
Session Checklist
✔ Understanding what programming is
✔ Using the Visual Basic language
✔ Programming for the contemporary developer
✔ Examining database programming
✔ Using the Check Writer example database
✔ Reviewing the basic Access program structure: modules, functions,

and subprocedures

M icrosoft Access is an outstanding environment for both database users and profes-
sional developers. In this session, you learn the difference between programming
with the Visual Basic language and using Microsoft Access tables, queries, forms,

and reports. You also learn how professional developers use Microsoft Access to create appli-
cations, and you are introduced to the Check Writer application example used throughout
this book.

In order to get the most from this book, you should be familiar with most of the Microsoft
Access objects — including tables, queries, forms, and reports. You should also know the
basic concepts of building tables and creating relationships. If you have never created a
Microsoft Access form, this book is probably not for you. All the examples start from forms
that have been created and explain how to add functions and procedures using Visual Basic,
the internal language of Access.

If you have created simple or complex macros, you already understand the basics of
events and programming. This book does not teach macros because professional developers
use macros only on rare occasions. For example, macros are used for creating certain types
of menus or for avoiding .mda library-referencing problems, which cause compile errors when

S E S S I O N

Introduction to Microsoft Access
and Programming

1

539752 ch01.qxd 9/9/03 11:38 PM Page 5

Friday Evening6

the libraries are not connected. This book does explain how to convert your macros to mod-
ules and thoroughly covers event-driven programming, which is used in Microsoft Access
applications.

What Is Programming?
Programming is the name given to the process of creating instructions to accomplish a task.
This is just one of the many phases of development. Microsoft Access contains a set of tools,
one of which is called a language. Just as you build words, sentences, and thoughts when
you speak or write using human language, you use the programming language to create the
program. The language consists of a series of commands that tells the computer how to
accomplish the task at hand. Computer programming languages have rules and grammar just
like spoken languages.

Computer grammar is called syntax.

Programming can be defined in many ways, but usually words such as logic, structure,
commands, sequence, and order are part of the definition. Professional programmers today
generally prefer to be called developers. A developer is a person who creates computer appli-
cations. Traditional programming is not a necessary element. Creating a form using Microsoft
Access can be considered development. When an error message or process is added to the
form with a macro or language element, that is also programming. Programming is only one
element of development. Analysis, design, testing, and debugging are other key elements of
application development.

Microsoft Access contains a variety of tools that enable you to build applications without
using the built-in language. These include queries, forms, and reports. Microsoft Access is
known as a database management package because it gives you the ability to create tables
that hold data. If you have created macros using Microsoft Access, you have already pro-
grammed, whether you know it or not.

Visual Basic is the language that is used internally with Microsoft Access. It is also called
VBA or Visual Basic for Applications, Visual Basic—Applications Edition, and the Visual Basic
language. It was called Access Basic in the first versions of Microsoft Access. Whatever you
call it, the Visual Basic language is an integral part of Microsoft Access. For the purposes of
this book, the Microsoft Access programming language is referred to simply as Visual Basic.

Why Use the Visual Basic Language?
Although Microsoft Access allows you to create process-oriented programs using macros, it is
the language that gives you unlimited flexibility. Many Microsoft Access programmers
started with macros and eventually realized their limitations. Eventually, you will find that
to meet all your needs in Access, you need to program using the Visual Basic language.

There are many things that macros cannot do. Macros cannot

� Create error trapping routines and run a process based on the error
� Use repetitive looping or incrementing of variables

Tip

539752 ch01.qxd 9/9/03 11:38 PM Page 6

Session 1 — Introduction to Microsoft Access and Programming 7

� Perform complex decision making
� Replace runtime parameters to change form display

Don’t confuse the Visual Basic language within Microsoft Access with the
product Microsoft sells called Visual Basic or Visual Basic .NET. Although
Visual Basic (the product) and Microsoft Access share the common Visual
Basic language, the products themselves are very different. All Microsoft
Office products contain roughly the same Visual Basic programming lan-
guage. These products include Access, Excel, Word, PowerPoint, Outlook,
and even MapPoint.

Programming for the Contemporary Developer
If you are fairly new to Microsoft Access and have been a programmer for several decades, you
may be wondering, “Why program at all?” You may have already discovered the incredible
power of tables, queries, forms, and reports. You may have created fairly complex forms includ-
ing combo boxes, option groups, ActiveX Objects, and the like, which provide more power than
many programs you used just 10 years ago. You also may be very comfortable using macros.

If you have already been programming in languages such as COBOL or dBASE, you may be
looking for the window that lets you type in commands so that you can start programming.
Although there is such a screen in Microsoft Access, you don’t use the Visual Basic Editor
window to write a program (as you might have back in the ’80s). In the early days of per-
sonal computers, you started with a blank screen and an editor similar to a simple word
processor. You wrote line after line of computer language code to do such mundane things as

Draw a rectangle @12,15 To 25,40
Display a text label @13,17 SAY “Customer Name:”
Allow the user to enter data @13,31 GET CUSTNAME

In those days, you had to worry about where the cursor was and where it was going.
Today’s visual tools, such as the Form Design window, make it easy to build forms without
ever entering a line of computer code. In fact, using Microsoft Access, you can build fairly
sophisticated applications without ever writing a single line of Visual Basic code. You could
easily spend a day creating the program for a simple form in dBASE II. In Microsoft Access,
you can create the same form with a wizard in a couple of minutes or from the Form Design
screen in half an hour.

Microsoft Access uses an event-driven visual programming environment. This means
that, generally, you create a form to display something and then, in the Design view of the
form, you use the events of the form — the form’s controls, mouse movements, or keyboard
keypresses — to add programmed instructions that go beyond just simple form display and
data editing. It is a visual environment because you see the user interface at all times.
Additionally, as you will learn in the next session, you can view the results of your work
nearly instantaneously with only a few mouse clicks. If you are used to the mainframe
world, you know the pain of compiling and linking.

Tip

539752 ch01.qxd 9/9/03 11:38 PM Page 7

Friday Evening8

An event is just that — an event. Examples include a form being opened, a user placing
the cursor in a field on a form, a data value being changed, your mouse moving to a specific
control, or more than 50 other distinct occurrences for which you can write Visual Basic
code. You can also write Visual Basic code for many other things that happen to forms and
reports: printing reports, trapping for potential errors, and even checking the passage of
time and performing some task after a certain number of seconds. Each of these events
serves as a trigger for code to be run (or executed, as it is also called in programming ver-
nacular). Figure 1-1 shows some of the events that are behind a form and a Visual Basic
window where a simple program has been created to check the value of text box entry and
to display an error message if it is null.

Figure 1-1 Sample events behind a form and the Visual Basic window
showing a simple program.

Database Programming Is Incredibly Flexible
A number of popular software products today include or are built primarily around program-
ming languages. Some of these are .NET, C++, Java, Visual FoxPro, Delphi, Visual Basic,
Microsoft Access, and Microsoft Excel. Many more products from small companies with

539752 ch01.qxd 9/9/03 11:38 PM Page 8

Session 1 — Introduction to Microsoft Access and Programming 9

smaller followings are also available, but Microsoft Access is one of the most flexible because
it is built around a database management system. Database management systems include
the capability to build tables and relationships and to store data.

Microsoft Access is a multidimensional product because it also includes an easy-to-use but
powerful set of form and report tools. Its Visual Basic language capability allows the automation
or addition of extensions to your simple forms and reports, making them incredibly powerful.

Microsoft Access comes with a back-end database management system, which means it
has two different data engines to manage data. The first engine is known as Jet. You may
not be aware of this engine because Jet is built into Microsoft Access. Each time you create
a new database, design a table, or write a query, you are using the Jet database engine. The
second engine is a smaller version of SQL Server 2000 called the Microsoft Database Engine.

The Microsoft Database Engine is also known as MSDE and has to be installed
separately. You can find it in a separate directory on your Office 2003 instal-
lation CD.

If you create professional Microsoft Access applications using the Jet engine, you should
always create two separate .mdb database files. One database file contains just your tables,
whereas the other contains links to those tables, along with your queries, forms, reports, and
module code. This technique is known as file/server computing because you have a program
file and a data file. You may have heard it referred to as client/server computing, but the Jet
database engine is not a true client/server database engine. Instead, it is a file/server data-
base engine.

Real client-server database engines such as SQL Server or Oracle actually do all their
processing on the database server hardware and minimize data sent across the network.
Although Microsoft Access uses Jet as a database manager, all processing is done on the
client workstation each time the entire data table is sent across the network. The optimum
solution for large database applications is to use Microsoft Access as the front-end and to
use SQL Server or Oracle as the back end.

Although SQL Server and Oracle are also very powerful database managers, they do not
include a set of integrated tools and have no specific programming language. In fact, SQL
Server uses Visual Basic to handle its own internal event model known as triggers and stored
procedures. Triggers are events that respond to a change in a data value. This change triggers
(or starts) a block of code known as a stored procedure (so named because it is also stored
in the data table).

Microsoft Access 2003 contains a client-server database model called projects and uses the
file extension .adp. This built-in client/server model uses the personal desktop version of SQL
Server known as the Microsoft Database Engine (MSDE). You can create applications that work
with MSDE instead of Jet and then use the more powerful SQL Server when you are ready.

Using the Check Writer Example Database
Included on the companion Web site for this book are sample files that we refer to in vari-
ous sessions throughout the book. Many more free software samples and demo versions of
business systems and third-party tools are available from leading Microsoft Access add-on
vendors.

The example used in this book is a fairly simple application that is representative of
the types of applications you can develop with Microsoft Access. The example is a working

Note

539752 ch01.qxd 9/9/03 11:38 PM Page 9

Friday Evening10

check writer, which is an electronic version of the checkbook you probably use all the time.
The example is written in Microsoft Access and programmed with the latest version of
Access 2003, Visual Basic, and the internal data access language ADO.

You will use these two files:

CheckWriter.mdb The program file, including Queries, Forms, Reports, and
Modules

CheckWriterData.mdb The data file, containing only the tables used in the example

If you have never worked with linked databases, this is a great time to start.

Professional Microsoft Access application developers always keep the pro-
gram and data in two separate database files. That way, if the programs or
design objects (forms, reports, and so on) require changes, the developer
can replace the customer’s program file without disturbing the data files.

The sessions in this book use various parts of the Check Writer example to show you how
to build any professional application. The application is constructed specifically to demon-
strate what you must know to be successful in application development, including Visual
Basic programming, data design, and forms and report creation.

Using the Check Writer main menu
When you first open the Check Writer application, you see the main menu shown in
Figure 1-2. The main menu consists of a few simple buttons and some graphics. When
you click a button, that function runs.

Figure 1-2 The Check Writer example main menu.

You can choose from the following functions on the main menu:

Check Writer/Register A tabbed dialog where you can add, edit, delete, or
display checks, deposits, adjustments, and a visual
check register.

Tip

539752 ch01.qxd 9/9/03 11:38 PM Page 10

Session 1 — Introduction to Microsoft Access and Programming 11

Bank Accounts A data entry form to enter bank account informa-
tion for your accounts.

Check Reconciliation A complete electronic check reconciliation screen to
help you balance your checkbook.

New Bank Account Wizard A wizard form to create a new bank account and set
up the starting balance.

Import A utility form to demonstrate data import and
integration.

Export A utility form to demonstrate exporting data.
Recurring Payments A form to demonstrate creating a payment that

occurs more than once, including saving or retriev-
ing the data.

Setup A simple form to enter your company name and
address.

Exit A function that closes the Check Writer application
and exits Microsoft Access.

Using the Check Writer tabbed data entry form
The main Check Writer/Register application consists of four tabs. Each tab contains a sepa-
rate subform that displays one or more records. The tabs filter the data to show only checks,
deposits, or adjustments in the first three tabs. The fourth tab shows a check register con-
taining all types of transactions. Figure 1-3 shows the first tab, displaying the check form
itself. The check form lets you enter the check number, enter the check date, select or enter
a new payee, and enter the amount of the check.

Figure 1-3 The Check Writer/Register example tabbed data entry form.

As you learn throughout this book, this form requires a great deal of programming.
A function behind the Amount field is used to automatically convert the amount to words.
A pair of spin buttons in the upper-right corner of the check let you automatically increase

539752 ch01.qxd 9/9/03 11:38 PM Page 11

Friday Evening12

or decrease the check number. When a new payee is added, a program makes sure that you
want to add the new value and adds a record to the separate payee database.

Several check boxes appear at the bottom of the form. One check box voids the check
and displays a large VOID stamp across it; the other check box prints the check. You can fill
in the stub below the check using a button to retrieve values from the check and format
them into a single string.

The area in the footer of the form also contains buttons that display great examples of a
search-and-print dialog as well as New and Delete buttons that use professional error-trapped
subprocedures for handling New and Delete tasks.

Understanding the Check Writer data model
The data model used in the Check Writer example is shown in Figure 1-4. Most of the trans-
action data is stored in the tbl_CheckWriter table. This table is used to store checks,
deposits, and adjustments.

Figure 1-4 The Check Writer example data model.

Whereas all the data fields necessary to enter check, deposit, and adjustment data are
contained in this table, some fields are also used for reconciliation (balancing your check-
book), printing, and voiding. The TransType field is used to identify the type of transaction
and to filter the records for each tab in the frm_CheckWriter form.

The tbl_BankAccounts table contains all necessary information for adding bank accounts
and relating this information to the tbl_CheckWriter table. The primary key field for the
tbl_BankAccounts table is BankAccountNumber, whereas the primary key in the
tbl_CheckWriter table is an AutoNumber field named TransID. The foreign key field to
the tbl_BankAccounts table is the AccountNumber field in the tbl_CheckWriter table. An
AutoNumber field is used because the other more distinctive keys don’t make sense in a
check writer. Although checks usually have sequential numbers, deposits and adjustments
do not. Therefore, there is no foreign key combination that works. BankAccountNumber,
Date, and TransType cannot work because you can have multiple checks, deposits, or adjust-
ments on the same day.

There are two additional tables used for lookups in the example. The tbl_TypeofAccount
table contains a list of transaction types including check, deposit, and adjustments such
as Error Correction, Interest, Wire Transfer, ATM, and so on. The tbl_Payees table contains

539752 ch01.qxd 9/9/03 11:38 PM Page 12

Session 1 — Introduction to Microsoft Access and Programming 13

a list of unique payees used by the checks. Each time you enter a new payee into the
frm_CheckWriter form payee line, you have the option to add any new payees into the table.

Using the Check Register
The Check Register is found in the last tab of the frm_CheckWriter form, as shown in
Figure 1-5. There is not a lot of code behind this form, but the subform is a great example
of a continuous form with a complex calculation to display the continuous balance.

Figure 1-5 The Check Register form.

The Check Register subform is made up of multiple lines. In later sessions of this book,
you learn how to use multiple-line subforms that include a surrounding OLE object and an
editable data source. You also learn how to change the record source of the subform pro-
grammatically (using code) when the form is initially opened and how to change a control’s
calculated control source programmatically.

Viewing the Print Checks dialog
The Print Checks dialog shown in Figure 1-6 is displayed when you click the Print button
at the bottom of the Check Writer form. This example is used in several sessions to illustrate
the interaction between Visual Basic and dialog boxes. Based on the choices the user selects
in the dialog box, various blocks of Visual Basic code are run to select different reports,
change query dynasets (the results of a query) that are passed to different reports, and
even determine fields that are printed or hidden on reports.

Managing the Check Reconciliation process
The frm_CheckReconciliation form is shown in Figure 1-7. This screen contains a set of tools
that allows the user to visually reconcile a checkbook. The user first enters the bank bal-
ance to view the difference between the checkbook balance and bank balance, and then the
user clicks the Cleared button and watches the difference shrink. Using the combo box on
the form, the user employs Visual Basic code to switch between bank accounts. The EDIT
button in the continuous subform also allows the user to display the selected transaction by

539752 ch01.qxd 9/9/03 11:38 PM Page 13

Friday Evening14

opening the Check Writer form, changing the tab, and finding the record programmatically.
This provides a good lesson for navigation within multiple forms.

Figure 1-6 The Print Checks dialog box.

Figure 1-7 The Check Reconciliation form.

A Typical Visual Basic Screen
In the next session, you learn how to create Visual Basic programs, and you should begin
to understand the process of working with Visual Basic. Figure 1-8 shows the Visual Basic
Editor window that, in Microsoft Access, is a separate program in a separate window.

Because the Visual Basic Editor is a separate program in Microsoft Access, you can see
both Microsoft Access and the Visual Basic Editor in your task bar at the bottom of your
Windows screen. Although this is a huge difference internally for Access, it simply means
that you can view both windows simultaneously and the editor does not use memory that
could otherwise be used by Access. With more memory available to Access, programmer pro-
ductivity may be increased and Windows itself is more stable, which causes less stress on
machines running Access programs.

539752 ch01.qxd 9/9/03 11:38 PM Page 14

Session 1 — Introduction to Microsoft Access and Programming 15

The more clean and free memory you give Microsoft Access, the faster your
programs will run and the more stable they will be. You should reboot your
machine at least once a day, and if you have been moving between design
screens and running your Access forms programs frequently, you should close
Access once in a while (every hour perhaps) and restart it. Each time you
move from a design screen to a datasheet or forms view, Access leaves
behind a little dirt known as a memory leak. Eventually, your system will
report “out of memory,” or Access will report errors where there are none.
Closing Access and restarting it or rebooting your system will clean up the
internal memory. These problems are well known to professional Access
developers.

Figure 1-8 The Visual Basic Editor window.

Modules, Subprocedures, and Functions
You should understand a few more terms before moving on to the next session. When pro-
grammers think of programming in Microsoft Access, they think of Visual Basic modules.
You already know that there is a Module tab in the database window. The Modules tab in
the database window displays the module libraries created by you. You can have up to 1024
module libraries in a database. Each module library can contain many procedures, just as a
bookcase can contain many books.

Tip

539752 ch01.qxd 9/9/03 11:38 PM Page 15

Friday Evening16

There are two types of procedures: functions and subprocedures. Functions and subproce-
dures are the building blocks of modules. Each module contains one or more function or sub-
procedure, and each function or subprocedure contains one or more Visual Basic statement.

You will often see the term procedure used interchangeably with the
Microsoft Access term subprocedure and sometimes with function.

Procedures hold the Visual Basic program statements that make up modules. Just as a
library has both hard-cover and soft-cover books, a module library has two different types
of procedures. Both work exactly the same: they allow passed parameters to affect the way
they process Visual Basic statements, they can contain error checking, and they can use
any Visual Basic statement. The only difference between a function and a subprocedure is
whether a value is returned when processing is completed. Functions return a value when
processing is complete; subprocedures do not.

The Modules tab is not the only place where Visual Basic modules are found. You can
place Visual Basic modules behind any form or report. They behave exactly like functions
or subprocedures in a module library; they are just stored in a different place.

Generally, if a function or subprocedure is used only by a form or report,
you store it behind the object. If it is to be used by more than one form
or report, you store it in a module.

REVIEW

In this session, you learned the definition of programming and how Microsoft Access objects
interact with the Visual Basic programming environment. You learned about database pro-
gramming and the types of procedures used in Microsoft Access modules. You also learned
about the Check Writer example used throughout this book. The following topics were
covered:

� Programming is the name given to the process of creating instructions to accomplish
a task.

� Visual Basic, or VBA, is the language used in Microsoft Access modules.
� Microsoft Access uses an event-driven, visual programming environment.
� Microsoft Access uses a file-server@ndbased database management system known

as Jet to manage data. You can also create applications that work with the Microsoft
Database Engine (MSDE) instead of with Jet, which then enables you to use the more
powerful SQL Server when you are ready.

� The example used in this book is a working check writer, which is an electronic ver-
sion of the checkbook you probably use all the time.

� Each module library can contain many procedures. Functions and subprocedures are
the building blocks of modules.

� Whereas module libraries contain only Visual Basic procedures, form and report
objects can also contain procedures embedded within the form or report object.

Tip

Tip

539752 ch01.qxd 9/9/03 11:38 PM Page 16

Session 1 — Introduction to Microsoft Access and Programming 17

QUIZ YOURSELF

1. Define the term programming. (See “What is Programming?”)
2. Name three reasons to use Visual Basic instead of macros. (See “Why Use the Visual

Basic Language?”)
3. What are the two internal database management systems that Microsoft Access

contains? (See “Database Programming Is Incredibly Flexible.”)
4. What is the difference between file/server and client/server database management

systems? (See “Database Programming Is Incredibly Flexible.”)
5. What are the main functions of the Check Writer example? (See “Using the Check

Writer Example Database.”)
6. Name the two types of procedures. (See “Modules, Subprocedures, and Functions.”)

539752 ch01.qxd 9/9/03 11:38 PM Page 17

539752 ch01.qxd 9/9/03 11:38 PM Page 18

