
Chapter 1

The Quality Strategy for UML

Quality—you know what it is, yet you don’t know what it is. But that is self contradic-

tory. . . . But some things are better than others, that is, they have more quality. . . . But

if you can’t say what Quality is, how do you know what it is, or how do you know that it

even exists? If no one knows what it is, then for all practical purposes it doesn’t exist at

all. But for all practical purposes it really does exist. . . . So round and round you go,

spinning mental wheels and nowhere finding any place to get traction. What the hell

is Quality? What is it?1

CHAPTER SUMMARY

This chapter discusses the underlying concepts of modeling and the effect of

verification and validation (V&V) techniques on its quality. After creating an under-

standing of modeling and its relevance to quality, this chapter describes the toolbox

of Unified Modeling Language (UML) diagrams and divides them over the three

distinct yet related modeling spaces: problem, solution and background. Following

this is a discussion on defining the syntax, semantics and aesthetics checks for

V&V of UML models and how their levels and skill sets affect the quality of the

project.

1From Robert Pirsig’s all-time favorite, Zen and the Art of Motorcycle Maintenance (http://www.

nobigv.tripod.com). For an irresistibly different perspective, read The Zen Manifesto (www.osho.com).

1

Verification and Validation for Quality of UML 2.0 Models, by Bhuvan Unhelkar
Copyright # 2005 John Wiley & Sons, Inc.

1.1 MODELING AND QUALITY

1.1.1 The Modeling Advantage

Modeling enhances quality because it enhances communication. Through modeling,

communication becomes efficient and effective. This is so because modeling raises

abstraction to a level where only the core essentials matter. The resultant advantage

is twofold: easier understanding of the reality that exists and efficient creation of a

new reality (Unhelkar, 1999).

The advantage of modeling in understanding complexity is derived from the

fact that models distill reality. Elements that are not significant in understanding

the reality are dropped. Modeling also fosters creativity by focusing on the

essentials and ignoring the gory details. This holds true for modeling in many

industries such as construction, medicine and transportation. However, the role

of modeling is even more important in software development, where it provides

the means of understanding existing software systems whose legacy nature ren-

ders them extremely complex, as well as in developing and customizing new

software systems expected to serve highly demanding customers in constant

flux.

Consider, for example, an abstraction of a COBOL application. Modeling assists

in understanding that application and the complex environment in which it operates.

Creating a model, however brief, is imperative in understanding the traditional

legacy application.

Modeling also facilitates smoother creation of the new reality. For example,

creating a model of a software system is much easier, cheaper and faster than creat-

ing the actual system. Once the concepts are bedded down, they can be adorned with

all the additional paraphernalia that makes up the final application. In this process,

modeling not only represents what we want, but also educates us in understanding

what we should want. It is not uncommon to have a user change her requirements

based on a prototype (type of model) of a system that she has seen. Alterations

and additions to the functionality required of the system during early modeling

stages are welcome signs, providing significant impetus to the modeling and quality

activities within a project. This is because changes during the early modeling stages

of a software life cycle are cheaper and faster to incorporate or fix than those

introduced later during implementation.

1.1.2 Modeling Caveats

Despite the stated and obvious advantages of modeling, there is one singularly

important factor that influences the value of a model: the quality of the model

itself. If the abstraction is incorrect, then obviously the reality eventually created

out of that abstraction is likely to be incorrect. An incorrect abstraction will also

not reflect or represent the reality truthfully. Therefore, model quality is of immense

importance in eventually deriving quality benefits.

2 THE QUALITY STRATEGY FOR UML

Modeling is limited by the following caveats:

. A model, by its very nature, is an abstraction of the reality. The modeler, depend-

ing on her needs, keeps parts of the reality that are important to her in a particular

situation and leaves out others which may be considered less important. There-

fore, the model is not a complete representation of the reality. This leads to the

possibility of the model’s being subjected to different interpretations.

. Unless a model is dynamic, it does not provide the correct sense of timing.

Since the reality is changing, it is imperative that the model change accord-

ingly. Otherwise, it will not be able to convey the right meaning to the user.

. A model may be created for a specific situation or to handle a particular pro-

blem. Needless to say, once the situation has changed, the model will no

longer be relevant.

. A model is a singular representation of possible multiple elements in reality.

For example, a class in software modeling parlance is a single representation

of multiple objects. In such cases, a model may not provide a feel for the oper-

ational aspects of the system, such as volume and performance.

. The user of the model should be aware of the notations and language used to

express the model. For example, when the design of a house is expressed

using a paper model, it is necessary for the user to know what each of the sym-

bols means. Nonstandard notations and processes can render a model useless.

. Modeling casually, or at random, without due care and consideration for the nature

of the models themselves, usually results in confusion in projects and can reduce

productivity. Therefore, formality in modeling is necessary for its success.

. Models must change with the changing reality. As applications and systems

change, so should the models if they are to be relevant. Models that are not

kept up-to-date can be misleading.

. Processes play a significant role in steering modeling activities. Modeling with-

out considering processes is a potential practical hazard and should be avoided.

Goals, methods and performance are considered the three major aspects of qual-

ity by Perry (1991).

1.1.3 Context of Model Quality

Where and how should the model quality effort be focused? Firstly, we must under-

stand that model quality is not the only aspect of quality in a project. Model quality

exists within the context of other quality dimensions or levels, and these influence

each other as well as model quality. In practical UML-based projects, the following

levels of quality are listed by Unhelkar (2003):

. Data quality—the accuracy and reliability of the data, resulting in quality work

ensuring integrity of the data.

1.1 MODELING AND QUALITY 3

. Code quality—the correctness of the programs and their underlying algorithms.

. Model quality—the correctness and completeness of the software models and

their meanings.

. Architecture quality—the quality of the system in terms of its ability to be

deployed in operation.

. Process quality—the activities, tasks, roles and deliverables employed in

developing software.

. Management quality—planning, budgeting and monitoring, as well as the

“soft” or human aspects of a project.

. Quality environment—all aspects of creating and maintaining the quality of a

project, including all of the above aspects of quality.

1.1.4 Model Quality

The aforementioned quality levels play a significant role in enhancing the overall

quality of the output of a software project. Most literature on quality, however,

focuses on code and data quality. Even when modeling appears in the discussion

of quality, it is with the aim of creating good-quality software (data and algorithms).

In this book, however, model quality refers to the quality of the software models

themselves. Model quality depends on detailed V&V of those models.

In software projects without substantial modeling, code remains the primary

output of the developers. In such projects, code emerges from the developer’s

brain—directly. This, as the history of software development indicates (Glass,

2003), has had disastrous effect on software projects.

Quality-conscious software projects use modeling throughout the entire life

cycle. Subsequently, modeling is used not only to create the software solution but

also to understand the problem. As a result, modeling occurs in the problem, solution

and background (architectural) spaces. The modeling output in such software pro-

jects transcends both data and code and results in a suite of visual models or dia-

grams. While these models go on to improve the quality of the code produced, it

is not just their influence on the implemented code that interests us but also their

own quality—that is, the quality of the models themselves. There is an acute need

to subject the software models themselves to quality assurance and quality control

processes. It is important that these models adhere to known standards and are

also subjected to stringent quality control. Model quality is all about V&V of the

models themselves. The result is not only improved model quality, but also

improved communication among project team members and among projects.

1.2 POSITIONING UML FOR MODELING

How do we build software models? The ubiquitous flowcharts, followed by the entity

relationship (E-R) and data flow diagrams (DFDs), are no longer sufficient to model

modern software systems. With the advent of objects and components, Web services

4 THE QUALITY STRATEGY FOR UML

and grid computing, and pervasive mobile computing, we need a sophisticated as well

as an exhaustive suite of modeling techniques. UML version 2.0 (Object Management

Group [OMG]) is specifically advocated as a software modeling language for visual-

ization, specification, construction and documentation (Booch et al., 1999). Thus, it is

not a programming language, although with the recent initiatives involving model-

driven architecture (MDA), we are close to using UML as an executable UML

language. Thus, overall, UML, together with a programming language for implemen-

tation, provides an excellent mechanism to develop software systems.

Furthermore, it is worth noting that UML is not a methodology, but rather a

common and standard set of notations and diagrams. These are used by processes

in varying ways to create the required models in the problem, solution and back-

ground modeling spaces. Therefore, the checklists developed later in this book for

V&V purposes are likely to vary, depending on the process; in other words, the

V&V checklists will change, depending on the role and the modeling space in

which they are applied.

It is also worth mentioning that UML has been (and is being) used effectively in a

large range of projects, including:

. New development projects, where systems are designed from scratch and the

new business applications are modeled using, for example, UML’s use cases

and activity diagrams.

. Integration projects, where newer systems—typically Web-enabled systems—

are integrated with existing (typically legacy) systems.

. Package implementation, where UML’s behavioral diagrams can be used to

understand the requirements of the implementation of the customer relationship

management system (CRMS) or the enterprise resource planning (ERP) system.

. Outsourcing projects, where UML provides the basis for scoping, delivery and

testing.

. Data warehousing and conversion projects, where not only are the data and

related information modeled using UML, but the conversion and testing pro-

cesses also use UML to document the flow.

. Educational projects, where UML can be used for testing concepts, for example

for teaching and learning object orientation.

In addition to the above types of projects, UML is being used in small, medium-

sized and large projects (Unhelkar, 2003). Due to such wide-ranging applicability of

UML, the model quality of UML-based projects assumes great importance. Let us,

therefore, consider UML from a model quality perspective.

1.3 QUALITY ASPECTS OF UML

UML has four main purposes: visualization, specification, construction and docu-

mentation (Booch et al., 1999). Therefore, in investigating the quality of UML

1.3 QUALITY ASPECTS OF UML 5

models, it is worthwhile to consider how these factors affect, and are affected by,

quality.

Visualizing—UML notations and diagrams provide an excellent industry stan-

dard mechanism to represent pictorially the requirements, solution and archi-

tecture. UML’s ability to show business processes and software elements

visually, spanning the entire life cycle of software development, provides

the basis for extensive modeling in software development. UML, through

its class representations, can bring the reality (real customers, accounts and

transactions in a typical banking system) close to the people working in the

solution space by modeling the corresponding Class Customer, Class
Account and Class Transaction. The small gap between models

and reality, especially in object-oriented (OO) development, improves the

quality of visualization. This quality of visualization is enhanced not only

by the use of UML as a standard, but also because of the large number of

Computer Aided Software Engineering (CASE) tools supporting these

visual diagramming techniques. CASE tools in modeling facilitate the work

of teams of modelers and prevent syntax errors at the visual modeling level.

Specifying—Together with visual representations, UML facilitates the specifica-

tion of some of its artifacts. For example, specifications can be associated with

the actors, use cases, classes, attributes, operations and so on. These UML spe-

cifications help enhance the quality of modeling, as they enable additional

descriptions of the visual models, enable members of a project team to

decide which areas of a particular diagram or element they want to specify,

and allow them (through CASE tools) to make the specifications available

to all stakeholders. The specifications can be made available in various

formats, such as a company’s intranet Web page, a set of Word documents

or a report.

Constructing—UML can also be used for software construction, as it is possible

to generate code from UML visual representations. This is becoming increas-

ingly important with the rapidly advancing concepts of executable UML

(Mellor and Balcer, 2002) and the MDA initiative (Mellor et al., 2004). A

piece of software that is constructed based on formal UML-based modeling

is likely to fare much better during its own V&V. Classes and class diagrams,

together with their specifications (e.g., accessibility options, relationships,

multiplicities), ensure that the code generated through these models is cor-

rectly produced and is inherently superior to hand-crafted code (i.e., code

without models).

Documenting—With the help of UML, additional and detailed documentation

can be provided to enhance the aforementioned specifications and visual rep-

resentations. Documentation has become paramount—not only the type that

accompanies the code, but also the type that goes with models, prototypes

and other such artifacts. In UML, diagrams have corresponding documen-

tation, which may be separate from the formal specifications and which

goes a long way toward explaining the intricacies of visual models.

6 THE QUALITY STRATEGY FOR UML

1.4 UNDERSTANDING MODELING SPACES IN SOFTWARE

With the aforementioned four dimensions in which UML promises quality enhance-

ment, it is still vital to remember that UML-based modeling does not happen within

a single modeling space. Successful modeling needs to consider the areas in which

modeling needs to take place. These modeling spaces have been formally considered

and discussed by Unhelkar and Henderson-Sellers (2004). This role-based division

is shown in Figure 1.1.

This figure depicts the three distinct yet related modeling spaces: problem, sol-

ution and background. These role-based divisions form the basis of further quality

V&V work with respect to UML models. These divisions provide a much more

robust approach to quality modeling, as they segregate the models based on their

purpose, primarily whether the model is created to understand the problem, to pro-

vide a solution to the problem, or to influence both of these purposes from the back-

ground, based on organizational constraints (e.g., stress, volume and bandwidth),

and need to reuse components and services.

1.5 MODELING SPACES AND UML

The modeling spaces shown in Figure 1.1 can be specifically considered within the

context of UML. To ensure the quality of UML-based models and to apply the cor-

rect V&V checklists to those models, it is essential to focus on the objectives of the

modeling exercise and use the UML-based diagrams that will help the modeler

achieve these objectives. Thus, the applicability of UML diagrams differs from

Model of problem
space (MOPS)

Platform-independent model
(PIM)

Model of solution
space (MOSS)

Platform-specific model
(PSM)

User Business
analyst

System
designer

Architect

Project
manager

Quality
manager

ANALYSIS: Understand problem

DESIGN: Create solution ARCHITECT:
Apply constraints

Model of background
space (MOBS)

Figure 1.1 Software modeling spaces and the modeling work of analysis, design, and
architecture in them.

1.5 MODELING SPACES AND UML 7

project to project. The intensity of the application of these diagrams in creating the

models also differs, depending on the reasons for modeling when creating the dia-

grams. The purpose for creating the diagrams has a direct bearing on the way

they are created, extended, and, of course, verified and validated. The modeling

spaces are extremely helpful in clarifying the purpose of modeling, particularly

its role.

1.5.1 Importance of UML Diagrams to Respective Models

The modeling spaces discussed in the previous subsection were the problem, sol-

ution and background spaces. One should expect to encounter these modeling

spaces in some form in any modeling exercise. We consider them here specifically

in UML-based modeling. For ease of usage and discussion, the three modeling

spaces are as follows:

MOPS: model of problem space

MOSS: model of solution space

MOBS: model of background space

These models are shown in their corresponding modeling spaces in Figure 1.1.

Also shown in the figure are the various primary roles in the modeling spaces—

namely, the user, business analyst, system designer, system architect, project

manager and quality manager. Of these roles, the three that work in the modeling

spaces to create MOPS, MOSS, and MOBS are the business analyst, the designer

and the architect. We now also consider the UML diagrams themselves in order

to understand their appropriateness to the modeling spaces.

1.5.2 List of UML Diagrams

In order to “spread” UML diagrams in the appropriate modeling spaces, and with the

eventual aim of applying V&V checks to them, we now consider the diagrams that

make up UML. Table 1.1 lists the UML 2.0 diagrams (based on OMG and on

Fowler, 2003).

While the list in Table 1.1 is not comprehensive, it is worth mentioning that the

number of diagrams existing in the UML literature even in its earlier versions varies.

For example, Booch et al. (1999) listed only nine diagrams. However, Jacobson

et al.’s earlier work (1992), as well as that of Rosenberg and Scott (1999), (who

list robustness diagrams separately), had a different number of diagrams from that

on the OMG’s list.

Increasingly, practitioners have started listing the package diagram separately

from the class diagram because of its increasing importance in organizational and

architectural areas of the system. The package diagram is accepted as a separate dia-

gram in the current UML 2.0 literature. Sometimes the sequence and communication

8 THE QUALITY STRATEGY FOR UML

diagrams (as named in UML 2.0, these are the collaboration diagrams of the earlier

UML versions) are listed together as interaction diagrams.

The component and deployment diagrams are also referred to as “implemen-

tation” diagrams in UML literature. Object diagrams are theoretically treated as

independent diagrams in their own right but are often not supported by CASE

tools—resulting in their being drawn underneath communication diagrams within

CASE tools. While this discussion introduces you to the range of UML diagrams,

it is more important to know the diagrams’ precise strengths and the purpose for

which they can be used rather than focus on the precise list.

1.5.3 UML Diagrams and Modeling Spaces

Table 1.1 summarizes the UML diagrams and the modeling aspect of software sol-

utions represented by them. These diagrams have a set of underlying rules that

specify how to create them. The rigor of these rules is encapsulated in what is

known as the OMG’s “meta-model”. The meta-model also helps to provide rules

for cross-diagram dependencies.

The importance of the meta-model is that it renders the UML elastic—it can be

stretched or shrunk, depending on the needs of the project. This is discussed further

in Chapter 2. Because of the elasticity of UML, the extent and depth to which the

UML diagrams are applied in creating models are crucial to the success of projects

using UML. Not all diagrams apply to all situations. Furthermore, not all diagrams

are relevant to a particular role within a project. As Booch et al. (1999) correctly

point out:

Good diagrams make the system you are developing understandable and approachable.

Choosing the right set of diagrams to model your system forces you to ask the

right questions about your system and helps to illuminate the implications of your

decisions.

TABLE 1.1 UML 2.0 Diagrams

UML Diagrams Represent

1. Use case functionality from the user’s viewpoint

2. Activity the flow within a Use case or the system

3. Class classes, entities, business domain, database

4. Sequence interactions between objects

5. Interaction overview interactions at a general high level

6. Communication interactions between objects

7. Object objects and their links

8. State machine the run-time life cycle of an object

9. Composite structure component or object behavior at run-time

10. Component executables, linkable libraries, etc.

11. Deployment hardware nodes and processors

12. Package subsystems, organizational units

13. Timing time concept during object interactions

1.5 MODELING SPACES AND UML 9

Therefore, we must first select the right set of diagrams for a particular modeling

space. This is achieved next, followed by a discussion on the right level of appli-

cation of these models. A series of V&V criteria are then applied to these diagrams

in subsequent chapters. While the UML diagrams apply to all modeling spaces,

Table 1.2 next summarizes the relative importance of each of the UML diagrams

to each of the modeling spaces and major modeling roles within the project.

While project team members can work in any of these modeling spaces using any

of the UML diagrams, good models are usually the result of understanding the

importance of the diagrams with respect to the modeling spaces. This is shown in

Table 1.2. As is obvious from this table, modelers are not prevented from using

any of the UML diagrams. However, Table 1.2 provides focus in terms of using

UML diagrams for a particular role within a project. This information can be invalu-

able in organizing the quality team, as well as in following the process that will

verify and validate these diagrams.

The categorization in Table 1.2 ensures a balance between the desire to use

everything provided by UML and the need to use only the relevant diagrams as a

good starting point for a modeling exercise. Table 1.2 uses the “�” rating to indicate

the importance and relevance of UML diagrams within MOPS, MOSS and MOBS.

A maximum rating of ����� is provided for diagrams of the utmost importance to

the model in a particular space.

1.5.4 Model of Problem Space (MOPS)

Figure 1.1 shows MOPS in the problem space. In UML projects, MOPS deals with

creating an understanding of the problem, primarily the problem that the potential

user of the system is facing. While usually it is the business problem that is being

TABLE 1.2 Importance of UML Diagrams to Respective Models (a Maximum of Five �
for Utmost Importance to the Particular Space)

UML Diagrams
MOPS

(Business Analyst)
MOSS

(Designer)
MOBS

(Architect)

Use case ����� �� �

Activity ����� �� �

Class ��� ����� ��

Sequence ���� ����� �

Interaction overview ���� �� ��

Communication � ��� �

Object � ����� ���

State machine ��� ���� ��

Composite structure � ����� ����

Component � ��� �����

Deployment �� �� �����

Package ��� �� ����

Timing � ��� ���

10 THE QUALITY STRATEGY FOR UML

described, even a technical problem can be described at the user level in MOPS. In

any case, the problem space deals with all the work that takes place in understanding

the problem in the context of the software system before any solution or develop-

ment is attempted.

Typical activities that take place in MOPS include documenting and understand-

ing the requirements, analyzing requirements, investigating the problem in detail,

and perhaps optional prototyping and understanding the flow of the process

within the business. Thus the problem space would focus entirely on what is happen-

ing with the business or the user. With the exception of prototyping in the problem

space, where some code may be written for the prototype, no serious programming is

expected when MOPS is created.

1.5.4.1 UML Diagrams in MOPS As a nontechnical description of what is hap-

pening with the user or the business, the problem space will need the UML diagrams

that help the modeler understand the problem without going into technological

detail. The UML diagrams that help express what is expected of the system,

rather than how the system will be implemented, are of interest here. As shown in

Table 1.2, these UML diagrams in the problem space are as follows:

Use case diagrams—provide the overall view and scope of functionality. The use

cases within these diagrams contain the behavioral (or functional) description

of the system.

Activity diagrams—provide a pictorial representation of the flow anywhere in

MOPS. In MOPS, these diagrams work more or less like flowcharts, depicting

the flow within the use cases or even showing the dependencies among various

use cases.

Class diagrams—provide the structure of the domain model. In the problem

space, these diagrams represent business domain entities (such as Account
and Customer in a banking domain), not the details of their implementation

in a programming language.

Sequence and state machine diagrams—occasionally used to help us understand

the dynamicity and behavior of the problem better.

Interaction overview diagrams—recently added in UML 2.0, these provide an

overview of the flow and/or dependencies between other diagrams.

Package diagrams—can be used in the problem space to organize and scope the

requirements. Domain experts, who have a fairly good understanding not only

of the current problem but also of the overall domain in which the problem

exists, help provide a good understanding of the likely packages in the system.

1.5.5 Model of Solution Space (MOSS)

The solution space is primarily involved in the description of how the solution will

be implemented. Figure 1.1 shows MOSS as a model that helps us understand and

model the software solution that needs to be provided in response to MOPS. This

1.5 MODELING SPACES AND UML 11

solution model requires extra knowledge and information about the facilities

provided by the programming languages, corresponding databases, middleware,

Web application solutions and a number of other technical areas. Thus, MOSS con-

tains a solution-level design expressed by technical or lower-level class diagrams,

technical sequence diagrams, detailed state machine diagrams representing events

and transitions, designs of individual classes and corresponding advance class

diagrams. Object diagrams, communication diagrams and timing diagrams (the

recent UML 2.0 addition) can also be occasionally used in MOSS.

1.5.5.1 UML Diagrams in MOSS Because MOSS is a technical description of

how to solve the problem, the UML diagrams within MOSS are also technical in

nature. Furthermore, even the diagrams drawn in MOPS are embellished in the sol-

ution space with additional technical details based on the programming languages

and databases. As shown in Table 1.2, the primary diagrams used in MOSS are

the class diagrams together with their lowermost details, including attributes,

types of attributes, their initial values, signatures of the class operations (including

their parameters and return values) and so on. These can be followed by diagrams

like the sequence diagrams together with their detailed signatures, message types,

return protocols and so on. Modelers may also use the communication diagrams

for the same purpose as sequence diagrams. Occasionally state machine diagrams

can be used to provide the dynamic aspect of the life cycle of a complex or very

important object. Recently introduced timing diagrams show state changes to mul-

tiple objects at the same time, and composite structure diagrams depict the run-time

structure of components and objects.

1.5.6 Model of Background Space (MOBS)

MOBS incorporates two major aspects of software development that are not covered

by MOPS or MOSS: management and architecture. As shown in Figure 1.1, MOBS

is an architectural model in the background space that influences models in both

problem and solution spaces through constraints.

Of the two major aspects of work in the background space, management work

relates primarily to planning. Planning deals mainly with the entire project and

does not necessarily form part of the problem or solution space. In other words, man-

agement work in the background space includes issues from both problem and sol-

ution spaces but is not part of either of them. Several aspects of planning are handled

in the background by the project manager. These include planning the project;

resourcing the project’s hardware, software, staff and other facilities; budgeting

and performing cost-benefit analysis; tracking the project as it progresses through

various iterations; and providing checkpoints for various quality-related activities.

These background space activities are related to management work and are briefly

discussed, along with other process aspects of quality, in Chapter 7. It is worth

repeating here, though, that UML is not a management modeling language, and

therefore does not provide direct notations and diagrams to document project

plans and resources. The project planning aspect is best to deal with the process

12 THE QUALITY STRATEGY FOR UML

techniques as well as process tools (most containing Program, Evaluation & Review

Technique [PERT] and Gantt charts and project-based task lists).

Architectural work, on the other hand, deals with a large amount of technical

background work. This work includes consideration of patterns, reuse, platforms,

Web application servers, middleware applications, operational requirements and

so on. This background space also includes issues such as reuse of programs and

system designs, as well as system and enterprise architecture. Therefore, work in

this space requires knowledge of the development as well as the operational environ-

ment of the organization, availability of reusable architecture and designs, and how

they might fit together in MOPS and MOSS.

1.5.6.1 UML Diagrams in MOBS The UML diagrams of interest in the back-

ground space are the ones that help us create a good system architecture that strives

to achieve all the good things of object orientation. For example, reusability, patterns

and middleware need to be expressed correctly in MOBS, and UML provides the

means to do so. The importance of each of the UML diagrams in the background

space is shown in Table 1.2. One should expect a large amount of strategic technical

work in the background space that will consider the architecture of the current sol-

ution, the existing architecture of the organization’s technical environment, the oper-

ational requirements of the system (i.e., the technical requirements of the system

when it goes into operation, such as disk spaces, memory needs, CPU speeds), the

needs of the system in terms of its stress, volume and bandwidth, and so on.

In order to complete the solution, it is necessary to relate the solution-level classes

closely to the component diagrams drawn in the background space. These component

diagrams contain the .EXEs and .DLLs and are closely associated with the solution-

level class diagrams, providing the final steps in the system development exercise

before the user runs the application. When run-time components are modeled, they

result in composite structure diagrams, which may also be used in the background

space to specify and discuss the architecture of a component or a class.

Increasingly, operational issues are being expressed properly using UML dia-

grams in the background space. UML provides help and support in modeling the

operational environment (or deployment environment) of the system by means of

deployment diagrams. Furthermore, a combination of component and deployment

diagrams can provide a basis for discussions between the architects and designers

of the system concerning where and how the components will reside and execute.

Using the extension mechanisms of UML, one can develop diagrams that help

express Web application architectures, including whether they should be thin-

client or thick-client, the level of security needed on each node and the distributed

aspects of the architecture, to name only a few issues. These background UML dia-

grams also have a positive effect on architecting quality (i.e., mapping quality to a

good architecture) by providing standard means of mapping designs to existing and

proven architectures. For example, an architectural pattern describing thin-client

architecture is a much better starting point in terms of quality than designing such

a solution from scratch.

1.5 MODELING SPACES AND UML 13

1.6 VERIFICATION AND VALIDATION

Perry (1991) considers goals, methods and performance to be the three major aspects

of quality. These strategic aspects of quality translate operationally into V&V tech-

niques. Verification is concerned with the syntactic correctness of the software and

models, whereas validation deals with semantic meanings and their value to the

users of the system. V&V are quality techniques that are meant to prevent as well

as detect errors, inconsistencies and incompleteness. V&V comprises a set of activi-

ties and checks that ensure that the model is correct. Based on Perry’s definitions,

verification focuses on ascertaining that the software functions correctly, whereas

validation ensures that it meets the user’s needs. Thus, verification comprises a sep-

arate set of activities that ensure that the model is correct. Validation works to ensure

that it is also meaningful to the users of the system. Therefore, validation of models

deals with tracing the software to the requirements.

Because of the subjective nature of quality, it cannot be easily quantified. How-

ever, one simple way to grapple with this subjectivity is to utilize a checklist-based

approach as a first step in V&V of the quality aspects of a model. The correctness of

the software is verified by a suite of checklists that deal with the syntax of the

models, whereas the meaning and consistency of the software models are validated

by creating a suite of checklists dealing with semantic checks. Thus, verification

requires concrete skills like knowledge of the syntax; validation starts moving

toward the abstract, as shown in Figure 1.2. Once augmented with aesthetic

checks, this complete suite of checklists provides a quantifiable way of measuring

quality, and it can be used as a benchmark for further developing qualitative

understanding.

Having discussed the various quality aspects of modeling that are enhanced by

UML, we now consider the manner in which these qualities of UML-based

Increasingly
abstract skills;

experience helps

V
al

id
at

io
n

V
er

if
ic

at
io

n

Increasingly
concrete skills;

knowledge helps
x

Semantics

Aesthetics

Syntax

Figure 1.2 Quality and V&V of models and their mapping to syntax, semantics and
aesthetics.

14 THE QUALITY STRATEGY FOR UML

models can be verified and validated. Some parts of V&V deal with the visual

aspects of the model, others with its specification, construction and documentation.

Since UML is a language for visualization, it is appropriate to consider how the

quality checks can be applied to UML-based diagrams and models. Therefore, the

major part of V&V deals with the visual aspects of the model. This can lead not

only to detection of errors in the model (quality checks that ensure validation of the

model) but also appropriate quality assurance and process-related activities aimed

at the prevention of errors. While recognizing the wide variety of definitions of quality

in the software literature, we now start moving toward the basis for creating three types

of V&V checks. For V&V of a software artifact, there are three levels of checks:

syntax, semantics and aesthetics. These checks have close parallels to the quality

approach of Lindland et al. (1994), who created a framework with three axes for qual-

ity assessment: language, domain and pragmatics. They translated these axes into

syntactic quality, semantic quality and pragmatic quality, providing the theoretical

background on which the current quality checks are built. While the syntax and seman-

tic checks outlined here have close parallels to the work of Lindland et al., the aesthetic

checks are also discussed by Ambler (2003) under the heading of “styles.”

Building further on the framework of Lindland et al. (1994), the understanding of

good-quality software modeling results in V&V of software models as follows:

. All quality models should be syntactically correct, thereby adhering to the rules

of the modeling language (in our case, UML 2.0) they are meant to follow.

. All quality models should represent their intended semantic meanings and

should do so consistently.

. All quality models should have good aesthetics, demonstrating the creativity

and farsightedness of their modelers. This means that software models

should be symmetric, complete and pleasing in what they represent.

The words “syntax,” “semantics” and “aesthetics” are chosen to reflect the tech-

niques or means of accomplishing the V&V of the models. One reason that these

words correctly represent our quality assurance effort is that they relate directly to

the UML models—especially those models that are created and stored in CASE

tools. As a result, their quality can be greatly enhanced by applying the syntax,

semantics and aesthetic checks to them. We will now consider these three categories

of checks in more detail.

1.6.1 Quality Models—Syntax

All languages have a syntax. Latin and Sanskrit have their own syntax, and so do

Java, XML and UML. However, two major characteristics of UML differentiate it

from the other languages:

. UML is a visual language, which means that it has a substantial amount of

notation and many diagram specifications.

1.6 VERIFICATION AND VALIDATION 15

. UML is a modeling language, which means that it is not intended primarily to

be compiled and used in production of code (as programming languages are)—

although the trend toward support for both “action semantics” in UML 2.0 and

in MDA, both from the OMG, will likely involve the use of UML in this context

in the future.

Needless to say, incorrect syntax affects the quality of visualization and specifi-

cation, also, although a diagram itself cannot be compiled, incorrect syntax at the

diagram level percolates down to the construction level, causing errors in creating

the software code.

CASE tools are helpful to ensure that syntax errors are kept to a minimum. For

example, on a UML class diagram, the rules of the association relationship, creation

of default visibilities (e.g., private for attributes) and setting of multiplicities are

examples of how CASE tools help to reduce syntax errors.

In UML-based models, when we apply syntax checks, we ensure that each of the

diagrams that make up the model has been created in conformance with the stan-

dards and guidelines specified by OMG. We also ensure that the notations used,

the diagram extensions annotated and the corresponding explanations on the

diagrams all follow the syntax standard of the modeling language.

Figure 1.3 shows a simple example of a rectangle representing a dog. This

rectangle is the notation for a class in UML. The syntax check on this diagram

ensures that it is indeed a rectangle that is meant to represent animals (or other

such things) in this modeling mechanism. The rectangle is checked for correctness,

and we ensure that it is not an ellipse or for an arrowhead (both of which would be

syntactically incorrect when using UML’s notation) that is intended to represent the

animal in question. In terms of UML models, a syntax check is a list of everything

DOG

Syntax:
Is the rectangle

correct
or is an ellipse

required?

Semantic:
Is Dog the Implied

meaning
or was Cat meant?

Aesthetic:
Is this pleasing to
read? Complete?

Going from left to right?

A syntactically correct model
ensures that if a rectangle has to
represent an artifact, then literally

no corners have been cut

A semantically correct model
ensures that when a dog has to be

represented, a dog and not a
frog is represented

An aesthetically sound model
strives for balance. The

representation of the dog will not
be too big or too small. It will be

readable and changeable. It
will not represent too many

elements

Figure 1.3 Application of syntax, semantics and aesthetics.

16 THE QUALITY STRATEGY FOR UML

that needs to be accomplished to achieve the syntax for the diagrams and associated

artifacts of UML as laid out by OMG.

Permissible variations on these diagrams in complying with the meta-model can

become a project-specific part of the syntax checks. Syntactic correctness greatly

enhances the readability of diagrams, especially when these diagrams have to be

read by different groups in different organizations in several countries (a typical

software outsourcing scenario).

1.6.2 Quality Models—Semantics

While one of the qualities enhanced by rigorous syntax checks is the quality of con-

struction (read “compilation”), one cannot be satisfied merely by a program that

compiles and executes correctly yet does not consider the manner in which it is inter-

preted and understood. Such a model, although syntactically correct, would fail to

achieve the all-important semantic correctness.

Consider, for example, Figure 1.3. Here, we expect to see a dog represented by a

rectangle, with the word “dog” written in it. Writing the word “dog” within a

rectangle might be syntactically correct, but it would be semantically wrong if the

class Dog is actually representing an object cat (as it is in this example). If the

class Dog is specified for an object cat, the meaning of the model is destroyed,

however syntactically correct the model may be.

The semantic aspect of model quality ensures not only that the diagrams

produced are correct, but also that they faithfully represent the underlying reality

represented in the domain, as defined by Warmer and Kleppe (1998). In UML,

for example, the business objectives stated by the users should be correctly reflected

in the use case diagrams, business rules, constraints, and pre- and postconditions

documented in the corresponding use case documentation.

Once again, models in general are not executable; therefore, it is not possible to

verify and validate their purpose by simply “executing” them, as one would the final

software product (the executable). Consequently, we need to identify alternative

evaluation techniques. In this context, the traditional and well-known quality tech-

niques of walkthroughs and inspections (e.g., Warmer and Kleppe, 1998; Unhelkar,

2003) are extremely valuable and are used more frequently and more rigorously than

for syntax checking.

Another example of such techniques, for instance as applied to use case models in

UML, is that we anthropomorphize2 each of the actors and use cases and act through

an entire diagram as if we were the objects themselves. We can insist that testers

walk through the use cases, verify the purpose of every actor and all use cases,

and determine whether they depict what the business really wants. This is the

semantic aspect of verifying the quality of a UML model, supplemented, of

course, by the actual (non-UML) use case descriptions themselves (e.g., Cockburn,

2001).

2Personify—by assuming that the actors are alive and conducting a walkthrough/review with business

users, developers and testers.

1.6 VERIFICATION AND VALIDATION 17

1.6.3 Quality Models—Aesthetics

Once the syntax and the semantics are correct, we need to consider the aesthetics of

the model (e.g., Ambler, 2003). Very simply, aesthetics implies style. Often, while

reading a piece of code, one is able to point out the style or programming and hence

trace it to a specific programmer or a programming team. Although the code (or, for

that matter, any other deliverable) may be accurate (syntactically) and meaningful

(semantically), difference still arises due to its style. The style of modeling has a

bearing on the models’ readability, comprehensibility and so on. One example of

a factor that affects style is granularity (discussed in detail in Chapter 6). In good

OO designs, the level of granularity needs to be considered, as it strongly affects

understandability (Miller, 1956). For example, in Figure 1.3, how many rectangles

(classes) are there on a diagram (as against the previous two checks: “Is that a class

notation?” and “What is the meaning behind this class?”)? It is, of course, possible

that a system with 10 class diagrams, each with 10 classes and numerous relation-

ships, may accurately represent a business domain model—although such large

numbers should be regarded as a warning (e.g., Henderson-Sellers, 1996). In another

example, one class diagram may have 20 classes (not wrong from a UML viewpoint,

but ugly) and another class diagram may have only 1, albeit an important and large

one. This aesthetic size consideration is studied in terms of the granularity of the

UML models, as described by Unhelkar and Henderson-Sellers (1995), and requires

a good metrics program within the organization to enable it to improve the aesthetics

of the model. Such a model will then offer a high level of customer satisfaction,

primarily to the members of the design team but also in their discussions with the

business enduser(s).

1.6.4 Quality Techniques and V&V Checks

The three aspects of quality checks—syntax, semantics and aesthetics—should not

be treated as totally independent of each other. A change in syntax may change the

meaning or semantics of a sentence or diagram. While syntax is checked minutely

for each artifact, an error in syntax may not be limited to the error in the language of

expression.

This also happens in UML, where syntax and semantics may depend on each

other. For example, the direction of an arrow showing the relationship between

two classes will certainly affect the way that class diagram is interpreted by the

end user. Similarly, aesthetics or symmetry of diagrams facilitates easier

understanding (e.g., Hay, 1996), making the semantics clearer and the diagrams

more comprehensible to their readers.

This brings us to the need to consider the various traditional quality techniques of

walkthroughs, inspections, reviews and audits in the context of the V&V checks of

syntax, semantics and aesthetics, as shown in Figure 1.4.

Walkthroughs—may be performed individually, and help weed out syntax errors

(more than semantic errors).

18 THE QUALITY STRATEGY FOR UML

Inspections—are more rigorous than walkthroughs, are usually carried out by

another person or party, and can identify both syntax and semantic errors.

Reviews—increase in formality and focus on working in a group to identify

errors. The syntax checks are less important during reviews, but the semantics

and aesthetics start becoming important.

Audits—formal and possibly external to the project and even the organization. As

a result, audits are not very helpful at the syntax level, but they are extremely

valuable in carrying out aesthetic checks of the entire model.

1.7 QUALITY CHECKS AND SKILLS LEVELS

As shown in Figure 1.2, while the syntax can be verified by anyone who has suffi-

cient knowledge of UML, the semantics of each of the UML diagrams and the

models that these diagrams describe need a little more experience. It is therefore

important to include the users in all quality checks and to encourage them to partici-

pate in all quality walkthroughs, inspections and playacting (anthropomorphizing)

in verifying the semantics of each of the models. The UML experience here fully

supports the participatory role of the user envisaged by Warmer and Kleppe (1998).

The aesthetic aspect of model quality requires a combination of knowledge and

experience. In ensuring the aesthetics of the UML models created, we require

knowledge not only of UML and of the business, but also of the CASE tools and

the environment in which they have been used. We need experience with more

than one project before we can successfully apply the aesthetic aspect of model

quality to the UML model.

Audits

Reviews

Inspections

Walkthroughs

Quality Techniques Quality Checks

Aesthetics

Semantics

Syntax

Figure 1.4 V&V checks and quality techniques.

1.7 QUALITY CHECKS AND SKILLS LEVELS 19

1.8 LEVELS OF QUALITY CHECKS TO UML DIAGRAMS

Levels of checks mean that while syntax, semantics and aesthetic checks are

applied to the UML diagrams (Figure 1.5), these checks are also applied in

various ways to the entire model, which is made up of many diagrams. Alternati-

vely, they can be applied to a single artifact within a diagram. Thus, it is not neces-

sary to have all types of checks that apply to all artifacts, diagrams and models

produced.

However, this understanding of the levels of checks is helpful in focusing on the

intensity of the checks and in ensuring that quality improvement efforts are well

balanced. This is explained further in the following subsections.

The modeling constructs offered by UML and the corresponding quality checks

at the three levels are as follows:

a. The individual elements, or “things” that make up the diagrams. The artifacts

(or things) and the specifications of these artifacts should have the syntax,

semantics and aesthetics checks applied as far as possible. This comprises

“ground-level” or highly detailed checking. In these checks, the syntax of

the artifacts is checked most intensely.

b. The UML diagrams and the validity of their syntax, semantics and aesthetics.

This is the equivalent of a “standing view” of the model being verified and

validated, with an intensive check of the semantics of diagrams.

c. A combination of interdependent diagrams called a “model”. The V&V of the

entire model, made up of the relevant UML diagrams, their specifications,

and so on, includes syntax, semantics and aesthetics checks. This is the

“bird’s-eye view,” allowing checks of symmetry and consistency, resulting

in aesthetic quality checks being applied most intensely.

Aesthetics
(bird’s-eye view)

Semantics
(standing view)

Syntax
(ground-level view)

Models

Diagrams

Artifacts
(specifications)

Figure 1.5 Syntax, semantics and aesthetics checks verify and validate UML artifacts,
diagrams and models.

20 THE QUALITY STRATEGY FOR UML

It is not necessary to apply all types of checks to all of the artifacts, diagrams and

models produced.

1.8.1 Syntax Checks and UML Elements (Focus on Correctness)

When we say that we want to apply syntax checks to a use case diagram, what

exactly do we mean? Are we checking the use case itself and its specification, or

are we checking whether the “extends” relationship arrow in a use case diagram

is pointing correctly to the use case being extended? This question leads us to

expand our V&V effort to levels beyond just one diagram.

In syntax checks, we are looking at the ground-level view of the models. This

includes the artifacts and elements of UML, as well as their specifications and

documentation. Furthermore, when we check the syntax of these elements, we

focus primarily on the correctness of representation as mandated by UML. There-

fore, during syntax checks the semantics, or the meaning behind the notations and

diagrams, are not the focus of checking.

For example, consider a class diagram that contains Car as a class. The syntax

check of the correctness of this artifact would be something like this:

. Is the Car class represented correctly by attributes and operations?

. Do the attributes have correct types and do the operations have correct

signatures?

. Is the Car class properly divided into three compartments?

. Is the Car class compilable? (This syntax check will apply in the solution

space.)

In UML terms, when we start applying syntax checks to a use case diagram,

we first apply them to the artifacts or elements that make up the diagram,

such as the actors and the use cases. In a class diagram, these basic syntax

checks apply to a class first and whatever is represented within the class.

Since these artifacts are the basic building blocks from which the diagrams

and models are created in UML, checking them in terms of correctness of

the UML syntax is the first thing that should be done in any quality control

effort.

This syntax check for an element or artifact is followed by a check of the

validity of the diagram itself. Here we do not worry about whether, say, the

specifications of the use case itself follow a standard and whether the use case

semantically represents what it is meant to represent. Instead of focusing on one

element at this level, we inspect the entire diagram and ensure that it is syntactically

correct.

If these syntax checks for the elements and the diagrams that comprise them

are conducted correctly, they ensure the correctness of the UML diagrams. As

a result, the intensity of syntax checks will be reduced when the entire model is

checked.

1.8 LEVELS OF QUALITY CHECKS TO UML DIAGRAMS 21

1.8.2 Semantic Checks and UML Diagrams (Focus on
Completeness and Consistency)

Semantic checks deal with the meaning behind an element or a diagram. Therefore,

this check focuses not on the correctness of representation but on the completeness

of the meaning behind the notation. In the example of the Car class considered

above, the semantic check for the model of Car would be: “Does the Car class

as named in this model actually represent a car or does it represent a garbage

bin?” It is worth noting here that should a collection of garbage bins be named as

a Car class, so long as it has a name, an attribute and operation clearly defined,

the UML syntax checks for the Car class will be successful. It is only at the seman-

tic level that we can figure out that something is wrong because in real life the name

Car does not represent a collection of garbage bins.

Because the meaning of one element of UML depends on many other elements

and on the context in which it is used, therefore, semantic checks are best performed

from a standing-level view of the UML models. This means that we move away

from the ground-level check of the correctness of representation and focus on the

purpose of representation. Needless to say, when we stand up from the ground

(where we inspect the syntax), a lot more become visible. Therefore, it is not just

one element on the diagram but rather the entire diagram that becomes visible

and important. Semantic checks, therefore, become more intense at the diagram

level rather than just at an element level.

Taking the Car example further, semantic checks also deal with consistency

between diagrams, which includes, for example, dependencies between doors
and engine and between wheel and steering. In UML terms, while a class

door may have been correctly represented (syntactically correct) and may mean

a door (semantically correct), the dependencies between door and car, or

between door and driver (or even between door and burglar), will need a

detailed diagram-level semantic check. This check will also include many cross-

diagram dependency checks that extend the semantic check to more than one

diagram. Semantic checks also focus on whether this class is given a unique and

coherent set of attributes and responsibilities to handle or whether it is made to

handle more responsibilities than just Car. For example, do the Driver-related

operations also appear in Car? This would be semantically incorrect. Thus, semantic

checks apply to each of the UML diagrams intensely, as well as to the entire model.

1.8.3 Aesthetic Checks and UML Models (Focus on
Symmetry and Consistency)

As noted in the preceding two subsections, the correctness and completeness of

UML elements and the corresponding individual diagrams are ensured by applying

detailed syntax and semantic checks to them. The aesthetic checks of these diagrams

and models add a different dimension to the quality assurance activities, as they deal

not with correctness or completeness but rather with the overall consistency and

symmetry of the UML diagrams and models. They are best done with a birds-eye

view of the model. Because these checks occur at a very high level, far more is

22 THE QUALITY STRATEGY FOR UML

visible—not just one diagram, but many diagrams, their interrelationships, and their

look and feel. This requires these aesthetic checks to be conducted at certain “check-

points,” where a certain amount of modeling is complete. Therefore, aesthetic

checks also require some knowledge and understanding of the process being fol-

lowed in the creation of the models and the software (briefly discussed in Chapter

7). The process ensures that the aesthetic checks are applied to the entire model

rather than to one element or diagram.

In UML terms, the aesthetic checks of the Car class involve checking the depen-

dency of Car on other classes and their relationships with persistent and graphical

user interface (GUI) class cross-functional dependencies. This requires cross-checks

between various UML diagrams that contain the Car class as well as checks of their

consistency. Furthermore, aesthetic checks, occurring at a birds-eye level, focus on

whether the Car class has too many or too few attributes and responsibilities. For

example, if the Car class has too many operations, including that of “driving

itself,” the entire model would become ugly. Thus, a good understanding of the aes-

thetic checks results in diagrams and models that do not look ugly, irrespective of

their correctness.

Finally, aesthetic checks look at the entire model (MOPS, MOSS, MOBS or any

other) to determine whether or not it is symmetric and in balance. If a class diagram

in a model has too many classes, aesthetic checks will ensure redistribution of classes.

Thus we see that, together, the syntax, semantic and aesthetic checks ensure that

the artifacts we produce in UML, the diagrams that represent what should be

happening in the system, and the models that contain diagrams and their detailed

corresponding documentation are all correct, complete and consistent.

1.9 MODEL-DRIVEN ARCHITECTURE (MDA) AND QUALITY

MDA (OMG, 2004) is the latest initiative by the OMG to create an application archi-

tecture that is reusable in developing applications. The purpose of MDA is to pro-

vide the basic infrastructure and leave developers free to concentrate on solving

application problems. MDA enables developers to look at the challenges of require-

ments modeling, development, testing and portability of deployed systems. MDA

provides the basis for this effort and, at the same time, helps to increase the

reusability of architecture by separating specification of the system’s operation

from the details of the way that the system uses the capabilities of its platform.

The MDA initiative depends strongly on UML. Some authors bring the initiative

close to the discussion of executable UML (see Fowler, 2003). The key components

of MDA are the computation independent model (CIM), platform independent

model (PIM) and platform specific model (PSM). PIM and PSM are effectively in

the problem and solution spaces, as shown in Figure 1.1.

1.10 PROTOTYPING AND MODELING SPACES

An introduction to the concepts of quality would not be complete without men-

tioning prototyping. A prototype is a type of model, and it is advisable to use it in

1.10 PROTOTYPING AND MODELING SPACES 23

conjunction with the UML models to achieve overall good quality in the project.

Prototypes can be created in each of the three modeling spaces to validate and

verify the requirements as well as extract complete and correct requirements.

Here are some brief comments on the nature of prototypes in each of the three

modeling spaces.

MOPS has its own prototype, which is called the “functional prototype.” This

contains the user interface prototype. An example of using the prototype in

MOPS is the use of the class responsibility collaborator (CRC) technique in require-

ments modeling. Each of the cards representing the classes can be used in role-

playing a use case and the domain-level classes and their responsibilities extracted.

Another well-known example of a prototype in MOPS is a “dummy” executable of a

system, using screens and displaying their look, feel and navigation. Functional

prototypes can thus be used to set the expectations of both users and management.

By showing what a system can and cannot do early in MOPS, it is possible to

reiterate the objectives and the scope of the system.

The prototype in MOSS is that of the technology. This implies testing program-

ming languages and databases. While the MOPS prototype need not be an executa-

ble, the one in MOSS probably would. For example, a technical prototype would

have an example Java class created that would be made to run on a potential

client machine. The prototype would also experiment with running a small appli-

cation on a server by trying various languages, like Java and Cþþ, to handle the

server-side capabilities. Potential reuse through patterns and reusable components

is also facilitated by the technical prototypes created in MOSS.

Prototypes in the background space would test architectural requirements such as

bandwidth and operating systems. Some aspects of performance, volume, stress,

security and scalability would also be managed between the prototypes, MOSS

and MOBS.

The architectural prototype could be the same prototype created in the solution

space to explore how well the overall architecture of the system fits in with the

rest of the system’s and the organization’s environment. Unlike the prototype in

the problem space, this prototype would usually be an executable piece of software

that experiments with various components, databases, networks and security

protocols, to name but a few.

DISCUSSION TOPICS

1. What is the importance of modeling in enhancing the quality of software

projects? How is the importance of modeling different in enhancing the

quality of the software models themselves?

2. What are the limitations of modeling? What rules should we adhere to when

using modeling in software projects?

3. What are the various levels of quality, and how does model quality fit into these

quality levels?

24 THE QUALITY STRATEGY FOR UML

4. How does modeling help in projects where there is a large amount of existing

legacy code (integration, creating models of existing applications)?

5. Describe the three suggested modeling spaces within software and how they

relate to UML-based modeling.

6. What are the different aspects of quality enhanced by UML?

7. Discuss the important UML 2.0 diagrams in MOPS.

8. Discuss the important UML 2.0 diagrams in MOSS.

9. Discuss the important UML 2.0 diagrams in MOBS.

10. What is verification and validation? Discuss the difference between the two.

11. How does the aesthetic aspect of quality models differ from their syntax and

semantic aspects?

12. What is an appropriate quality technique to verify syntax?

13. What is an appropriate quality technique to verify semantics?

14. What is an appropriate quality technique to verify aesthetics?

15. In addition to the knowledge of UML, what else is needed in ensuring the

semantic quality of UML?

16. How is prototyping helpful in modeling? Discuss this with respect to the three

modeling spaces and the models created there.

17. What is MDA? How does it relate to the three modeling spaces?

REFERENCES

Ambler, S. UML Style Guide. Cambridge: Cambridge University Press, 2003.

Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modelling Language User Guide.

Reading, MA: Addison-Wesley, 1999.

Cockburn, A. Writing Effective Use Cases. Boston, MA: Addison-Wesley, 2001.

Fowler, M. Patterns of Enterprise Application Architecture. Reading, MA: Addison-Wesley

Professional, 2003.

Glass, R. Facts and Fallacies of Software Engineering. Reading, MA: Addison-Wesley, 2003.

Hay, D.C. Data Model Patterns: Conventions of Thoughts. New York: Dorset House, 1996.

Henderson-Sellers, B. Object Oriented Metrics: Measures of Complexity. Upper Saddle

River, NJ: Prentice Hall, 1996.

Jacobson, I., Christerson, M., Jonsson, P. and Övergaard, G. Object-Oriented Software Engin-

eering: A Use Case Driven Approach. Reading, MA: Addison-Wesley, 1992, pp. 524.

Miller, G. “The Magical Number Sever, Plus or Minus Two: Some Limits on our Capacity for

Processing Information,” The Psychological Review, 63(2), 1956, pp. 81–97.

REFERENCES 25

Mellor, S.J., and Balcer M.J. Executable UML: A Foundation for Model Driven Architecture.

Reading, MA: Addison-Wesley, 2002.

Mellor, S., Scott, K., Uhl, A., and Weise, D. MDA Distilled: Principles of Model-Driven

Architecture. Reading, MA: Addison-Wesley, 2004.

Lindland, O.I., Sindre, G., and Sølvberg, A. “Understanding Quality in Conceptual Model-

ing,” IEEE Software (March 1994), 42–49.

OMG. OMG Unified Modeling Language Specification, Version 1.4, September 2001. OMG

document formal/01-09-68 through 80 (13 documents) [online]. Available at http://
www.omg.org (2001).

OMG, Model Driven Architecture Initative; accessed 2004.

Perry, W. Quality Assurance for Information Systems. MA: QED Information Sciences, 1991.

Rosenberg, D., and Scott, K. Use Case Driven Object Modelling with the UML. Reading, MA:

Addison-Wesley, 1999.

Unhelkar, B. After the Y2K Fireworks. Boca Raton, FL: CRC Press, 1999.

Unhelkar, B. Process Quality Assurance for UML-Based Projects. Boston: Addison-Wesley,

2003.

Unhelkar, B., and Henderson-Sellers, B. “ODBMS Considerations in the Granularity of

Reuseable OO Design,” Proceedings of TOOLS15 Conference, C. Mingins and

B. Meyer, eds. Upper Saddle River, NJ: Prentice-Hall, 1995, pp. 229–234.

Unhelkar, B., and Henderson-Sellers, B. “Modelling Spaces and the UML,” Proceedings of

the IRMA (Information Resource Management Association) Conference, New Oreleans,

2004.

Warmer, J., and Kleppe, A. The Object Constraint Language. Precise Modeling with UML.

Reading, MA: Addison-Wesley, 1998.

26 THE QUALITY STRATEGY FOR UML

