
his chapter introduces the systems development life cycle, the fundamental four-
phase model (planning, analysis, design, and implementation) that is common to all

information system development projects. It then examines several commonly used system
development methodologies that differ in their focus and approach to each of these phases.
The chapter closes with a discussion of the skills and roles needed within the project team.

OBJECTIVES

■ Understand the fundamental systems development life cycle and its four phases.
■ Understand several different categories of system development methodologies

and how to choose among them.
■ Be familiar with the different skills and roles required on the project team.

CHAPTER OUTLINE

C H A P T E R 1

T

INTRODUCTION TO
SYSTEMS ANALYSIS

AND DESIGN

Introduction
The Systems Development Life Cycle

Planning
Analysis
Design
Implementation

Systems Development Methodologies
Structured Design
Rapid Application Development
Agile Development

Selecting the Appropriate
Development Methodology

Project Team Skills and Roles
Business Analyst
Systems Analyst
Infrastructure Analyst
Change Management Analyst
Project Manager

Summary

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 1

INTRODUCTION

The systems development life cycle (SDLC) is the process of understanding how an
information system (IS) can support business needs, designing the system, build-
ing it, and delivering it to users. If you have taken a programming class or have pro-
grammed on your own, this probably sounds pretty simple. Unfortunately, it is not.
A 2004 survey by the Standish Group found that just 28% of IT projects succeed
these days. Outright failures—IT projects cancelled before completion—occur in
18% of all IT projects. Unfortunately, many of the systems that aren’t abandoned
are delivered to the users significantly late, cost far more than planned, and have
fewer features than originally planned.

Most of us would like to think that these problems only occur to “other” peo-
ple or “other” organizations, but they happen in most companies. See Figure 1-1 for
a sampling of significant IT project failures. Even Microsoft has a history of fail-
ures and overdue projects (e.g., Windows 1.0, Windows 95).1

Although we would like to promote this book as a “silver bullet” that will
keep you from experiencing failed IS projects, we must admit that a silver bullet
guaranteeing IS development success does not exist.2 Instead, this book will pro-
vide you with several fundamental concepts and many practical techniques that you
can use to improve the probability of success.

The key person in the SDLC is the systems analyst who analyzes the business
situation, identifies opportunities for improvements, and designs an information
system to implement them. Being a systems analyst is one of the most interesting,
exciting, and challenging jobs around. As a systems analyst, you will work with a
variety of people and learn how they conduct business. Specifically, you will work
with a team of systems analysts, programmers, and others on a common mission.
You will feel the satisfaction of seeing systems that you designed and developed
make a significant business impact, while knowing that your unique skills helped
make that happen.

It is important to remember that the primary objective of the systems analyst
is not to create a wonderful system. The primary goal is to create value for the
organization, which for most companies means increasing profits (government
agencies and not-for-profit organizations measure value differently). Many failed
systems were abandoned because the analysts tried to build a wonderful system
without clearly understanding how the system would support the organization’s
goals, current business processes, and other information systems to provide value.
An investment in an information system is like any other investment, such as a new
machine tool. The goal is not to acquire the tool, because the tool is simply a means
to an end; the goal is to enable the organization to perform work better so it can earn
greater profits or serve its constituents more effectively.

This book will introduce you to the fundamental skills you need to be a sys-
tems analyst. This is a pragmatic book that discusses best practices in systems

2 Chapter 1 Introduction to Systems Analysis and Design

1 For more information on the problem, see Capers Jones, Patterns of Software System Failure and Success,
London: International Thompson Computer Press, 1996; Capers Jones, Assessment and Control of Software
Risks, Englewood Cliffs, NJ: Yourdon Press, 1994; Julia King, “IS Reins in Runaway Projects,” Computer-
world. February 24, 1997.
2 The idea of using the silver bullet metaphor was first described in a paper by Frederick Brooks. See Fred-
erick P. Brooks, Jr., “No Silver Bullet—Essence and Accident in Software Engineering,” Information Pro-
cessing 1986, the Proceedings of the IFIP Tenth World Computing Conference, edited by H.-J. Kugler (1986):
1069–76.

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 2

development; it does not present a general survey of systems development that
exposes you to everything about the topic. By definition, systems analysts do things
and challenge the current way that organizations work. To get the most out of this
book, you will need to actively apply the ideas and concepts in the examples and in
the “Your Turn” exercises that are presented throughout to your own systems devel-
opment project. This book will guide you through all the steps for delivering a

Introduction 3

Snap-On lnc. Conversion to new order-entry system Orders delayed, inventory miscounted after system installation
from The Baan Co. in Dec. 1997. $50 million in lost sales, operating costs soar

40% during first half of 1998. Profits decline 22% compared
to same period previous year.

FoxMeyer Corp. SAP ERP System Bungled ERP installation in 1996. FoxMeyer driven into
bankruptcy. Numerous lawsuits resulted with FoxMeyer
seeking over $1 billion in damages.

Greyhound Lines Inc. “Trips” reservation and bus dispatch system Over $6 million spent on building Trips in early 1990s.
System crashed after installation in 1993 when sale prices
offered on bus fares. Agents resorted to writing tickets by
hand. Ridership dropped 12% in one month. $64 million
loss for first half of 1994. CEO and CFO resign.

Hershey Foods Corp. IBM-led installation and integration of SAP, Compressed rollout of new $112 million ERP system resulted in
Manuistics Group Inc. and Siebel inaccurate inventory data, shipment delays, and incomplete
Systems software orders. Sales fell 12% in the quarter following implementation;

$150.5 million less than prior year.

Norfolk Southern Corp. Systems integration with merger target Over $113 million in lost business during 1998-99 merger.
Consolidated Rail Corp. More than a year of train backups, untrackable freight and

crew-scheduling problems. More than $80 million extra spent
to resolve problems.

Source: Top 10 Corporate Information Technology Failures, Computerworld, September 30, 2002.

Company Project Outcome

FIGURE 1-1
Significant IT Failures in the 1990s

A real-estate group in the federal
government cosponsored a data warehouse with the IT
department. A formal proposal was written by IT in which
costs were estimated at $800,000, the project duration
was estimated to be eight months, and the responsibility
for funding was defined as the business unit’s. The IT
department proceeded with the project before hearing
whether the proposal was ever accepted.

The project actually lasted two years because
requirements gathering took nine months instead of one
and a half, the planned user base grew from 200 to
2,500, and the approval process to buy technology for

the project took a year. Three weeks prior to technical
delivery, the IT Director canceled the project. This failed
endeavor cost the organization $2.5 million.

Source: “Data Warehousing Failure: Case Studies and Find-
ings” The Journal of Data Warehousing, by Hugh J. Watson et
al, 4 (1), 1999, pp. 44–54.

QUESTION:
Why did this system fail? Why would a company spend
money and time on a project and then cancel it? What
could have been done to prevent this?

1-A AN EXPENSIVE FALSE START

IN ACTION

CONCEPTS

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 3

successful information systems. Also, we will illustrate how one organization
(which we call CD Selections) applies the steps in one project (developing a Web-
based CD sales system). By the time you finish the book, you won’t be an expert
analyst, but you will be ready to start building systems for real.

In this chapter, we first introduce the basic SDLC that IS projects follow. This
life cycle is common to all projects, although the focus and approach to each phase
of the life cycle may differ. In the next section, we discuss three fundamentally dif-
ferent types of methodologies (structured design, rapid application development,
and agile development). Finally, we discuss one of the most challenging aspects of
systems development—the depth and breadth of skills systems analysts must pos-
sess. Today, most organizations use project teams whose members bring unique but
complementary skills. This chapter closes with a discussion of the key roles played
by members of the systems development team.

THE SYSTEMS DEVELOPMENT LIFE CYCLE

In many ways, building an information system is similar to building a house. First,
the house (or the information system) starts with a basic idea. Second, this idea is
transformed into a simple drawing that is shown to the customer and refined (often
through several drawings, each improving on the other) until the customer agrees
that the picture depicts what he or she wants. Third, a set of blueprints is designed
that presents much more detailed information about the house (e.g., the type of
water faucets, where the telephone jacks will be placed). Finally, the house is built
following the blueprints—and often with some changes and decisions made by the
customer as the house is erected.

The SDLC has a similar set of four fundamental phases: planning, analysis,
design, and implementation (Figure 1-2). Different projects may emphasize differ-
ent parts of the SDLC or approach the SDLC phases in different ways, but all proj-
ects have elements of these four phases. Each phase is itself composed of a series
of steps, which rely on techniques that produce deliverables (specific documents
and files that provide understanding about the project).

For example, when you apply for admission to a university, there are several
phases that all students go through: information gathering, applying, and accepting.
Each of these phases has steps: information gathering includes steps like searching
for schools, requesting information, and reading brochures. Students then use tech-
niques (e.g., Internet searching) that can be applied to steps (e.g., requesting infor-
mation) to create deliverables (e.g., evaluations of different aspects of universities).

Figure 1-2 suggests that the SDLC phases and steps proceed in a logical path
from start to finish. In some projects, this is true, but in many projects, the project
teams move through the steps consecutively, incrementally, iteratively, or in other
patterns. In this section, we describe at a very high level the phases, steps, and some
of the techniques that are used to accomplish the steps. We should emphasize that,
in practice, an organization may follow one of many variations on the overall SDLC.

For now, there are two important points to understand about the SDLC. First,
you should get a general sense of the phases and steps that IS projects move through
and some of the techniques that produce certain deliverables. Second, it is impor-
tant to understand that the SDLC is a process of gradual refinement. The deliver-
ables produced in the analysis phase provide a general idea of the shape of the new
system. These deliverables are used as input to the design phase, which then refines

4 Chapter 1 Introduction to Systems Analysis and Design

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 4

The Systems Development Life Cycle 5

Planning 2 Identify Opportunity Project Identification System Request
Focus: Why build 2 Analyze Feasibility Technical Feasibility Feasibility Study

this system? Economic Feasibility
How to structure Organizational Feasibility

the project? 3 Develop Workplan Time Estimation Project Plan
Primary Outputs: Timeboxing — Workplan
— System Request with Task Identification

Feasibility Study Work Breakdown Structure
— Project Plan PERT Chart

Gantt Chart
Scope Management

3 Staff Project Project Staffing — Staffing Plan
Project Charter

3 Control and Direct Project CASE Repository — Standards List
Standards — Risk Assessment
Documentation
Risk Management

Analysis 4 Develop Analysis Strategy Business Process Automation System Proposal
Focus: Who, what, Business Process Improvement

where and when for Business Process Reengineering
this system? 4 Determine Business Interview — Requirements Definition

Primary Output Requirements JAD session
— System Proposal Questionnaire

Document Analysis
Observation

5 Create Use Cases Use Case Analysis — Use Cases
6 Model Processes Data Flow Diagramming — Process Models
7 Model Data Entity Relationship Modeling — Data Model

Normalization

Design 8 Design Physical System Design Strategy Alternative Matrix
Focus: How will this System Specification

system work? 9 Design Architecture Architecture Design — Architecture Report
Primary Output: Hardware & Software Selection — Hardware & Software Specification
— System Specification 10 Design Interface Use Scenario — Interface Design

Interface Structure
Interface Standards
Interface Prototype
Interface Evaluation

11 Design Programs Data Flow Diagramming — Physical Process Model
Program Structure Chart — Program Design
Program Specification

12 Design Databases and Files Data Format Selection — Database & File Specification
Entity Relationship Modeling — Physical Data Model
Denormalization
Performance Tuning
Size Estimation

Implementation 13 Construct System Programming Test Plan
Focus: Delivery and Software Testing Programs

support of completed Performance Testing Documentation
system. Migration Plan

Primary Output: 14 Install System Conversion Strategy Selection — Conversion Plan
— Installed System — Business Contingency Plan

Training — Training Plan
14 Maintain System Support Selection Support Plan

System Maintenance Problem Report
Project Assessment Change Request

14 Post-implementation Post-implementation Audit Post-implementation Audit Report

Phase Chapter Step Technique Deliverable

FIGURE 1-2
Systems Development Life Cycle Phases

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 5

them to produce a set of deliverables that describes in much more detailed terms
exactly how the system will be built. These deliverables in turn are used in the
implementation phase to produce the actual system. Each phase refines and elabo-
rates on the work done previously.

Planning

The planning phase is the fundamental process of understanding why an informa-
tion system should be built and determining how the project team will go about
building it. It has two steps:

1. During project initiation, the system’s business value to the organization is
identified—how will it lower costs or increase revenues? Most ideas for new
systems come from outside the IS area (from the marketing department,
accounting department, etc.) in the form of a system request. A system request
presents a brief summary of a business need, and it explains how a system that
supports the need will create business value. The IS department works together
with the person or department that generated the request (called the project
sponsor) to conduct a feasibility analysis. The feasibility analysis examines key
aspects of the proposed project:

■ The technical feasibility (Can we build it?)
■ The economic feasibility (Will it provide business value?)
■ The organizational feasibility (If we build it, will it be used?)

The system request and feasibility analysis are presented to an information sys-
tems approval committee (sometimes called a steering committee), which
decides whether the project should be undertaken.

2. Once the project is approved, it enters project management. During project man-
agement, the project manager creates a workplan, staffs the projects, and puts
techniques in place to help the project team control and direct the project
through the entire SDLC. The deliverable for project management is a project
plan that describes how the project team will go about developing the system.

Analysis

The analysis phase answers the questions of who will use the system, what the sys-
tem will do, and where and when it will be used. See Figure 1-2. During this phase,
the project team investigates any current system(s), identifies improvement oppor-
tunities, and develops a concept for the new system. This phase has three steps:

1. An analysis strategy is developed to guide the project team’s efforts. Such a strat-
egy usually includes an analysis of the current system (called the as-is system)
and its problems, and then ways to design a new system (called the to-be system).

2. The next step is requirements gathering (e.g., through interviews or question-
naires). The analysis of this information—in conjunction with input from the
project sponsor and many other people—leads to the development of a concept
for a new system. The system concept is then used as a basis to develop a set of
business analysis models that describes how the business will operate if the new
system were developed. The set of models typically includes models that repre-
sent the data and processes necessary to support the underlying business process.

6 Chapter 1 Introduction to Systems Analysis and Design

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 6

3. The analyses, system concept, and models are combined into a document called
the system proposal, which is presented to the project sponsor and other key
decision makers (e.g., members of the approval committee) that decide whether
the project should continue to move forward.

The system proposal is the initial deliverable that describes what business
requirements the new system should meet. Because it is really the first step in the
design of the new system, some experts argue that it is inappropriate to use the term
analysis as the name for this phase; some argue a better name would be analysis
and initial design. Because most organizations continue to use the name analysis
for this phase, we will use it in this book as well. It is important to remember, how-
ever, that the deliverable from the analysis phase is both an analysis and a high-level
initial design for the new system.

Design

The design phase decides how the system will operate, in terms of the hardware,
software, and network infrastructure; the user interface, forms, and reports that will
be used; and the specific programs, databases, and files that will be needed. Although
most of the strategic decisions about the system were made in the development of
the system concept during the analysis phase, the steps in the design phase determine
exactly how the system will operate. The design phase has four steps:

1. The design strategy must be developed. This clarifies whether the system will be
developed by the company’s own programmers, whether it will be outsourced to
another firm (usually a consulting firm), or whether the company will buy an
existing software package.

2. This leads to the development of the basic architecture design for the system
that describes the hardware, software, and network infrastructure that will be
used. In most cases, the system will add or change the infrastructure that already
exists in the organization. The interface design specifies how the users will move
through the system (e.g., navigation methods such as menus and on-screen but-
tons) and the forms and reports that the system will use.

3. The database and file specifications are developed. These define exactly what
data will be stored and where they will be stored.

4. The analyst team develops the program design, which defines the programs that
need to be written and exactly what each program will do.

This collection of deliverables (architecture design, interface design, database
and file specifications, and program design) is the system specification that is
handed to the programming team for implementation. At the end of the design
phase, the feasibility analysis and project plan are reexamined and revised, and
another decision is made by the project sponsor and approval committee about
whether to terminate the project or continue. See Figure 1-2.

Implementation

The final phase in the SDLC is the implementation phase, during which the system
is actually built (or purchased, in the case of a packaged software design). This is
the phase that usually gets the most attention, because for most systems it is the

The Systems Development Life Cycle 7

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 7

longest and most expensive single part of the development process. This phase has
three steps:

1. System construction is the first step. The system is built and tested to ensure it
performs as designed. Since the cost of bugs can be immense, testing is one of
the most critical steps in implementation. Most organizations spend more time
and attention on testing than on writing the programs in the first place.

2. The system is installed. Installation is the process by which the old system is
turned off and the new one is turned on. It may include a direct cutover approach
(in which the new system immediately replaces the old system), a parallel con-
version approach (in which both the old and new systems are operated for a
month or two until it is clear that there are no bugs in the new system), or a
phased conversion strategy (in which the new system is installed in one part of
the organization as an initial trial and then gradually installed in others). One of
the most important aspects of conversion is the development of a training plan
to teach users how to use the new system and help manage the changes caused
by the new system.

3. The analyst team establishes a support plan for the system. This plan usually
includes a formal or informal post-implementation review, as well as a system-
atic way for identifying major and minor changes needed for the system.

SYSTEMS DEVELOPMENT METHODOLOGIES

A methodology is a formalized approach to implementing the SDLC (i.e., it is a list
of steps and deliverables). There are many different systems development method-
ologies and each one is unique because of its emphasis on processes versus data and
the order and focus it places on each SDLC phase. Some methodologies are formal
standards used by government agencies, while others have been developed by con-
sulting firms to sell to clients. Many organizations have their own internal method-
ologies that have been refined over the years, and they explain exactly how each
phase of the SDLC is to be performed in that company.

All system development methodologies lead to a representation of the system
concept in terms of processes and data; however, they vary in terms of whether the
methodology places primary emphasis on business processes or on the data that
supports the business. As an illustration, refer to the diagram shown in Figure 1-3,
depicting the activities and information used in producing the payroll for an organ-
ization. The open-ended rectangles in the diagram represent data storage contain-
ers; the rounded rectangles represent activities performed; and the arrows represent
activity inputs and outputs.

Process-centered methodologies focus first on defining the activities associ-
ated with the system, i.e., the processes. Process-centered methodologies utilize
process models (Chapter 6) as the core of the system concept. Analysts concentrate
initially on representing the system concept as a set of processes with information
flowing into and out of the processes (e.g., in Figure 1-3, pay check details flow in
to the Produce Pay Checks process, and pay checks are produced as output).

Data-centered methodologies focus first on defining the contents of the data
storage containers and how the contents are organized. Data-centered methodologies
utilize data models (Chapter 7) as the core of the system concept. For example, ana-
lysts concentrate initially on identifying the data that must be available to produce

8 Chapter 1 Introduction to Systems Analysis and Design

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 8

the payroll and organizing that data into well-defined structures (e.g., employee work
log, employee pay rates, payroll tax tables, employee pay history, etc.).

Object-oriented methodologies (Chapter 15) attempt to balance the focus
between processes and data. Object-oriented methodologies utilize the Unified
Modeling Language (UML) to describe the system concept as a collection of
objects incorporating both data and processes.3

Another important factor in categorizing methodologies is the sequencing of
the SDLC phases and the amount of time and effort devoted to each.4 In the early
days of computing, the need for formal and well-planned life cycle methodologies
was not well understood. Programmers tended to move directly from a very simple
planning phase right into the construction step of the implementation phase; in

Systems Development Methodologies 9

Gather
Employee

Work
Details

Record
Employee

Pay History

Pay History

Produce
Pay Check

Employee Work Log

Employee
Work

Calculate
Employee

Play

Employee Pay Rates

Pay
Rates

Employee
Hours
Worked

Calculated
Pay Details

Pay
Check
Details

Pay
Check

Employee Withholdings

Withholdings

Deductions

Federal Tax

State Tax

Federal Payroll Tax Table

State Payroll Tax Table

Employee Pay History

Employees

Employee Deductions

FIGURE 1-3
A Simple Model for Employee Payroll

3 The classic modern process-centered methodology is that by Edward Yourdon, Modern Structured Analysis,
Englewood Cliffs, NJ: Yourdon Press, 1989. An example of a data-centered methodology is information engi-
neering by James Martin, Information Engineering, volumes 1–3, Englewood Clifs, NJ: Prentice Hall, 1989.
Many new object-oriented methodologies are based on the Unified Modeling Language defined in UML Doc-
ument Set, Santa Clara, CA: Relational Software Corp., 1997. A widely accepted standardized methodology
that balances processes and data is IDEF; see FIPS 183, Integration Definition for Function Modeling. Fed-
eral Information Processing Standards Publications, Washington, DC: U.S. Department of Commerce, 1993.
4 A good reference for comparing systems development methodologies is Steve McConnell, Rapid Develop-
ment, Redmond, WA: Microsoft Press, 1996.

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 9

other words, they moved directly from a very fuzzy, not-well-thought-out system
request into writing code.

This is the same approach that you may sometimes use when writing pro-
grams for a programming class. It can work for small programs that require only
one programmer, but if the requirements are complex or unclear, you may miss
important aspects of the problem and have to start all over again, throwing away
part of the program (and the time and effort spent writing it). This approach also
makes teamwork difficult because members have little idea about what needs to be
accomplished and how to work together to produce a final product.

In the following sections, we describe three major categories of systems
development methodologies that have evolved over time: Structured Design, Rapid
Application Development (RAD), and Agile Development. Each category repre-
sents a collection of methodologies that attempts to improve on previous practice,
and varies in terms of the progression through the SDLC phases and the emphasis
placed on each phase.

Structured Design

The first category of systems development methodologies is called structured
design. These methodologies became dominant in the 1980s, replacing the previous
ad hoc and undisciplined approach. Structured design methodologies adopt a for-
mal step-by-step approach to the SDLC that moves logically from one phase to the
next.

Structured design also introduced the use of formal modeling or diagramming
techniques to describe a system’s basic business processes and the data that support
them. Traditional structured design uses one set of diagrams to represent the
processes (process models) and a separate set of diagrams to represent data (data
models). Because two sets of models are used, the systems analyst must decide
which set to develop first and use as the core of the system—process models or data
models. Since each type of model is important to the system, there is much debate
over whether to emphasize processes before data or vice versa. Numerous process-
centered and data-centered methodologies follow the basic approach of the two
structured design categories outlined next.

Waterfall Development The original structured design methodology (that is still
used today) is waterfall development. With waterfall development-based method-
ologies, the analysts and users proceed sequentially from one phase to the next
(see Figure 1-4). The key deliverables for each phase are typically voluminous
(often hundreds of pages in length) and are presented to the project sponsor for
approval as the project moves from phase to phase. Once the sponsor approves the
work that was conducted for a phase, the phase ends and the next one begins. This
methodology is called waterfall development because it moves forward from
phase to phase in the same manner as a waterfall. Although it is possible to go
backward in the SDLC (e.g., from design back to analysis), it is extremely diffi-
cult (imagine yourself as a salmon trying to swim upstream in a waterfall as
shown in Figure 1-4).

The two key advantages of waterfall development-based methodologies are
that system requirements are identified long before programming begins and that
changes to the requirements are minimized as the project proceeds. The two key
disadvantages are that the design must be completely specified before programming

10 Chapter 1 Introduction to Systems Analysis and Design

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 10

begins and that a long time elapses between the completion of the system proposal
in the analysis phase and the delivery of the system (usually many months or years).
The deliverables are often a poor communication mechanism, so important require-
ments can be overlooked in the documentation. Users rarely are prepared for their
introduction to the new system, which occurs long after the initial idea for the sys-
tem was introduced. If the project team misses important requirements, expensive
post-implementation programming may be needed (imagine yourself trying to
design a car on paper; how likely would you be to remember to include interior
lights that come on when the doors open or to specify the right number of valves
on the engine?).

Today’s dynamic business world often imposes rapid environmental change
on businesses. A system that meets existing environmental conditions during the
analysis phase may need considerable rework to match the environment when it is
implemented. This rework requires going back to the initial phase and making
needed changes through each of the subsequent phases in turn.

Parallel Development The parallel development-based methodologies attempt to
address the long time interval between the analysis phase and the delivery of the
system. Instead of doing the design and implementation in sequence, a general
design for the whole system is performed, then the project is divided into a series
of distinct subprojects that can be designed and implemented in parallel. Once all
subprojects are complete, there is a final integration of the separate pieces, and
the system is delivered (Figure 1-5).

The primary advantage of these methodologies is that the schedule time
required to deliver a system is shortened; thus, there is less chance of changes in
the business environment causing rework. The approach still suffers from prob-
lems caused by lengthy deliverables. It also adds a new problem: sometimes the
subprojects are not completely independent; design decisions made in one sub-
project may affect another, and the end of the project may involve significant inte-
gration challenges.

Systems Development Methodologies 11

System

Planning

Analysis

Design

Implementation

FIGURE 1-4
Waterfall Development-based
Methodology

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 11

Rapid Application Development (RAD)

The second system development methodology category includes rapid application
development (RAD)-based methodologies. These are a newer class of system devel-
opment methodologies that emerged in the 1990s in response to both structured
design methodology weaknesses. RAD-based methodologies adjust the SDLC
phases to get some part of the system developed quickly and into the hands of the
users. In this way, the users can better understand the system and suggest revisions
that bring the system close to what is needed.5 There are process-centered, data-
centered, and object-oriented methodologies that follow the basic approaches of the
three RAD categories described in this section.

Most RAD-based methodologies recommend that analysts use special tech-
niques and computer tools to speed up the analysis, design, and implementation
phases, such as CASE (computer-aided software engineering) tools (see Chapter 3),
JAD (joint application design) sessions (see Chapter 5), fourth-generation/visual
programming languages that simplify and speed up programming (e.g., Visual
Basic.NET), and code generators that automatically produce programs from design
specifications. It is the combination of the changed SDLC phases and the use of

12 Chapter 1 Introduction to Systems Analysis and Design

5 One of the best RAD books is that by Steve McConnell, Rapid Development, Redmond. WA: Microsoft
Press, 1996.

System

Planning

Analysis

Design

Implementation

Design

Implementation

Implementation

Design

Implementation

Design

Subproject 2

Subproject 1

Subproject 3

FIGURE 1-5
A Parallel Development-based Methodology

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 12

these tools and techniques that improves the speed and quality of systems develop-
ment. One possible subtle problem with RAD-based methodologies, however, is
managing user expectations. As systems are developed more rapidly and users gain
a better understanding of information technology, user expectations may dramati-
cally increase and system requirements expand during the project. This was less of
a problem with structured design methodologies where the system requirements,
once determined, were allowed only minimal change.

Phased Development The phased development-based methodologies break the
overall system into a series of versions that are developed sequentially. The analy-
sis phase identifies the overall system concept, and the project team, users, and
system sponsor then categorize the requirements into a series of versions. The
most important and fundamental requirements are bundled into the first version
of the system. The analysis phase then leads into design and implementation, but
only with the set of requirements identified for version 1 (see Figure 1-6).

Systems Development Methodologies 13

System
version 1

Planning

Analysis

Analysis

Implementation

Design

Analysis

Implementation

Design

Analysis

Implementation

Design

System
version 2

System
version 3

FIGURE 1-6
A Phased Development-based Methodology

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 13

Once version 1 is implemented, work begins on version 2. Additional analysis
is performed on the basis of the previously identified requirements and combined
with new ideas and issues that arose from users’ experience with version 1. Version
2 then is designed and implemented, and work immediately begins on the next ver-
sion. This process continues until the system is complete or is no longer in use.

Phased development-based methodologies have the advantage of quickly get-
ting a useful system into the hands of the users. Although it does not perform all the
functions the users need at first, it begins to provide business value sooner than if the
system were delivered only after all requirements are completed, as is the case with
the waterfall or parallel methodologies. Likewise, because users begin to work with
the system sooner, they are more likely to identify important additional requirements
sooner than with structured design situations.

The major drawback to phased development is that users begin to work with
systems that are intentionally incomplete. It is critical to identify the most impor-
tant and useful features and include them in the first version while managing users’
expectations along the way.

Prototyping The prototyping-based methodologies perform the analysis, design,
and implementation phases concurrently, and all three phases are performed
repeatedly in a cycle until the system is completed. With these methodologies, a
basic analysis and design are performed, and work immediately begins on a sys-
tem prototype, a “quick-and-dirty” program that provides a minimal amount of
features. The first prototype is usually the first part of the system that the user
will use. This is shown to the users and the project sponsor, who provide reaction
and comments. This feedback is used to reanalyze, redesign, and reimplement a
second prototype that provides a few more features. This process continues in a
cycle until the analysts, users, and sponsor agree that the prototype provides
enough functionality to be installed and used in the organization. After the pro-
totype (now called the “system”) is installed, refinement occurs until it is
accepted as the new system (see Figure 1-7).

The key advantage of a prototyping-based methodology is that it very quickly
provides a system for the users to interact with, even if it is not initially ready for
widespread organizational use. Prototyping reassures the users that the project team
is working on the system (there are no long time intervals in which the users per-
ceive little progress), and the approach helps to more quickly refine real require-

14 Chapter 1 Introduction to Systems Analysis and Design

System
prototype

System

Planning

Analysis

Design

Implementation

Implementation

FIGURE 1-7
A Prototyping-based Methodology

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 14

ments. Rather than attempting to understand system specification materials, the
users can interact with the prototype to better understand what it can and cannot do.

The major problem with prototyping is that its fast-paced system releases
challenge attempts to conduct careful, methodical analysis. Often the prototype
undergoes such significant changes that many initial design decisions prove to be
poor ones. This can cause problems in the development of complex systems
because fundamental issues and problems are not recognized until well into the
development process. Imagine building a car and discovering late in the prototyp-
ing process that you have to take the whole engine out to change the oil (because
no one thought about the need to change the oil until after the car had been driven
10,000 miles).

Throwaway Prototyping Throwaway prototyping-based methodologies are simi-
lar to the prototyping-based methodologies in that they include the development
of prototypes; however, throwaway prototypes are done at a different point in the
SDLC. These prototypes are used for a very different purpose than ones previ-
ously discussed, and they have a very different appearance6 (see Figure 1-8).

The throwaway prototyping-based methodologies have a relatively thorough
analysis phase that is used to gather information and to develop ideas for the sys-
tem concept. Many of the features suggested by the users may not be well under-
stood, however, and there may be challenging technical issues to be solved. Each of
these issues is examined by analyzing, designing, and building a design prototype.
A design prototype is not a working system; it is a product that represents a part of
the system that needs additional refinement, and it contains only enough detail to

Systems Development Methodologies 15

Design
prototype

System

Analysis

Analysis

Design

Implementation

Planning

Implementation

Design

FIGURE 1-8
A Throwaway Prototyping-based Methodology

6 Our description of the throwaway prototyping methodology is a modified version of the spiral development
methodology developed by Barry Boehm, “A Spiral Model of Software Development and Enhancement,”
Computer, May 1988, 21(5):61–72.

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 15

enable users to understand the issues under consideration. For example, suppose
users are not completely clear on how an order entry system should work. The ana-
lyst team might build a series of HTML pages viewed using a Web browser to help
the users visualize such a system. In this case, a series of mock-up screens appear
to be a system, but they really do nothing. Or, suppose that the project team needs
to develop a sophisticated graphics program in Java. The team could write a portion
of the program with artificial data to ensure that they could create a full-blown pro-
gram successfully.

A system that is developed using this type of methodology probably uses
several design prototypes during the analysis and design phases. Each of the pro-
totypes is used to minimize the risk associated with the system by confirming
that important issues are understood before the real system is built. Once the
issues are resolved, the project moves into design and implementation. At this
point, the design prototypes are thrown away, which is an important difference
between this approach and prototyping, in which the prototypes evolve into the
final system.

Throwaway prototyping-based methodologies balance the benefits of well-
thought-out analysis and design phases with the advantages of using prototypes to
refine key issues before a system is built. It may take longer to deliver the final sys-
tem as compared with prototyping-based methodologies (because the prototypes do
not become the final system), but the approach usually produces more stable and
reliable systems.

Agile Development

A third category of systems development methodologies is still emerging today:
Agile Development.7 These programming-centric methodologies have few rules and
practices, all of which are fairly easy to follow. They focus on streamlining the
SDLC by eliminating much of the modeling and documentation overhead and the
time spent on those tasks. Instead, projects emphasize simple, iterative application
development. Examples of Agile Development methodologies include extreme pro-
gramming,8 Scrum,9 and the Dynamic Systems Development Method (DSDM).10

To illustrate an agile development methodology, we describe extreme programming
in the next section. Typically, extreme programming is used in conjunction with
object-oriented programming languages.

Extreme Programming Extreme programming (XP)11 is founded on four core val-
ues: communication, simplicity, feedback, and courage. These four values pro-
vide a foundation XP developers use to create any system. First, the developers
must provide rapid feedback to the end users on a continuous basis. Second, XP
requires developers to follow the KISS (Keep It Simple, Stupid) principle. Third,
developers must make incremental changes to grow the system and they must

16 Chapter 1 Introduction to Systems Analysis and Design

7 For more information, see www.AgileAlliance.org.
8 For more information, see www.extremeprogramming.com.
9 For more information, see www.controlchaos.com.

10 For more information, see www.dsdm.com.
11 For more information, see K. Beck, eXtreme Programming Explained: Embrace Change, Reading, MA:
Addison-Wesley, 2000, and M. Lippert, S. Roock, and H. Wolf, eXtreme Programming in Action: Practical
Experiences from Real World Projects, New York: John Wiley & Sons, 2002.

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 16

embrace change, not merely accept it. Fourth, developers must have a quality-
first mentality. XP also supports team members in developing their own skills.

Three of the key principles that XP uses to create successful systems are con-
tinuous testing, simple coding performed by pairs of developers, and close interac-
tions with end users to build systems very quickly. After a superficial planning
process, project teams perform analysis, design, and implementation phases itera-
tively (see Figure 1-9).

Testing and efficient coding practices are core to XP. In fact, each day code is
tested and placed into an integrative testing environment. If bugs exist, the code is
backed out until it is completely free of errors. XP relies heavily on refactoring,
which is a disciplined way to restructure code to keep it simple.

An XP project begins with user stories that describe what the system needs to
do. Then, programmers code in small, simple modules and test to meet those needs.
Users are required to be available to clear up questions and issues as they arise.
Standards are very important to minimize confusion, so XP teams use a common
set of names, descriptions, and coding practices. XP projects deliver results sooner
than even the RAD approaches, and they rarely get bogged down in gathering
requirements for the system.

For small projects with highly motivated, cohesive, stable, and experienced
teams, XP should work just fine. However, if the project is not small or the teams
aren’t jelled12 then the likelihood of a successful XP project is reduced. Conse-
quently, the use of XP in combination with outside contractors produces a highly
questionable outcome, since the outside contractors may never “jell” with insid-
ers.13 XP requires a great deal of discipline to prevent projects from becoming
unfocused and chaotic. Furthermore, it is only recommended for small groups of
developers (not more than ten), and it is not advised for mission-critical applica-

Systems Development Methodologies 17

FIGURE 1-9
An Extreme Programming-based
Methodology

Implementation

Design

Analysis

System

Planning

12 A “jelled team” is one that has low turnover, a strong sense of identity, a sense of eliteness, a feeling that
they jointly own the product being developed, and enjoyment in working together. For more information
regarding jelled teams, see T. DeMarco and T. Lister. Peopleware: Productive Projects and Teams, New York,
Dorsett, House, 1987.
13 Considering the tendency for offshore outsourcing, this is a major obstacle for XP to overcome. For more
information on offshore outsourcing, see P. Thibodeau, ITAA panel debates outsourcing pros, cons, Comput-
erworld Morning Update, September 25, 2003; and S.W. Ambler, “Chicken Little Was Right,” Software
Development, October 2003.

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 17

tions. Since little analysis and design documentation is produced with XP there is
only code documentation; therefore, maintenance of large systems developed using
XP may be impossible. Also, since mission-critical business information systems
tend to exist for a long time, the utility of XP as a business information system
development methodology is in doubt. Finally, the methodology requires consider-
able on-site user input, something that is frequently difficult to obtain.14

Selecting the Appropriate Development Methodology

Since there are many methodologies, the first challenge faced by analysts is to
select which methodology to use. Choosing a methodology is not simple, because
no one methodology is always best (if it were, we’d simply use it everywhere!).
Many organizations have standards and policies to guide the choice of methodol-
ogy. You will find that organizations range from having one “approved” methodol-
ogy to having several methodology options to having no formal policies at all.

Figure 1-10 summarizes some important methodology selection criteria. One
important item not discussed in this figure is the degree of experience of the ana-
lyst team. Many of the RAD methodologies require the use of new tools and tech-
niques that have a significant learning curve. Often these tools and techniques
increase the complexity of the project and require extra time for learning. Once they
are adopted and the team becomes experienced, the tools and techniques can sig-
nificantly increase the speed in which the methodology can deliver a final system.

Clarity of User Requirements When the user requirements for what the system
should do are unclear, it is difficult to understand them by talking about them and
explaining them with written reports. Users normally need to interact with tech-
nology to really understand what the new system can do and how to best apply it
to their needs. The RAD methodologies of prototyping and throwaway prototyp-
ing are usually more appropriate when user requirements are unclear because

18 Chapter 1 Introduction to Systems Analysis and Design

with Unclear User Requirements Poor Poor Good Excellent Excellent Excellent

with Unfamiliar Technology Poor Poor Good Poor Excellent Poor

that are Complex Good Good Good Poor Excellent Poor

that are Reliable Good Good Good Poor Excellent Good

with a Short Time Schedule Poor Good Excellent Excellent Good Excellent

with Schedule Visibility Poor Poor Excellent Excellent Good Good

Agile

Ability to
Structured Methodologies RAD Methodologies Methodologies

Throwaway
Develop Systems Waterfall Parallel Phased Prototyping Prototyping XP

FIGURE 1-10
Criteria for Selecting a Methodology

14 Many of the observations described on the utility of XP as a development approach were based on con-
versations with Brian Henderson-Sellers.

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 18

they provide prototypes for users to interact with early in the SDLC. Agile devel-
opment may also be appropriate if on-site user input is available.

Familiarity with Technology When the system will use new technology with
which the analysts and programmers are not familiar (e.g., the first Web devel-
opment project with Java), applying the new technology early in the methodology
will improve the chance of success. If the system is designed without some famil-
iarity with the base technology, risks increase because the tools may not be capa-
ble of doing what is needed. Throwaway prototyping-based methodologies are
particularly appropriate for a lack of familiarity with technology because they
explicitly encourage the developers to create design prototypes for areas with
high risks. Phased development-based methodologies are good as well because
they create opportunities to investigate the technology in some depth before the
design is complete. While one might think prototyping-based methodologies
would also be appropriate, they are much less so, because the early prototypes
that are built usually only scratch the surface of the new technology. Usually, it is
only after several prototypes and several months that the developers discover
weaknesses or problems in the new technology.

System Complexity Complex systems require careful and detailed analysis and
design. Throwaway prototyping-based methodologies are particularly well suited
to such detailed analysis and design, but prototyping-based methodologies are
not. The traditional structured design-based methodologies can handle complex
systems, but without the ability to get the system or prototypes into users’ hands
early on, some key issues may be overlooked. Although the phased development-
based methodologies enable users to interact with the system early in the process,
we have observed that project teams who follow these methodologies tend to
devote less attention to the analysis of the complete problem domain than they
might if they were using other methodologies.

System Reliability System reliability is usually an important factor in system
development. After all, who wants an unreliable system? However, reliability is
just one factor among several. For some applications reliability is truly critical
(e.g., medical equipment, missile control systems), while for other applications it
is merely important (e.g., games, Internet video). Throwaway prototyping-based
methodologies are most appropriate when system reliability is a high priority,
because they combine detailed analysis and design phases with the ability for the
project team to test many different approaches through design prototypes before
completing the design. Prototyping-based methodologies are generally not a good
choice when reliability is critical because they lack the careful analysis and
design phases that are essential for dependable systems.

Short Time Schedules Projects that have short time schedules are well suited for
RAD-based methodologies because those methodologies are designed to increase
the speed of development. Prototyping and phased development-based method-
ologies are excellent choices when timelines are short because they best enable
the project team to adjust the functionality in the system on the basis of a specific
delivery date. If the project schedule starts to slip, it can be readjusted by remov-
ing functionality from the version or prototype under development. Waterfall-
based methodologies are the worst choice when time is at a premium because
they do not allow for easy schedule changes.

Systems Development Methodologies 19

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 19

Schedule Visibility One of the greatest challenges in systems development is
knowing whether a project is on schedule. This is particularly true of the struc-
tured design methodologies because design and implementation occur at the end
of the project. The RAD-based methodologies move many of the critical design
decisions earlier in the project to help project managers recognize and address
risk factors and keep expectations in check.

PROJECT TEAM SKILLS AND ROLES

As should be clear from the various phases and steps performed during the SDLC,
the project team needs a variety of skills. Project members are change agents who
identify ways to improve an organization, build an information system to support
them, and train and motivate others to use the system. Leading a successful organi-
zational change effort is one of the most difficult jobs that someone can do. Under-
standing what to change, how to change it, and convincing others of the need for
change requires a wide range of skills. These skills can be broken down into six major
categories: technical, business, analytical, interpersonal, management, and ethical.

Analysts must have the technical skills to understand the organization’s exist-
ing technical environment, the new system’s technology foundation, and the way in
which both can be fit into an integrated technical solution. Business skills are
required to understand how IT can be applied to business situations and to ensure
that the IT delivers real business value. Analysts are continuous problem solvers at
both the project and the organizational level, and they put their analytical skills to
the test regularly.

Often, analysts need to communicate effectively one-on-one with users and
business managers (who often have little experience with technology) and with
programmers (who often have more technical expertise than the analyst). They must
be able to give presentations to large and small groups and write reports. Not only
do they need to have strong interpersonal abilities, but also they need to manage
people with whom they work and they must manage the pressure and risks associ-
ated with unclear situations.

Finally, analysts must deal fairly, honestly, and ethically with other project
team members, managers, and system users. Analysts often deal with confiden-
tial information or information that, if shared with others, could cause harm (e.g.,
dissent among employees); it is important to maintain confidence and trust with
all people.

In addition to these six general skill sets, analysts require many specific skills
that are associated with roles that are performed on a project. In the early days of
systems development, most organizations expected one person, the analyst, to have
all of the specific skills needed to conduct a systems development project. Some
small organizations still expect one person to perform many roles, but because
organizations and technology have become more complex, most large organizations
now build project teams that contain several individuals with clearly defined
responsibilities. Different organizations divide the roles differently, but Figure 1-11
presents one commonly used set of project team roles. Most IS teams include many
other individuals such as the programmers who actually write the system’s pro-
grams, network engineers, who focus on the design of the network, database
administrators, who deal with optimizing the physical design of the database, and
technical writers, who prepare user and system documentation.

20 Chapter 1 Introduction to Systems Analysis and Design

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 20

Business Analyst

The business analyst focuses on the business issues surrounding the system. These
include identifying the business value that the system will create, developing ideas
and suggestions for how the business processes can be improved, and designing the
new processes and policies in conjunction with the systems analyst. This individual
will likely have business experience and some type of professional training (e.g.,
the business analyst for accounting systems will likely be a CPA [certified public
accountant in the United States] or a CA [chartered accountant in Great Britain and
Canada]). He or she represents the interests of the project sponsor and the ultimate

Project Teams Skills and Roles 21

Suppose you are an analyst for the
ABC Company, a large consulting firm with offices
around the world. The company wants to build a new
knowledge management system that can identify and
track the expertise of individual consultants anywhere in
the world on the basis of their education and the various
consulting projects on which they have worked. Assume
that this is a new idea that has never before been

attempted in ABC or elsewhere. ABC has an interna-
tional network, but the offices in each country may use
somewhat different hardware and software. ABC man-
agement wants the system up and running within a year.

QUESTION:
What methodology would you recommend ABC Com-

pany use? Why?

1-1 SELECTING A METHODOLOGYY O U R

T U R N

Business analyst Analyzing the key business aspects of the system

Identifying how the system will provide business value

Designing the new business processes and policies

Systems analyst Identifying how technology can improve business processes

Designing the new business processes

Designing the information system

Ensuring that the system conforms to information systems standards

Infrastructure analyst Ensuring the system conforms to infrastructure standards

Identifying infrastructure changes needed to support the system

Change management analyst Developing and executing a change management plan

Developing and executing a user training plan

Project manager Managing the team of analysts, programmers, technical writers,
and other specialists

Developing and monitoring the project plan

Assigning resources

Serving as the primary point of contact for the project

Role Responsibilities

FIGURE 1-11
Project Team Roles

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 21

users of the system. The business analyst assists in the planning and design phases
but is most active in the analysis phase.

Systems Analyst

The systems analyst focuses on the IS issues surrounding the system. This person
develops ideas and suggestions for how IT can improve business processes, designs
the new business processes with help from the business analyst, designs the new
information system, and ensures that all IS standards are maintained. The systems
analyst likely will have significant training and experience in analysis and design,
programming, and even areas of the business. He or she represents the interests of
the IS department and works intensively throughout the project but perhaps less so
during the implementation phase.

Infrastructure Analyst

The infrastructure analyst focuses on the technical issues surrounding how the sys-
tem will interact with the organization’s technical infrastructure (e.g., hardware,
software, networks, and databases). The infrastructure analyst’s tasks include ensur-
ing that the new information system conforms to organizational standards and iden-
tifying infrastructure changes needed to support the system. This individual will
likely have significant training and experience in networking, database administra-
tion, and various hardware and software products. He or she represents the interests
of the organization and IS group that ultimately will have to operate and support the
new system once it has been installed. The infrastructure analyst works throughout
the project but perhaps less so during planning and analysis phases.

Change Management Analyst

The change management analyst focuses on the people and management issues sur-
rounding the system installation. The roles of this person include ensuring that ade-
quate documentation and support are available to users, providing user training on the
new system, and developing strategies to overcome resistance to change. This indi-
vidual likely will have significant training and experience in organizational behavior
in general and change management in particular. He or she represents the interests of
the project sponsor and users for whom the system is being designed. The change
management analyst works most actively during the implementation phase but begins
laying the groundwork for change during the analysis and design phases.

22 Chapter 1 Introduction to Systems Analysis and Design

Suppose you decide to become an
analyst after you graduate. What type of analyst would
you most prefer to be? What type of courses should you
take before you graduate? What type of summer job or
internship should you seek?

QUESTION:
Develop a short plan that describes how you will prepare

for your career as an analyst.

1-2 BEING AN ANALYSTY O U R

T U R N

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 22

Project Manager

The project manager is responsible for ensuring that the project is completed on
time and within budget and that the system delivers all benefits that were intended
by the project sponsor. The role of the project manager includes managing the team
members, developing the project plan, assigning resources, and being the primary
point of contact when people outside the team have questions about the project.
This individual likely will have significant experience in project management and
likely has worked for many years as a systems analyst beforehand. He or she rep-
resents the interests of the IS department and the project sponsor. The project man-
ager works intensely during all phases of the project.

SUMMARY

The System Development Life Cycle
All system development projects follow essentially the same fundamental process
called the system development life cycle (SDLC). The SDLC starts with a planning
phase in which the project team identifies the business value of the system, con-
ducts a feasibility analysis, and plans the project. The second phase is the analysis
phase, in which the team develops an analysis strategy, gathers information, and
builds a set of analysis models. In the next phase, the design phase, the team devel-
ops the physical design, architecture design, interface design, data base and file
specifications, and program design. In the final phase, implementation, the system
is built, installed, and maintained.

Systems Development Methodologies
System development methodologies are formalized approaches to implementing an
SDLC. System development methodologies have evolved over several decades.
Structured design methodologies, such as waterfall and parallel development, move
logically from one phase to the next and are more focused on system processes
(process-centric) or on system data (data-centric). They produce a solid, well-
thought-out system but can overlook requirements because users must specify them
early in the design process before seeing the actual system. RAD-based method-
ologies attempt to speed up development and make it easier for users to specify
requirements by having parts of the system developed sooner either by producing
different versions (phased development) or by using prototypes (prototyping,
throwaway prototyping). RAD-based methodologies still tend to be either process-
centric or data-centric. Agile development methodologies focus on streamlining the
SDLC by eliminating many of the tasks and time associated with requirements def-
inition and documentation. The choice of a methodology is influenced by several
factors: clarity of the user requirements; familiarity with the base technology; sys-
tem complexity; need for system reliability; time pressures; and need to see
progress on the time schedule.

Project Team Roles and Skills
The project team needs a variety of skills. As organizational change agents, all ana-
lysts need to have general skills, such as technical, business, analytical, interper-
sonal, management, and ethical. However, different kinds of analysts require specific
skills in addition to these. Business analysts usually have business skills that help

Summary 23

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 23

them to understand the business issues surrounding the system, whereas systems
analysts also have significant experience in analysis and design and programming.
The infrastructure analyst focuses on technical issues surrounding how the system
will interact with the organization’s technical infrastructure, and the change man-
agement analyst focuses on people and management issues surrounding the system
installation. In addition to analysts, project teams will include a project manager,
programmers, network engineers, database administrators, and technical writers.

24 Chapter 1 Introduction to Systems Analysis and Design

Analysis model
Analysis phase
Analysis strategy
Approval committee
Architecture design
As-is system
Business analyst
Change agent
Change management analyst
Construction
Data model
Data-centered methodology
Database administrator
Database and file specification
Deliverable
Design phase
Design prototype
Design strategy
Extreme programming (XP)
Feasibility analysis
Gradual refinement
Implementation phase

Infrastructure analyst
Interface design
Installation
Methodology
Network engineer
Object-oriented methodology
Parallel development
Phase
Phased development
Planning phase
Process model
Process-centered methodology
Program design
Programmer
Project initiation
Project management
Project manager
Project plan
Project sponsor
Prototyping
Rapid application development

(RAD)

Requirements gathering
Steering committee
Step
Structured design
Support plan
Systems analyst
System development life cycle

(SDLC)
System proposal
System prototype
System request
System specification
Technical writer
Technique
Throwaway prototyping
To-be system
Training plan
Unified Modeling Language

(UML)
Version
Waterfall development
Workplan

KEY TERMS

Agile development

1. Compare and contrast phases, steps, techniques, and
deliverables.

2. Describe the major phases in the systems develop-
ment life cycle (SDLC).

3. Describe the principal steps in the planning phase.
What are the major deliverables?

4. Describe the principal steps in the analysis phase.
What are the major deliverables?

5. Describe the principal steps in the design phase.
What are the major deliverables?

6. Describe the principal steps in the implementation
phase. What are the major deliverables?

7. Describe the roles of the project sponsor and the
approval committee.

8. What does gradual refinement mean in the context
of SDLC?

9. Compare and contrast process-centered methodolo-
gies, data-centered methodologies, and object-ori-
ented methodologies.

10. Compare and contrast structured design method-
ologies in general to rapid application development
(RAD) methodologies in general.

11. Compare and contrast extreme programming and
throwaway prototyping.

QUESTIONS

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 24

Minicases 25

12. Describe the major elements and issues with water-
fall development.

13. Describe the major elements and issues with paral-
lel development.

14. Describe the major elements and issues with phased
development.

15. Describe the major elements and issues with proto-
typing.

16. Describe the major elements and issues with throw-
away prototyping.

17. What are the key factors in selecting a methodology?
18. What are the six general skills all project team

members should have?
19. What are the major roles on a project team?
20. Compare and contrast the role of a systems analyst,

business analyst, and infrastructure analyst.
21. Which phase in the SDLC is most important?

A. Suppose you are a project manager using the water-
fall development methodology on a large and com-
plex project. Your manager has just read the latest
article in Computerworld that advocates replacing
the waterfall methodology with prototyping and
comes to your office requesting you to switch. What
do you say?

B. The basic methodologies discussed in this chapter
can be combined and integrated to form new hybrid
methodologies. Suppose you were to combine
throwaway prototyping with the use of parallel
development. What would the methodology look
like? Draw a picture (similar to Figure 1-8). How
would this new methodology compare to the others?
Develop a new column for Figure 1-10.

C. Suppose you were an analyst working for a small
company to develop an accounting system. What
methodology would you use? Why?

D. Suppose you were an analyst developing a new exec-
utive information system (EIS) intended to provide
key strategic information from existing corporate

databases to senior executives to help in their deci-
sion making. What methodology would you use?
Why?

E. Suppose you were an analyst developing a new
information system to automate the sales transac-
tions and manage inventory for each retail store in a
large chain. The system would be installed at each
store and exchange data with a mainframe computer
at the company’s head office. What methodology
would you use? Why?

F. Look in the classified section of your local newspa-
per. What kinds of job opportunities are available for
people who want analyst positions? Compare and
contrast the skills that the ads ask for to the skills that
we presented in this chapter.

G. Think about your ideal analyst position. Write a
newspaper ad to hire someone for that position.
What requirements would the job have? What skills
and experience would be required? How would
applicants demonstrate that they have the appropri-
ate skills and experience?

EXERCISES

1. Barbara Singleton, manager of western regional sales at
the WAMAP Company, requested that the IS depart-
ment develop a sales force management and tracking
system that would enable her to better monitor the per-
formance of her sales staff. Unfortunately, due to the
massive backlog of work facing the IS department, her
request was given a low priority. After 6 months of inac-
tion by the IS department, Barbara decided to take mat-
ters into her own hands. Based on the advice of friends,
Barbara purchased a PC and simple database software

and constructed a sales force management and tracking
system on her own.

Although Barbara’s system has been “completed” for
about 6 weeks, it still has many features that do not work
correctly, and some functions are full of errors. Barbara’s
assistant is so mistrustful of the system that she has
secretly gone back to using her old paper-based system,
since it is much more reliable.

Over dinner one evening, Barbara complained to a
systems analyst friend, “I don’t know what went wrong

MINICASES

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 25

26 Chapter 1 Introduction to Systems Analysis and Design

with this project. It seemed pretty simple to me. Those IS
guys wanted me to follow this elaborate set of steps and
tasks, but I didn’t think all that really applied to a PC-
based system. I just thought I could build this system and
tweak it around until I got what I wanted without all the
fuss and bother of the methodology the IS guys were
pushing. I mean, doesn’t that just apply to their big,
expensive systems?”

Assuming you are Barbara’s systems analyst friend,
how would you respond to her complaint?

2. Marcus Weber, IS project manager at ICAN Mutual
Insurance Co., is reviewing the staffing arrangements
for his next major project, the development of an expert
system-based underwriters assistant. This new system
will involve a whole new way for the underwriters to
perform their tasks. The underwriters assistant system
will function as sort of an underwriting supervisor,
reviewing key elements of each application, checking
for consistency in the underwriter’s decisions, and
ensuring that no critical factors have been overlooked.
The goal of the new system is to improve the quality of
the underwriters’ decisions and to improve underwriter
productivity. It is expected that the new system will

substantially change the way the underwriting staff do
their jobs.

Marcus is dismayed to learn that due to budget con-
straints, he must choose between one of two available staff
members. Barry Filmore has had considerable experience
and training in individual and organizational behavior.
Barry has worked on several other projects in which the
end users had to make significant adjustments to the new
system, and Barry seems to have a knack for anticipating
problems and smoothing the transition to a new work
environment. Marcus had hoped to have Barry’s involve-
ment in this project.

Marcus’s other potential staff member is Kim Danville.
Prior to joining ICAN Mutual, Kim had considerable
work experience with the expert system technologies that
ICAN has chosen for this expert system project. Marcus
was counting on Kim to help integrate the new expert sys-
tem technology into ICAN’s systems environment, and
also to provide on-the-job training and insights to the
other developers on this team.

Given that Marcus’s budget will only permit him to
add Barry or Kim to this project team, but not both, what
choice do you recommend for him? Justify your answer.

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 26

001-027_dennis3e_01.qxd 10/7/05 10:20 AM Page 27

