
k reciprocal space points selected in the calculation, when using a local basis
set. Iterative Fourier transforms of matrices from direct to reciprocal space,
like in Eq. [36], and vice versa (Eq. [38]), are the price to be paid for the
already mentioned advantage of determining the extent of the interparticle
interactions to be evaluated in direct space on the basis of simple criteria of
distance. Consequently, the sets of the selected g vectors and k points must
be well balanced. The energy values reported in Table 1 were all obtained
for a particular set of g vectors, corresponding to the selection of those AOs
in the lattice with an overlap of at least 10�6 with the AOs in the 0-cell. This
process determines the g vectors for which Fg, Sg, and the Pg matrices (Eqs.
[34] and [38]) need to be calculated, and if the number of k points included
in the calculation is too small compared with the number of the direct lattice
vectors, the determination of the matrix elements is poor and numerical
instabilities occur.

The number of k points required to reach a given accuracy for total
energy decreases when the unit cell is larger than the ones considered so far.
In fact, the adjective ‘‘reciprocal’’ before ‘‘space’’ qualifies the relation of
inverse proportionality between direct and reciprocal space (Eq. [3]), so that
the bigger a unit cell in real space, the smaller the volume of the corresponding
cell in reciprocal space. In those cases where the volume of the first Brillouin
zone is small, it is sufficient to solve Schrödinger’s equation only at a few k
points. To illustrate this point, we consider what happens when we repeat
the calculation for magnesium oxide with nonprimitive cells. In particular,
we refer to unit cells with volumes of 4, 16, and 64 times the primitive cell
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volume. Although only one pair of ions exists in the MgO primitive cell,
whereas 64 of these pairs (128 ions) are in the biggest unit cell considered
in Table 2, we are modeling the same crystal in all cases and the total energy
per MgO pair is invariant to the size of the unit cell, provided the method used
is numerically stable and accurate. It is apparent that similar levels of accuracy
in the total energy value can be obtained with increasingly poorer grids as the
direct lattice unit cell volume increases. In particular, when nMgO ¼ 64, using
one k point (the � point) is acceptable.

Artificially increasing the unit cell volume to profit from the reduced
number of necessary diagonalizations involved in solving Eq. [25] is not a
good strategy because of the many more interactions and, consequently,
more one- and two-electron integrals to be computed. Nevertheless, this point
is indeed relevant in those cases where the size of the primitive cell of a crystal
is considerable and the legitimacy for considering a rare grid is a real advan-
tage. For example, in the case of faujasite, a zeolite mineral containing 144
atoms in the primitive cell, 3 k points in the first Brillouin zone are sufficient
to get a total energy value affected by an error of 3 �10�9 hartree (the error is
just one order of magnitude higher when considering the � point alone).

Use of Symmetry in Reciprocal Space

The relative cost of ab initio calculations depends on many variables,
such as the Hamiltonian, basis set, accuracy requirement, size, and density
of the system (see Appendix 2). The Fock or KS matrix diagonalization step
during the solution of Eq. [25] can become the calculation bottleneck with a
large basis set, when, for example, more than 1000 basis functions are used.
Such a number of functions may correspond to about 100 atoms per cell, when
a local basis set is used, but this is the usual size of plane wave calculations,
even with a small unit cell. As many crystalline systems are highly symmetric,
taking advantage of symmetry is, therefore, important for reducing computa-
tional time.

Symmetry properties can be used both in the direct and in the reciprocal
space, for example, to form matrices in direct space, such as Fg and Pg, or to
diagonalize FðkÞ more efficiently. The application of symmetry to direct space

Table 2 Magnesium Oxide Total Energy per Pair of Mg and O Ions as Determined
with Unit Cells Containing nMgO Ion Pairs Correspondig to Grids with Different Values
of the Shrinking Factor s

ns nMgO ¼ 1 nMgO ¼ 4 nMgO ¼ 16 nMgO ¼ 64

1 — — — �274.67867185
2 — — �274.67996667 �274.67996887
4 �274.67867182 �274.67996888 �274.67996886 �274.67996887
8 �274.67996884 �274.67996885 �274.67996886 �274.67996887
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matrices is discussed, for example, in Dovesi104 and will not be reconsidered
here. Instead, we briefly illustrate the use of symmetry properties in reciprocal
space, because it is less widely known.

The application of a point symmetry operator of the space group to a
given point k in reciprocal space has two possible consequences:

1. k is moved to another equivalent point k
0.

2. k is not moved.

By accounting for the totally symmetric character of the Hamiltonian, it
can be demonstrated that in case 1, the eigenvalues of FðkÞ and Fðk0Þ coincide,
and the eigenvectors of Fðk0Þ are directly obtained from the corresponding
eigenvectors of FðkÞ by the action of that symmetry operator. Moreover,
FðkÞ and Fð�kÞ are always related by symmetry, even if inversion is not pre-
sent in the space group, owing to the so-called ‘‘time reversal symmetry.’’105 In
fact, by taking the complex conjugate of Eq. [25] and considering the structure
of the COs (Eq. [24]), it is seen that the eigenvalues are the same at k and �k,
because they are real, and the eigenvectors are the complex conjugate of one
another. On the basis of these considerations, it is, therefore, recommended
that Eq. [25] be solved only at points belonging to the asymmetric part of
the first Brillouin zone (the minimal set of symmetry unrelated k points), as
was done in previous examples. Indeed, the use of this kind of symmetry is
so easy that it is probably implemented in all periodic codes. In Table 1, we
can appreciate how far calculations benefit from symmetry type 1 by compar-
ing ns, the actual total number of k points where FðkÞ was diagonalized, with
s3, the total number of k points in the entire first Brillouin zone: The ratio of ns

to s for cubic systems like MgO and Si, when s ¼ 8, is close to 1/20th (1/18.2).
As a second step, symmetry type 2 can be applied to the set of the ns k

points, which allows one to further reduce the Fock matrix into a block-
diagonal form. By transforming the basis set into an equivalent set of symme-
try adapted basis functions, every block of the transformed matrix in Figure 4,
which corresponds to one particular point kj, reveals, in turn, a block-diagonal
structure, for example, of the kind depicted in Figure 20.

Each block in the matrix on the right corresponds to a different irredu-
cible representation (IR) of the so-called ‘‘little co-group,’’106 and the number

Figure 20 Block-factorization of the Fock matrix corresponding to a specific k point, kj.
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of these blocks varies with the symmetry invariance properties of kj. As a mat-
ter of fact, the application of this kind of symmetry properties to the solution
of Eq. [25] is not trivial,107,108 but the gain in computational efficiency is dra-
matic in the case of highly symmetric systems with large unit cells, when diag-
onalization dominates the calculation.

As an example, we consider pyrope, a garnet that crystallizes according
to the cubic space group Ia3d, with four Mg3Al2Si3O12 formula units per cell
consisting of 80 atoms. Shrinking factor s ¼ 2 has already been indicated as
convenient for such a large unit cell, and symmetry type 1 reduces ns, the num-
ber of k points to be accounted for, from 8 to just 3: �, H(½, ½, ½), and N(½,
0, 0). The eigenvectors at these points are all real. If we use a local basis set
consisting of nf ¼ 1440 AOs, which corresponds to the choice of a split-
valence basis set plus polarization functions for every atom in the unit cell,
the size of the matrices in Eq. [25] would be 1440
 1440. But because of sym-
metry type 2, they can be decomposed into lower size independent blocks as
reported in Table 3.

� is the most symmetric k point in the reciprocal space, and all irreduci-
ble representations of the Oh point group are contained in the matrices. This
situation is the most favorable from the point of view of computational effi-
ciency. In fact, the size of the largest block is n

T2g

f ¼ 90. Moreover, knowing
just one of the eigenvectors for every IR with dIR > 1 is enough to obtain the
other ðdIR � 1Þ eigenvectors simply by application of the corresponding trans-
fer operators. Thus, only one diagonalization is necessary for each IR. This
property is particularly effective when dIR is large, and in this respect, the
appearance of IR with dIR as large as 6 (see IR H at point H in Table 3) is
an important peculiar feature of symmetry in reciprocal space, which does
not occur in direct space. The application of symmetry type 2 has a smaller

Table 3 Example of Decomposition of Fock, Overlap, and Eigenvector Matrices of
Pyrope (with a Local Basis Set of nf ¼ 1440 AOs) into Independent Irreducible Blocks
at k Points �, H, and N in the First Brillouin Zone

� H N
——————————— ————————————— ————————————————
IR dIR nIR

f IR dIR nIR
f IR dIR nIR

f

A1 g 1 34 E 2 60 E1 2 358
A2 g 1 32 F 2 114 E2 2 362
Eg 2 60 H 6 182
T1 g 3 88
T2 g 3 90
A1 u 1 32
A2 u 1 30
Eu 2 62
T1 u 3 88
T2 u 3 88

nIR
f is the size of the block belonging to one row of the irreducible representation IR with

dimension dIR.
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impact at N, where the decomposition results in two different blocks only.
Nevertheless, even in this case, the size of the bigger matrix is nE2

f ¼ 362,
i.e., about one fourth of the original matrix.

TOTAL ENERGY, ENERGY DIFFERENCES,
AND DERIVATIVES

In the previous section, we have examined the dependence of the total
energy of a system on the number of k points and have illustrated a convenient
use of symmetry for reducing the computational effort. Many other elements
influence the accuracy of the method, which for clarity and conciseness, can be
grouped into three categories:

1. The Hamiltonian
2. The adopted basis set
3. The computational scheme (the implementation of the basic equations in a

specific code).

We will further analyze the problem of accuracy in the calculation of the
total energy and its derivatives through a few examples, where we must take
into account that, from the physical or chemical point of view, we are never
interested in the total energy of a system as such, but rather in energy differ-
ences, that might be as small as a few kcal/mol. It is with respect to this scale of
energy that the overall accuracy of a calculation must be verified. In fact, sys-
tematic improvement of algorithms in molecular codes during the past 40
years now allows an accuracy of 1 kcal/mol for thermochemical data,109

which is still far from being attained in solid state chemistry, although atten-
tion to the quantitative aspects of the calculation is increasing rapidly.

Why is the total energy such an important observable? Reactivity of a
surface, formation of a defect, and structural modification of a material to
enhance some of its properties can all be discussed with reference to the total
energy easily and rigorously. Moreover, knowledge of the total energy deriva-
tives is also informative concerning the equilibrium properties, lattice
dynamics, and the response of materials to perturbations. Table 4 lists some
of the many energy differences that are relevant in solid state chemistry.
Most of them imply a comparison of systems with different periodicity, there-
fore, it is important that zero- (atoms or molecules), one- (polymeric chains),
two- (slabs), and three-dimensional (bulk) systems all be handled in a consis-
tent way, as concerning not only the method used but also the computational
conditions, so that the comparability of the total energy be guaranteed to a
high degree. As the systems involved in the comparison must be at equilibrium,
finding the equilibrium geometry is preliminary to any energy difference calcu-
lation and selection of an efficient technique for geometry optimization is
another requirement in this kind of calculation. The CRYSTAL code satisfies
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both these requirements. Four examples of energy calculations involving bulk
systems with CRYSTAL are discussed in this section. Other cases will be pre-
sented in the sections devoted to surfaces and defects.

Cohesive Energy

Ionic, Covalent, and Metallic Crystals
The cohesive energy is the energy necessary to dissociate a solid into

separated entities, generally the atoms. Following this definition, the cohesive
energy ð�EÞ of a crystalline compound with formula unit AaBb, for example,
is associated with the reaction of formation of AaBb in the solid state from the
noninteracting atoms A and B in the gas phase

aAðgÞ þ bBðgÞ ! AaBbðsÞ ½70�

and is computed as

�E ¼ aEatomðAÞ þ bEatomðBÞ � EbulkðAaBbÞ ½71�

Hence, �E is positive for any thermodynamically stable crystal. This defini-
tion of cohesive energy is not unique. As alternative definitions, reference
can be made to the ions in the case of ionic crystals or to the molecules for
molecular crystals. Another expression, lattice energy, is also in use, either
as a synonym of cohesive energy or to denote the energy difference relative
to the ions or molecules, thereby distinguishing it from the cohesive energy
referred to the atoms. Thus, some care must always be taken when analyzing
data in the literature in regard to nomenclature. We will use the following
symbols: �Eatoms, �Eions, and �Emol.

As occurs in the calculation of molecular binding energies, the expression
for �E implies basis sets that are complete. However, partial basis set

Table 4 List of Some Relevant Energy Differences in Solid State Chemistry

Computed energy System 1 System 2 Example

Cohesive Bulk Atoms Ionic, covalent crystals
Interaction Bulk Molecules Molecular crystals
Relative stability Bulk Bulk Polymorphism
Super-exchange AFM bulk FM bulk NiO magnetic phases
Solid state reaction Bulk Bulk MgOþAl2O3!MgAl2O4

Surface formation Bulk Slab MgO(100)
Surface stability Slab Slab MgO(100) vs MgO(110)
Adsorption Slabþmolecule Slab, molecule CO on MgO(100)
Adsorption Bulkþmolecule Bulk, molecule NH3 in acidic zeolites
Interface Slab Slab MgO monolayer on Ag(100)
Substitution defect Bulkþ defect Bulk, atoms C in Si
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incompleteness is commonly accepted in molecular calculations, provided all
terms involved in the expression of the binding energy are computed with the
same basis sets. This procedure becomes critical in most cases in the solid state.
In fact, convenient basis sets for atoms are generally overcomplete in crystals,
where close packing makes atomic function tails unnecessary in the descrip-
tion of the crystalline wave function. Moreover, the use of diffuse AOs with
a periodic potential is normally to be avoided, for it may introduce artificially
unwanted numerical instability in the calculation of the eigenvalues and eigen-
vectors of the Hamiltonian. Therefore, in the evaluation of the cohesive
energy, partially different basis sets, as concerns the description of the valence
region, need to be used for the atoms or ions and the bulk, in most cases.

We will illustrate how these problems can be handled with a simple
example: the cohesive energy calculation of bulk NaCl with the HF approxi-
mation. Following Pople’s scheme for the construction of a basis set, we adopt
the convention that every set of (px, py, pz) orbitals share the same gaussian
function with one s-type AO and these four AOs collectively form an sp shell.
An all-electron basis set optimized for the bulk is available (see Prencipe
et al.110), which consists of one core s-type AO plus three and four sp shells
with the origin at Na and Cl, respectively. The exponents of the outer Gaus-
sian functions of both Na and Cl are reported in Table 5 (Case 1). The system
is fully ionic, in accordance with the usual representation of NaCl as a salt
consisting of Naþ and Cl� ions, which explains why the exponent of the out-
ermost Gaussian of the cation, i.e., ab(sp) in the first row of Table 5, is about
three times larger than at the anion (the valence orbitals of Naþ are basically
empty). When the same basis is used to compute the atomic and ionic energies,
an extremely large value of �Eatoms results (Case 1 in Table 6). This is clear
evidence of the poor performance of that basis set in the calculation of the
atomic energies, which are severely underestimated (Case 1 in Table 7), parti-
cularly for E(Na). Indeed, readjustment of ab(sp) for the atoms and ions in
the gas phase is necessary to improve �Eatoms (Case 2). Obviously, the best

Table 5 Exponents of the Most Diffuse Shells (in Bohr�2) of Na and Cl as Optimized
for Bulk NaCl and for the Isolated Atoms and Ions at the HF Level

Na Cl
————————————————— ——————————————————

Case System aa(sp) ab(sp) ac(sp) aa(d) aa(sp) ab(sp) ac(sp) aa(d)

1 bulk 0.578 0.323 0.320 0.125
2 atom 0.497 0.042 0.315 0.119

ion 0.542 0.229 0.294 0.090
3 atom 0.509 0.089 0.030 0.297 0.248 0.116

ion 0.539 0.204 0.111 0.329 0.151 0.059
4 bulk 0.578 0.323 0.125 0.320 0.125
5 bulk 0.578 0.323 0.125 0.400 0.320 0.125 0.400
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exponents for the isolated atoms are smaller than in the bulk (Case 2 in
Table 5) and the corresponding change in �Eatoms (Case 2 in Table 6) is dra-
matic, at the same time being far from negligible (about 2%) in �Eions. The
addition of one extra sp shell to the basis sets of the isolated atoms and ions
(Case 3), followed by re-optimization of the outer valence shell exponents, still
decreases both �Eatoms and �Eions by about 1%. Actually, Case 3 corresponds
to the hypothesis that extra functions added to the bulk basis set would have
no effect on the bulk total energy, which is almost true, as results from a com-
parison with Case 4.

Also the bulk basis set can still be improved by the addition of polariza-
tion functions, which do not contribute to the energy of atoms and ions in the
gas phase because of AO orthogonality, but they can be important in the
expansion of the bulk wave function. However, in this particular case, the
contribution from polarization functions to the bulk total energy (Case 5) is
minimal, because of high symmetry and the nearly spherical shape of the
closed-shell ions.

Table 6 demonstrates that separate optimizations of the basis sets for the
bulk and the isolated atoms or ions is mandatory for obtaining the cohesive
energies of ionic compounds. As a general rule, variationally equivalent basis
sets are to be used for the bulk and the atoms or ions, rather than equal basis sets.

Apparently, further improvement of the basis sets would hardly affect
the values of �E in Table 6, which are much smaller than the corresponding

Table 6 HF Computed Cohesive Energy for NaCl (in
kJ/mol) with Respect to the Isolated Atoms and Ions

Case �Eatoms �Eions

1 1499.8 (þ132.8) 761.0 (�3.8)
2 521.0 (�19.1) 744.3 (�5.9)
3 512.0 (�20.5) 738.3 (�6.7)
4a 513.3 (�20.3) 739.6 (�6.5)
5a 515.8 (�19.9) 742.1 (�6.2)

Exp. 644.2 791.3

Percentage underestimation/overestimation of the experi-
mental cohesive energies in parentheses. Cases 1–5 correspond
to different basis sets in Table 5.

aCohesive energy computed with respect to atomic and ionic
energy of Case 3.

Table 7 HF Total Energy (in Hartree) of the Isolated
Atoms and Ions Obtained with the Basis Set of Cases 1–3
Reported in Table 5

Case 1 Case 2 Case 3

Na (g) �161.475779 �161.848514 �161.850828
Naþ(g) �161.669712 �161.670010 �161.670022
Cl (g) �459.449667 �459.449740 �459.450841
Cl�(g) �459.537121 �459.543201 �459.545457
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experimental values. Indeed, HF underestimates �Eatoms of NaCl by about
20% and �Eions by about 6%. The origin of such a poor approximation is
to be found in intra-ionic and interionic correlation effects, both disregarded
at this level of theory, although the better agreement for �Eions is caused by
cancellation of intra-ionic correlation effects when subtracting the energy of
the ions from that of the bulk.

The underestimation of the cohesive energy is a general feature of HF, as
can be seen in Table 8, where �Eatoms is reported for a series of different sim-
ple crystalline compounds, which includes three alkali halides with increasing
ion size, an ionic oxide with stronger electrostatic interactions caused by diva-
lent ions (MgO), a covalent system (Si), and a metal (Be).

The error in the HF cohesive energy varies between �20% and �45%
for this series. In accordance with the interpretation of electron correlation
as the source of such an error, DFT calculations of DE allow one to recover
part of the contributions that are disregarded with HF, at about the same com-
putational cost. LDA tends even to overestimate the cohesive energy, whereas
GGA and B3LYP results are closer to the experimental measurements. At any
rate, the performance of none of the Hamiltonians used is fully satisfactory,
and the correct answer is always somewhere in between the two extremes
represented by HF and LDA, but LDA results are generally improved when
gradient corrections are included.

Properly correlated wave functions are obviously expected to perform
better than HF and DFT methods. A systematic post-HF investigation of cor-
relation effects in crystalline compounds has been obtained with the ‘‘incre-
mental scheme’’ of Stoll71,72 at both CCSD and CCSD(T) levels.73–75 The
CCSD(T) cohesive energies reported in Table 8, in fact, agree on average bet-
ter with the experimental data than the one-electron results.

Another aspect of the comparison between the calculated and experi-
mental cohesive energy is important to recall here. It is related to the difference
between the definition of cohesive energy and the crystal formation energy that
is reported in thermodynamic tables, the main point probably being that quan-
tum mechanical calculations refer to the static limit (T ¼ 0 K and frozen
nuclei), whereas experiments refer to some finite temperature. In fact, the

Table 8 Cohesive Energies (in kJ/mol) of LiF, NaCl, KBr, MgO, Si, and Be Computed
with Respect to the Atoms with Different Hamiltonians

HF LDA PW91 B3LYP CCSD(T) Exp.

LiF 656.6 (�23.7) 958.1 (þ11.3) 850.7 (�1.2) 825.5 (�4.1) 845.4 (�1.8) 861.1
NaCl 512.0 (�20.5) 685.3 (þ6.4) 614.7 (�4.6) 589.9 (�8.4) 627.5 (�2.6) 644.2
KBr 477.1 (�21.2) 611.9 (þ1.1) 554.8 (�8.4) 533.9 (�11.8) 579.7 (�4.2) 605.4
MgO 699.5 (�29.3) 1118.7 (þ13.0) 966.4 (�2.4) 908.0 (�8.3) 969.3 (�2.1) 989.8
Si 643.9 (�29.7) 1101.5 (þ20.2) 943.3 (þ2.9) 850.9 (�7.2) 852.8 (�7.0) 916.6
Be 180.1 (�43.6) 372.7 (þ16.8) 319.2 ( 0.0) 259.0 (�18.9) — 319.2

Percentage difference between calculated and experimental data in parentheses.
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comparison is never straightforward, and the original experimental datum is
linked to the calculated cohesive energy values through a chain of thermody-
namic transformations. As an example, the Born–Haber cycle for the forma-
tion of NaCl is reported in Figure 21. The calculated cohesive energies
reported in Tables 4 and 5 refer to step 1, i.e., to the formation of the crystal
at 0 K from the pure atoms in the gas phase, whereas the tabulated experimen-
tal datum refers to the standard formation reaction of NaCl at room tempera-
ture, step 6 (�H0

298 ¼ �411:15 kJ/mol) of the cycle. Hence, the experimental
value reported in Table 8 corresponds, instead, to the path consisting of steps
2–8 of the Born–Haber cycle. These steps are as follows: (2) condensation of
Na atoms from the gas phase (the inverse of the sublimation enthalpy); (3) for-
mation of Cl2 molecules (the inverse of the enthalpy of dissociation); (4) heat-
ing solid Na atoms to room temperature; (5) heating Cl2 molecules to room
temperature; (6) formation of crystalline NaCl from the elements in their stan-
dard states at room temperature; (7) cooling NaCl to 0 K. These enthalpy dif-
ferences are tabulated111 (ideal behavior of Cl2 is assumed in step 5). Step 8
refers to the zero point energy e0, which is usually not available experimen-
tally. The Debye model (see, for instance, p. 100 of Hill112) relates e0 to
Debye’s temperature �D, through the following equation:

e0 ¼ n9=8kB�D ½72�

where kB is the Boltzmann’s constant and n is the number of atoms in the unit
cell. Debye temperatures for alkali halides can be found in Ashcroft and Mer-
min105. �D is 321 K for NaCl. In conclusion, the experimental static cohesive
energy of NaCl reported in Tables 6 and 8 originates from the following sum:

��Eatoms
static ¼ �107:6� 120:0þ 6:44þ 9:18

2
� 411:15� 10:61� 5:9

¼ �644:2 kJ=mol ½73�

Na(s) + Cl2(g) NaCl(s)

6

–411.15
298 K

4 6.44 5 9.18/2 7 –10.61

1
2

Na(s) + Cl2(g) NaCl(s)

2 –107.6 3 –120.0 8 –5.9

1
2

Na(g) + Cl(g) NaCl(s)

1
0 K

0 K

Figure 21 Born–Haber cycle used to correct the experimental formation energy of NaCl
from 298 K to the static limit.
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The experimental lattice energy at the static limit can also be evaluated with
respect to the isolated ions, and it is easily obtained by including the ionization
energy of the alkali metal (Na) and the electron affinity of the halogen (Cl).
According to The Handbook of Chemistry and Physics,111 the ionization
energy of sodium is �495.8 kJ/mol and the electron affinity of chlorine is
348.7 kJ/mol. Then, the experimental cohesive energy from ions is 791.3 kJ/
mol at the static limit.

Molecular Crystals
The cohesive energy of molecular crystals is usually computed with refer-

ence to the molecules in the gas phase, like in a sublimation process, so that
calculated values of �Emol can be compared with experimental sublimation
energies. �E can be decomposed into two terms:

�Emol ¼ ��Econdensation ��Econformation ½74�

with the first term referring to the condensation of molecules from the gas
phase, but with the same conformation as in the crystal, and the latter to
the difference between the energies of the isolated molecules in the bulk and
in the gas phase conformations. �Econformation is negligible in the case of rigid
molecules, but it can be significant for floppy molecules.

Let us consider urea as an example. Crystalline urea is tetragonal, with
two molecules in the unit cell (Figure 22a). The molecules are linked to each
other through hydrogen bonds to form infinite planar tapes (Figure 22b),
which are mutually orthogonal, the cohesion among them being provided by
hydrogen bonds. Every oxygen atom is involved in four nearly equivalent
hydrogen bonds, two within the tape and the other two linking neighboring
tapes. Molecules in nearest neighboring tapes are oriented along opposite
directions; this provides additional stabilization through dipole–dipole

Figure 22 (a) Crystalline urea unit cell. (b) Arrangement of urea molecules in the
crystalline structure.
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interactions, and it annihilates the total dipole of the unit cell, as is always the
case in molecular crystals

A molecule in bulk has C2v symmetry, whereas the most stable structure
in the gas phase corresponds to a C2-symmetric anti conformation (see Figure
23). The C2v geometry is a second-order saddle point on the potential energy
surface.113 Therefore, �Econformation between conformers must be taken into
account when computing the cohesive energy.

The cohesive energy of urea with respect to the molecules in the gas
phase is calculated as

�Emol ¼ 2EðmoleculeÞ � EðbulkÞ
2

½75�

In this form, �Emol is the cohesive energy per molecule and the factor 2 in the
formula is caused by the presence of two molecules in the unit cell. The cohe-
sive energies computed with different Hamiltonians and Pople’s 6-31G(d,p)
basis set are reported in Table 9. At variance with the case of ionic crystals,
molecular-devised basis sets can generally be used for molecular crystals as
such, without any exponent reoptimization. As shown in Table 9,
�Econformation accounts for 5–8 kJ/mol. Table 9 also shows that DFT-based

Figure 23 Urea molecular structures: (a) C2v conformation as found in the crystalline
structure; (b) C2 anti conformation as found in the gas phase.

Table 9 Cohesive Energy (�Emol) per Molecule of Crystalline Urea Calculated with the
Experimental Lattice Parameters (in kJ/mol)

Hamiltonian �Econdensation �Econformation �Emol �ECP

HF �80.2 4.9 75.3 54.4
LDA �177.0 4.9 172.1 135.2
PW91 �124.5 7.5 117.0 79.1
B3LYP �105.2 6.7 98.5 63.6

�ECP includes the correction for the basis set superposition error, estimated via the counterpoise
method (CP).

50 Ab Initio Quantum Simulation in Solid State Chemistry



methods give larger �Emol than HF, as the correlation energy, somehow
included in DFT, makes the crystalline structure more stable.

When the local basis set is incomplete at some extent, the basis set super-
position error (BSSE)114,115 affects the cohesive energy more extensively than
the binding energy in molecules. In fact, in calculating the wave function and
total energy of a molecular crystal with a finite basis set, the description of
molecule A in the crystal will be improved by the variational freedom provided
by the functions of the adjacent molecule B, and vice versa. As a consequence,
the energy content of A and B in the crystalline environment turns out to be
overestimated, as if an extra binding occurred between A and B. This error is
commonly corrected via the counterpoise (CP) method, as proposed by Boys
and Bernardi,116 by supplementing the basis set of an isolated molecule with
the functions of an increasing number of atoms (ghost atoms) belonging to the
surrounding array of molecules that would be present in the crystal. An intro-
ductory tutorial about the theory and the practice of BSSE has been published
in this book series.115 An interesting discussion of the BSSE problem in mole-
cular crystals can be found in a recent paper by Spackman and Mitchell.117

The dependence of the BSSE on the number of the accounted neighbor-
ing atoms in crystalline urea is shown in Figure 24a. The correction converges
to a limiting value of about 38.0 kJ/mol, with the largest calculation including
98 ghost atoms. Nevertheless, 30 neighbors are enough to reach a value of
35.3 kJ/mol that represents about 93% of the entire CP correction.

Thus, proper consideration of the BSSE correction decreases �Emol con-
siderably at all levels of theory considered here. On the contrary, basis set
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Figure 24 (a) Dependence of the BSSE on the number of neighboring atoms included in
the CP correction for crystalline urea, with the LDA approximation (SVWN) and a 6–
31G(d,p) basis set. (b) Urea molecule surrounded by a star of 63 neighboring ghost
atoms.
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improvements, which have been shown to be so relevant in the calculation of
the cohesive energy of ionic systems, and particularly with respect to the
atoms, are much less important in computing �Emol of a molecular crystal
like urea. The BSSE-corrected B3LYP cohesive energies obtained with two
standard Pople’s basis sets, namely 6-31G(d,p) and 6-311G(d,p), and a dou-
ble-� plus polarization basis proposed by Thakkar et al.118 are 63.6, 61.1
and 64.1 kJ/mol, respectively, thus showing an almost negligible dependence on
the basis set used, although the BSSE correction decreases with the basis set size.

The experimental sublimation energy of crystalline urea is 90.0 kJ/
mol119 and 97.7 kJ/mol after correction for the zero point energy (ab initio
estimate), which is more properly compared with the results from calculations.
Unfortunately, none of the calculated �ECP in Table 9 compares well with this
latter value, with the minimum found error being about 20% of the cohesive
energy. However, the computed cohesive energies follow closely the trend
obtained for hydrogen bonded molecular adducts (see, for instance, Civalleri
et al.120), where LDA functionals, like SVWN, tend to greatly overestimate the
interaction energy, whereas gradient-corrected and hybrid functionals repre-
sent definite improvements with respect to LDA. On the other hand, as ther-
mal effects are expected to account only for a few kJ/mol, the difference with
respect to experiment must then be traced back to other effects, probably to
the lack of dispersion interactions, which are not taken into account121 at one-
electron levels of theory.

Other examples of applications of the CRYSTAL code to molecular crys-
tals include ice polymorphs,122–124 orthoboric acid,125 vitamin C,126 oxalic
acid dihydrate,127 and p-benzoquinone.128

Polymorphism

Silica is of great interest in solid state chemistry, as it exists in many dif-
ferent crystalline forms, from high-density polytypes (e.g., quartz, cristobalite,
trydimite) to low-density microporous all-silica zeotypes. Despite their enor-
mous structural complexity, silica polymorphs show similar stability. From
calorimetric measurements,129–132 it is known that a-quartz is the most stable
polymorph at room temperature and pressure, with all other polymorphs
being confined within a range of just 15 kJ/mol. This small range makes an
accurate simulation of the relative stability of silica polymorphs a delicate
but challenging task. In fact, quartz and all-silica polytypes have been the sub-
ject of many theoretical studies.133–135 Here, we consider the relative stability
of b-quartz (b-Q), a-cristobalite (a-C), a-tridymite (a-T), sodalite (SOD), cha-
bazite (CHA), faujasite (FAU), and edingtonite (EDI) with respect to a-quartz
(a-Q). Frameworks are shown in Figure 25.

In Table 10, CRYSTAL all-electron (AE) calculations at both HF
and DFT level of theory (LDA and B3LYP) are compared with shell model
results and ab initio PW calculations.135 G(HF)136 and G(B3LYP)137 refer to
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a semiclassical approach with model interatomic potentials that were fitted to
ab initio calculations on molecular clusters simulating fragments of micropor-
ous all-silica frameworks.

The range and the order of stability computed with a local AE basis set
are in good agreement with the experimental measurements available, particu-
larly as concerns the B3LYP results (third row in Table 10). Also the
G(B3LYP) parameterization of the semiclassical method provides results
that are in reasonably good agreement with the experimental evidence. How-
ever, the ab initio approach is still to be preferred in the case of more compli-
cated systems, such as Ti-substituted zeolites, for example, where the
parameterization procedure may become critical.

Perhaps the most surprising feature in Table 10 is the large difference
between AE and PW results, obtained at the same levels of theory. The
origin of this inconsistency is probably caused by the different computational

Figure 25 Frameworks of the studied all-silica polymorphs.

Table 10 Relative Stability (in kJ/mol per SiO2 unit) of Silica Polymorphs with Respect
to a-Q

b-Q a-C a-T SOD CHA FAU EDI

AE-HF 3.1 0.0 1.7 4.6 6.3 7.6 11.6
AE-LDA 9.1 12.9
AE-B3LYP 1.2 4.3 5.7 7.0 7.8 11.6
G(HF) 1.6 �3.8 �2.8 0.5 4.4 8.1 9.5
G(B3LYP) 1.4 7.7 7.7 8.6 9.8 13.0
PW-LDA 2.5 2.4 3.3
PW-GGA 0.2 �3.1 �2.2
Exp. ð�H298Þ 2.8 3.2 11.4 13.6
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conditions used by scientists in the different implementations of the method,
and especially in the different representations of the wavefunction. These
results are a good indication of how much computational and methodological
aspects can affect results in solid state calculations, where full standardization
has not yet been achieved.

Magnetic Phases

Another context in which simple energy differences provide useful infor-
mation to chemists is magnetism. The magnetic properties of transition metal
insulators such as KMF3 perovskites (M¼Mn, Fe, Co, Ni, Cu)138–140, simple
MO oxides (M¼Ni, Mn),140,141 M2O3 sesquioxides (M¼Cr, Fe),142,143

complex oxides such as Mn3O4 (hausmannite),144 rutile type fluorides MF2

(M¼Mn, Fe, Co, Ni, Cu),145–147 and high-Tc superconductor parent com-
pounds148 have been investigated extensively.

As an example, we discuss the relative stability of some magnetic phases
of KMnF3, an ionic perovskite, with cubic lattice, where each Mn ion is at the
center of a regular octahedron of fluorine ions. Different magnetic structures
can be envisaged, as shown in Figure 26. The structure on the left represents a
ferromagnetic (FM) phase with the spin at the Mn ions all parallel (Sz ¼ 5/2).
In the middle, an antiferromagnetic (AFM) phase is shown, where the Mn
ions, carrying five unpaired electrons each, are arranged in alternating stacked
spin-up and spin-down (111) planes. In the AFM’ structure on the right, each
Mn atom is surrounded by two Mn nearest neighbors with opposite spin and
four with the same spin, thus forming a sequence of alternating spin-up and
spin-down Mn (001) planes. Because of the presence of alternating antiparallel
spin Mn planes, the two different antiferromagnetic phases imply the use of
double supercells.

Information about the basis sets and other computational details can be
found in Dovesi et al.,138 Harrison et al.,139 and Mallia et al.140 The hypothe-
tical spin arrangement shown in Figure 26 is a schematic representation of a
point charge lattice, where the unpaired electrons are fully assigned to the

Figure 26 Magnetic phases of KMnF3. Arrows denote spin-up and spin-down Mn ions.
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transition metal ions. This picture is actually not far from quantum mechan-
ical reality, at least at the unrestricted Hartree–Fock (UHF) level of theory, as
documented in Table 11, in spite of the looser constraint the spin density dis-
tribution has to comply with in a variational calculation, i.e., that the total
spin projection along one direction ð	zÞ be assigned to a constant given value
in every cell (	z is 5/2 and 0 in the ferromagnetic and antiferromagnetic phases
of KMnF3, respectively). In particular, the ion net charges are close to their
formal values (þ2, �1, and þ1 for Mn, F, and K) and the Mn spin moment
is close to 5, with only small polarization of the F anion (see also Figure 27).

The different stability of FM and AFM phases results from the super-
exchange interaction138 along the Mn-F-Mn path and is essentially caused
by the different spin polarization of F in the two cases, as shown in Figure 27.
Consequently, the corresponding energy differences are expected to be so
small that they need to be determined with very high numerical accuracy. In

Figure 27 UHF spin density map for the FM and AFM solutions of KMnF3 on the (001)
plane through the Mn and F atoms. The separation between contiguous isodensity lines
is 0.01 bohr; the function is truncated in the core region at �0.1 bohr. Continuous,
dashed, and dot-dashed lines correspond to up-, down-, and zero-spin density,
respectively.

Table 11 Net Atomic Charges (q) and Spin Moments (m) in KMnF3 Evaluated
According to Mulliken Partition of Spin Densitiy

Mn F K
—————————— —————————— ————————

q m q m q m

FM 1.77 4.94 �0.92 0.02 0.99 0.00
AFM 1.77 4.94 �0.92 0.02 0.99 0.00

Values of q and m are given in electrons.
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fact, the relative stability of the considered FM phase with respect to the anti-
ferromagnetic structures is 0.780 and 0.260 kJ/mol for AFM and AFM’,
respectively, at the UHF level of theory. The results obtained with different
Hamiltonians are compared in Table 12.

�E can be used to evaluate the superexchange coupling constant J,
which is a measure of the superexchange interaction. A general introduction
to the superexchange interaction can be found in Kahn150 and Yosida.151

According to the Ising model, �E(FM-AFM) and J are related through the fol-
lowing expression:

�E ¼ 2 z J S2
z

k
½76�

where z corresponds to the number of nearest Mn transition metal ion neigh-
bors with opposite spin, Sz is the formal Sz of Mn (5/2) and k¼ 120.27
K �mol �kJ�1 is the conversion factor from kJ/mol to K. The values of J can
be compared with the experimental observations, usually fitted to the same
Ising model. The UHF value of J is about one third of the experimental value,
whereas all DFT functionals provide values that are larger than the experi-
ment149 and, in the case of LDA, J is overestimated even by a factor of 4.5.

Spin contamination is the main source of error in the evaluation of J, but
deviations from the Ising model may also account for part of it. However,
despite the large disagreement between the calculated and experimental values
of J, the prediction of the relative stability of different magnetic phases is cor-
rect. Moreover, investigation of the same properties with the other systems
previously mentioned always reproduced phase stabilities correctly and J
values were calculated approximately within the same error bar.

Positional Isomorphous Phases

The relative stability of different cation sites in a zeolite framework is
one more interesting example of energy difference calculation, in this case

Table 12 Total Energy (in Hartree) of the FM and AFM Phases of KMnF3 as Obtained
with Various Hamiltonians

Hamiltonian EFM EAFM �E J

HF �4095.286164 �4095.286758 1.56 2.50
LDA �4089.532113 �4089.540105 21.00 33.64
B-LYP �4101.523522 �4101.531254 20.30 32.56
PBE �4100.020100 �4100.026538 16.90 27.10
B3LYP �4101.056636 �4101.060127 9.17 14.70
Exp.# 7.30

7.40

�E ¼ EFM � EAFM in kJ/mol. J is the super-exchange coupling constant (in K).
#Experimental values from reference 149.
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concerning isomorphous crystalline structures with the same composition but
a positional difference.

The cation location in a high-silica Al-substituted chabazite152 has been
studied where two possible sites are to be considered (Figure 28) on the basis
of the experimental evidence. The SII site corresponds to a cation at the top of
a hexagonal prism, whereas for SIII’, it is in the eight-member ring. The rela-
tive stability of these two sites was computed for a proton and three alkali
metal ions: Li, Na, and K at both HF and B3LYP levels of calculation (see
Civalleri et al.152 for details).

In this case, the level of theory is almost irrelevant for evaluating the rela-
tive stability of the different sites (Table 13). The proton is preferably pre-
dicted at the SIII’ site. Li and Na cations are more stable when coordinated
on the hexagonal prism (SII), whereas K definitely prefers the eight-member
ring site (SIII’) for steric reasons.

Energy Derivatives

The interest by computational chemists in the total energy originates
from the possibility of comparing different systems or different phases of a
given system. The information content of the total energy dependence on
the crystal structure permits a wider analysis of the properties of a system.
Some examples of observables related to first- and second-order derivatives
are listed in Table 14. Beside the search for energy minima, investigating
the energy hypersurface is, for example, also a means to go beyond the static

Figure 28 Cation sites in chabazite.

Table 13 Relative Stability (in kJ/mol) of Site SIII’ with
Respect to the SII Site

H Li Na K

HF �11.2 7.9 10.7 �18.3
B3LYP �6.9 9.2 12.5 �18.1
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lattice model implicit in the adiabatic approximation and open to lattice dyna-
mical and thermodynamical properties.

We first consider first-order energy derivatives. The calculation of the
cohesive energy and of the relative stability of different compounds or phases
relies on the hypothesis that the systems involved are all in their respective
equilibrium geometries, and that these geometries are to be determined
ab initio. Thus, the accuracy problem in a calculation of �E (see Table 4) can-
not be separated from the reliability of a geometry determined with the same
method. The analytic calculation of energy gradients with respect to the cell
parameters and nuclear coordinates is the most efficient method of finding
minima on the total energy hypersurface. As an example, we report the equi-
librium lattice parameters (Table 15) that were used to compute the cohesive
energies reported in Table 8. The structure of all crystals sampled in the table
is simple, with all atoms in a special position (see the subsection on the direct
lattice), so that the lattice parameters are the only geometrical variables to be
taken into account.

Table 15 shows that in most cases, the percentage deviation from the
experimental lattice parameter is below 2%. In general, HF tends to overesti-
mate lattice parameters in nonmetallic systems, whereas LDA shows the oppo-
site trend. The alkali-halide series is more varied in results. For instance, the
HF error for the lattice parameter of LiF, NaCl, and KBr increases from about
0% to 8%. This result is a consequence of the increasing importance of

Table 14 First and Second Order Derivatives of the Total Energy

Differentiating variable Total energy derivative Observable

nuclear coordinate
qE

qri

� �
T

¼ 0 equilibrium nuclear coordinates

q2E

qui quj

 !
eq

¼ kij force constants

lattice parameter
qE

qai

� �
T

¼ 0 equilibrium unit cell

q2E

qei qej

 !
eq

¼ cij elastic tensor

unit cell volume
qE

qV

� �
S

¼ �P internal pressure

q2E

qV2

 !
eq

¼ B bulk modulus

ui denotes a nuclear displacement from the equilibrium position, ei is a component of the strain
tensor, ai is a lattice basis vector.
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omitted correlation effects with increasing atomic number. For MgO, all
Hamiltonians give reasonable lattice parameters, because the electrostatic
interaction is about four times larger than for alkali halides (approximately
þ2 instead of þ1 charges on the cation).

Thermodynamic implications also exist in energy derivatives. For exam-
ple, one of the basic equations of thermodynamics relates pressure to the rate
of energy change with the unit cell volume at constant temperature:

P ¼ � qE

qV

� �
T

½77�

Pressure is an important variable in condensed matter, because the structural
modifications crystals undergo by the action of pressure are usually much lar-
ger than the modifications from thermal expansions or contractions. More-
over, the structure and stability of high-pressure phases is of particular
interest in Earth science. This is an application where ab initio modeling can
play an important role and help experimentalists to understand the behavior of
minerals in the Earth’s mantle. The knowledge of pressure enables investiga-
tion of phase stability and transitions. In fact, enthalpy is immediately
obtained from the total energy by

H ¼ Eþ PV ½78�

At T ¼ 0 K, where any transformation of a pure substance tends to be isoen-
tropic, phase stability can be related to the enthalpy and a phase transition
occurs at those points in the phase diagram where two phases have equal
enthalpy. From the computational point of view, it is possible to explore a
range of crystalline volumes by isometric lattice deformations and obtain
the corresponding values of pressure and, consequently, of enthalpy. It is
intended that nuclei are allowed to relax to their equilibrium geometry after

Table 15 Computed Lattice Parameters (in Å) of LiF, NaCl, KBr, MgO, Si, and Be
with Different Hamiltonians

HF LDA PW91 B3LYP CCSD(T) Exp.

LiF 4.02 (þ0.7) 3.93 (�1.5) 4.09 (þ2.5) 4.05 (þ1.5) 3.99 ( 0.0) 3.99
NaCl 5.80 (þ4.1) 5.50 (�1.3) 5.72 (þ2.7) 5.73 (þ2.9) 5.63 (þ1.1) 5.57
KBr 7.05 (þ8.0) 6.60 (þ1.1) 6.92 (þ6.0) 6.94 (þ6.3) 6.65 (þ1.8) 6.53
MgO 4.21 (þ0.2) 4.18 (�0.4) 4.26 (þ1.4) 4.24 (þ1.0) 4.18 (�0.5) 4.20
Si 5.52 (þ1.7) 5.42 (�0.2) 5.48 (þ0.9) 5.50 (þ1.3) 5.42 (�0.2) 5.43
Be 2.28 (�0.4) 2.21 (�3.5) 2.24 (�2.2) 2.24 (�2.2) 2.29

3.55 (�1.1) 3.49 (�2.8) 3.53 (�1.7) 3.52 (�1.9) 3.59

Percentage difference between calculated and experimental data is given in parentheses. All the
crystals are cubic, with the exception of Be, which is hexagonal and whose cell is defined in terms
of two lattice parameters, a and c.
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every lattice deformation. We illustrate this point with a simple example: cal-
cium oxide. CaO presents two polymorphic cubic phases (Figure 29). B1 cor-
responds to a face-centered cubic lattice with calcium in a six-fold
coordination environment, and B2 corresponds to a primitive cubic lattice
with every Ca coordinated to eight oxygen ions. We consider the following
phase transition of CaO:153

CaO ðB1Þ�! �CaO ðB2Þ ½79�

As occurs with other observables, the range of the calculated phase transition
pressure ðPtÞ and volumes (Table 16) also depends on the choice of the
Hamiltonian to some extent. However, the overall agreement with experimen-
tal measurements is fairly good.

By interpolating the results of a series of total energy calculations in a
range of different lattice volumes, the curves of enthalpy (Figure 30) and the
V vs P isothermal (Figure 31) can be plotted in any pressure range easily.

Figure 29 B1ðFm�33mÞ and B2ðPm�33mÞ crystalline phases of CaO.

Table 16 Phase Transition Pressure, Pt (GPa), and Volumes,
VB 1 and VB 2 (Å3) Calculated with Different Hamiltonians

Hamiltonian Pt VB1 VB2

HF 69.2 21.2 19.0
LDA 57.2 20.6 18.5
PW91 66.1 20.8 18.8
B3LYP 72.7 20.6 18.6
Exp. 60.0a — —

65.0b — —
63.0c 20.7c 18.7c

aTaken from Richet et al.154

bTaken from Jeanloz et al.155

cTaken from Mammone et al.156
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For an application on the phase stability of various TiO2 polymorphs,
see references 157,158.

Other observables also depend on the total energy derivatives, in parti-
cular on second-order derivatives, such as the bulk modulus, the elastic con-
stants, and lattice vibration frequencies.
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Figure 30 Hartree–Fock and LDA enthalpy of the B1 and B2 phases of CaO.
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Figure 31 Isothermal phase diagram of CaO (volume, Å3, versus pressure, GPa),
as obtained with HF and LDA approximations. Vertical lines represent the
transition pressure.
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The bulk modulus, B, which measures the response of a crystal to isotro-
pic lattice expansion or compression, is related to the second-order derivative
of the total energy with respect to the volume, V, evaluated at the equilibrium
volume V0:

B ¼ �V
q2E

qV2

����
V0

½80�

Conversely, the anisotropic response of a crystal to a mechanical force can be
described by the elastic constants, Cij, which are defined as the second deriva-
tives of the total energy with respect to the components i and j of the strain
tensor, e:

Cij ¼
1

V

q2E

qeiqej
½81�

They provide a full description of the mechanical properties of crystalline
materials. B is related to the elastic tensor.159 In the case of a cubic system,
where only three independent components of the elastic tensor differ from
zero, B can be obtained from C11 and C12 as

B ¼ C11 þ 2 C12

3
½82�

In many computational codes, second derivatives are evaluated numerically
(this is also the case of CRYSTAL). This evaluation requires high numerical
accuracy in the determination of the total energy. In particular, the lattice
deformations involved in calculating lattice constants, which generally reduce
the local symmetry, make basis set flexibility (additional sp shells, polarization
functions, and so on) necessary. Consequently, a good basis set for the deter-
mination of total energy and lattice parameters may be inadequate for the
more demanding estimation of these second derivatives.

The effect of the basis set on the bulk properties of MgO is documented
in Table 17. Basis set (c), as containing three valence sp shells at oxygen, two

Table 17 Basis Set Effects on Bulk Properties of MgO at the HF Level of Theory

Case Basis Set a B C11 C12 C44 �Eatoms

a 8-61/8-51 4.190 200 391 103 201 �715.4
b 8-511/8-411 4.205 181 352 95 188 �699.5
c 8-511*/8-411* 4.194 184 334 108 186 �706.2
Exp. — 4.195 167 314 94 160 �989.8

a (in Å) is the lattice parameter; B, C11, C12, and C44 (in GPa) denote bulk modulus and elastic
constants. The cohesive energy �Eatoms is in kJ/mol.
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at magnesium, and a set of polarization functions at both ions, can be consid-
ered as nearly complete. The table shows that the basis set quality, which has a
relatively small influence on �Eatoms, becomes more important in the calcula-
tion of B and the elastic constants. The addition of d polarization functions is
particularly important when computing elastic constants, because the related
lattice deformation corresponds to lowering point symmetry. The ions under-
go dipolar relaxation, for which the combination of p- and d-type orbitals is
required.

Second-order derivatives of energy with respect to the nuclear coordi-
nates are involved in lattice dynamics. Many interesting physical properties105

are related to lattice dynamics such as vibration spectra (e.g., infrared, Raman,
neutron-diffraction), specific heat, thermal expansion, heat conduction, elec-
tron–phonon interaction (e.g., superconductivity), and interaction of radiation
with matter (e.g., reflectivity of ionic crystals, inelastic scattering of light). The
decoupling of the nuclear from the electronic motion through the adiabatic
approximation of Born and Oppenheimer160 and the hypothesis of harmoni-
city are usually the basic assumptions made when computing lattice dynamics.
Within these approximations, force constants relative to all pairs of nuclei in
the lattice can be computed as second derivatives of the total energy with
respect to small oscillations u of the nuclei about their equilibrium positions

Hg
ij ¼

q2E

qu0
i qu

g
j

 !
eq

½83�

Equation [83] defines one element of the Hessian matrix relative to the osci-
llations along the i-th coordinate of atom A in the 0-cell and along the j-th
coordinate of atom B in the g-cell (one of the atoms can always be considered
in the 0-cell because of the lattice translation invariance). The Hessian matrix
of a crystal obviously has infinite size. However, energy derivatives have the
same periodicity as does the potential energy, i.e., the periodicity of the lattice.
Therefore, the nuclear wave functions describing nuclear oscillations in the lat-
tice must also obey the Bloch theorem, and application of the periodic bound-
ary conditions allows us to represent the Hessian matrix in the reciprocal
space, just as in the case of the electronic Schrödinger equation. Thus, the pro-
blem is again reformulated by calculating an infinite set of finite-sized square
matrices of dimension 3N, with N being the number of atoms per unit cell,
each corresponding to a particular pattern of displacements of the N nuclei
in any direction in space. Each matrix is associated with a particular k point
in the reciprocal space and is obtained from Fourier transforming Eq. [83]

Hij kð Þ ¼
X

g

eik�gHg
ij ½84�
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Harmonic vibration frequencies are then obtained from diagonalizing
the Hessian matrix scaled by the nuclear masses for a convenient sample of
reciprocal space points:


ijðkÞ ¼
HijðkÞffiffiffiffiffiffiffiffiffiffiffiffi

MiMj

p ½85�

Also vibration frequencies, like one-electron energies, then depend on the
wave vector k and 3N modes at each k exist, forming branches. Branches
o1ðkÞ, o2ðkÞ; . . . ;o3 NðkÞ are called phonon frequencies, and the relationship
between o and k determines the phonon dispersion. The computed phonon
dispersion of Si is presented in Figure 32 as an example.

Three branches have zero frequency at the � point and are associated
with the translation of the entire crystal along any direction in space. These
branches are called acoustic modes as the corresponding vibrations behave
as acoustic waves. All other branches show finite nonzero frequencies at �
and are known as optical modes, because they correspond to unit-cell dipole
moment oscillations that can interact with an electromagnetic radiation.
Acoustic and optical modes can be identified clearly in Figure 32.

The dispersion relation contains the most important information con-
cerning vibration normal modes in a crystal. Lattice vibrations can be mea-
sured experimentally by means of classical vibration spectroscopic
techniques (infrared and Raman) or neutron inelastic scattering. However,
only the latter technique allows one to measure the full spectrum in a range
of k vectors, whereas with infrared and Raman spectroscopy, only lattice
vibrations at � can be detected. This limitation for measuring phonon disper-
sions is serious, becuase neutron scattering experiments are demanding.
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Figure 32 Phonon dispersion of Si from ab initio calculations. Experimental data are
denoted by diamonds. Reproduced with permission from reference 161.
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Once the dispersion relation is known, thermodynamic functions can be
calculated on the basis of statistical mechanics equations.57 As an example, the
Helmholtz free energy, F, can be obtained as:

Fvibh i ¼
X
n;k

1

2
�honk þ kBT ln 1� exp � �honk

kBT

� �� �� �
½86�

where the sum is extended to all lattice vibrations, onk, and kB is the Boltz-
mann’s constant. Another way of computing thermodynamic functions is
based on the use of the phonon density of states. The evolution of the crystal
structure as a function of temperature and pressure can also be simulated by
minimizing G ¼ F þ pV. The procedure requires a sequence of geometry opti-
mizations, and lattice vibration calculations.

Although the ab initio calculation of vibrational frequencies of molecular
systems is a well-known practice, it is not so common in the case of crystalline
systems. However, quantum-mechanical calculation of lattice vibrations and
phonon spectra has become a subject of increasing interest and effective meth-
ods have been developed and implemented. In this respect, a recent review by
Baroni et al.162 gives a detailed overview of the state of the art of ab initio cal-
culation of vibrations and related properties for crystalline materials. Most of
the current implementations are based on DFPT and use either plane
waves162,163 or localized functions as a basis set.164 As an example, calculated
and experimental vibration frequencies at � are reported in Table 18 for

Table 18 Calculated and Experimental Vibration Frequencies (cm�1) of a-quartz at �

Symmetry HFa LDAa LDAb LDAc B3LYP Expt.d

A1 216.7 261.6 193.7 238.9 216.0 219.0
381.3 332.3 355.0 339.3 350.4 358.0
504.9 482.1 460.1 461.7 465.1 469.0

1144.4 1089.1 1123.3 1061.0 1085.4 1082.0

A2T 395.4 326.3 366.4 341.3 352.3 361.3
544.1 504.6 489.3 493.4 500.9 499.0
823.4 791.1 792.2 762.4 783.8 778.0

1132.4 1086.4 1115.4 1056.5 1076.4 1072.0

AT 138.8 143.4 120.9 133.3 132.5 133.0
286.5 263.5 257.3 261.3 263.6 269.0
427.4 376.9 390.0 377.6 391.3 394.5
490.6 443.8 448.0 443.8 447.0 453.5
740.9 721.7 703.3 690.8 702.9 698.0
847.7 835.0 809.6 791.7 810.5 799.0

1125.2 1070.3 1108.7 1045.0 1068.2 1066.0
1235.8 1141.7 1190.8 1128.1 1163.1 1158.0

a Taken from reference 165.
b Taken from reference 60.
c Taken from reference 166.
d Taken from reference 167.
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a-quartz. The average error evaluated with respect to the experimental fre-
quencies is 39.9, 16.6, 16.5, 12.6, and 4.7 cm�1 for the HF, the three LDA,
and the B3LYP calculations reported in the table, respectively. B3LYP harmo-
nic frequencies exhibit a fairly good agreement with the corresponding absorp-
tions observed in the experimental spectrum. On the contrary, the HF energy
hypersurface curvature is known to be incorrect, and this leads to a regular
overestimation of vibration frequencies. LDA results are better than HF but
worse than B3LYP. Large differences, however, exist among the three sets
of LDA data in Table 18, which represent an interesting example of how
results may depend on the particular implementation of a method.

MODELING SURFACES AND INTERFACES

In nature, crystals are not infinite but finite macroscopic three-dimen-
sional (3-D) objects terminated by surfaces. Many phenomena and processes
occur at the interface between a condensed phase and the environment. Mod-
eling surfaces is then of great theoretical and practical interest.

A surface can be created by cutting a crystal, which we simulate as an
infinite object, through a crystalline plane. Two semi-infinite crystals are
then generated containing an infinite number of atoms in the direction ortho-
gonal to the surface, where periodicity, which is essential for applying the
Bloch theorem, is lost. We then need further approximations to be able to treat
this problem, for which alternative methods have been proposed such as those
based on (2-D) clusters, embedded clusters, or slabs. We will focus here on the
two-dimensional (2-D) slab model.

The Slab Model

The slab model consists of a film formed by a few atomic layers parallel
to the ðhklÞ crystalline plane of interest. The film, of finite thickness, is limited
by two surface planes, possibly related by symmetry. For sufficiently thick
slabs, this kind of model can provide a faithful description of the ideal surface.
The adequacy of the model must be checked by considering convergence of
geometry, energy, and electronic properties with an increasing number of
atomic layers included in the slab.

In actual calculations, two different schemes can be envisaged to deal
with a slab model:

1. By imposing 2-D periodic boundary conditions. The slab model is really
two-dimensional, with a 2-D unit cell (Figure 33a).

2. By forcing a 3-D periodicity (3-D slab model). The three-dimensional
system consists of an array of slabs of selected thickness along one
direction, separated by vacuum zones, as shown in Figure 33b. The vacuum
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zones must be large enough for the fictitious interactions between slabs to
be negligible.

When we use a plane wave basis set, which requires a 3-D Fourier repre-
sentation of many intermediate quantities, such as the charge density, only
model (b) can be adopted. On the contrary, when a local basis set is adopted,
no problems occur in the implementation of both schemes.

In a recent paper,168 2-D and 3-D slab models have been compared. The
(110) surface of rutile TiO2 served as a case study. Calculations were carried
out with CRYSTAL at the HF level with a Gaussian basis set. The convergence
of the calculated surface energy and Fermi level was investigated as a function
of the slab thickness and interslab vacuum gap. It was found that 2-D and 3-D
slabs provide similar convergence with the slab thickness when the vacuum
gap is larger than 6.0Å. However, model (a) is more general and is to be pre-
ferred, for example, in the simulation of an adsorption process, where atten-
tion must be paid to spurious interactions among periodic replicas along the
direction perpendicular to the slab.

Specifying the Surface Plane—Miller Indices

The surface is identified by three integers ðhklÞ—the so-called Miller
indices. The three indices specify a plane of atoms in the crystal by means
of the components of a vector perpendicular to that plane. Planes parallel to
crystallographic axes YZ, XZ, and XY are indicated as ðh00Þ, ð0k0Þ, and
ð00lÞ, respectively. The planes closest to the origin are then identified by the
normal vector with the smallest indices: (100), (010), and (001). Planes

Figure 33 Three-layer slab models of the MgO (100) surface. (a) With 2-D periodic
boundary conditions. (b) 3-D supercell approximation of the slab model as adopted
in plane wave calculations.
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parallel to one of the three axes X, Y, or Z are defined by ð0klÞ, ðh0lÞ, or
ðhk0Þ, and so on. Some examples for MgO are shown in Figure 34.

Choosing the Surface Termination

The most interesting surfaces are generally those with low indices,
because their creation requires, as a rule, a smaller amount of energy and
are, therefore, the most commonly observed. However, not all crystalline sur-
faces are physically stable or worthy of investigation.

For ionic and semi-ionic crystals, a careful analysis of the possible sur-
face terminations has been carried out by Tasker.169 Given a slab composed
of a certain number of repeated units, which are in turn made up of atomic
layers parallel to the selected plane, the resulting structure can be classified
in one of the three following categories (Tasker’s types):

� Type 1: the slab consists of neutral layers with the same stoichiometry of
the host crystal.

� Type 2: the slab consists of charged layers arranged symmetrically so that
the repeated unit presents no net dipole perpendicular to the surface.

� Type 3: the slab consists of charged layers alternating in such a way that
the repeated unit presents a net dipole normal to the surface.

Although type 1 and 2 surfaces may exist, those of type 3, also referred
to as dipolar surfaces, are unstable and can only be stabilized through some
mechanism to remove the macroscopic field (i.e., by reconstruction, molecular
adsorption, and so on). In the MgO case (see Figure 35), the (100) and (110)
surfaces correspond to type 1, whereas the (111) surface is type 3.

In covalent solids, the creation of a surface requires cutting covalent
bonds, which means that dangling bonds would be present at the surface.
The resulting instability is partly reduced either by creating new bonds, giving
rise to a reconstruction of the surface, or chemisorbing atoms from the envir-
onment (e.g., H, Cl). The saturation of dangling bonds by chemisorption is
important, for example, in silicates. When a surface is cut out from the

Figure 34 Three types of planes in the MgO crystal: (a) 100, (b) 110, and (c) 111.
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bulk, unstable Si-O � radicals at the surface react readily with water to give a
fully hydroxylated surface with hydrophilic character.

When cutting molecular crystals, the molecular topology must be pre-
served and only intermolecular bonds are cut. If the molecule has a dipole
moment, attention must be paid to the surface termination, because the slab
can possess a net dipole perpendicular to the surface. For instance, ice XI, a
proton-ordered phase of ice, is ferroelectric because its basic repeating unit,
consisting of four water molecules, has a net dipole along the c-axis (see Figure
36 on the left).

Thus, by cutting a slab parallel to the (001) face, a dipolar surface is
created that would be highly unstable,170 according to Tasker’s classification.
Figure 36, on the right, shows that the electrostatic potential difference between
the two surfaces is large, which explains their instability. A stable slab of C-ice
can be obtained only by cutting the crystal in such a way that the ferro-electric
axis is parallel to the surface, which is equivalent to selecting the (010) surface.

Figure 35 Five-layer slab model of MgO surfaces (lateral view): (a) (100) surface—type
1, (b) (110) surface—type 1, and (c) (111) surface—type 3.

Figure 36 On the left: Structure of ice XI; On the right: Electrostatic potential at the
(001) surface of ice XI. Consecutive isodensity lines differ by 0.01 a.u.; continuous,
dashed, and dot-dashed curves correspond to positive, negative, and zero potential,
respectively. Isopotential lines corresponding to potential values larger than 0.2 a.u. in
module are not plotted.
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Even if it may appear unrealistic, because of the electric strain parallel to the
surface, it comes out that this structure is particularly stable.170

Surface Formation Energy and Stability

Within the slab model approach, the surface formation energy is com-
puted as

�En
surf ¼

ðEn � nEbulkÞ
2A

½87�

where En is the energy of an n-layer slab, Ebulk is the energy of a single layer’s
worth of bulk material, and A is the area of the primitive surface unit cell. The
factor 1/2 accounts for the existence of two limiting surfaces. �En

surf is then the
energy per unit area required to form the surface from the bulk, and it is intrin-
sically a positive quantity (if not, the bulk would exfoliate). As more layers are
added in the calculation by increasing the slab thickness ðn!1Þ, �En

surf will
converge to the surface formation energy per unit area. This important check
should be performed, when studying surfaces.

For MgO, which is a wide band gap insulator, the computed HF �En
surf

converges rapidly, as shown in Figure 37.
In metals or small band gap semiconductors, convergence can be slower

and numerical noise larger. In Eq. [87], total energies from 3-D and 2-D sys-
tems are used, and this in principle might create problems of ‘‘equivalent’’
accuracy in algorithms that are specific for 2-D and 3-D. As a cross check,
we can use the following definition for the surface energy:

�En
surf ¼

En � n En � En�1
� �
2A

½88�
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Figure 37 Dependence of the surface energy on the number of layers for a MgO (100)
slab model. Filled circles from Eq. [87]; open circles from Eq. [88].
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In this expression Ebulk has been replaced by En � En�1. So the surface forma-
tion energy is determined from a series of 2-D calculations. If each additional
layer in the slab is seen as the central layer, it is clear that En � En�1 should
converge to the energy of a single layer in the bulk crystal. In Figure 37, the
MgO(100) surface energy computed with Eq. [88] is also reported. A more
extensive discussion on the use of Eqs. [87] and [88] when computing the sur-
face energy of metallic lithium, as a case study, can be found in Doll et al.171

When the surface formation energy of different surfaces is available, the
relative stability can be evaluated. Surface stability has relevance in determin-
ing the crystal morphology, although kinetic effects in many cases can also
play an important role. As an example, we can compare the stability of the
(100) and (110) MgO surfaces172 (see Figure 34). When a five-layer slab model
is adopted, the computed HF surface energies are 1.47 J/m2 and 5.24 J/m2.
The difference in stability between these two surfaces is easily explained on
the basis of the different environment of the surface ions: at the (100) surface
Mg and O are fivefold-coordinated, whereas at the (110) surface, coordination
decreases to four.

Surface Relaxation and Reconstruction

In general, when a surface is cut out of a perfect crystal, the atoms near
the surface will move away from their bulk positions to minimize the surface
energy. When the atomic displacements do not change the symmetry of the
slab, this is referred to as surface relaxation. However, in some systems,
the rearrangement is deeper and the surface has a tendency to reconstruct;
that is, the periodicity of the surface layer changes from that implied by
pure bulk termination. If the primitive cell of the surface is defined by lattice
vectors a and b, then a reconstruction introducing a new periodicity, involving
two steps in a and three steps in b, is called a ð2
 3Þ reconstruction. To model
such a phenomenon, the slab model can be combined with the supercell
approach by creating a 2-D cell and then enlarging it to introduce the new per-
iodicity. A typical example of surface reconstruction is the (111) and the (100)
surfaces of silicon.

At the (100) surface, the presence of highly unstable dangling bonds at
the top of the fully unrelaxed surface (indicated in dark in Figure 38a) is partly
reduced by the formation of new bonds leading to a ð2
 1Þ reconstruction
(Figure 38c). A 2-D cell of double size is necessary to model such a reconstruc-
tion.

In ionic crystals, reconstruction effects can also be involved in the stabi-
lization of polar surfaces (Tasker’s type 3). For instance, the (100) surface of
the fluorite-type crystal of Li2O becomes stable if half of the Li atoms are
moved from the bottom face of the slab to the top face above the oxygen
atoms to produce a zero-dipole structure (Figure 39). In fact, this kind of sur-
face has been observed experimentally.173
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Relaxation effects are particularly significant in partially-ionic oxides
like a-Al2O3. Alumina is of enormous technological importance and is widely
used by chemists as a support material in most heterogeneous catalysts. The
simplest surface is the Al-terminated (0001) one, which corresponds to the
basal plane. As shown in Figure 40 on the left, the basic repeated unit perpen-
dicular to the (0001) surface is a three-layer slab consisting of Al-3O-Al atomic
layers, where 3O indicates a layer containing three oxygens per 2-D cell. In the

Figure 38 Pictorial view of the (100) surface of silicon. (a) unrelaxed surface; (b)
relaxed surface and (c) ð2
 1Þ reconstructed surface.

Figure 39 Lateral view of the (100) surface of Li2O. On the left: unreconstructed
dipolar surface. On the right: reconstructed zero-dipole surface.
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unrelaxed slab model, the topmost layer consists of undercoordinated Al ions,
as is shown in Figure 40. Consequently, this is an unfavorable structure and
the Al atom undergoes a large relaxation (compare left and right pictures in
Figure 40). In particular, the first-to-second interlayer spacing largely con-
tracts to lower the surface energy. For a 15-layer slab model, the contraction
is as large as �78.8% at HF, and it increases further when DFT methods are
adopted: �87.1% and �79.2%, with SVWN and BLYP methods, respectively.

Structural relaxation has also significant effects on the relative stability
of different surfaces. For a-Al2O3, five different low-index nonpolar faces
are usually believed to be competitive for stability.174 At the HF level of the-
ory,175 the stability order is as follows:

Unrelaxed: face ð01�112Þ < ð11�220Þ < ð10�111Þ < ð10�110Þ < ð0001Þ
�En

surfðJ=m2Þ 2:70 3:27 4:18 4:50 4:85

Relaxed: face ð0001Þ < ð10�112Þ < ð11�220Þ < ð10�110Þ < ð10�111Þ
�En

surfðJ=m2Þ 1:90 2:00 2:37 2:42 2:47

These data show that the inclusion of structural relaxation has a dramatic
effect: The stability order is almost completely reversed, and the surface for-
mation energy spans a much more narrow range of values with respect to the
unrelaxed data. Relaxation is then important. For example, the (0001) sur-
face, which is the most unstable unrelaxed face, becomes the most stable
when relaxation is taken into account. It is worth noting that slab models
with more than 20 atomic layers are required to reach full convergence on sta-
bility order. The computed trend for the unrelaxed surfaces is close to that
obtained from classical simulations within a fully ionic model by Tasker174

and Mackrodt,176 whereas the three sets differ after relaxation:

Unrelaxed: Tasker ð01�112Þ < ð11�220Þ < ð10�111Þ < ð0001Þ < ð10�110Þ
Mackrodt ð01�112Þ < ð11�220Þ < ð10�111Þ < ð0001Þ < ð10�110Þ

Relaxed: Tasker ð01�112Þ < ð11�220Þ < ð10�110Þ < ð0001Þ < ð10�111Þ
Mackrodt ð0001Þ < ð10�110Þ < ð01�112Þ < ð11�220Þ < ð10�111Þ

Figure 40 A 12-layer slab model of the Al-terminated (0001) surface of a-Al2O3.
Lateral view of the unrelaxed structure (left) and the relaxed structure (right).
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The difference between classical and quantum-mechanical calculations is
caused by the important role played by electronic rearrangement.

Vicinal Surfaces—Modeling Steps and Kinks

Real surfaces are rarely atomically flat. Typically, a surface will be cov-
ered in plateaus, with edges and corners. Within the slab model, the use of
vicinal surfaces (those cut at an angle slightly different to that of the low-
energy surface) is a useful trick to model steps and kinks. For example,
Figure 41 shows a few unit cells of the (501) surface of MgO, which contains
a sequence of steps in the [100] direction. These faces may mimic situations
occurring at defective ionic surfaces and can therefore be used to investigate
the reactivity of different kinds of defects. For instance, it has been found177

that heterolytic splitting of hydrogen ½H2ðgÞ ! HþðadsÞ þH�ðadsÞ� may take place
with low activation energy and favorable energy balance at a (n01) face of
MgO with n � 3, which simulates a regular step at a (100) surface.

Ab initio calculations on bare surfaces are now sufficiently accurate and
efficient; we propose a (certainly not exhaustive) list of surface studies per-
formed with the CRYSTAL code: halides (LiF,178,179 NaCl,180 CaF2

181,182),
oxides (a-Al2O3,183–186 CeO2,187 a-Cr2O3,188 Li2O,189 MgO,172,190 SnO2,191

TiO2,192,193 ZnO,194–196 ZrO2
184,187), sulphides (Li2S,197 FeS2,198 PbS,199

RuS2
200), metals (Li,171 Cu,201,202 Ag,203,204 Ni,205 Pt206), perovskites

(BaTiO3,207 LaMnO3,208 SrTiO3
209,210), molecular crystals (water ice211),

and silicates.212

Adsorption on Surfaces

An appropriate slab model of a surface is also useful to study the adsorp-
tion of atoms or molecules. Both physisorption and chemisorption processes
can be modeled easily.

The binding energy between surface and adsorbate, �E, is a key obser-
vable. It corresponds to the process in which the molecules move from an ideal

Figure 41 MgO (501) slab model with steps along the [100] direction.
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gas state onto the surface, and it is defined as

�E ¼ EðslabÞ þN � EðmolÞ � Eðslab=adsÞ ½89�

where E(mol) is the energy of one isolated adsorbed molecule and N is the
number of adsorbed molecules per unit cell. These energies are defined per
unit cell and are negative.

�E can also be written as the sum of two contributions:

�E ¼ �Eads þ�EL ½90�

The first contribution is the binding energy per unit cell per adsorbed molecule
and is defined as

�Eads ¼ EðslabÞ þ EðadsÞ � Eðslab=adsÞ ½91�

where E(slab/ads) is the total energy of the slab in interaction with the periodic
array of adsorbed molecules, E(slab) is the energy of the slab alone, and E(ads)
is the energy of the periodic array of adsorbed molecules without the under-
neath solid surface. �EL is the lateral interaction energy, per unit cell, among
the adsorbate molecules, i.e., without the underneath surface, and can be
either positive (repulsion) or negative (attraction), depending on the nature
of the ad-molecules. In the limit of low coverage, i.e., large distances between
molecules, �EL tends to zero, so that �Eads � �E.

Modeling different coverages is of interest in adsorption processes and
can be achieved easily by enlarging the underlying surface unit cell (i.e., within
a supercell approach), so that the density of adsorbed molecules can be
increased or reduced. In the limit of low coverage, lateral interactions tend
to vanish and adsorbed molecules can be considered as isolated.

If the basis set is not complete, the computed binding energy per
adsorbed molecule should be corrected for the BSSE following the CP method
as proposed for molecular complexes. Therefore, the BSSE corrected binding
energy �EC

ads becomes

�EC
ads ¼ Eðslab=½ads�Þ þ Eð½slab�=adsÞ � Eðslab=adsÞ ½92�

in which E(slab/[ads]) and E([slab]/ads) are, respectively, the energy of the slab
with the basis functions of the adsorbate only, and vice versa.

Let us consider, as an example, the interaction of carbon monoxide with
the MgO (100) surface. This system has been the subject of several simulations
where cluster and periodic models have been used (see Damin et al.213 and
references therein). Here we focus on a periodic approach through a slab model.

The MgO (100) surface is modeled by a three-layer slab. As shown above
(Figure 37), the adopted slab is thick enough to ensure good convergence of
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the surface energy. Three different CO coverages have been considered,
namely the (1:2), (1:4), and (1:8) (here (1:n) means that adsorption involves
one CO molecule per n Mg2þ ions), in order to study the effect of the lateral
interactions on �E. Preliminary calculations indicate that the adsorption
through the oxygen atom is disfavored in comparison with that via the carbon
atom, so it will not be considered in the following discussion. The resulting 2-
D unit cell are shown in Figure 42.

The CO molecules were adsorbed at both faces of the MgO (100) slab
model. Calculations were carried out at the HF and DFT levels. For the latter,
the B3LYP method was adopted. Two basis sets were employed, hereafter
indicated as A and B, with B being more accurate and costly than A. For
more details concerning the all-electron basis sets and optimized geometry,
see Damin et al.213

Table 19 shows the HF and B3LYP computed binding energies. �E is
small at both levels of theory, with a value of about 10 kJ/mol at the best
B3LYP/B level. The BSSE correction is large: �EC is nearly null at HF/A,
around 2.0 kJ/mol at B3LYP/A and 3.7 kJ/mol at B3LYP/B for the (1:4)

Figure 42 Pictorial view of the CO/Mg (100) system at different CO coverages. Light
and dark gray spheres are Mg and O, respectively; black spheres represent the CO
molecules.

Table 19 �E (kJ/mol) of CO Adsorbed on the MgO (100) Surface as a Function of CO
Coverage, Hamiltonian and Basis Set

Method HF/A B3LYP/A B3LYP/B
——————————— ——————————— ——————–

Coverage (1:2) (1:4) (1:8) (1:2) (1:4) (1:8) (1:2) (1:4)

�E 6.2 6.4 6.4 13.6 14.0 14.0 9.1 10.3
�EC 0.9 0.8 0.7 2.8 3.0 2.0 3.0 3.7
�EL 2.4 0.6 0.1 1.6 0.4 0.1 2.6 0.4
�EN �1.5 0.2 0.6 1.2 2.6 1.9 0.4 3.3

�EC is corrected for BSSE. �EL is the lateral interaction and �EN ¼ �EC ��EL is the net
binding energy.
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coverage. The lateral interaction energy, �EL, is important only when the
smallest cell (1:2) is used. The final binding energy at the B3LYP/B level for
the (1:4) coverage is 3.3 kJ/mol. This result is to be compared with the best
experimental measurement of 13.5 kJ/mol.214,215

The disagreement with experiment suggests that dispersive contribution
to the binding energy, not accounted for by both HF and DFT methods, may
play an important role. To cope with this flaw, Ugliengo and Damin216 pro-
posed an interesting approach to include correlation contributions at the MP2
level of theory, through a kind of cluster-in-crystal embedding technique.
Those authors were able to obtain a final extrapolated MP2 binding energy
of 12.7 kJ/mol, in good agreement with the experimental value, which shows
that dispersive contributions account for about 7 kJ/mol.

Further examples of adsorption systems investigated with the CRYSTAL
code include H2O on NaCl180; CO, N2, and O2 on LiF(100)178,179; Na,217

K,218 and noble metals219 on TiO2 surfaces; CH3OH,220 CO,221 and
CO2

222 on SnO2; CO on Cu2O (111)223; formic acid224 and hydrogen225 on
ZnO (10-10); the interaction of pyrite (100) surfaces with O2 and H2O226;
NH3 on a model of a silica surface 227; HCl on water ice211; Cl on Cu
(111)201; and Pd on a-Al2O3 (0001).228

Interfaces

Apart from the simulation of ideal surfaces, increasing interest in ‘‘real’’
2-D crystals now exists, which are quasi-periodic structures in two dimensions
but only a few atomic layers thick, and which may present new and useful
properties precisely because of their limited thickness. This branch of nano-
science is then an ideal ground for application of the slab model.

The study of epitaxial interfaces between crystals of different nature is an
example of this flexible technique. The interface is modeled by creating two
slabs and letting them interact to form a sort of supra-slab model (i.e., a wafer),
as shown schematically in Figure 43. Care must be paid to the lattice mismatch
because the 2-D unit cells, with different size, must match at the interface.

The interaction energy at the interface or adhesion energy is computed as

�E ¼ EðinterfaceÞ � Eðslab1Þ � Eðslab2Þ
2

½93�

which is the difference between the total energy of the interface model and the
energies of the isolated slabs, divided by a factor two to account for the exis-
tence of two outer surfaces.

By taking the BSSE into account, we get:

�E ¼ EðinterfaceÞ � Eðslab1=½slab2�Þ � Eð½slab1�=slab2Þ
2

½94�
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where E(slab1/[slab2]) and E([slab1]/slab2) are, respectively, the energy of the
first slab obtained in the presence of the basis functions of the second one, and
vice versa.

An interesting example of the application of the slab model approach to
the study of interfaces is the modeling of ultrathin oxide films on metallic sub-
strate, which has been the subject of recently published papers by Pisani
et al.229,230 It deals with a model of the epitaxially grown MgO (100) thin
film on Ag (100). An advantage of studying the MgO/Ag system is that it
has a small mismatch between MgO and Ag lattice parameters (�3%) and
allows a cube-on-cube epitaxy.

This system was studied at the DFT level with both LDA (SPZ) and GGA
(PW91) methods. A six-layer slab model of Ag parallel to the (100) surface
was adopted, covered with one or two MgO monolayers on both surfaces
(as in Figure 43). Three high symmetry configurations were considered: (A)
Mg2þ upon a surface Ag atom, (B) O2� upon a silver atom, and (C) both
ions bridged.

The interaction energy computed with respect to the distance between
the MgO overlayer, at first considered as a rigid entity, and the silver substrate
is represented in Figure 44. The most stable configuration was found to be (B).
Such a configuration was further analyzed, allowing an independent optimiza-
tion of Mg and O positions to check the possibility of rumpling. Calculated
MgO/Ag distances and BSSE-corrected adhesion energies are reported in
Table 20.

Both DFT methods show that Mg relaxes toward the silver surface,
although the rumpling is partly recovered when a second MgO layer is present,
probably caused by the electrostatic attraction of the oxygen ions in the upper
plane. Accordingly, the additional MgO layer also reduces the adhesion
energy. It is worth noting that LDA gives an interaction energy that is larger
(more than double) than GGA. This confirms the general observation that LDA

Figure 43 Schematic representation of an interface as simulated through a slab model.
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methods tend to overestimate binding energies with respect to gradient-
corrected methods, as already pointed out here for different kinds of system.

The interface model can be further complicated by considering the pos-
sible adsorption of molecules. Obviously, the substrate will modulate the
interaction of the surface with adsorbates. For instance, the interaction of
the Ag-supported MgO with water was simulated and compared with that
on a pure MgO229 surface.

Interfaces are a field of growing interest, and some other applications
have been carried out, which include ultra-thin adlayers of Ag on

Figure 44 Interaction energy �E per MgO unit between a six-layer-thick silver slab and
two monolayers of MgO at distance z. The reported data refer to the SPZ method.

Table 20 Calculated Properties of the MgO/Ag System in the (B) Configuration

SPZ PW91
————————————— —————————————
No Rumpling Rumpling No Rumpling Rumpling

One layer
dMg 2.45 2.32 2.55 2.39
dO 2.45 2.47 2.55 2.55
�E �41.8 �53.1 �17.7 �29.6

Two layers
dMg 2.45 2.38 2.55 2.46
dO 2.45 2.47 2.55 2.55
�E �41.1 �42.6 �18.2 �19.2

dX is the distance of ion X from the surface. �E is the BSSE-corrected adhesion energy of the
MgO overlayer on the Ag substrate (in kJ/mol).
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MgO(100), MgO(110),231–234 and Al2O3
235; the interface between a transi-

tion metal oxide, NiO, and Ag(100),236 and the study of oxides on oxides,
like the MgO/NiO films.237,238

MODELING DEFECTIVE SYSTEMS

Defects in Solids

Defects in solids are ubiquitous and can be found both in the bulk and at
the surface of materials.239,240 Two classes can be distinguished: point defects
and extended defects. The former, also called local defects, produce a modifi-
cation of the site environment of an otherwise perfect lattice: for instance, the
absence of an atom in a lattice position (vacancy), the presence of an atom
in an interstitial position (interstitial defect), or the substitution of an atom
for another atom of a different chemical species at a regular lattice site (sub-
stitutional defect). Figure 45 shows typical examples of local defects in an
ionic solid.

Extended defects, on the other hand, correspond to structural imperfec-
tions in the assembly of either lattice planes (planar defects), as stacking faults
in layer structures, or lattice directions (linear defects), as dislocations.

At their surface, along with point (e.g., vacancy on a terrace) and
extended defects (observed in crystal growth processes), solids present other
typical defects such as vertices, edges, kinks, and steps, as shown in Figure 46.
Defects play an important role in determining the surface reactivity, as briefly
mentioned in the previous section for a stepped MgO surface model. In a

Figure 45 Examples of local defects in ionic solids.
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broad classification of defects, a surface with adsorbed atoms or molecules can
also be considered as a defective system with respect to the bare surface.

How to Model a Defect

Here, we mainly focus on the modeling of point defects in a perfect crys-
tal. Because of their local nature, we can assume that the perturbation in the
crystal is small. Therefore, both structural and electronic effects can be consid-
ered as confined in the finite region close to the defect (defect zone). The rest of
the system can then be treated as a perfect host with a well-defined periodic
structure. On the basis of these assumptions, two strategies can be envisaged
in the modeling of point defects:

1. The host as an environment
2. The defect as an impurity

The Host as an Environment
Both perfect and defective systems are simulated as a finite cluster, i.e., a

relatively small cluster is cut out of the bulk structure containing the defect.
This kind of strategy is also called the cluster approach.241 The main advan-
tage of this approach is its flexibility: first, because it does not assume any
translational symmetry and allows us to investigate complex structures as
defects in amorphous or disordered solids. Second, high quality standard
molecular ab initio codes can be used, which thus allow a high-level quan-
tum-mechanical treatment of the defect zone.

Figure 46 Examples of surface defects.
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Nevertheless, the abrupt termination of an otherwise infinite solid gives
rise to spurious effects, such as nonphysical electronic states localized at the
boundary, levels in the gap, finite size quantum effects, and neglect of Cou-
lomb and exchange interactions with the environment. Such effects depend
on the nature of the chemical bond in the studied solids: ionic, semi-ionic,
covalent, metallic, and molecular. Therefore, additional manipulations may
be needed to take into account the environment where the cluster would be
contained. For ionic systems, the most important contribution from the miss-
ing ions is the Coulomb field, which may be approximated by introducing a
finite/infinite array of point charges or polarizable semiclassical ions, described
with a shell model.241 For metals and covalent solids, border quantum effects
are important and not easily simulated. In covalent solids, the atoms at the sur-
face present dangling bonds that have to be saturated with capping atoms, like
H, F, and so on. An ambiguity remains, however, related to the field modifica-
tion originating from the presence of the capping atoms, especially for mixed
ionic-covalent situations.

It is worth mentioning here a variant of the cluster model that has been
recently proposed to embed the cluster in its environment, based on a cluster-
in-cluster scheme. The method, proposed by Morukuma et al., is the so-called
our N-layer integrated molecular orbitals—molecular mechanics (ONIOM)
scheme.242–244 The system is modeled through a large cluster (real system)
that is then partitioned into two or more regions (model cluster). Each region
is described with a hierarchical level of theory, higher for the model cluster
and lower for the real system. The total energy is obtained from that of the
real system, i.e., the largest cluster, including a series of correcting terms.
This scheme, originally developed in a molecular context, has also been refor-
mulated for defects-in-solids.245,246

Finally, size and shape of the cluster are critically important and results
should converge with the cluster size. Unfortunately, when enlarging the clus-
ter, the number of atoms grows fast, which makes the calculation rapidly unaf-
fordable. For solids with complex frameworks and containing a large unit cell,
such as zeolites, it is also difficult to preserve the memory of the original crys-
talline structure in the cluster.

The Defect as an Impurity
The host system is treated as a perfect crystalline structure, and the

exploitation of periodicity or quasi-periodicity is an essential ingredient
when treating the defect as an impurity. From a quantum-mechanical point
of view, the defect is treated as a perturbation to the electronic structure of
the perfect crystal environment.

Two different approaches can be adopted:

1. The embedded cluster approach
2. The supercell approach
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The embedded cluster approach is based on schemes that smoothly link
the quantum-mechanical solution of the cluster to the perfect crystal. Different
methods have been developed based on either Green function247 or group-
function (localized crystalline orbitals)248 techniques.

In the supercell approach, the defect is instead enclosed in a sufficiently
large unit cell and periodically repeated throughout space. A common problem
with both approaches is the availability of high-level quantum-mechanical per-
iodic solutions, because, as already mentioned, it is difficult to go beyond the
one-electron Hamiltonian approximations (HF and DFT), at present.

The supercell scheme is the most widely adopted approach because it is
easily implemented in all periodic ab initio codes. Embedding approaches, on
the other hand, may require specific and not widely disseminated softwares,
which make their development slow, and their accuracy relatively low. A
discussion of limits and merits of the embedding techniques can be found in
Pisani.249

In the following pages, we illustrate in more detail the supercell
approach and discuss a few examples.

The Supercell Approach

The supercell approach consists of a periodic replica of the defect, which
is enclosed in a large nonprimitive unit cell. A pictorial view (in 2-D) of the
supercell approach is given in Figure 47, where, by starting from the perfect

Figure 47 Schematic example of a local defect in a two-dimensional lattice as modeled
by the supercell approach.
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host, a substitutional defect is created through two bi-dimensional supercell
models with different size.

The supercell scheme has some attractive features:

1. It is of wide applicability, and it may be adopted, in principle, to model
both bulk and surface defects of ionic, covalent, metallic, and molecular
systems.

2. It is conceptually simple. The size of the supercell depends on an expansion
matrix that consists of integers. The matrix is 2
 2 or 3
 3 according to
the dimensionality of the periodic system.

3. It allows for a proper definition of the defect formation energy, as will be
discussed in the next section.

4. Properties of the defective solid can be calculated easily.

Obviously, computed properties are required to converge with the super-
cell size. This internal consistency check is important for estimating the inter-
action between defects in neighboring cells. In fact, two kinds of limitations in
the model exist, which correspond to two different levels of complexity:

1. The supercell size must be such as to contain the defect zone, which
includes all atoms involved in the structural and electronic relaxation.

2. The distance among defects must be large enough to reduce their
electrostatic interaction to neglibile values.

In the latter case, it must be distinguished whether the defect is neutral or
charged. For neutral defects, the supercell scheme is expected to converge
quickly to the isolated defect limit (we will see later that ‘‘quickly’’ can imply
large supercells).

For charged defects, the electrostatic energy of the supercell diverges, and
approximations must be adopted to neutralize the unit cell to cancel the inter-
action between neutralized defects. The treatment of charged defects within
periodic boundary conditions is still a partially unsolved problem, and ad hoc
solutions have been proposed like, for instance, the corrective schemes pro-
posed in Leslie and Gillan,250 Makov and Payne,251 and Gerstmann et al.252

Finally, the supercell shape should be such as to exploit the point sym-
metry of the defect as far as possible.

When a suitable supercell model of the defective system is devised, three
major issues have to be faced:

1. The determination of the equilibrium geometry, that is the evaluation of
structural effects on the surroundings because of the presence of the defect
(relaxation/reconstruction).

2. The description of the electronic structure in the defect region.
3. The estimate of the defect formation energy.

Points 1 and 2 will be highlighted with a number of examples, whereas
point 3 deserves some more comments.
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Defect Formation Energy

The formation process of a point defect can be described by the reaction:

CðsÞ þ AðgÞ ! DðsÞ þ BðgÞ ½95�

where C is the perfect crystal and D is the defective system. A and B are the
reactants and the products, respectively, and are typically atomic or molecular
species, usually in the gas (g) phase. For instance, in a substitutional defect, A
is the substituting atom for atom B. In the process of creating a vacancy, A is
absent and B is the leaving moiety. The formation energy is then given by the
following expression:

�En ¼ EnðDÞ � nEðCÞ þ EðBÞ � EðAÞ ½96�

i.e., the energy difference between the infinite system with the defect (E(D))
and without (E(C)), plus the energy difference of the atomic reactants, E(A),
and products, E(B), with n being the ratio between the volume of the supercell
Sn and that of the perfect crystal primitive cell.

The defect formation energy can also be considered as the sum of two
contributions: a term originating from the creation of the defect in the perfect
crystal, �En(dc), and a term that accounts for the relaxation effects because of
the perturbation caused by the presence of the defect, �En(rel). That is,

�En ¼ �EnðdcÞ þ�EnðrelÞ ½97�

Within the supercell approach, �En should tend to a well-defined limit with
increasing the supercell size:

�E ¼ lim
n!1

�En ½98�

For a defect to be considered as isolated, sufficiently large supercells must be
adopted to avoid spurious interactions among neighboring defects because of
both relaxation/reconstruction and long-range electrostatic effects.

To allow a consistent definition of the defect formation energy, the com-
putational method must satisfy a size-extensivity criterion: Supercells of differ-
ent size, for the perfect crystal, must provide the same value per formula unit
for all properties.

Examples

The applicability of ab initio periodic methods to the study of defects
will be illustrated through a few examples, the first of which is a neutral
vacancy in LiF. This defect is typical in ionic solids, called F-center, because
its presence produces a color change (F comes from the German: Farbe) in
the bulk material.
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The second example concerns trapped hole centers in alkaline earth oxi-
des (BeO, MgO, CaO, and SrO). These neutral defects essentially consist of
the substitution of a monovalent cation (H/D, Li, Na, K) for one of the biva-
lent cations (Be, Mg, Ca, Sr). Thus, one electron is missing, so that an electron
hole is expected to be localized and ‘‘trapped’’ at the substitutional cation. In
both cases, the defect is paramagnetic, and in the second one, part of the ori-
ginal lattice symmetry is lost.

A third example, carbon substitution in bulk silicon will compare the
cluster and supercell approaches.

F-center in LiF
An F-center consists of an electron trapped at a negative-ion vacancy

within the crystal. It is a paramagnetic defect, and its presence in ionic com-
pounds has been the object of extensive and systematic experimental investi-
gations, mainly by means of EPR and ENDOR techniques. Here we consider
an F-center in LiF.140,253 Computational details and references to experimen-
tal data are reported elsewhere in the original papers.140,253

This defect is a good case for size-extensivity checks, because it is simple,
with the full cubic symmetry of the unperturbed lattice. Moreover, a relatively
small basis set can be adopted because light atoms are involved, so it has been
possible to consider supercells containing up to 256 atoms (or 128 primitive
cells, S128).

Energy data are given in Table 21. The fourth column indicates that
the defect formation energy converges rapidly even with relatively small
supercells. The second column is reported just to show that the total energy
per LiF pair of the perfect crystal is independent of the size of the supercell.

Relaxation effects are small as shown in Table 22 for S32. Partial relaxa-
tion was allowed by including progressively up to the third nearest-neighbors

Table 21 Effect of the Supercell Size on the Defect Formation Energy, �En (in kJ/mol)

n Lattice En(LiF)a E2(LiF)b En�1(F-c)c �En�d

4 Pe �428.221800 �107.055450 �328.590048 674.0
8 Ff �856.443601 �107.055450 �756.811638 674.6

16 Ig �1712.887207 �107.055450 �1613.255239 674.6
27 F �2890.497155 �107.055450 �2790.865051 674.9
32 P �3425.774381 �107.055449 �3326.142400 674.6
64 F �6851.548839 �107.055451 �6751.916825 674.7

108 P �11561.988593 �107.055450 �11462.356596 674.6
125 F �13381.931279 �107.055450 �13282.299274 674.7
128 I �13703.097661 �107.055450 �13603.465658 674.7

aTotal energy (hartree) of a perfect LiF supercell.
bTotal energy (hartree) per LiF formula unit.
cTotal energy (hartree) of the F-center defective system.
dReferred to the unrelaxed defect geometry.
ePrimitive lattice.
fFace-centered lattice.
gBody-centered lattice.
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of the F-center, in order to show the trend to the fully relaxed geometry. Data
indicate that nearest and next-nearest neighbors move away from the defect
center by a small amount, with the largest relaxation involving the nearest
neighbors, whereas relaxation of the third nearest neighbors is negligible.
Accordingly, the gain in energy caused by relaxation is just a few kJ/mol.
Relaxation effects are thus negligible and die down quickly, so that the unre-
laxed structure could safely be considered as the reference geometry.

One of the interesting features of LiF is that it has been a sort of model
system in the interpretation of EPR and ENDOR data.254 Experimental spec-
tra have been fitted to model Hamiltonians, and hyperfine coupling constants
up to the eighth nearest neighbors have been proposed.255 In the calculation of
the hyperfine coupling, it is then important to check the convergence of the spin
density ra�b with the supercell size, not only at the center of the defect, but
also at a relatively large distance from it. The spin density at the nuclear posi-
tion for various supercells up to nine stars of neighbors is given in Table 23.

Table 22 Relaxation Effects in F-Centrer LiF for a S32 Supercell Model

Na �Ec Id IId IIId

First nearest neighbours 6 (6)b �1.7 0.028
Second nearest neighbours 18 (12) �2.3 0.035 0.011
Third nearest neighbours 26 (8) �2.3 0.035 0.011 �0.001
Fully relaxed 63 �2.6 0.040 0.013 �0.003

aNumber of relaxed atoms.
bNumber of atoms in each star (set of atoms equidistant from the defect) of neighbors.
cGain in energy (in kJ/mol) with respect to the unrelaxed structure.
dDisplacements (in Å) of the stars of neighbors with respect to their position in the unrelaxed
geometry.

Table 23 Effect of the Supercell Size on the Spin Density ra�b (in units of 10�2 bohr�3)
at the Nuclei of the Indicated Atoms for the F-Centre in LiF

I II III IV V VI VII VIII IX
n Fa

C Lib100 F110 Li111 F200 Li210 F211 F220 Li221 Li300

4 2.074 4.431 7.204 0.054
8 2.080 2.272 3.641 0.021 0.143

16 2.083 2.254 1.835 0.013 0.116 0.017
27 2.082 2.255 1.837 0.006 0.022 0.008 0.034 0.000
32 2.083 2.255 1.829 0.007 0.044 0.009 0.038 0.096 0.000
64 2.083 2.255 1.816 0.006 0.021 0.004 0.013 0.039 0.000 0.000

108 2.083 2.255 1.819 0.006 0.021 0.004 0.012 0.021 0.000 0.000
125 2.083 2.255 1.816 0.006 0.021 0.004 0.011 0.020 0.000 0.000
128 2.083 2.255 1.816 0.006 0.021 0.004 0.011 0.020 0.000 0.000

Nine sets of neighbors are considered (I–IX).
aFC is the anion vacancy.
bSubscripts give the Cartesian coordinates of the vacancy neighbors in units of the cation–anion
distance.
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S32 is the smallest supercell containing all atoms of interest. When S108 is
considered, all ra�b at the nuclei up to the eighth nearest neighbors are
numerically stable with respect to larger cells. The table shows that after the
second neighbors, the spin density drops by two orders of magnitude.

Insights on the nature of the paramagnetic defect can be obtained by ana-
lysis of the electronic structure. Figure 48(a) shows the total charge (left) and
the spin density (right) of the F-center in LiF (S16) obtained at the UHF level.
The spin density map shows that the unpaired electron is localized at the
vacancy site, whereas the spin density profile [Figure 48(b)] gives an indication

Figure 48 (a) Total charge and spin density maps for an F-center in LiF as obtained at
the UHF level of theory. The section is parallel to the (100) plane through the defect. The
separation between contiguous isodensity curves is 0.01 and 0.001 bohr�3 for the
electron charge and spin density, respectively. The density range is 0.01–0.1(charge) and
�0.01–0.01(spin). Continuous, dashed, and dot-dashed lines denote positive, negative,
and zero values. (b) Spin density profile (in 10�2 bohr�3) along a line connecting the
F-center to opposite nearest neighboring Li ions. Ticks indicate nuclear positions.
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of the spread of the spin density within the vacancy. The Mulliken charge of
the F-center (first row of Table 24) confirms that the amount of electronic
charge that can be attributed to the vacancy is close to one.

One of the possible effects of the presence of a defect is the appearance of
localized states in the band gap of the perfect host. Trapping and releasing
electrons to and from these states requires less energy than exciting electrons
from the top of the valence band to the bottom of the conduction band of the
perfect crystal.

Figure 49 shows the band structure of the F-center in LiF for the S16-
supercell model obtained at the UHF level along with the band structure of
bulk LiF. Alpha and beta electrons are described by different sets of orbitals.
Two band structures are obtained for the a- and b-spin states. The shape of the
bands is similar to those of the perfect system, but a new band appears in the

Table 24 Mulliken Charge q (in electrons) and Spin Density ra�b (in units of 10�2

bohr�3) at the Vacancy Site (F-center) Obtained with Various Hamiltonians (S16)

UHF SPZ BLYP PBE B3LYP

q 1.05 0.89 1.06 0.93 1.03
ra�b 2.08 1.66 1.86 1.73 1.89

Figure 49 Band structure for a- (left) and b-spin (middle) of the LiF F-center and perfect
LiF (right). Plotted data refer to a UHF calculation with a S16 supercell.
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band gap, because of the state associated with the F-center. The analysis of
that band through the projected density of states shows that it is essentially
associated with a hydrogen s-like state.

When other Hamiltonians are considered, the qualitative picture of the
defect remains essentially unaltered (we will see that this is not the case for the
trapped hole centers in alkaline earth oxides), as shown in Table 24, where
Mulliken charge q and spin density ra�b at the vacancy site obtained with
five different Hamiltonians is reported.140

The general picture emerging from the UHF and UDFT data confirm that
the F-center is nearly totally localized at the anion vacancy and that the var-
ious functionals provide similar descriptions. Note that UDFT tends to spread
the spin density onto the nearest neighbors, in particular with the local density
approximation. This picture is also confirmed by spin density maps and pro-
files (not reported here, see Mallia et al.253).

In summary, when we consider the applicability of the supercell model to
the LiF defect, we see that in this case, we are in a favorable position, because:

1. Nuclear relaxation is small.
2. Electronic perturbation is confined within nearest neighbors, and actually

from the next-nearest neighbors the electronic density is indistinguishable
from the perfect bulk on a ‘‘normal’’ scale.

3. The defect is neutral and conforms to the cubic symmetry, as no long-range
electrostatic defect-defect and defect-bulk effects take place.

Because of these conditions, S8 or S16 would be large enough, if we were
interested only in the properties of the F-center itself. As, however, we are also
investigating the hyperfine coupling of the unpaired electron with up to the
eighth nearest neighbors, a much larger supercell is required. Thus, the point
is then raised concerning the definition of the extent of the ‘‘perturbed zone’’:
Because the hyperfine coupling is detected up to the seventh nearest neighbors
by EPR/ENDOR experiments, the perturbed zone is obviously large enough to
include up to the seventh nearest neighbors. However, the amount of spin den-
sity present at the nuclei farther than the next-nearest neighbors is small (see
Table 23), and examining these interactions becomes interesting only in this
special case, where extremely accurate and sensitive experiments are available.
As other properties are concerned, such as the defect formation energy
(Table 21) or the nuclear relaxation (Table 22), the perturbed zone is much
smaller, and a S8-S16 supercell is large enough for most purposes, as previously
mentioned.

Let us now consider a slightly more complicated defect, which is com-
mon in all alkaline earth oxides.

Trapped Hole Centers in Alkaline Earth Oxides
The Cubic Oxides: Li in MgO. Ionizing radiation produces a variety of

trapped hole centers in alkaline earth oxides at low temperature. In the cubic
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case (MgO, CaO, SrO, excluding BeO, which has a lower symmetry), the
defect has axial symmetry along one of the main directions of the cubic lattice.
The presence of various impurity ions occupying different positions along the
hole-vacancy axis produces neutral defects indicated as [X]0, where X repre-
sents H, Li, Na, or K (see Figure 50). When X stands for H (D), the defects are
also denoted as VOH (VOD) centers. These trapped holes have been the subject
of theoretical investigations at the UHF level of theory.140,175,256–259 Here we
only discuss the MgO:[Li]0 case and refer to the cited papers for additional
information on experimental evidences and computational details not
included here.

The convergence of the defect data with the supercell size must be
checked again. Table 25 reports the defect formation energies of the S8, S16,
S32, and S64 supercells, with respect to the atomic energies of the species
involved in the substitution (Li: �7.429609 hartree; Mg: �199.602732

Figure 50 Schematic picture of a S16 supercell model of the trapped hole center in cubic
alkaline earth oxide: MO : ½X�0 (where M ¼Mg, Ca, Sr and X ¼ H, Li, Na). O1 is the
oxygen ion at which the hole is trapped.

Table 25 Dependence of the MgO:[Li]0 Defect Formation Energy (in kJ/mol) with
Respect to the Supercell Size and Geometry Relaxation

S8 S16 S32 S64

Li only 465.3 481.3 488.0 492.4
Full relaxation 403.8 400.8 401.1 400.4
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hartree), when only the Li atom is allowed to relax (first row) and for the fully
relaxed defective structure (second row).

We can compare the first row of Table 25, where the defect formation
energy increases by about 40 kJ/mol in going from the smallest to the largest
supercell, with the LiF case (Table 21), where convergence is already reached
in the unrelaxed defective structure.

The main difference here is that the substitution of a Mg atom with
lithium lowers the crystalline symmetry from cubic to tetragonal and generates
a dipole moment within the cell, as a consequence of the Li displacement. A
long-range dipolar defect–defect interaction originates then among defects in
neighboring cells, and larger supercells are needed to compensate for it.

However, when all atoms in the cell are allowed to relax, a dramatic
change is observed in the defect formation energy, which decreases by 61.5,
80.5, 86.9, and 92.0 kJ/mol for the four supercells. Again, this behavior can
be compared with the case of the F-center in LiF, where relaxation effects are
essentially absent (2–3 kJ/mol). In the fully relaxed case, the convergence of
the defect formation energy is much faster (3 kJ/mol in going from S8 to
S64), which shows that structural relaxation is an effective mechanism to
screen and minimize long-range electrostatic interactions induced by the dipo-
lar nature of the defect center.

Thus, geometry optimization plays a crucial role, which has been ana-
lyzed through partial optimizations within the S64 supercell, by including an
increasing number of neighbors in the process. Results are reported in Table 26.

When only the atomic position of lithium is optimized, it migrates by
�z ¼ 0:279 Å away from O1, with a corresponding relaxation energy of
31.3 kJ/mol; when the first nearest neighbors of Li along the z axis (O1, O2)

Table 26 Convergence of the MgO:[Li]0 Defect Formation Energy (in kJ/mol) in the
S64 Supercell with Respect to Structural Relaxation (in Å) Allowed up to the Fourth
Nearest Neighbors of the Defect in the Otherwise Unrelaxed Structure (changes in the
geometry around the defect are also reported)

Unrelaxed Li LiþOa
1 LiþO(6)c LiþO(6) LiþO(6) LiþO(6) Fully

þOa
2 þMgð12Þ þMgð12Þ þMgð12Þ relaxed

þOð8Þ þOð8Þ
þMgð6Þ

�E 523.7 492.4 484.2 477.2 428.3 426.3 411.2 400.4

Li �z 0.279 0.312 0.291 0.251 0.251 0.245 0.236
Oa

1 �z �0.032 �0.031 0.003 0.002 �0.017 0.007

Oa
2 �z 0.095 0.075 0.059 0.060 0.060 0.059

Ob
3 �z �0.035 �0.017 �0.015 �0.013 �0.012

�r 0.035 0.040 0.040 0.040 �0.046

aOxygen atoms above and below the Li atom along the defect axis (see Figure 50).
bEquatorial oxygen atom (see Figure 50).
cO(6) includes also the four equatorial oxygen atoms around the defect in addition to O1 and O2.
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are also relaxed, the energy gain is 8.2 kJ/mol and displacements are
�zðO1Þ ¼ �0:032 Å, �zðO2Þ ¼ 0:095 Å. When also including the four equa-
torial O3 atoms, the formation energy decreases further by 7.0 kJ/mol and the
displacements of O3 are �z ¼ �0:035 Å and �r ¼ 0:035 Å (in the direction
perpendicular to the axial defect). Including in the geometry optimization
the next star of neighbors (12 atoms of magnesium) reduces the formation
energy by 48.9 kJ/mol. Full relaxation leads to a total gain of 123.3 kJ/mol.
Interestingly, a large fraction of the energy gain is caused by the relaxation
of the Mg ions (48.9þ15.1 kJ/mol, to be compared with 15:2þ 2:0 kJ/mol
for the first and third oxygen neighbors), the reason being that Mg2þ is smaller
than O2- and mobile in the cage of its six oxygen neighbors, which is rigid,
because the oxygen ions are in contact. The smaller the cation, the larger
this effect, as in the case of Be2þ (see next example).

The relaxation mechanism is simple and similar in all alkaline earth oxi-
des: When the alkali metal ion replaces an alkaline earth cation, it relaxes from
the perfect lattice position toward the oxygen ion (O2) along the axial direc-
tion (z axis), which brings a formal þ2 charge; the electron hole localizes at
the opposite oxygen (O1), which in turn relaxes away from the X monovalent
ion.

The S32 supercell is certainly adequate for describing this defect, and it
will be used for the analysis of its electronic and magnetic features as follows.
The electron charge and spin density, computed at the UHF level of theory and
shown on the top of Figure 51, illustrates the two main effects of substituting a
Li ion for one Mg in MgO. Li binds to one of the neighboring O ions (O2) and,
at the same time, like all other monovalent cations, acts as a dopant, which
causes the formation of a trapped electron hole, well localized at the opposite
ion (O1). The spin density map permits us to appreciate the localization of the
unpaired electron at O1, in a pz-type state, with minor spin polarization on the
neighboring atoms. This analysis is supported by the Mulliken population
data, having a net charge of about þ1 electrons for Li, �1 for O1, and �2
for O2. According to the spin density Mulliken analysis, the spin moment of
O1 is close to 1 electron, whereas it is almost null on Li and on the other neigh-
boring oxygen ions.

The different role of O1 and O2 among the O ions of the crystal is
reflected in the band structure. In particular, the p states of both atoms split
off the valence band, which is essentially contributed to by the p orbitals of the
bulk oxygen atoms, as shown in Figure 52. A detailed analysis of the band
structure shows that the most stable a states are associated with the pz (lower
in energy) and the px, py orbitals of O1; the stabilization is a consequence of
the lack of interelectronic repulsion with the corresponding b electron. The
empty b� pz state corresponds to the hole level and lies in the band gap.

As stated above, the UHF electronic structure of the trapped hole
defect indicates the localization of the unpaired electron at the O1 atom. How-
ever, this picture changes significantly when different Hamiltonians are
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considered.140 Table 27 reports the net atomic charges and spin moments on
Li, O1, O2, and O3, in MgO:[Li]0, as computed with UHF and four different
DFT methods. The degree of localization as quantified by the spin moment of
O1 (Table 27) decreases from 0.98 at the UHF level, to 0.41 for B3LYP, to

Figure 51 Total charge and spin density maps for MgO:[Li]0 as obtained at the UHF
level and with various DFT Hamiltonians. The section illustrated is parallel to the (100)
plane through the defect. The separation between contiguous isodensity curves is 0.01
and 0.001 bohr�3 for the electron charge and spin density, respectively. The density
range is 0.01–0.1(charge) and �0.01–0.01(spin map). Continuous, dashed, and dot-
dashed lines denote positive, negative, and zero values.
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about 0.1 with other DFT methods. With DFT methods, this spread of the
unpaired electron over the nearest and next-nearest oxygen neighbors is evi-
dent in the spin density maps (Figure 51) and causes the O1 ion to have a
net charge similar to the other oxygen ions in the lattice, i.e., about �1.7 elec-
trons.

The different degree of localization produced by DFT methods also has
important consequences on the atomic relaxation, with the Li ion being less
strongly attracted to O2 than at the UHF level. These effects are less pro-
nounced when the hybrid B3LYP method is adopted.

Figure 52 Band structure for a- (left) and b-spin (middle) of MgO:[Li]0 and perfect
MgO (right). Plotted data refer to a UHF calculation with a S16 supercell.

Table 27 Net Atomic Charges (q) and Spin Moments (m) in MgO:[Li]0 Evaluated
According to a Mulliken Partition of Charge and Spin Densities

Li O1 O2 O3

——————— ————————— ———————— ——————
Method q m q m Q m q m

UHF þ0.99 0.00 �1.03 0.97 �1.91 0.00 �1.88 0.01
SPZ þ0.98 0.00 �1.71 0.09 �1.69 0.12 �1.69 0.11
BLYP þ0.97 0.00 �1.66 0.14 �1.70 0.10 �1.68 0.11
PBE þ0.98 0.00 �1.74 0.08 �1.71 0.10 �1.71 0.10
B3LYP þ0.98 0.00 �1.48 0.41 �1.80 0.01 �1.72 0.10

Label of atoms as in Figure 50. Data in electrons.
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Magnetic coupling constants determined by EPR and ENDOR techni-
ques permit a direct comparison with experimental data. Table 28 shows
that, in the particular case of the Li defect, the agreement is reasonable
for the UHF result, where the hole is localized at O1. For the other Hamilto-
nians, the disagreement increases in parallel with the delocalization of the hole.

The BeO Case. The Li-trapped hole center in BeO (BeO:[Li]0), is slightly
more complicated than the corresponding defect in MgO, and it presents some
new features we must now consider. At variance with respect to the other alka-
line earth oxides, BeO has a wurzite-like crystalline structure. The cation is
fourfold coordinated, with one Be-O distance (the axial or vertical one)
slightly different from the other three that are equivalent. Substitution of
Liþ for one Be2þ ion in the hexagonal structure generates an electron hole
that can be localized either at the axial oxygen or at one of the three equatorial
oxygen ions, which is indicated in Figure 53 as O�.

These features make studying the relative stability of the two point
defects interesting. Experiment262 indicates that, when the crystal is irradiated
at low temperature, the hole is trapped at an axial oxygen; electron holes at

Table 28 Calculated and Experimental Hyperfine Isotropic (a) and Anisotropic (b)
Coupling Constants and Nuclear Quadrupole (P) Coupling Constant for MgO:[Li]0

Method a b P

UHF �2.393 2.258 �0.017
SPZ �3.691 �0.129 �0.003
BLYP �3.078 0.092 �0.003
PBE �3.979 �0.202 �0.010
B3LYP �3.339 0.480 �0.004
Exp.a �4.539 2.313 �0.014

aExperimental data taken from Abraham et al.260 and Chen and Abraham.261

Figure 53 Schematic view of a S16 supercell model of the two different trapped hole
centers in BeO. O� indicates the oxygen ion where the electron hole is localized. Axial
oxygen in light-gray, and equatorial oxygen in black.
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equatorial oxygens can be obtained via thermal excitation. The energy differ-
ence between the two configurations is then expected to be small. At variance
with the cases previously discussed, here we are not interested in the absolute
defect formation energy, but in the relative value for the two positions. How
much this relative value depends on the supercell size must be checked care-
fully.

Calculations have been performed at the UHF level with full optimiza-
tion of the positions of all atoms in the supercell. As for cubic alkaline earth
oxides, at the UHF level of the theory, the electron hole is fully localized at
O�.

In both the axial and the equatorial configurations, relaxation of Liþ and
O� is qualitatively similar to that observed for the other members of the series.
However, the extent of the O� relaxation in the case of the axial defect,
�r ¼ �0:23 Å, is four times as large as in MgO:[Li]0, where �r ¼ �0:05 Å.
Relaxation of the Be2þ ions is larger than that of the Mg2þ ions, because
the former can migrate more easily in the oxygen cage.

The formation energy obtained with three supercells of increasing size is
reported in Table 29, which shows that the convergence of the formation
energy with the supercell size is much slower than the one reported for
MgO[Li]0 (Table 25), where the formation energy is stable already for small
supercells.

Many reasons exist for this different behavior: In MgO, the point sym-
metry remains high (tetragonal); the mobility of ions (in particular of the
cations) is low, so that relaxation effects are not large; the site coordination
of the ions remains essentially octahedral. In the present case, Be is almost
free to move within the oxygen cage, the point symmetry of the defect is lower
than in the MgO case, and the site symmetry of each ion is also lower so that
nonzero low-order multipoles are generated by the defect. As a consequence,
larger supercells are required.

Indeed, the defect formation energy of the axial defect is still changing by
more than 5 kJ/mol when going from S54 to S128 (Table 29). The screening
mechanism is more effective in the equatorial direction along which the defect
is better accommodated. Table 29 shows that the equatorial defect is more

Table 29 Defect Formation Energy, �E, and Relative Stability, dE, (in kJ/mol) of the
BeO:[Li]0 Axial and Equatorial Centers as Obtained with Supercells of Different Size

BeO Axial BeO:[Li]0 Equatorial BeO:[Li]0 Ax-Eq
Supercella Etot Etot �E Etot �E dE

S16(2 2 2) �1435.23633 �1427.83826 677.9 �1427.85604 631.2 46.7
S54(3 3 3) �4843.92262 �4836.53959 638.4 �4836.54241 631.0 7.4
S128(4 4 4) �11481.89066 �11474.50982 632.6 �11474.51129 628.8 3.8

Total energies in hartrees.
a(i j k) are the expansion coefficients of the primitive lattice basis vectors a, b and c to obtain
Sn.
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stable than the axial one for the supercells considered here, in disagreement
with experimental evidence,262 with the energy difference between the two
configurations, however, small and decreasing when increasing the supercell
size. In supercells as large as S250(5 5 5) or S432(6 6 6), the stability order might
be reversed. Unfortunately, they correspond to large unit cells containing 500
and 864 atoms, respectively, that would make the calculation demanding.

To check the mutual interactions of defects in different supercells, the
formation energy of the axial center has been studied in more detail. A series
of 13 supercells with increasing size (from 32 to 300 atoms) and different
shape has been considered. In fact, given the hexagonal unit cell, the supercell
may be increased by enlarging it in either the axial or the equatorial direction,
or both. Figure 54 shows, graphically, the dependence of the formation energy
on the number of atoms in the supercell. Each Liþ��O� pair can be viewed as a
dipole oriented along the c axis. Making the supercell larger in the equatorial
directions (see the Sn(i i 3) series connected by the continuous line in the figure)
reduces the dipole lateral repulsion and decreases the formation energy. On
the contrary, when separating the dipole along the axial direction, the coop-
erative interaction between dipoles decreases and �E grows slightly (see, for
example, the Sn(3 3 i) series). By growing the supercell equatorially, �E con-
verges more rapidly with respect to axial growth, as can be seen comparing the
Sn(3 3 i) and Sm(4 4 i) series.

The present example shows that it is not difficult to find situations where
the supercell size must be large, and the accuracy of the calculations, referring
to different supercells, must be high.
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Figure 54 Dependence of the formation energy of the axial BeO:[Li]0 defect with size
and shape of the adopted supercell. (i j k) are the expansion coefficients of the primitive
lattice basis vectors.
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It is hard to believe that a cluster model would give reliable results when
relaxation, polarization, and long-range electrostatic interactions play an
important and competitive role, because border effects are expected to alter
the relative energies by an amount that is orders of magnitude larger than
the relative stabilities being investigated.

Carbon Substitution in Silicon: A Supercell Versus Cluster Investigation
As a last example, we consider another simple defect: the carbon sub-

stitution in bulk silicon.263,264 In this case, however, we will not only
consider the convergence properties of the supercell approach but also com-
pare the results of the cluster and supercell schemes. Calculations were
performed at the HF level with a 6-21G basis set plus polarization functions
for C and Si and a 2-1G basis set for H (the latter was used in the cluster
calculations).

We consider first the convergence of the results with respect to the super-
cell size. Four supercells with 8 (S4), 16 (S8), 32 (S16), and 64 (S32) atoms (the
last is shown in Figure 55) are considered, all with the cubic symmetry. As in
previous examples, to investigate how far the perturbation propagates, an
increasing number of defect neighbors has subsequently been allowed to relax
in each supercell.

The stars of neighbors completely contained in the unit cell, and the
number of atoms belonging to a star (in parentheses) for the four supercells
are I (4), I (4), Iþ II (4þ 12), and Iþ IIþ IIIþV (4þ 12þ 12þ 12), respec-
tively. Notice that in S8, next-nearest neighbors are shared with defects in
neighboring cells. In the S32 supercell, the atoms of star IV are at special posi-
tions and cannot relax.

Figure 55 A 64-atom supercell (S32) model of a carbon impurity in bulk silicon.
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The substitutional defect formation energy, �E, computed with respect
to atomic energies according to Eq. [96], is reported in Table 30. The Si and C
atomic energies are �288.812622 and �37.654208 hartree, respectively.

Carbon has both a higher electronegativity and a smaller covalent radius
than does silicon, so a large charge transfer and atomic relaxation is foreseen.
The former feature is expected to polarize the charge distribution in the cell,
with a charge alternation between subsequent stars of neighbors and relatively
strong electrostatic interactions among defects in neighboring cells, at least for
small supercells. Table 31 shows that indeed this polarization occurs, with a
huge difference in the Mulliken net charge of the central carbon (�0.7 elec-
trons) atom with respect to its four nearest neighbors. Charge oscillations,
however, damp down rapidly; in the S32 supercell, the Mulliken net charge
of the second neighbors is as small as �0.018 electrons, and third and fourth

Table 30 Defect Formation Energies (in kJ/mol) for a Carbon Substitutional Impurity
in Silicon, as a Function of Supercell and Cluster Size

Fully
Unrelaxed I II III IV V Relaxed

Supercell
S4 222.6 105.1
S8 223.6 100.4 92.3
S16 223.2 59.0 24.4 9.7
S32 223.0 60.1 28.5 25.8 12.5 12.4
Cluster
CSi4H12 220.5 56.3
CSi34H36 230.1 97.2 49.1 50.6
CSi86H76 225.4 68.1 39.8 40.1 41.5 6.5

Relaxation effects are taken into account by including increasing stars of neighbors of the
carbon impurity.

Table 31 Mulliken Net Charges for a Carbon Substitutional Impurity in Silicon, as a
Function of Supercell and Cluster Size

C SiI SiII SiIII SiIV SiV

Supercell
S4 �0.644 0.210 �0.065a

S8 �0.661 0.219 �0.035a

S16 �0.758 0.237 �0.017 0.001 0.002a

S32 �0.755 0.237 �0.018 �0.003 0.001 0.002
Cluster
CSi4H12 �0.738 0.575b

CSi34H36 �0.723 0.166 0.102b 0.118b

Csi86H76 �0.746 0.235 �0.038 �0.023 �0.027 0.109b

Net charges refer to fully relaxed supercell structures whereas clusters are partially relaxed up to
first, third, and fifth nearest-neighbors of CSi4H12, CSi34H36, and CSi86H76, respectively.

aIncomplete star of neighbors.
bSilicon atoms bonded to one or more hydrogens.
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nearest neighbors are almost neutral. These data refer to the relaxed solution,
but results are similar in the unrelaxed calculations, which helps us understand
why the unrelaxed defect formation energy is essentially the same for the var-
ious supercells (first colums in Table 30: numbers differ by less than 1 kJ/mol):
The defect is already screened effectively at the nearest neighbor level, so that
the electrostatic defect–defect interaction is essentially null even with small
cells (in the S4 supercell, for example, the defect–defect distance is as small
as 5.52 Å). This nearly perfect screening is also a consequence of symmetry:
The defect zone has zero dipole and quadrupole.

When relaxation is taken into account, however, the defect perturbation
propagates farther away, and convergence of the defect substitutional energy
is slower.

The structural relaxation is large, and the process is dominated by modifi-
cations in the covalent network with no dependence on electrostatic effects. The
largest structural change involves nearest neighbors as is shown in Table 32.
The C-SiI bond length reduces by 0.312 Å with respect to the bulk Si-Si

Table 32 Relaxation Effects in a Carbon Substitutional Impurity in Bulk Silicon as a
Function of Supercell and Cluster Size

N I II III IV V
R 2.390 3.903 4.577 5.520 6.015

Supercell
S4 1 �0.205
S8 1 �0.213

fra �0.217
S16 1 �0.261

2 �0.300 �0.066
fra �0.315 �0.078 0.018

S32 1 �0.259
2 �0.300 �0.065
3 �0.300 �0.065 �0.003
5 �0.313 �0.081 �0.002 �0.038
fra �0.312 �0.082 �0.002 �0.040

Cluster
CSi4H12 1 �0.208
CSi34H36 1 �0.237

2 �0.279 �0.058
3 �0.278 �0.062 �0.016

CSi86H76 1 �0.254
2 �0.292 �0.058
3 �0.291 �0.056 0.007
4 �0.291 �0.056 0.009 0.014
5 �0.306 �0.072 0.010 0.014 �0.038

This table gives the variation (in Å) of the distance R between the defect and its neighbors (N in
Roman numerals). Relaxation effects are taken into account by including increasing stars of
neighbors (Arabic numerals) of the carbon impurity.

aFull relaxation in the supercell.
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distance, from 2.390 to 2.078 Å, whereas the SiI-SiII bond elongates to 2.446
Å. When only the nearest neighbors are allowed to relax, the energy gain is
120 kJ/mol for S4 and S8, which increases to 163 kJ/mol in the S16 and S32

supercell. A further gain of about 30 kJ/mol is obtained by relaxing the
next-nearest neighbors (this is possible only in S16 and S32). Relaxation of
the third nearest neighbors is small and results in essentially no energy gain,
whereas a further 13 kJ/mol is obtained by relaxing the fifth nearest neighbors.
Full relaxation yields a further small energy gain.

Full relaxation of S16 reduces �E to 9.7 kJ/mol, close to the value
obtained with the fully relaxed S32 supercell. Thus, from the point of view
of the convergence of defect properties, the present example is similar to the
F-center in alkali halides previously discussed, where a relatively small super-
cell (S16) is large enough to ‘‘contain’’ all the defect perturbation.

Let us now investigate the same problem with a cluster model.264 Clus-
ters containing 5, 35, and 87 silicon atoms have been considered; they are
referred to as small, medium, and large in Figure 56. Dangling bonds were
saturated with hydrogen atoms along the Si-Si directions of the perfect crystal.
The Si-H distance was kept constant at 1.46 Å during the optimization of all
cluster atoms (for this reason clusters in the tables are not ‘‘fully relaxed’’).
The medium and large clusters were constructed subject to the constrain
that silicon atoms at the cluster surface are connected to no more than two
hydrogen atoms. The total number of atoms in the three clusters is then 17,
71, and 163. Computational conditions are the same for cluster and supercell
models. The defect formation energies, Mulliken net charges, and structural
relaxation effects as evaluated with the cluster models are given in the lower
part of Tables 30, 31, and 32, respectively.

Figure 56 Adopted cluster models of the carbon impurity in bulk silicon.
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The defect formation energies for the unrelaxed clusters are similar to
those calculated by the supercell approach, even in the case of small clusters.
The same screening mechanism, already discussed for the supercell models, is
active also in the cluster calculations.

When relaxation effects are taken into account, the defect perturbation
extends farther from the impurity into regions where the screening of border
effects (H saturation) is only partial. The cluster defect substitutional energy
differs from the S32 datum by -3.8 (small), 37.1 (medium), and 8.1 (large) kJ/
mol when only the nearest neighbors are allowed to relax, and by 20.6 (med-
ium) and 11.3 (large) kJ/mol when next-nearest neighbors can relax. Atomic
charges in Table 31 confirm that the positive charge on the first Si neighbors
compensates the negative charge on carbon, which makes the electrostatic
contribution short-ranged. However, closer inspection of Table 31 shows
that only for the largest cluster do net charges damp down as in the supercell.
In fact, silicon atoms close to the border H atoms are positively charged, and
this is expected to perturb their interaction to move toward the cluster center.
Eventually, as regards the defect formation energies, the largest supercell and
cluster models data are reasonably close to each other.

It is worth noting that if the hydrogen atoms are allowed to relax, a dra-
matic change in the structure originates, and the formation energy becomes
negative. Fixed, saturating hydrogen atoms force the cluster to retain the mem-
ory of the bulk geometry.

The comparison between supercell and cluster approaches shows that the
cluster size is crucial to derive accurate results and care must be taken to
account for border effects. Only the largest cluster considered here (86 silicon
atoms) is adequate for describing relaxation and defect formation energy prop-
erly, whereas a S16 (32-atom) supercell is already large enough.

Larger differences between the supercell and the cluster scheme may
appear when other properties related to the infinite nature of the perturbed
crystalline system are analyzed. In Figure 57, on the left, the band structure
of defective S32 supercell is shown and, on the right, the energy levels of the
CSi86H76 cluster are shown (the energy scale is shifted in such a way that the
1s level of carbon of the two systems coincide). In the present example, no
defect states are present in the gap; the computed band gap is 6.38 eV for
the defective S32 supercell, to be compared with the 8.8 eV HOMO-LUMO
gap of the cluster.

These examples show that the supercell approach is an accurate and, in
many cases, relatively cheap tool for the study of neutral defects in crystalline
systems, once properly gauged with respect to supercell size.

The supercell approach, as implemented in CRYSTAL, has been applied
to the study of many different bulk and surface defective systems. These
include Ca and Be substitution in bulk MgO,265 F-center in CaF2,266 Fe doped
NiO,267 Li doped NiO,268 V doped TiO2,269 and Ti substitution in an all-silica
Chabazite.270,271 An example of reactivity of a surface defect has been
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reported by Orlando et al.,272 where they studied the hydrogen abstraction
from methane by Li doped MgO. An interesting application in the modeling
of extended defects has been reported recently by Gruen at al.273 in which the
growth of crystalline diamond through planar defects was investigated. Con-
vergence properties of the cluster model in the study of local perturbations has
also been studied in ionic systems as in the case of bulk defects in MgO.274
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APPENDIX 1: AVAILABLE PERIODIC PROGRAMS

Many periodic codes are mentioned in the literature, mostly based on
either a plane waves basis set and pseudopotentials or projector-augmented
waves. Some of this software can be purchased, and the rest is available
through collaboration with the main development team or downloadable

Figure 57 Band structure of the fully relaxed carbon doped S32 silicon supercell (left)
and energy levels of the CSi86H76 cluster (right). In the cluster, atomic positions were
relaxed up to the fifth nearest neighbors of the central carbon atom. The cluster energy
levels are shifted so that the lowest level of both systems coincide.
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Table A1.1 List of Available Solid State ab initio Computer Programs

Program Description Web site Refs

ABINIT DFT(LDA,GGA); TD-DFT;
NCPP; PW; PAW; TE; GO; PH

www.abinit.org 163

CASTEP DFT(LDA,GGA); PP; PW; TE;
GO; CP-MD

www.accelrys.com/mstudio/
ms_modeling/castep.html

275

CPMD DFT(LDA,GGA); NCPP; PW;
TE; GO; CP-MD

www.cpmd.org 276

Dacapo DFT(LDA,GGA); PP; PW; TE;
GO

www.fysik.dtu.dk/CAMP/daca-
po.html

DoD-Planewave DFT(LDA,GGA); PP; PW; TE;
GO

cst-www.nrl.navy.mil/people/
singh/planewave/

FHI98md DFT(LDA,GGA); NCPP; PW;
TE; GO; BO-MD

www.fhi-berlin.mpg.de/th/
fhi98md/index.html

277

PARATEC DFT(LDA,GGA); TD-DFT;
NCPP; PW; TE; GO

www.nersc.gov/projects/para-
tec/

278

PWSCF DFT (LDA,GGA); DF-PT;
NCPP; PW; TE; GO; PH; CP-
MD

www.pwscf.org 279

VASP DFT (LDA,GGA); USPP; PW;
PAW; TE; GO; PH; CP-MD

cms.mpi.univie.ac.at/vasp/ 280

CP-PAW DFT(LDA,GGA); PAW; TE;
GO; CP-MD

www.pt.tu-clausthal.de/~paw/
index.html

281

PWPAW DFT(LDA); PAW; TE; GO www.wfu.edu/~natalie/papers/
pwpaw/man.html

282,
283

QUICKSTEP/
CP2K

DFT(LDA,GGA); PP; hybrid
GTO/PW

cp2k.berlios.de 284

SIESTA DFT(LDA,GGA); PP; NTO; TE;
GO; MD

www.uam.es/departamentos/
ciencias/fismateriac/siesta/

285

DMol3 DFT(LDA,GGA); AE; NTO;
TE; GO

www.accelrys.com/mstudio/
ms_modeling/dmol3.html

286

LmtART DFT; AE; LMTO; TE; GO; PH physics.njit.edu/~savrasov/Pro-
grams/index_lmtart.htm

164

FLEUR DFT; AE; FLAPW; TE www.flapw.de 287
WIEN2K DFT(LDA,GGA); AE; FLAPW;

TE; GO; PH
www.wien2k.at/ 288

MOPAC2002 SE; TE; GO www.schrodinger.com/
Products/mopac.html

ADF2002
(BAND)

DFT(LDA,GGA); TD-DFT; AE;
STO; TE

www.scm.com 289

Gaussian03 HF; DFT; AE; GTO; TE; GO;
PH

www.gaussian.com 290

CRYSTAL03 HF; DFT; AE; PP; GTO; TE; GO www.crystal.unito.it

AE All-electron basis set BO Born–Oppenheimer approximation
CP Car–Parrinello method DFT Density functional theory
FLAPW Fully linearized augmented plane wave GGA Generalized gradient approximation
GO Geometry optimization GTO Gaussian-type orbitals
HF Hartree–Fock LDA Local density approximation
MD Molecular dynamics NCPP Norm-conserving pseudopotentials
NTO Numerical type orbitals PAW Projector-augmented wave method
PH Phonons PP Pseudopotentials
PT Perturbation theory PW Plane waves
SE Semi-empirical methods STO Slater-type orbitals
TD Time dependent TE Total energy
USPP Ultra-soft pseudopotentials
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with no restriction. A tentative list of public codes for solid state ab initio cal-
culations is reported in Table A1.1, along with a list of the main functionalities
and indication of the corresponding homepage.

APPENDIX 2: PERFORMANCE OF THE PERIODIC
PROGRAM CRYSTAL

The cost of a quantum mechanical calculation depends on a large num-
ber of variables, of which the hardware available is certainly the most volatile,
owing to rapid technological evolution. Also the compiler and compilation
options that generate the binary have an influence on the performance of a
program, as well as the more specific choice of the computational parameters
controlling the accuracy of the computer program. For these reasons, the data
reported in this appendix are intended to give only a rough indication of the
cost of a periodic calculation and show how computational time scales with
the dimensionality of the system, the approximation used, the unit cell, and
the basis set size. To achieve this goal, we reconsider some of the examples
illustrated before from the point of view of performance using CRYSTAL.56

We begin the analysis by comparing periodic calculations of increasing
dimensionality with a single molecule calculation of a molecule consisting of
the atoms in the unit cell. Data for MgO are represented in Figure A2.1, where
the time required for the calculation of the HF total energy and wave function
of a MgO molecule (0-D) is compared with the time required for the
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Figure A2.1 Computer time of a CRYSTAL calculation of the HF total energy and
wave function for a MgO molecule, polymer, one-layer (001) slab, and bulk.
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corresponding polymer (1-D), one-layer (001) slab (2-D), and bulk (3-D). We
have used the same basis set, computational conditions, and geometry in all
cases.

Cost increases exponentially with the dimensionality of the system, fol-
lowing approximately the progression 1:2:8:30 from 0-D to 3-D. In this simple
case, even the bulk calculation takes only a few seconds on a small PC.

The cost of a bulk calculation is primarily a function of the unit cell size.
Figure A2.2 shows the total time required for the calculation of the total
energy with the MgO supercells that we used in the study of trapped-hole cen-
ters. We are considering the supercells before creating the defect. Therefore,
the system possesses the full symmetry of the perfect crystal (48 point-symme-
try operations). Calculations refer to the S4, S8, S16, S32, S64, S128, and S256

supercells; nine AOs are used for every ion, so that the largest cell contains
4608 basis functions.

A full energy and gradient calculation with 512 ions in the supercell
takes less than 2 hours on a low-level PC. Comparing the cost of calculations
with supercells of increasing size, we see in the left part of the curve (Figure
A2.2) that the elapsed time scales linearly with the number of the basis func-
tions in the supercell up to S64,. The departure from linearity at that point cor-
responds to some nonlinear processes becoming important, in particular the
diagonalization of large Fock (or KS) matrices.

However, the MgO supercells are a favorable case for their high
point symmetry, of which CRYSTAL takes full advantage. For example, the
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Figure A2.2 Total elapsed time for HF total energy calculations of MgO cubic
supercells with 8, 16, 32, 64, 128, 256, and 512 ions. The CRYSTAL program was
compiled using the Intel Fortran Compiler IFC7.0 with the �O2 �tp p7 options.
Calculations were carried out with a Pentium Xeon 2.4-GHz single-processor computer,
with 2-GB RAM, 512-KB cache, wide SCSI disks.
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computer time spent for a calculation with the S8 supercell increases by about
20 times when symmetry is neglected, and full geometry optimization of large
supercells (S64 or S128) containing a trapped-hole center, where only 8 of 48
original point symmetry operations exist, takes a few days on a single PC.

The cost of a calculation can increase also because of basis set enlarge-
ment. In particular, the truncation of the infinite series in CRYSTAL is effec-
tive for relatively sharp Gaussian functions. In ionic and covalent compounds,
the exponents of the most diffuse Gaussians in a double-zeta-type basis set are
relatively high, typically between 0.13 and 0.3 bohr�2, and the corresponding
computational effort is not too large. On the contrary, the exponent of the
outermost Gaussian in a metal can be smaller than 0.1 bohr�2, with a dra-
matic increase in computer time, as a huge amount of one- and two-electron
integrals have to be computed, which is also the case for any large molecular
basis sets containing diffuse functions with a high angular quantum number
used for describing crystalline systems.89 As an example, we consider the crys-
tal of urea, with two molecules in the unit cell (16 atoms, 8-point symmetry
operations), and we compare the elapsed time for the integral evaluation, SCF
iteration, and gradient calculation as a function of the basis set. Six different
molecular basis sets have been considered, from 3-21G to 6-311G(d,p). A few
details on the basis sets (number of AOs and primitive functions per cell, expo-
nents of the outermost atomic Gaussian) are given in Table A2.1, and results
are shown on the right side of Table A2.2. The cost of a typical HF optimiza-
tion of atomic positions (lattice parameters were fixed at their experimental
values)291 is also reported.

The 3-21G and 6-21G rows in Table A2.2 are similarly cheap, because
the additional core Gaussian function exponents in 6-21G are too large to
affect the total cost of the calculation. The higher cost of the 6-31G basis
set is caused by the increased number of primitives in the valence shell, and
to the smaller exponent of the outermost uncontracted valence Gaussian func-
tions, as shown in Table A2.1. For similar reasons, 6-311G is more expensive
than 6-31G. Although d-type functions are usually not diffuse, computing
integrals involving d-type AOs is more demanding than with p-type AOs

Table A2.1 Description of the Basis Sets Used for Crystalline Urea

Basis set Na
AO Nb

g asp(H)c asp(C)c asp(N)c asp(O)c

3-21G 88 144 0.183 0.196 0.283 0.374
6-21G 88 166 0.183 0.196 0.283 0.374
6-31G 88 208 0.161 0.169 0.212 0.270
6-311G 128 248 0.103 0.146 0.201 0.256
6-31G(d,p) 152 280 0.161 (1.100) 0.169 (0.800) 0.212 (0.800) 0.270 (0.800)
6-311G(d,p) 192 320 0.103 (0.750) 0.146 (0.626) 0.201 (0.913) 0.256 (1.292)

aNumber of basis functions.
bNumber of primitive Gaussians.
cExponent of the outermost sp Gaussian (exponent of polarization functions in parentheses).
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with the same exponent. In summary, full geometry optimization with the lar-
gest basis set is 20 times slower than with the smallest basis set considered. For
comparison, the computer time necessary to run similar calculations for a
dimer of urea molecules (0-D), with the same geometry as in the crystal unit
cell, is also reported on the left side of Table A2.2.

Beside the composition of the basis set, the choice of the Hamiltonian is
also important in determining the length of a quantum-mechanical calcula-
tion. For example, the time spent in a single point energy plus gradient calcu-
lation, i.e., 667 seconds at the Hartree–Fock level (see Table A2.2), becomes
548, 898, and 1535 seconds, respectively, when we use LDA, GGA, and
B3LYP, with a pruned grid for numerical integration of the exchange-correla-
tion functional defined by 75 radial points and 494 angular points (the total
number of points in the cell is 27,364; such a grid is labeled as LGRID in the
CRYSTAL manual).56

Because parallel machines are becoming common in routine calculations,
we also provide a few examples of parallel calculations. Two versions of par-
allel CRYSTAL exist: The first is based on a replicated data scheme (PCRYS-
TAL), whereas the second implements a distributed data algorithm (MPP-
CRYSTAL). The most important difference between these versions concerns
the Fock (or KS) matrix diagonalization step. Every matrix associated with
one k-point is diagonalized by a single processor in PCRYSTAL, and maxi-
mum efficiency is obtained when the number of k-points in the reciprocal
unit cell ðnkÞ is an exact multiple of the number of processors. When nk is
small and the matrices to be diagonalized are large, as for example with large
unit cell systems, parallelization with PCRYSTAL may become inefficient with

Table A2.2 Elapsed Time (in sec) for Hartree–Fock Calculations of Urea Molecular
Dimer and Crystal

Molecular Crystal
————————— ————————————————————-

Basis set ta
INT tb

SCF tc
GRAD ta

INT tb
SCF tc

GRAD tOPT(Nstep)d tOPT/Ne
step

3-21G 3 5 11 13 13 43 853 (13) 65
6-21G 4 5 12 14 13 45 833 (12) 69
6-31G 5 7 24 30 20 124 2765 (15) 184
6-311G 15 21 58 135 66 466 8398 (13) 645
6-31G(d,p) 24 32 103 72 67 318 5673 (13) 457
6-311G(d,p) 53 79 199 263 251 973 18267 (13) 1405

With an AMD Athlon 2.8-GHz single-processor computer, 1-GB RAM, 512-KB cache, EIDE
disks. Compilation of the program source with release 4.2 of the Portland Group PGF90 compiler,
with -O1 -tp athlon options.

aElapsed time (sec) for the calculation of integrals.
bElapsed time (sec) for the full self-consistent field cycle.
cElapsed time (sec) for the calculation of energy gradients.
dElapsed time (sec) for geometry optimization (number of optimization steps in parentheses).
eAverage elapsed time (sec) per geometry optimization step.
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any number of processors greater than nk. MPP-CRYSTAL obviates this pro-
blem in massive-parallel computers by distributing every diagonalization task
across a large number of processors.

We consider the scaling of PCRYSTAL with the number of active proces-
sors for silicalite (MFI framework; see Figure A2.3a), an all silica zeolite with
288 atoms in the unit cell (4416 AOs, 8-point symmetry operations; 8 k-
points). Figure A2.3b shows that an almost linear correspondence exists
between the number of active processors and execution time. The CPU time
decreases from about 23 to 3 hours when distributing the job to eight proces-
sors.

MPP-CRYSTAL has been used recently for the calculation of the HF
total energy of a small structural protein that has been characterized by X-
ray diffraction studies (0.52 Å) to a very high precision: crambin,292 which
has P21 symmetry with two chains per unit cell, 46 aminoacidic residues per
chain, and 1284 atoms per cell.

The scaling of such a calculation with the number of active processors of
IBM p-series 690 RS6000/P4 1.3 GHz (1240 processors) has been tested on
three basis sets of increasing size: STO-3G (3948 AOs), 6-31G (7194 AOs),
and 6-31G(d,p) (12354 AOs) at the HPCx Supercomputing Center in Dares-
bury, (U.K.). Figure A2.4 shows that scalability increases with increasing the
basis set size. A total of 1024 active processors speed-up the calculation with
the largest basis set by a factor of 700, with the calculation taking about 3
hours to be completed. Almost linear scaling is observed up to 256 processors.
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Figure A2.3 (a) Structure of an all-silica zeolite silicalite, MFI framework; (b) Speed-up
of the total energy and wavefunction calculation with the number of processors in a
cluster of AMD Athlon 1.9-GHz single-processor, 1-GB RAM, 512-KB cache, EIDE
disks. The code was compiled with PGF90 v4.2 and -O1 -tp athlon options.
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APPENDIX 3: ACRONYMS

AE All-electron
AFM Antiferromagnetic
AO Atomic orbital
APW Augmented plane waves
B3LYP Becke 3-parameter exchange-correlation functional
BLYP Becke and Lee–Yang–Parr exchange-correlation functional
BSSE Basis set superposition error
BZ Brillouin zone
CCA Coupled-cluster approximation
CCSD CC truncated to singles and doubles substitutions
CCSD(T) CC truncated to singles, doubles, and (approximated) triples

substitutions
CHA Chabazite
CI Configuration-interaction
CO Crystalline orbital
CP Counterpoise method
DFT Density functional theory
EDI Edingtonite
ENDOR Electron-nuclear double-resonance

Linear
6-31G* (12,354 GTOs)
6-31G (7,194 GTOs)
STO-3G (3,948 GTOs)
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Figure A2.4 Comparison of the CPU time speed-up with the number of processors for
three different basis sets of benchmark calculations on crambin (by courtesy of I. J.
Bush).
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EPR Electron paramagnetic resonance
FAU Faujasite
FLAPW Fully linearized augmented plane waves
FM Ferromagnetic
GGA Generalized gradient approximation
HF Hartree–Fock
HOMO Highest occupied molecular orbital
IR Irreducible representation
KKR Korringa–Kohn–Rostoker
KS Kohn–Sham
LAPW Linearized augmented-Plane-Waves
LCAO Linear combination of atomic orbitals
LDA Local density approximation
LSDA Local spin-density approximation
LUMO Lowest unoccupied molecular orbital
MP2 Møller–Plesset second-order perturbation expansion
ONIOM Our N-layer integrated molecular orbitals—molecular

mechanics
OPW Orthogonalized plane waves
PP Pseudopotentials
PW Plane waves
PW91 Perdew–Wang 91 exchange-correlation functional
SOD Sodalite
SPZ LDA functional formulation (Slater exchange, Perdew–Zunger

correlation)
STO Slater type orbital
SVWN LDA functional formulation (Slater exchange, Vosko–Wilk–

Nusair correlation)
UHF Unrestricted Hatree–Fock
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187. S. Gennard, F. Corà, and C. R. A. Catlow, J. Phys. Chem. B, 103, 10158 (1999). Comparison
of the Bulk and Surface Properties of Ceria and Zirconia by Ab Initio Investigations.

188. C. Rehbein, F. Michel, N. M. Harrison, and A. Wander, Surf. Rev. Lett., 5, 337 (1998). Ab
Initio Total Energy Studies of the Alpha-Cr2O3 (0001) and (01(-1)2) Surfaces.

120 Ab Initio Quantum Simulation in Solid State Chemistry



189. T. Ouazzani, A. Lichanot, and C. Pisani, J. Phys. Chem. Solids, 56, 915 (1995). Effect of the
Quality of the Atomic Orbitals Basis Set about the Relaxation and Electronic Structure of the
(110) Surface of Lithium Oxide.
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