
Chapter 1: Single Keyword Matching

Introduction

Single keyword matching means locating all occurrences of a given pattern in the input text string. It
occurs naturally as part of data processing, text editing, text retrieval, and so on. Many text editors
and programming languages have facilities for matching strings. The simplest technique is called the
brute-force (BF), or naive, algorithm. This approach scans the text from left to right and checks the
characters of the pattern character by character against the substring of the text string beneath it. Let
m and n be the lengths of the pattern and the text, respectively. In the BF approach, the longest (worst-
case) time required for determining that the pattern does not occur in the text is O(mn).

Three major pattern matching algorithms for the improvement of efficiency over the BF technique
exist. One of them is the KMP algorithm, developed by Knuth, Morris, and Pratt. The KMP algorithm
scans the text from left to right, using knowledge of the previous characters compared to determine
the next position of the pattern to use. The algorithm first reads the pattern and in O(m) time
constructs a table, called the next function, that determines the number of characters to slide the
pattern to the right in case of a mismatch during the pattern matching process. The expected
theoretical behavior of the KMP algorithm is O(w+m), and the next function takes O(m) space.

The next algorithm, the BM algorithm, was proposed by Boyer and Moore. The BM approach is the
fastest pattern matching algorithm for a single keyword in both theory and practice. The BM
algorithm compares characters in the pattern from right to left. If a mismatch occurs, the algorithm
computes a shift, that is, the amount by which the pattern is moved to the right before a new
matching is attempted. It also preprocesses the pattern in order to produce the shift tables. The
expected theoretical behavior of the BM algorithm is equal to that of the KMP algorithm, but many
experimental results show that the BM algorithm is faster than the KMP algorithm.

The last approach is the KR algorithm, presented by Karp and Rabin. The KR algorithm uses extra
memory to advantage by treating each possible m-character section (where m is the pattern length) of
the text string as a keyword in a standard hash table, computing the hash function of it, and checking
whether it equals the hash function of the pattern. Although the KR algorithm is linear in the number
of references to the text string per characters passed, the substantially higher running time of this
algorithm makes it unfeasible for pattern matching in strings.

In the rest of the chapter, many improvements, including parallel approaches, and variants of the
basic single keyword matching algorithms introduced above are discussed along with the corre-
sponding references.

In order to introduce these typical single keyword matching techniques, I have selected the three
papers Knuth, Morris, and Pratt (1977), Boyer and Moore (1977), and Davies and Bowsher (1986). The
first two papers are the original papers of the KMP and BM algorithms, respectively. The third paper
includes comprehensive descriptions and useful empirical evaluation of the BF, KMP, BM, and KR
algorithms. Good surveys of single keyword matching are in [Baeza-Yates, 89a], [Baeza-Yates, 92], and
[Pirkldauer, 92].

Brute-force (BF) algorithm

This approach scans the text from left to right and checks the characters of the pattern character by
character against the substring of the text string beneath it. When a mismatch occurs, the pattern is
shifted to the right one character. Consider the following example.
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Pattern:
Text:

text
In this example the algorithm searches in the text...

In this example the algorithm searches in the text for the first character of the pattern (indicated by
underline). It continues for every character of the pattern, abandoning the search as soon as a
mismatch occurs; this happens if an initial substring of the pattern occurs in the text and is known as a
false start. It is not difficult to see that the worst-case execution time occurs if, for every possible
starting position of the pattern in the text, all but the last character of the pattern matches the
corresponding character in the text. For pattern am~lb and for text an with n»m, O(mn) comparisons
are needed to determine that the pattern does not occur in the text.

Knuth-Morris-Pratt (KMP) algorithm

The KMP algorithm scans the text from left to right, using knowledge of the previous characters
compared, to determine the next position of the pattern to use. The algorithm first reads the pattern
and in O(m) time constructs a table, called the next function, that determines how many characters to
slide the pattern to the right in case of a mismatch during the pattern matching process. Consider the
following example.

Position:

Pattern:
next:

1
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2

By using this next function, the text scanning is as follows:

Pattern:
Text:
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Let i and / be the current positions for the pattern and the text, respectively. In the position ;=4,
which is a b in the text, matching becomes unsuccessful in the same position, i'=4, which is an a in the
pattern. By adjusting *=next[4]=2 to/=4, the pattern is shifted 2 characters to the right as follows:

Pattern:
Text:

/
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After aa is matched, a mismatch is detected in the comparison of a in the pattern with b in the text.
Then, the pattern is shifted 3 characters to the right by adjusting /=next[5]=2 to ;=8, and then the
algorithm finds a successful match as follows:
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Pattern:
Text:

/
a
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b
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Summarizing, the expected theoretical behavior of the KMP algorithm is O(n+m), and takes O(m)
space for the next function. Note that the running time of the KMP algorithm is independent of the
size of the alphabet.

Variants that compute the next function are presented by [Bailey et al., 80], [Barth, 81], and
[Takaoka, 86]. Barth ([Barth, 84] and [Barth, 85]) has used Markov-chain theory to derive analytical
results on the expected number of character comparisons made by the BF and KMP algorithms on
random strings.

Boyer and Moore (BM) algorithm

The BM approach is the fastest pattern matching algorithm for a single keyword in both theory and
practice. In the KMP algorithm the pattern is scanned from left to right, but the BM algorithm
compares characters in the pattern from right to left. If mismatch occurs, then the algorithm computes
a shift; that is, it computes the amount by which the pattern is moved to the right before a new
matching attempt is undertaken. The shift can be computed using two heuristics. The match heuristic
is based on the idea that when the pattern is moved to the right, it has to match over all the characters
previously matched and bring a different character over the character of the text that caused the
mismatch. The occurrence heuristic uses the fact that we must bring over the character of the text that
caused the mismatch the first character of the pattern that matches it. Consider the following example
of [Boyer et al., 77],

Pattern: A T - THAT

Text: WHI CH- F I N A L L Y - H A L T S . - - A T - THAT - P O I NT

At the start, comparing the seventh character, F, of the text with the last character, T, fails. Since F is
known not to appear anywhere in the pattern, the text pointer can be automatically incremented by 7.

Pattern: A T - T H A I

Text: WHI CH- F I N A L L Y - H A L T S . - - A T - T H A T - P O I NT

The next comparison is of the hyphen in the text with the rightmost character in the pattern, T. They
mismatch, and the pattern includes a hyphen, so the pattern can be moved down 4 positions to align
the two hyphens.

Pattern: A T - THAT

Text: WHI C H - F I NAL L Y - HAL T S . - - AT - T HA T - P OI NT
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After T is matched, comparing A in the pattern with L in the text fails. The text pointer can be moved
to the right by 7 positions, since the character causing the mismatch, L, does not occur anywhere in the
pattern.

Pattern: A T - T H A T

Text: WHI C H - F I NAL L Y - HAL T S . - - A T - T HA T - P OI NT

After AT is matched, a mismatch is detected in the comparison of H in the pattern with the hyphen in
the text. The text pointer can be moved to the right by 7 places, so as to align the discovered substring
AT with the beginning of the pattern.

Pattern: A T - THAT

Text: WHI C H - F I N A L L Y - H A L T S . - - A T - THAT - P O I NT

Karp and Rabin (KR) algorithm

An algorithm developed in [Karp et al., 87] is an improvement of the brute-force approach to
pattern matching. This algorithm is a probabilistic algorithm that adapts hashing techniques to string
searching. It uses extra memory to advantage by treating each possible m-character section of the text
string (where m is the pattern length) as a key in a standard hash table, computing the hash function
of it, and checking whether it equals the hash function of the pattern. Similar approaches using
signature files will be discussed in chapter 5.

Here the hash function is defined as follows:

h(k) = k mod c\, where q is a large prime number.

A large value of q makes it unlikely that a collision will occur. We translate the m-character into
numbers by packing them together in a computer word, which we then treat as the integer k in the
function above. This corresponds to writing the characters as numbers in a radix d number system,
where d is the number of possible characters. The number k corresponding to the m-character section
text[z]...text[/+ra-l] is

k = text[/] x rfm~3 + text[/+l] x dm~2 + - + text[/+m-l]

Shifting one position to the right in the text string simply corresponds to replacing k by

(fc-text[z] x d™-1) xd+text[/+m]

Consider the example shown in Figure 1 of the KR algorithm based on [Cormen et al., 90]. Each
character is a decimal digit, and the hashed value in computed by modulo 11. In Figure la the same
text string with values computed modulo 11 for each possible position of a section of length 6.
Assuming the pattern k=l 63479, we look for sections whose value modulo 11 is 8, since h(/c)=l 63479
mod 11=8. Two such sections for 163479 and 123912 are found. The first, beginning at text position 8,
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is indeed an occurrence of the pattern, and the second, beginning at text position 14, is spurious. In
Figure lb we are computing the value for a section in constant time, given the value for the previous
section. The first section has value 163479. Dropping the high-order digit 1 gives us the new value
634791. All computations are performed modulo 11, so the value of the first section is 8 and the value
computed of the new section is 3.
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Figure 1. Illustrations of the KR algorithm

Evaluations of single keyword matching algorithms

Rivest ([Rivest, 77]) has shown that any algorithm for finding a keyword in a string must examine
at least n-m+1 of the characters in the string in the worst case, and Yao ([Yao, 79]) has shown that the
minimum average number of characters needed to be examined in looking for a pattern in a random
text string is O(n flog^ml/m) for n>2m, where A is the alphabet size. The upper bound and lower
bound time complexities of single pattern matching are discussed in [Galil et al., 91] and [Galil el al.,
92].

The minimum number of character comparisons needed to determine all occurrences of a keyword
is an interesting theoretical question. It has been considered by [Galil, 79] and [Guibas et al., 80], and
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they have discussed some improvements to the BM algorithm for its worst-case behavior. Apostolico
et al. ([Apostolico et al., 84] and [Apostolico et al., 86]) have presented a variant of the BM algorithm
in which the number of character comparisons is at most In, regardless of the number of occurrences
of the pattern in the string. Sunday ([Sunday, 90]) has devised string matching methods that are
generally faster than the BM algorithm. His faster method uses statistics of the language being
scanned to determine the order in which character pairs are to be compared. In the paper [Smith, 91]
the peformances of similar, language-independent algorithms are examined. Results comparable with
those of language-based algorithms can be achieved with an adaptive technique. In terms of character
comparisons, a faster algorithm than Sunday's is constructed by using the larger of two pattern shifts.
Evaluating the theoretical time complexity of the BF, KMP, and BM algorithms, based on empirical
data presented, Smit ([Smit, 82]) has shown that, in a general text editor operating on lines of text, the
best solution is to use the BM algorithm for patterns longer than three characters and the BF algorithm
in the other cases. The KMP algorithm may perform significantly better than the BF algorithm when
comparing strings from a small alphabet, for example, binary strings. Some experiments in a
distributed environment are presented in [Moller et al., 84]. Considering the length of patterns, the
number of alphabets, and the uniformity of texts, there is a trade-off between time (on the average)
and space in the original BM algorithm. Thus, the original algorithm has been analyzed extensively,
and several variants of it have been introduced. An average-case analysis of the KR method is
discussed in [Gonnet et al., 90]. Other theoretical and experimental considerations for single keyword
matching are in [Arikawa, 81], [Collussi et al., 90], [Li, 84], [Liu, 81], [Miller et al., 88], [Slisenko, 80],
[Waterman, 84], and [Zhu et al., 87]. Preprocessing and string matching techniques for a given text
and pattern are discussed in [Naor, 91].

For incorrect preprocessing of the pattern based on the KMP algorithm, a corrected version can be
found in [Rytter, 80]. For m being similar to n, Iyenger et al. ([Iyenger et al., 80]) have given a variant
of the BM algorithm. A combination of the KMP and BM algorithms is presented in [Semba, 85], and
the worst cost is proportional to 2n.

Horspool ([Horspool, 80]) has presented a simplification of the BM algorithm, and based on
empirical results has shown that this simpler version is as good as the original one. The simplified
version is obtained by using only the match heuristic. The main reason behind this simplification is
that, in practice, the occurrence table does not make much contribution to the overall speed. The only
purpose of this table is to optimize the handling of repetitive patterns (such as xabcyyabc) and so to
avoid the worst-case running time, O(mn). Since repetitive patterns are not common, it is not
worthwhile to expend the considerable effort needed to set up the table. With this, the space depends
only on the size of the alphabet (almost always fixed) and not on the length of the pattern (variable).

Baeza-Yates ([Baeza-Yates, 89b]) has improved the average time of the BM algorithm using extra
space. This improvement is accomplished by applying a transformation that practically increases the
size of the alphabet in use. The improvement is such that for long patterns an algorithm more than 50
percent faster than the original can be obtained. In this paper different heuristics are discussed that
improve the search time based on the probability distribution of the symbols in the alphabet used.
Schaback ([Schaback, 88]) has also analyzed the expected performance of some variants of the BM
algorithm.

Horspool's implementation performs extremely well when we search for a random pattern in a
random text. In practice, however, neither the pattern nor the text is random; there exist strong
dependencies between successive symbols. Raita ([Raita, 92]) has suggested that it is not profitable to
compare the pattern symbols strictly from right to left; if the last symbol of the pattern matches the
corresponding text symbol, we should next try to match the first pattern symbol, because the
dependencies are weakest between these two. His resulting code runs 25 percent faster than the best
currently known routine.

Davies et al. ([Davies et al., 86]) have described four algorithms (BF, KMP, BM, and KR) of varying
complexity used for pattern matching; and have investigated their behavior. Concluding from the
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empirical evidence, the KMP algorithm should be used with a binary alphabet or with small patterns
drawn from any other alphabet. The BM algorithm should be used in all other cases. Use of the BM
algorithm may not be advisable, however, if the frequency at which the pattern is expected to be
found is small, since the preprocessing time is in that case significant; similarly with the KMP
algorithm, so the BF algorithm is better in that situation. Although the KR algorithm is linear in the
number of references to the text string per characters passed, its substantially higher running time
makes it unfeasible for pattern matching in strings. The advantage of this algorithm over the other
three lies in its extension to two-dimensional pattern matching. It can be used for pattern recognition
and image processing and thus in the expanding field of computer graphics. The extension will be
discussed in Section 4.

Related problems

Cook ([Cook, 71]) has shown that a linear-time pattern matching algorithm exists for any set of
strings that can be recognized by a two-way deterministic push-down automaton (2DPDA), even
though the 2DPDA may spend more than linear time recognizing the set of strings. The string
matching capabilities of other classes of automata, especially fc-head finite automata, have been of
theoretical interest to [Apostolico et al., 85], [Chrobak et al., 87], [Galil et al., 83], and [Li et al, 86].

Schemes in [Bean et al., 85], [Crochemore et al., 91], [Duval, 83], [Guibas et al., 81a], [Guibas et al.,
81b], and [Lyndon et al., 62] have added new vigor to the study of periods and overlaps in strings and
to the study of the combinatorics of patterns in strings. [Crochemore et al., 91] presents a new
algorithm that can be viewed as an intermediate between the standard algorithms of the KMP and the
BM. The algorithm is linear in time and uses constant space like the algorithm of [Galil et al., 83]. The
algorithm relies on a previously known result in combinatorics on words, the critical factorization
theorem, which relates the global period of a word to its local repetitions of blocks. The following
results are presented in [Crochemore et al., 91].

1. It is linear in time O(w+m), as KMP and BM, with a maximum number of letter comparisons
bounded by 2n+5m compared to 2n+2m for KMP and 2n+f(m) for BM, where /depends on the version
of their algorithm.

2. The minimum number of letter comparisons used during the search phase (executing the
preprocessing of the pattern) is 2n/m compared to n for KMP and n/m for BM.

3. The memory space used, additional to the locations of the text and the pattern, is constant
instead of O(m) for both KMP and BM.

Parallel approaches of string matching are discussed in [Galil, 85], and an Odog log n) time parallel
algorithm improving Galil's method is presented in [Breslauer et al., 90]. The paper [Breslauer et al.,
92] describes the parallel complexity of the string matching problem using p processors for general
alphabets. The other parallel matching algorithms are discussed in [Barkman et al., 89], [Kedam et al.,
89], and [Viskin, 85].
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FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTHt, JAMES H. MORRIS, JR.* AND VAUGHAN R. PRATT^I

Abstract. An algorithm is presented which finds all occurrences of one given string within
another, in running time proportional to the sum of the lengths of the strings. The constant of
proportionality is low enough to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general pattern-matching problems. A theoretical application of the
algorithm shows that the set of concatenations of even palindromes, i.e., the language {aaR}*y can be
recognized in linear time. Other algorithms which run even faster on the average are also considered.

Key words, pattern, string, text-editing, pattern-matching, trie memory, searching, period of a
string, palindrome, optimum algorithm, Fibonacci string, regular expression

Text-editing programs are often required to search through a string of
characters looking for instances of a given "pattern" string; we wish to find all
positions, or perhaps only the leftmost position, in which the pattern occurs as a
contiguous substring of the text. For example, catenary contains the pattern
ten, but we do not regard canary as a substring.

The obvious way to search for a matching pattern is to try searching at every
starting position of the text, abandoning the search as soon as an incorrect
character is found. But this approach can be very inefficient, for example when we
are looking for an occurrence of aaaaaaab in aaaaaaaaaaaaaab.
When the pattern is a nb and the text is a 2nb, we will find ourselves making (n +1)2

comparisons of characters. Furthermore, the traditional approach involves
"backing up" the input text as we go through it, and this can add annoying
complications when we consider the buffering operations that are frequently
involved.

In this paper we describe a pattern-matching algorithm which finds all
occurrences of a pattern of length m within a text of length n in O(m +n) units of
time, without "backing up" the input text. The algorithm needs only O(m)
locations of internal memory if the text is read from an external file, and only
O(log m) units of time elapse between consecutive single-character inputs. All of
the constants of proportionality implied by these " O " formulas are independent
of the alphabet size.
Reprinted with permission from the SIAM Journal on Computing, Vol. 6, No. 2,
June 1977, pp. 323-350. Copyright 1977 by the Society for Industrial and Applied
Mathematics, Philadelphia, Pennsylvania. All rights reserved.
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We shall first consider the algorithm in a conceptually simple but somewhat
inefficient form. Sections 3 and 4 of this paper discuss some ways to improve the
efficiency and to adapt the algorithm to other problems. Section 5 develops the
underlying theory, and § 6 uses the algorithm to disprove the conjecture that a
certain context-free language cannot be recognized in linear time. Section 7
discusses the origin of the algorithm and its relation to other recent work. Finally,
§ 8 discusses still more recent work on pattern matching.

1. Informal development. The idea behind this approach to pattern match-
ing is perhaps easiest to grasp if we imagine placing the pattern over the text and
sliding it to the right in a certain way. Consider for example a search for the pattern
abcabcacab in the text babcbabcabcaabcabcabcacabc, initially
we place the pattern at the extreme left and prepare to scan the leftmost character
of the input text:

abcabcacab
babcbabcabcaabcabcabcacabc

t

The arrow here indicates the current text character; since it points to b, which
doesn't match that a, we shift the pattern one space right and move to the next
input character:

abcabcacab

babcbabcabcaabcabcabcacabc

t

Now we have a match, so the pattern stays put while the next several characters
are scanned. Soon we come to another mismatch:

abcabcacab

babcbabcabcaabcabcabcacabc

t

At this point we have matched the first three pattern characters but not the fourth*
so we know that the last four characters of the input have been abcx where x ¥=• a;
we don't have to remember the previously scanned characters, since our position in
the pattern yields enough information to recreate them. In this case, no matter what x.
is (as long as it's not a), we deduce that the pattern can immediately be shifted four
more places to the right; one, two, or three shifts couldn't possibly lead to a match.

Soon we get to another partial match, this time with a failure on the eighth
pattern character:

abcabcacab

babcbabcabcaabcabcabcacabc

t
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Now we know that the last eight characters were abcabcax, where x^c. The
pattern should therefore be shifted three places to the right:

abcabcacab
babcbabcabcaabcabcabcacabc

t

We try to match the new pattern character, but this fails too, so we shift the pattern
four (not three or five) more places. That produces a match, and we continue
scanning until reaching another mismatch on the eighth pattern character:

abcabcacab
babcbabcabcaabcabcabcacabc

t

Again we shift the pattern three places to the right; this time a match is produced,
and we eventually discover the full pattern:

abcabcacab
babcbabcabcaabcabcabcacabc

t
The play-by-play description for this example indicates that the pattern-

matching process will run efficiently if we have an auxiliary table that tells us
exactly how far to slide the pattern, when we detect a mismatch at its/th character
pattern[j\ Let next[j] be the character position in the pattern which should be
checked next after such a mismatch, so that we are sliding the pattern / - next[j ]
places relative to the text. The following table lists the appropriate values:

/ = 1 2 3 4 5 6 7 8 9 10

pattern[j] = a b c a b c a c a b

next[j] = 0 1 1 0 1 1 0 5 0 1

(Note that next[j] = 0 means that we are to slide the pattern all the way past the
current text character.) We shall discuss how to precompute this table later;
fortunately, the calculations are quite simple, and we will see that they require
only O(m) steps.

At each step of the scanning process, we move either the text pointer or the
pattern, and each of these can move at most n times; so at most 2n steps need to be
performed, after the next table has been set up. Of course the pattern itself doesn't
really move; we can do the necessary operations simply by maintaining the pointer
variable /.
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2. Programming the algorithm. The pattern-match process has the general
form

place pattern at left;
while pattern not fully matched

and text not exhausted do
begin

while pattern character differs from
current text character
do shift pattern appropriately;

advance to next character of text;
end;

For convenience, let us assume that the input text is present in an array text[\ : n],
and that the pattern appears in pattern[\:m\ We shall also assume that m >0 ,
i.e., that the pattern is nonempty. Let k and/ be integer variables such that text[k]
denotes the current text character and pattern[j] denotes the corresponding
pattern character; thus, the pattern is essentially aligned with positions p +1
through p + m of the text, where k -p+f. Then the above program takes the
following simple form:

/:=fc:=l;
while j^m and k S= n do

begin
while / > 0 and text[k] ^pattern[f]

d o / := next[j];
fc:=fc + l ; / : = / + l ;

end;

If / > m at the conclusion of the program, the leftmost match has been found in
positions k — m through k - 1 ; but if/ ^ m, the text has been exhausted. (The and
operation here is the "conditional and" which does not evaluate the relation
text[k] 7*pattern[/] unless/>0.) The program has a curious feature, namely that
the inner loop operation "/ := nexi[jYJ is performed no more often than the outer
loop operation "k := k +1"; in fact, the inner loop is usually performed somewhat
less often, since the pattern generally moves right less frequently than the text
pointer does.

To prove rigorously that the above program is correct, we may use the
following invariant relation: "Let p-k-j (i.e., the position in the text just
preceding the first character of the pattern, in our assumed alignment). Then we
have text[p + /] = pattern[i] for l5=/</ (i.e., we have matched the first / - I
characters of the pattern, if / > 0); but for O g K p w e have text[t + / ] ̂  pattern [/]
for some /, where I g / ^ m (i.e., there is no possible match of the entire pattern to
the left of p)."

The program will of course be correct only if we can compute the next table so
that the above relation remains invariant when we perform the operation
/ := next[/]. Let us look at that computation now. When the program sets
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/ :== next[j], we know that / > 0, and that the last / characters of the input up to and
including text[k] were

pattern[l]... pattern[j—l] x

where x 7*pattern[j\ What we want is to find the least amount of shift for which
these characters can possibly match the shifted pattern; in other words, we want
next[j] to be the largest / less than/ such that the last / characters of the input were

pattern[l]... pattern[i - 1 ] x

and pattern[i]^pattern[j]. (If no such / exists, we let rcexrjj] = 0.) With this
definition of next[j] it is easy to verify that text[t + l] . . . text[k]^
pattern[V\... pattern[k - 1 ] for k -7 ^ t < k -next[j]\ hence the stated relation is
indeed invariant, and our program is correct.

Now we must face up to the problem we have been postponing, the task of
calculating next[j] in the first place. This problem would be easier if we didn't
require pattern[i] T*pattern[j] in the definition of next[j\ so we shall consider the
easier problem first. Let / [ / ] be the largest / less than j such that pattern[l]...
pattern[i - 1 ] = pattern[j- / + 1 ] . . . pattern[j-1]; since this condition holds vac-
uously for / = 1, we always have/[y] ̂  1 when/ > 1. By convention we let / [I] = 0.
The pattern used in the example of § 1 has the following/ table:

; = 1 2 3 4 5 6 7 8 9 10

p a t t e r n [ j ] ~ a b c a b c a c a b

/ [ / ] = 0 1 1 1 2 3 4 5 1 2 .

If pattern[j] = pattern[/[/]] then / [ / + 1] = / [ / ] + 1 ; but if not, we can use
essentially the same pattern-matching algorithm as above to compute / [ / + 1],
with text = patternl (Note the similarity of the / [ / ] problem to the invariant
condition of the matching algorithm. Our program calculates the largest / less
than or equal to k such that pattern[l].. .pattern[j-i] = text[k—j + l]...
text[k - 1 ] , so we can transfer the previous technology to the present problem.)
The following program will compute /[y + 1], assuming that / [ / ] and Azex/fl],
. . . , next[j~l] have already been calculated:

while / > 0 and pattern [j] ^ pattern [t]
do t := next[t];

/ [ / + 1] = / + 1;

The correctness of this program is demonstrated as before; we can imagine two
copies of the pattern, one sliding to the right with respect to the other. For
example, suppose we have established that /[8] = 5 in the above case; let us
consider the computation of /[9]. The appropriate picture is

a b c a b c a c a b
abcabcacab
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Since pattern[8] ̂  b, we shift the upper copy right, knowing that the most recently
scanned characters of the lower copy were a b c a x for x ^ b. The next table tells
us to shift right four places, obtaining

abcabcacab
abcabcacab

t
and again there is no match. The next shift makes / = 0, so /[9] = 1.

Once we understand how to compute /, it is only a short step to the
computation of next[j]. A comparison of the definitions shows that, for / > 1,

r , [fill ifpattern[j]*pattern[f[j]];
next[]\~\

I next[f[j]], if pattern [/] = pattern [/[/]].

Therefore we can compute the next table as follows, without ever storing the
values of / [ / ] in memory.

/ := l;f := 0; m?Jtf[l] := 0;
while / < m do

begin comment / = / [ / ] ;
while t > 0 and pattern [/] ^ pattern [/]

do t := next[t];

if pattern [/] = pattern [t]
then next[j] := next[t]
else nejc/f/] := f;

end.

This program takes O(m) units of time, for the same reason as the matching
program takes O(n): the operation t := next[t] in the innermost loop always shifts
the upper copy of the pattern to the right, so it is performed a total of m times at
most. (A slightly different way to prove that the running time is bounded by a
constant times m is to observe that the variable / starts at 0 and it is increased,
m - 1 times, by 1; furthermore its value remains nonnegative. Therefore the
operation t := next\t\ which always decreases f, can be performed at most m - 1
times.)

To summarize what we have said so far: Strings of text can be scanned
efficiently by making use of two ideas. We can precompute "shifts", specifying
how to move the given pattern when a mismatch occurs at its/th character; and
this precomputation of "shifts" can be performed efficiently by using the same
principle, shifting the pattern against itself.

3. Gaining efficiency. We have presented the pattern-matching algorithm in
a form that is rather easily proved correct; but as so often happens, this form is not
very efficient. In fact, the algorithm as presented above would probably not be
competitive with the naive algorithm on realistic data, even though the naive
algorithm has a worst-case time of order m times n instead of m plus n, because
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the chance of this worst case is rather slim. On the other hand, a well-implemented
form of the new algorithm should go noticeably faster because there is no backing
up after a partial match.

It is not difficult to see the source of inefficiency in the new algorithm as
presented above: When the alphabet of characters is large, we will rarely have a
partial match, and the program will waste a lot of time discovering rather
awkwardly that text[k]^ pattern[\] for k = 1, 2, 3, When; = 1 and text[k]^
pattern[i]9 the algorithm sets / := next[l] = 09 then discovers that y = 0, then
increases k by 1, then sets/ to 1 again, then tests whether or not 1 is ^m, and later
it tests whether or not 1 is greater than 0. Clearly we would be much better off
making / = 1 into a special case.

The algorithm also spends unnecessary time testing whether / > m or k > n.
A fully-matched pattern can be accounted for by setting pattern[m +1] = "@"
for some impossible character @ that will never be matched, and by letting
next[m + 1] = —1; then a test for ; < 0 can be inserted into a less-frequently
executed part of the code. Similarly we can for example set text[n + 1] = " ± "
(another impossible character) and text[n +2] = pattern[l\ so that the test for
k >n needn't be made very often. (See [17] for a discussion of such more or less
mechanical transformations on programs.)

The following form of the algorithm incorporates these refinements.

a := pattern[l];
pattern[m +1] := '@' ; next[m +1] := - 1 ;
text[n +1] := ' 1 ' ; text[n+2] := a;
/:=fc:=l;

get started: comment j = 1;
while text[k] ^ a do k := k +1;
if k >n then go to input exhausted;

char matched: / := / + 1 ; k := k +1;
loop: comment / > 0 ;

if text[k] = pattern[j] then go to char matched;
/ := next[j];
if / = 1 then go to get started;
if y = 0 then

begin

go to get started;
end;

if / > 0 then go to loop;
comment text[k — m] through text\k — 1] matched;

This program will usually run faster than the naive algorithm; the worst case
occurs when trying to find the pattern a b in a long string of tf's. Similar ideas can
be used to speed up the program which prepares the next table.

In a text-editor the patterns are usually short, so that it is most efficient to
translate the pattern directly into machine-language code which implicitly con-
tains the next table (cf. [3, Hack 179] and [24]). For example, the pattern in § 1
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could be compiled into the machine-language equivalent of

LO: k:=k + l;
LI: if text[k ]^a then go to LO;

k:=k + l;
\ik>n then go to input exhausted;

L2: if text[k] * b then go to LI;
k:=k + l;

L3: if text[k] 5* c then go to LI;
k:=k + l;

L4: if text[k] ^ a then go to LO;
k:=k + l;

L5: if text[k] * b then go to LI;
k:=k + l;

L6: if text[k] * c then go to LI;
k:=k + l;

L7: if text[k] * a then go to LO;
fc:=fc + l;

L8: if text[k] 5* c then go to L5;
k'^k + V,

L9: if text[k] * a then go to LO;
k:=k + l;

L10: if text[k] * b then go to LI;
k:=k + l;

This will be slightly faster, since it essentially makes a special case for all values
of/.

It is a curious fact that people often think the new algorithm will be slower
than the naive one, even though it does less work. Since the new algorithm is
conceptually hard to understand at first, by comparison with other algorithms of
the same length, we feel somehow that a computer will have conceptual difficulties
too—we expect the machine to run more slowly when it gets to such subtle
instructions!

4. Extensions. So far our programs have only been concerned with finding
the leftmost match. However, it is easy to see how to modify the routine so that all
matches are found in turn: We can calculate the next table for the extended
pattern of length m + 1 using pfltfmt[m + l]=="@", and then we set
resume := next[m +1] before setting next[m +1] to — 1. After finding a match and
doing whatever action is desired to process that match, the sequence

/ := resume; go to loop;

will restart things properly. (We assume that text has not changed in the mean-
time. Note that resume cannot be zero.)

Another approach would be to leave next[m + 1] untouched, never changing
it to —1, and to define integer arrays head[l: m] and link[\ : n] initially zero, and
to insert the code

link[k] := head[j]; head[j] := k;
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at label "char matched". The test "if / > 0 then" is also removed from the
program. This forms linked lists for l < / ^ m of all places where the first /
characters of the pattern (but no more than /) are matched in the input.

Still another straightforward modification will find the longest initial match of
the pattern, i.e., the maximum/ such thatpattern[l] . . . pattern[j] occurs in text.

In practice, the text characters are often packed into words, with say b
characters per word, and the machine architecture often makes it inconvenient
to access individual characters. When efficiency for large n is important on such
machines, one alternative is to carry out b independent searches, one for each
possible alignment of the pattern's first character in the word. These searches can
treat entire words as "supercharacters", with appropriate masking, instead of
working with individual characters and unpacking them. Since the algorithm we
have described does not depend on the size of the alphabet, it is well suited to this
and similar alternatives.

Sometimes we want to match two or more patterns in sequence, finding an
occurrence of the first followed by the second, etc.; this is easily handled by
consecutive searches, and the total running time will be of order n plus the sum of
the individual pattern lengths.

We might also want to match two or more patterns in parallel, stopping as
soon as any one of them is fully matched. A search of this kind could be done with
multiple next and pattern tables, with one / pointer for each; but this would make
the running time kn plus the sum of the pattern lengths, when there are k patterns.
Hopcroft and Karp have observed (unpublished) that our pattern-matching
algorithm can be extended so that the running time for simultaneous searches is
proportional simply to n, plus the alphabet size times the sum of the pattern
lengths. The patterns are combined into a "trie" whose nodes represent all of the
initial substrings of one or more patterns, and whose branches specify the
appropriate successor node as a function of the next character in the input text.
For example, if there are four patterns {a b c a b> a b a b c, b c a c, b b c}, the trie is
shown in Fig. 1.

node

0
1
2
3
4
5
6
7
8
9

10

substring

a
a b
a b c
a b c a
aba
a b a b
b
b c
b c a
b b

xia

1
1
5
4
1
1
5
1
9
1
1

Mb

7
2

10
7

a b c a b
6

10
10
7
2

10

\ic

0
0
3
0

b c a c
0

a b a b c
8
0

b c a c
b b c

FIG. 1

Such a trie can be constructed efficiently by generalizing the idea we used to
caJculate next[/]; details and further refinements have been discussed by Aho and
Corasick [2], who discovered the algorithm independently. (Note that this
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algorithm depends on the alphabet size; such dependence is inherent, if we wish to
keep the coefficient of n independent of k, since for example the k patterns might
each consist of a single unique character.) It is interesting to compare this
approach to what happens when the LR(0) parsing algorithm is applied to the
r e g u l a r g r a m m a r 5 ' - > a S \ b S \ c S \ a b c a b \ a b a b c \ b c a c \ b b c .

5. Theoretical considerations. If the input file is being read in "real time",
we might object to long delays between consecutive inputs. In this section we shall
prove that the number of times / := next[/] is performed, before k is advanced, is
bounded by a function of the approximate form log^ m, where 4> = (1+V5)/2 «*
1.618 . . . is the golden ratio, and that this bound is best possible. We shall use
lower case Latin letters to represent characters, and lower case Greek letters
a, /?, . . . to represent strings, with e the empty string and \a\ the length of a. Thus
\a\ = 1 for all characters a; \a/5\ = \a\ + |/3|; and |^| = 0. We also write a[k] for the
kth character of a, when 1 g k ^ |a|.

As a warmup for our theoretical discussion, let us consider the Fibonacci
strings [14, exercise 1.2.8-36], which turn out to be especially pathological
patterns for the above algorithm. The definition of Fibonacci strings is

(1) <f>i = b9 <f>2 = a; 4>n=4>n-x<frn-.2 f o r n § 3 .

For example, <£3 = flft, <£4 = aba, <£5 = abaab. It follows that the length \<f>n| is
the nth Fibonacci number Fm and that <f>n consists of the first Fn characters of an
infinite string <j6co when n ^ 2 .

Consider the pattern <£8, which has the functions / [ / ] and next[j] shown in
Table 1.

TABLE 1

y = l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
patternlfl^a b a a b a b a a b a a b a b a a b a b a

/[/] = 0 1 1 2 2 3 4 3 4 5 6 7 5 6 7 8 9 10 11 12 8
next[j] = 0 1 0 2 1 0 4 0 2 1 0 7 1 0 4 0 2 1 0 12 0

If we extend this pattern to <£co, we obtain infinite sequences / [ / ] and next[j]
having the same general character. It is possible to prove by induction that

(2) /[/]==/--iV-i for Fk£j<Fk+u

because of the following remarkable near-commutative property of Fibonacci
strings:

(3) 0n_20n-i = c:(^rt-i0n^2), forn ^ 3 ,

where c(a) denotes changing the two rightmost characters of a. For example,
<t>6-abaab -aba and c(<f>6)-aba • abaab. Equation (3) is obvious when
n = 3 ; and for n>3 we have c(^n-20n-i):==0n--2c(0rt--i)==0n-2^n-3^-2==

<£«-i<£n-2 by induction; hence c(0n-20w-i) = c(c(<t>n-.l<f>n-J) = 4>n-i<l>n-*-
Equation (3) implies that

(4) n « f [ F * - l ] = F f c - i - l for A: S 3 .
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Therefore if we have a mismatch when / = F8 — 1 = 20, our algorithm might set
j := next[j] for the successive values 20, 12, 7, 4, 2, 1, 0 of/. Since Fk is (<f>k/>/5)
rounded to the nearest integer, it is possible to have up to ~ log ,̂ m consecutive
iterations of the / := next[j] loop.

We shall now show that Fibonacci strings actually are the worst case, i.e., that
log^ m is also an upper bound. First let us consider the concept of periodicity in
strings. We say that p is a period of a if

(5) a[i] = a[i+p] for 1 ^ / ̂  \a\-p.

It is easy to see that p is a period of a if and only if

(6) a^(a1a2)
ka1

for some k ^ 0 , where |aia2 | -p and a2 5* e. Equivalently, p is a period of a if and
only if

(7) a0x = 02<*

for some #i and 62 with |0j| = |02| =P- Condition (6) implies (7) with 0X = a2tf i and
62 = ofia2. Condition (7) implies (6), for we define k = [|a|/pj and observe that if
k>0, then a~02f3 implies /?0i = 02/3 and Ll0l/pJ = k-l\ hence, reasoning
inductively, a = 62ax for some ai with |ai| <p9 and a ^ ! = 62a{. Writing 62 = axa2

yields (6).
The relevance of periodicity to our algorithm is clear once we consider what it

means to shift a pattern. If pattern[l] . . . pattern[j~l]~a ends with
pattern[l] . . . pattern[i-1] = /?, we have

(8) a =00! = 020

where |0i| = \02\ =7 — *, so the amount of shift / — / is a period of a.
The construction of i = next[j] in our algorithm implies further that

pattern\i\ which is the first character of 6U is unequal to pattem[j\ Let us assume
that 0 itself is subsequently shifted leaving a residue 7, so that

(9) 0 = 7^1 = 027

where the first character of 0! differs from that of 9\. We shall now prove that

(10) M>|0|+M.
If |0| + |y |^ |a | , there is an overlap of </ = |0| + |y|-|or| characters between the
occurrences of (3 and y in 00X = a = 02i//2y; hence the first character of di is
y[d +1]. Similarly there is an overlap of d characters between the occurrences of
P and y in 02/3 = a = y«Ai0i»hence the first character of ̂ x is 0[d +1]. Since these
characters are distinct, we obtain y[d + l]^p[d + l]9 contradicting (9). This
establishes (10), and leads directly to the announced result:

THEOREM. The number of consecutive times that j :== next[j] is performed,
while one text character is being scanned, is at most 1 + log^ m.

Proof. Let Lr be the length of the shortest string a as in the above discussion
such that a sequence of r consecutive shifts is possible. Then Li = 0, L2 = 1, and we
have //?|gZ r-i, |y |^L r_2 in (10); hence L2^Fr+1-1 by induction on r. Now if r
shifts occur we have m^Fr+i^<f)r~1. •
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The algorithm of § 2 would run correctly in linear time even if/[/"] were used
instead of next[j], but the analogue of the above theorem would then be false. For
example, the pattern an leads to / [ / ]= / - 1 for 1 ̂ / ^ m. Therefore if we matched
am to the text am~1ba, using / [ / ] instead of next\j\ the mismatch text[m]^
pattern[m] would be followed by m occurrences of/ •=/[/] and m - 1 redundant
comparisons of text[m] with pattern[j], before k is advanced to m + 1 .

The subject of periods in strings has several interesting algebraic properties,
but a reader who is not mathematically inclined may skip to § 6 since the following
material is primarily an elaboration of some additional structure related to the
above theorem.

LEMMA 1. If p and q are periods of a, and p + q ^\a\ +gcd{p, q), then
gcd(p, q) is a period of a.

Proof. Let <i = gcd(p, q), and assume without loss of generality that
d <p <q-p + r. We have a[i] = a[i +p] for 1 ̂ / ̂  |a|—p and a[i] = a[i +q] for
l^i^\a\-q; hence af[/ + r] = a[/ + g] = <*[/] for l + r^/ + r^ |a | -p, i.e.,

a[i] = a[i + r] forl£i£\a\-q.

Furthermore a = (3di = 02/3 where |#i| = p, and it follows that p and r are periods
of /?, where p + r ^ | / 3 | + d==|/3| + gcd(p, r). By induction, d is a period of (3. Since
|/3| = | a | - p i g < 7 - d ^ g - r = = p = \0i\, the strings 0X and 92 (which have the respec-
tive forms /?2/3i and P\P2 by (6) and (7)) are substrings of (3; so they also have d as
a period. The string a ^ifiip-zf^fii must now have d as a period, since any
characters d positions apart are contained within /?i/?2 or (3\fi\. D

The result of Lemma 1 but with the stronger hypothesis p + q^\a\ was
proved by Lyndon and Schiitzenberger in connection with a problem about free
groups [19, Lern. 4]. The weaker hypothesis in Lemma 1 turns out to give the best
possible bound: If gcd(p,q)<p<q we can find a string of length
P +q -gcd(p, q)-1 for which gcd(p, q) is not a period. In order to see why this is
so, consider first the example in Fig. 2 showing the most general strings of lengths
15 through 25 having both 11 and 15 as periods. (The strings are "most general"
in the sense that any two character positions that can be different are different.)

abcdefghij k a b c d
abcdafghhj k a b c.d a
abcdabghij kabcdab
abcdabchij kabcdabc
abcdabcdi j kabcdabcd
abcdabcdaj kabcdabcda
abcdabcdabkabcdabcdab
abcdabcdabcabcdabcdabc
abcaabcaabcabcaabcaabca
aacaaacaaacaacaaacaaacaa
aaaaaaaaaaaaaaaaaaaaaaaaa

FIG. 2

Note that the number of degrees of freedom, i.e., the number of distinct symbols,
decreases by 1 at each step. It is not difficult to prove that the number cannot
decrease by more than 1 as we go from \a | = n — 1 to |a| = n9 since the only new
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relations are a[n] = a[n~-gj = a(7z— /?]; we decrease the number of distinct
symbols by one if and only if positions n ~q and n ~p contain distinct symbols in
the most general string of length n - 1 . The lemma tells us that we are left with at
most gcd(p, q) symbols when the length reaches p + q—gcd(p, q)\ on the other
hand we always have exactly p symbols when the length is q. Therefore each of the
p — gcd(p,q) steps must decrease the number of symbols by 1, and the most
general string of length p + q -gcd(/?, q)-\ must have exactly gcd(p, q) +1 dis-
tinct symbols. In other words, the lemma gives the best possible bound.

When p and q are relatively prime, the strings of length p+q-2 on two
symbols, having both p and q as periods, satisfy a number of remarkable
properties, generalizing what we have observed earlier about Fibonacci strings.
Since the properties of these pathological patterns may prove useful in other
investigations, we shall summarize them in the following lemma.

LEMMA 2. Let the strings cr(my n) of length n be defined for all relatively prime
pairs of integers n^m^O as follows:

<7(0,l) = a, <r(l,l) = £, <r(l,2) = ab;

cr(m, m+n)~cr{n mod m, m)or(m, n))
(11) } ifO<m<n.

cr(n, m+n)- cr{m, n)cr(n mod m, m) J

These strings satisfy the following properties:
(i) a(m, qm + r)cr(m -r, m)-or(ry m)or{m, qm + r), for m >2 ;

(ii) aim, n) has period m,form>\\
(iii) c(cr(m9n))-cr(n-m,n)9forn>2.

(The function c(a) was defined in connection with (3) above.)

Proof. We have, for 0 < m < n and q ^ 2,

cr(m + n, q(m + n) + m) = <r(m, m + n) or(m +n> (q — l)(m + n) + m),

cr(m+n, q(m+n) + n) = a{n,m +n) cr(m+n, (q - l)(m +n) + n),

cr(m+ny2m+n)-cr(m9 m+n) cr(n mod m, m),

cr(m+n, m+2n) = <r(n, m + n) <r(m, n)\

hence, if Qx = cr(n mod m, m) and d2 = o-(m, n) and q^l,

(12) cr(m +nyq(m+n) + m) = (0i02)
qOu (r{m +nyq(m+n) + n) = (020i)q02.

It follows that

cr(m+ny q{m+n) + rri)cr(ny m+n) — cr{my m +n) cr{m +n,q(m+n) + m),

cr{m+ny q{m+n) + n)cr{my m +n) = cr(n, m +n) cr(m+ny q(m+n) + n),

which combine to prove (i). Property (ii) also follows immediately from (12),
except for the case m = 2, n = 2q +1, cr(2, 2q +1) = (ab)qa, which may be verified
directly. Finally, it suffices to verify property (iii) for 0 < m < \ny since c(c(a)) = a;
we must show that

c(or(m, m + n))~cr{my n) <r(n mod m, m) for 0 < m <n.
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When m S= 2 this property is easily checked, and when m > 2 it is equivalent by
induction to

aim, m+n) = a(m, n)cr(m--(n mod m), m) forO<>m<n, m>2.

Set n mod m = r, \n/m\—q, and apply property (i). D
By properties (ii) and (iii) of this lemma, cr(p,p + q) minus its last two

characters is the string of length p + q-2 having periods p and q. Note that
Fibonacci strings are just a very special case, since <f)n = a(Fn^uFn). Another
property of the a strings appears in [15]. A completely different proof of Lemma 1
and its optimality, and a completely different definition of aim, n), were given by
Fine and Wilf in 1965 [7]. These strings have a long history going back at least to
the astronomer Johann Bernoulli in 1772; see [25, § 2.13] and [21].

If a is any string, let P(a) be its shortest period. Lemma 1 implies that all
periods q which are not multiples of P(a) must be greater than |a| — P(a) +
gcd(<y, P(a)). This is a rather strong condition in terms of the pattern matching
algorithm, because of the following result.

LEMMA 3. Let a -pattern[l]... pattern[j-l] and let a = pattern[j]. In the
pattern matching algorithm, /[/]=/—/*(<*), and next[j]=j-q, where q is the
smallest period of a which is not a period ofaa. (If no such period exists, next[j] = 0.)
IfP(a) divides P{aa) and P(aa)<]\ then P(a) = P(aa). IfP(a) does not divide
P(aa) or if P{aa) =/, then q=P(a).

Proof. The characterizations of / [ / ] and next[j] follow immediately from the
definitions. Since every period of aa is a period of a, the only nonobvious
statement is that P(a) = P(aa) whenever P(a) divides P(aa) and P(aa) 9^j. Let
P(a) = p and P(aa) = mp; then the (rap)th character from the right of a is a, as is
the (m — l)pth, . . . , as is the pth; hence p is a period of aa. D

Lemma 3 shows that the / := next[j] loop will almost always terminate
quickly. If P(a) = P(aa)y then q must not be a multiple of P{a)\ hence by Lemma
1, P(a)+q ^ ; + l. On the other hand q >P{a)\ hence q >\j and next[j]<\j. In
the other case q = P(a), we had better not have q too small, since q will be a period
in the residual pattern after shifting, and next[next[j]] will be <q. To keep the
loop running it is necessary for new small periods to keep popping up, relatively
prime to the previous periods.

6. Palindromes. One of the most outstanding unsolved questions in the
theory of computational complexity is the problem of how long it takes to
determine whether or not a given string of length n belongs to a given context-free
language. For many years the best upper bound for this problem was O(n3) in a
general context-free language as n -> oo; L. G. Valiant has recently lowered this to
O(nlo82?). On the other hand, the problem isn't known to require more than order
n units of time for any particular language. This big gap between O(n) and
O(n2S1) deserves to be closed, and hardly anyone believes that the final answer
will be O(n).

Let 2 be a finite alphabet, let 2* denote the strings over 2, and let
P = {aaR\a€Z*}.

Here aR denotes the reversal of a, i.e., (aia2 . . . an)
R —an . . . a2a\. Each string

IT in P is a palindrome of even length, and conversely every even palindrome over
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2 is in P. At one time it was popularly believed that the language P* of "even
palindromes starred", namely the set of palstars vi . . . rrn where each TT,- is in P,
would be impossible to recognize in O(n) steps on a random-access computer.

It isn't especially easy to spot members of this language. For example,
a abb abb a is a palstar, but its decomposition into even palindromes might not
be immediately apparent; and the reader might need several minutes to decide
whether or not

baabbabbaababbaabbabbabaa

bbabbabbabbaabababbabbaab

is in JP*. We shall prove, however, that palstars can be recognized in O(n) units of
time, by using their algebraic properties.

Let us say that a nonempty palstar is prime if it cannot be written as the
product of two nonempty palstars. A prime palstar must be an even palindrome
aaR but the converse does not hold. By repeated decomposition, it is easy to see
that every palstar (3 is expressible as a product fii . . . /?, of prime palstars, for
some t =g 0; what is less obvious is that such a decomposition into prime factors is
unique. This "fundamental theorem of palstars" is an immediate consequence of
the following basic property.

LEMMA 1. A prime palstar cannot begin with another prime palstar.
Proof. Let aaR be a prime palstar such that aaR = ($(3Ry for some nonempty

even palindrome (3(3R and some y^e; furthermore, let (3(3R have minimum
length among all such counterexamples. If 1)8)8̂ 1 > |a | then aaR =(3(3Ry-a8y
for some 8 * e; hence aR = Sy, and /3/3R = (P(3R)R = (aS)R = SRaR = 8R8y, con-
tradicting the minimality of \fi(3R\. Therefore |/8j3*|^|a|; hence a=(3(3R8 for
some <5, and ppRy = aaR =ppR88Rp/3R. But this implies that y is the palstar
88R(3f3R

9 contradicting the primality of aaR. D
COROLLARY (Left cancellation property.) If ap and a are palstars, so is p.
Proof. Let a = a x . . . ar and a/3 = fii . . . (3S be prime factorizations of a and

a(3. If ai . . . ar = /3i . . . j3r, then (3 ~(3r+i • • • Ps is a palstar. Otherwise let /
be minimal with a^fy; then af begins with /8y or vice versa, contradicting
Lemma 1. D

LEMMA 2. If a is a string of length n, we can determine the length of the longest
even palindrome /3 EPsuch that a = /3y, in O(n) steps.

Proof. Apply the pattern-matching algorithm with pattern = a and text = a R.
When k = n +1 the algorithm will stop with / maximal such that
pattern\X\ ... pattern [ / -1] = text[n + 2 - / ] . . . text[n]. Now perform the follow-
ing iteration:

while/ S 3 and/ even do/ := /(/) .
By the theory developed in § 3, this iteration terminates with/ ^ 3 if and only

if a begins with a nonempty even palindrome, and / — I will be the length of the
largest such palindrome. (Note that/[y] must be used here instead of next[j]; e.g.
consider the case a-a a b a a b. But the pattern matching process takes O{n)
time even when /[ / ] is used.) D

THEOREM. Let L be any language such that L* has the left cancellation
property and such that, given any string a of length n, we can find a nonempty fieL
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such that a begins with (3 or we can prove that no such (i exists, in O(n) steps. Then
we can determine in O(n) time whether or not a given string is in L*.

Proof. Let a be any string, and suppose that the time required to test for
nonempty prefixes in L is ^Kn for all large n. We begin by testing a's initial
subsequences of lengths 1, 2,4, . . . , 2fc, . . . , and finally a itself, until finding a
prefix in L or until establishing that a has no such prefix. In the latter case, a is not
in L*, and we have consumed at most (K+K1) + (2K+Ki) + (4K+K1) + - • • +
(Jar\K+Ki) < 2Kn +KX log2 n units of time for some constant Kx. But if we find a
nonempty prefix (3 eL where a =/3y, we have used at most 4\(3\K + K(log2 \(3\)
units of time so far. By the left cancellation property, a e L* if and only if y e L*,
and since \y\ = n -1 /?(we can prove by induction that at most (4K+Kt)n units of
time are needed to decide membership in L*, when n > 0. D

COROLLARY. P* can be recognized in O(n) time.
Note that the related language

Pt = {7re2*\ir = irR*nd\ir\*2}*

cannot be handled by the above techniques, since it contains both aaabbb and
aaabbbba; the fundamental theorem of palstars fails with a vengeance. It is
an open problem whether or not P* can be recognized in O(n) time, although we
suspect that it can be done.1 Once the reader has disposed of this problem, he or
she is urged to tackle another language which has recently been introduced by S.
A. Greibach [11], since the latter language is known to be as hard as possible; no
context-free language can be harder to recognize except by a constant factor.

7. Historical remarks. The pattern-matching algorithm of this paper was
discovered in a rather interesting way. One of the authors (J. H. Morris) was
implementing a text-editor for the CDC 6400 computer during the summer of
1969, and since the necessary buffering was rather complicated he sought a
method that would avoid backing up the text file. Using concepts of finite
automata theory as a model, he devised an algorithm equivalent to the method
presented above, although his original form of presentation made it unclear that
the running time was O(m+n). Indeed, it turned out that Morris's routine was too
complicated for other implementors of the system to understand, and he dis-
covered several months later thatjgratuitous "fixes" had turned his routine into a
shambles.

In a totally independent development, another author (D. E. Knuth) learned
early in 1970 of S. A. Cook's surprising theorem about two-way deterministic
pushdown automata [5]. According to Cook's theorem, any language recog-
nizable by a two-way deterministic pushdown automaton, in any amount of time,
can be recognized on a random access machine in O{n) units of time. Since D,
Chester had recently shown that the set of strings beginning with an even
palindrome could be recognized by such an automaton, and since Knuth couldn't
imagine how to recognize such a language in less than about n2 steps on a
conventional computer, Knuth laboriously went through all the steps of Cook's
construction as applied to Chester's automaton. His plan was to "distill off" what

1 (Note added April, 1976.) Zvi Galil and Joel Seiferas have recently resolved this conjecture
affirmatively.
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was happening, in order to discover why the algorithm worked so efficiently. After
pondering the mass of details for several hours, he finally succeeded in abstracting
the mechanism which seemed to be underlying the construction, in the special case
of palindromes, and he generalized it slightly to a program capable of finding the
longest prefix of one given string that occurs in another.

This was the first time in Knuth's experience that automata theory had taught
him how to solve a real programming problem better than he could solve it before.
He showed his results to the third author (V. R. Pratt), and Pratt modified Knuth's
data structure so that the running time was independent of the alphabet size.
When Pratt described the resulting algorithm to Morris, the latter recognized it as
his own, and was pleasantly surprised to learn of the O(m +n) time bound, which
he and Pratt described in a memorandum [22]. Knuth was chagrined to learn that
Morris had already discovered the algorithm, without knowing Cook's theorem;
but the theory of finite-state machines had been of use to Morris too, in his initial
conceptualization of the algorithm, so it was still legitimate to conclude that
automata theory had actually been helpful in this practical problem.

The idea of scanning a string without backing up while looking for a pattern,
in the case of a two-letter alphabet, is implicit in the early work of Gilbert [10]
dealing with comma-free codes. It also is essentially a special case of Knuth's
LR(0) parsing algorithm [16] when applied to the grammar

S -» aS, for each a in the alphabet,

where a is the pattern. Diethelm and Roizen [6] independently discovered the
idea in 1971. Gilbert and Knuth did not discuss the preprocessing to build the next
table, since they were mainly concerned with other problems, and the pre-
processing algorithm given by Diethelm and Roizen was of order m2. In the case
of a binary (two-letter) alphabet, Diethelm and Roizen observed that the
algorithm of § 3 can be improved further: we can go immediately to "char
matched" after/ := next[j] in this case if next[j]>0.

A conjecture by R. L. Rivest led Pratt to discover the log^ m upper bound on
pattern movements between successive input characters, and Knuth showed that
this was best possible by observing that Fibonacci strings have the curious
properties proved in § 5. Zvi Galil has observed that a real-time algorithm can be
obtained by letting the text pointer move ahead in an appropriate manner while
the / pointer is moving down [9].

In his lectures at Berkeley, S. A. Cook had proved that P* was recognizable
in O(n log n) steps on a random-access machine, and Pratt improved this to O(n)
using a preliminary form of the ideas in § 6. The slightly more refined theory in the
present version of § 6 is joint work of Knuth and Pratt. Manacher [20] found
another way to recognize palindromes in linear time, and Galil [9] showed how to
improve this to real time. See also Slisenko [23].

It seemed at first that there might be a way to find the longest common
substring of two given strings, in time O(m + n); but the algorithm of this paper
does not readily support any such extension, and Knuth conjectured in 1970 that
such efficiency would be impossible to achieve. An algorithm due to Karp, Miller,
and Rosenberg [13] solved the problem in O((m +n) log (m+n)) steps, and this

24



tended to support the conjecture (at least in the mind of its originator). However,
Peter Weiner has recently developed a technique for solving the longest common
substring problem in O(m + n) units of time with a fixed alphabet, using tree
structures in a remarkable new way [26]. Furthermore, Weiner's algorithm has
the following interesting consequence, pointed out by E. McCreight: a text file can
be processed (in linear time) so that it is possible to determine exactly how much of
a pattern is necessary to identify a position in the text uniquely; as the pattern is
being typed in, the system can be interrupt as soon as it "knows" what the rest of
the pattern must be! Unfortunately the time and space requirements for Weiner's
algorithm grow with increasing alphabet size.

If we consider the problem of scanning finite-state languages in general, it is
known [1 § 9.2] that the language defined by any regular expression of length
m is recognizable in O(mn) units of time. When the regular expression has the
form

**(<*!.!+ • • • + aU(1))2*(a2 t l + - • - + a2M2))I* . . . 2*(a,.i + - • •+*„(,))**

the algorithm we have discussed shows that only O(m+n) units of time are
needed (considering 2* as a character of length 1 in the expression). Recent work
by M. J. Fischer and M. S. Paterson [8] shows that regular expressions of the form

1*a1la2'2< ... 2av£*,

i.e., patterns with "don't care" symbols, can be identified in
O(n log m log log m log q) units of time, where q is the alphabet size and m =
|af1a2 . . . ocr\ + r. The constant of proportionality in their algorithm is extremely
large, but the existence of their construction indicates that efficient new
algorithms for general pattern matching problems probably remain to be dis-
covered.

A completely different approach to pattern matching, based on hashing, has
been proposed by Malcolm C. Harrison [12]. In certain applications, especially
with very large text files and short patterns, Harrison's method may be sig-
nificantly faster than the character-comparing method of the present paper, on the
average, although the redundancy of English makes the performance of his
method unclear.

8. Postscript: Faster pattern matching in strings.2 In the spring of 1974,
Robert S. Boyer and J. Strother Moore and (independently) R. W. Gosper noticed
that there is an even faster way to match pattern strings, by skipping more rapidly
over portions of the text that cannot possibly lead to a match. Their idea was to
look first at text\m\ instead of text\\\ If we find that the character text[m] does
not appear in the pattern at all, we can immediately shift the pattern right m
places. Thus, when the alphabet size q is large, we need to inspect only about n/m
characters of the text, on the average! Furthermore if text[m] does occur in the
pattern, we can shift the pattern by the minimum amount consistent with a match.

2 This postscript was added by D. E. Knuth in March, 1976, because of developments which
occurred after preprints of this paper were distributed.
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Several interesting variations on this strategy are possible. For example, if
text[m] does occur in the pattern, we might continue the search by looking at
text[m - 1 ] , text[m - 2], etc.; in a random file we will usually find a small value of r
such that the substring text[m — r\ . . . text[m] does not appear in the pattern, so
we can shift the pattern m — r places. If r = [2 log^ m J, there are more than m2

possible values of text[m — r] . . . text\rn\ but only m—r substrings of length r + 1
in the pattern, hence the probability is O(l/m) that text[m — r] . . . text[m] occurs
in the pattern; If it doesn't, we can shift the pattern right m-~r places; but if it does,
we can determine all matches in positions <m—r in O(m) steps, shifting the
pattern m—r places by the method of this paper. Hence the expected number of
characters examined among the first m-[2 log^ m J is 0(log<, m); this proves the
existence of a linear worst-case algorithm which inspects O(n (log^ m)/m) charac-
ters in a random text. This upper bound on the average running time applies to all
patterns, and there are some patterns (e.g., am or {a b)m/2) for which the expected
number of characters examined by the algorithm is O(n/m).

Boyer and Moore have refined the skipping-by-m idea in another way. Their
original algorithm may be expressed as follows using our conventions:

k := m;
while fcg/i do

begin
/ := m;
while / >0 and text[k] = pattern[j] do

begin
/W-l;fc:=fc-l;

end;
if/ = 0then

begin
match found at (k);
k:=k + m + l

end else
k := k +max {d[text[k]\ dd[j])\

end;

This program calls match found at (k) for all O^k^n-m such that
pattern[l]... pattern[m] = text[k +1] . . . text[k+m]. There are two precom-
puted tables, namely

d[a] = min {s \s = m or (0 g s < m andpattern[m —s] = a)}

for each of the q possible characters a, and

dd[j] = min {s + m —/1 s ̂  1 and
((s g 1 or pattern [i — s] = pattern [/]) for / < / g m)},

for l g / S m ,
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The d table can clearly be set up in O(q + m) steps, and the dd table can be
precompiled in O{m) steps using a technique analogous to the method in § 2
above, as we shall see. The Boyer-Moore paper [4] contains further exposition of
the algorithm, including suggestions for highly efficient implementation, and gives
both theoretical and empirical analyses. In the remainder of this section we shall
show how the above methods can be used to resolve some of the problems left
open in [4].

First let us improve the original Boyer-Moore algorithm slightly by replacing
dd[j] by

dd\f\ = min {s + m -j\s ^ 1 and (s § / or pattern[j-s]i*pattern[j])
and ((s ̂  / or pattern[i -s ] = pattern[i]) for / < / ̂  m)}.

(This is analogous to using next[j] instead of / [ / ] ; Boyer and Moore [4] credit the
improvement in this case to Ben Kuipers, but they do not discuss how to
determine ddf efficiently.) The following program shows how the dd' table can be
precomputed in O(m) steps; for purposes of comparison, the program also shows
how to compute dd, which actually turns out to require slightly more operations
than dd1:

for k := 1 step 1 until m do dd[k] := ddf[k] :== 2 x m - k;
/ := m; / := m +1;
while/>0 do

begin

while t^-m andpattern[j'] ¥=• pattern[t] do
begin

dd'[t]:= min {dd'[tlm-j)\

end;
f : = / - I ; / : = / - 1 ;
dd[t] := min {dd[t\ m - / ) ;

end;
for k := 1 step 1 until t do

begin
dd[k]:=min(dd[klm+t-k);
ddf[k] := min(dd'[k\ m+t-k);

end;

In practice one would, of course, compute only dd\ suppressing all references to
dd. The example in Table 2 illustrates most of the subtleties of this algorithm.

TABLE 2

patternlj]-
/ [ / ] -

dd[f] =
dd'\n =

1
b
10
19
19

2
a
11
18
18

3
d
6
17
17

4

7
16
16

5
a
8
15
15

6
c
9
8
8

7

10
7
13

8
a
11
6
12

9
c
11
5
8

10
b
11
4
12

11
a
12
1
1

27



To prove correctness, one may show first that /[/] is analogous to the /[/] in
but with right and left of the pattern reversed; namely/[m] = m +1, and for/ •

§2,
[for/<m

we have

/[/] = min{/|/</^m and
pattern[i + l] . . . pattern\rn\~pattern^] +1]... pattern[m + j — /]}.

Furthermore the final value of t corresponds to /[0] in this definition; m - /is the
maximum overlap of the pattern on itself. The correctness of dd[j] and dd'[j] for
all / now follows without much difficulty, by showing that the minimum value of s
in the definition of dd[j0] or dd'[j0] is discovered by the algorithm when
(f,/) = (/o,/o-.y).

The Boyer-Moore algorithm and its variants can have curiously anomalous
behavior in unusual circumstances. For example, the method discovers more
quickly that the pattern aaaaaaacb does not appear in the text {ab)n if it
suppresses the d heuristic entirely, i.e., if d[t] is set to —oo for all t. Likewise, dd
actually turns out to be better than dd1 when matching a15bcbabab in
(baabab)n, for large n.

Boyer and Moore showed that their algorithm has quadratic behavior in the
worst case; the running time can be essentially proportional to pattern length
times text length, for example when the pattern ca(ba)m occurs together with the
text (x2m aa(b a)m)n. They observed that this particular example was handled in
linear time when Kuiper's improvement (dd' for dd) was made; but they left open
the question of the true worst case behavior of the improved algorithm.

There are trivial cases in which the Boyer-Moore algorithm has quadratic
behavior, when matching all occurrences of the pattern, for example when
matching the pattern am in the text an. But we are probably willing to accept such
behavior when there are so many matches; the crucial issue is how long the
algorithm takes in the worst case to scan over a text that does not contain the
pattern at all. By extending the techniques of § 5, it is possible to show that the
modified Boyer-Moore algorithm is linear in such a situation:

THEOREM. If the above algorithm is used with dd' replacing dd, and if the text
does not contain any occurrences of the pattern, the total number of characters
matched is at most 6n.

Proof An execution of the algorithm consists of a series of stages, in which mk

characters are matched and then the pattern is shifted sk places, for k = 1, 2, . . . .
We want to show that £ mk S= 6n; the proof is based on breaking this cost into
three parts, two of which are trivially O(n) and the third of which is less obviously
so.

Let m'k = mk-2sk if mk > 2sk; otherwise let m k = 0. When m k > 0, we will say
that the leftmost mk text characters matched during the kth stage have been
"tapped". It suffices to prove that the algorithm taps characters at most An times,
since Em*SsXmfc + 2£.sk and Y,sk^n. Unfortunately it is possible for some
characters of the text to be tapped roughly log m times, so we need to argue
carefully that £ mj^4Az.

Suppose the rightmost mk of the mk text characters tapped during the kth
stage are matched again during some later stage, but the leftmost m'k — mk are
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being matched for the last time. Clearly £ (m k - mk) ^ n, so it remains to show that
Zm£^3n.

Let pk be the amount by which the pattern would shift after the &th stage if the
d[a ] heuristic were not present (d[a] = -oo); then pk g s ,̂ and p* is a period of the
string matched at stage k.

Consider a value of k such that mk > 0, and suppose that the text characters
matched during the kth stage form the string a = axa2 where |a| = rafc and
\<xi\ = mk+2sk; hence the text characters in ax are matched for the last time. Since
the pattern does not occur in the text, it must end with xa and the text scanned so
far must end with za9 where x ^ z. At this point the algorithm will shift the pattern
right sk positions and will enter stage k + 1. We distinguish two cases: (i) The
pattern length m exceeds mk +pk. Then the pattern can be written 9(3a, where
|/31 = pk; the last character of /? is x and the last character of 9 is y 5* JC, by definition
of dd'. Otherwise (ii) m^mk+pk\ the pattern then has the form (3a, where
\(3\^pk ^sk. By definition of mk and the assumption that the pattern does not
occur in the text, we have \(3a\>sk + \a2\, i.e., \(3\>sk — lail- In both cases (i) and
(ii), pk is a period of /3a.

Now consider the first subsequent stage k' during which the leftmost of the mk

text characters tapped during stage k is matched again; we shall write k-*k' when
the stages are in this relation. Suppose the mismatch occurs this time when text
character z' fails to match pattern character x1. If z' occurs in the text within au

regarding a as fixed in its stage k position, then x1 cannot be within (3a where Pa
now occurs in the stage k' position of the pattern, since pk is a period of (3a and the
character pk positions to the right of x' is a z' (it matches a z' in the text). Thus x'
now appears within 9. On the other hand, if zf occurs to the left of a, we must have
|#i| = 0, since the characters of ax are never matched again. In either event, case
(ii) above proves to be impossible. Hence case (i) always occurs when mk>0, and
x' always appears within 0.

To complete the argument, we shall show that Y,k->k' m*> f° r a ^ fixe^ '̂» *s a t

most 3sfc'. Let p' = pk> and let a1 denote the pattern matched at stage k*. Let
fcx<- • -<kr be the values of k such that k-*k\ If \a'\+p'^m, let (3'a' be the
rightmost /?' + |a'| characters of the pattern. Otherwise let a" be the leftmost
\a'\ +pf — m characters of a'\ and let /3 V be a" followed by the pattern. Note that
in both cases a' is an initial substring of (3'a' and |/?'| = / / . In both cases, the actions
of the algorithm during stages k\ +1 through k' are completely known if we are
given the pattern and /?', and if we know zf and the place within /3' where stage
fcx + 1 starts matching. This follows from the fact that /3' by itself determines
the text, so that if we match the pattern against the string z^ ' /S ' /? ' . . . (starting at
the specified place for stage kx +1) until the algorithm first tries to match z' we will
know the length of a'. (If \a'\ <p' then /3' begins with a' and this statement holds
trivially; otherwise, a1 begins with /3; and has period p'; hence (3'(3'(3f... begins
with a'.) Note that the algorithm cannot begin two different stages at exactly the
same position within /?', for then it would loop indefinitely, contradicting the fact
that it does terminate. This property will be out key tool for proving the desired
result.

Let the text strings matched during stages ku . . . , kr be au . - . , <*n and let
their periods determined as in case (i) be pu . . . ,pr respectively; we have p,<2k/l
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for l^j^r. Suppose that during stage kj the mismatch of xf ^Zj implies that the
pattern ends with yfi/ah where |/371 = p7. We shall prove that \ax\ + • • • + \ar| g 3pf.
First let us prove that |a ;| <p' for all /: We have observed that x' always occurs
within 6j\ hence yfifiCj occurs as a rightmost substring of x'a. If \aj\^p' then
Pi+p'^k \(3fitj\\ hence the character pj positions to the right of y7 in x'a' is JC7, as is
the character/?7 +pf positions to the right of y7. But the character p' positions to the
right of y7 in x'a' is a y7, since p' is a period of x'a'; hence the character p'+Pj
positions to the right of y7 is also y7, contradicting Xj ¥=• y7.

Since \a}\ <p\ each string a7 for / ^ 2 appears somewhere within /?', when (3'
is regarded as a cyclic string, joined end-for-end. (It follows from the definition of
k->k' that Z/tfy is a substring of a1 for ;§2.) We shall prove that the rightmost
halves of these strings, namely the rightmost [Ik/ll characters as they appear in
/?', are disjoint. This implies that 2^2!+ ' * ' +2kr|=Jp', and the proof will be
complete (since |<2i|^i/?').

Suppose therefore that the right half of the appearance of at overlaps the
right half of the appearance of a] within £', for some / 7*7 ^ 2, where the rightmost
character of a{ is within 07. This means that the algorithm at stage kt begins to
match characters starting within a7 at least pf characters to the right of z7 where
zptj appears in /?', when the text a1 is treated modulo p\ (Recall that Pj<\\aj\)
The pattern ends with xfith and pf is a period of xptj. The algorithm must work
correctly when the text equals the pattern, so there must come a stage, before
shifting the pattern to the right of the appearance of ah where the algorithm scans
left until hitting z7. At this point, call it stage k", there must be a mismatch of
Zj T* xh since p7 or more characters have been matched. (The character p,- positions
to the right of z7 is xh by periodicity.) Hence k"<k'; and it follows that k" = k{. (If
k">ki we have zfiti entirely contained within a'\ but then kj-^k' implies that
k" = k'.) Now k" = ki implies that z7 = z, and Xj = xt. We shall obtain a contradic-
tion by showing that the algorithm "synchronizes" its stage k( +1 behavior with its
stage kj +1 behavior, modulo p', causing an infinite loop as remarked above. The
main point is that the dd' table will specify shifting the pattern/?, steps, so that y7- is
brought into the position corresponding to z7, in stage kx as well as in stage kj. (Any
lesser shift brings an Xj into position p7 spaces to the right of z7-; hence it puts yt = x7-
into the position corresponding to z7, by periodicity, contradicting xt ^ y,-.) The
amount of shift depends on the maximum of the d and dd1 entries, and the d entry
will be chosen (in either kt or kj) if and only if Zj is not a character of /?7; but in this
case, the d entry will also specify the same shift both for stage kt and stage kj. D

The constant 6 in the above theorem is probably much too large, and the
above proof seems to be much too long; the reader is invited to improve the
theorem in either or both respects. An interesting example of the rather complex
behavior possible with this algorithm occurs when the pattern is bi//r and the text is
</v<3«Ar for large r, where

COROLLARY. The worst case running time of the Boyer-Moore algorithm with
dd' replacing dd is O(n+rm) character comparisons, if the pattern occurs r times in
the text.

Proof Let T(n, r) be the worst case running time as a function of n and r,
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when m is fixed. The theorem implies that jT(n, 0) ^ In, counting the mismatched
characters as well as the matched ones. Furthermore, if r>0 and if the first
appearance of the pattern ends at position n0 we have T(n,r)^7(no--l) + m
+ T(n ~no + m-~ 1, /•-1). It follows that T(n, r)^7n+8rm - 14r. D

When the Boyer-Moore algorithm implicitly shifts the pattern to the right, it
forgets all it "knows" about characters already matched; this is why the linearity
theorem is not trivial. A more complex algorithm can be envisaged, with a finite
number of states corresponding to which text characters are known to match the
pattern in its current position; when in state q we fetch the character x := text[k -
t[q]]7 then we set k := k +s[q, x] and go to state q\q, x\ For example, consider
the pattern abacbaba, and the specification of U s, and q1 in Table 3; exactly 41
distinguishable states can arise. An asterisk (*) in that table shows where the
pattern has been fully matched.

The number of states in this generalization of the Boyer-Moore algorithm
can be rather large, as the example shows, but the patterns which occur most often
in practice probably do not imply many states. The number of states is always less
than 2m, and perhaps a much smaller upper bound is possible; it is unclear which
patterns of a given length lead to the most states, and it does not seem obvious that
this maximum number of states is exponential in m.

If the characters of the pattern are distinct, say axa2 . . . am, this generaliz-
ation of the Boyer-Moore algorithm leads to exactly \{m2 + m) states. (Namely,
all states of the form • . . . • ak • . . . • aj+i . . . am for 0^k<j^m, with ak

suppressed if k = 0.) By merging several of these states we obtain the following
simple algorithm, which uses a table c[x] where

On-/ , if*=07 ;
c[x]-<

l - l , itxf£{au • •• ,am}.
The algorithm works only when all pattern characters are distinct, but it improves
slightly on the Boyer-Moore technique in this important special case.

/:=fc:=m;
while k Si n do

begin i := c[text\k]\\
if i < 0 t h e n / : = m
else if / = 0 then
begin for / := 1 step 1 until m - 1 do

if text[k - / ] T*pattern[m - / ] then go to nomatch;
match found at (k-~m);

nomatch: / := m;
end else if / +/ > m then / := / else / := m;
k^k+j;

end;
Let us close this section by making a preliminary investigation into the

question of "fastest" pattern matching in strings, i.e., optimum algorithms. What
algorithm minimizes the number of text characters examined, over all conceivable
algorithms for the problem we have been considering? In order to make this
question nontrivial, we shall ask for the minimum average number of characters
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examined when finding all occurrences of the pattern in the text, where the
average is taken uniformly with respect to strings of length n over a given
alphabet. (The minimum worst case number of characters examined is of no
interest, since it is between n—m and n for all patterns3; therefore we ask for the
minimum average number. It might be argued that the minimum average number,
taken over random strings, is of little interest, since people rarely search in
random strings; they usually search for patterns that actually appear. However,
the random-string model is a reasonable approximation when we consider those
stretches of text that do not contain the pattern, and the algorithm obviously must
examine every character in those places where the pattern does occur.)

The case of patterns of length 2 can be solved exactly; it is somewhat
surprising to find that the analysis is not completely trivial even in this case.
Consider first the pattern a b where a^b. Let q be the alphabet size, q ̂ 2 . Let
f(n) denote the minimum average number of characters examined by an
algorithm which finds all occurrences of the pattern in a random text of length n;
and let g(n) denote the minimum average number of characters examined in a
random text of length n +1 which is known to begin with <z, not counting the
examination of the known first character. These functions can be computed by the
following recurrence relations:

/(0)=/(l) = g(0) = 0, g( l )=l .

/(n) = l+ min (-(f(k~l) + g(n-k))+-(g(k-l)+f(n-k))
i^k^n\q q

+ ( l—)(/(*-1)+/( / !"*))) ,

g(/i) = l+^g( / i - l ) + ( l ~ ) / ( n - l ) , n§2 .

The recurrence for / follows by considering which character is examined first; the
recurrence for g follows from the fact that the second character must be examined
in any case, so it can be examined first without loss of efficiency. It can be shown
that the minimum is always assumed for k = 2; hence we obtain the closed form
solution

ntf + q-l) (q-l)(q2 + 2q-l) (1-q)"
f{n) q(2q-l) q(2q-l)2 qn~\q - \){2q -1)2'

n(q2 + q-l) (q-l)(q2-3q + l) (1-•<?)"
g{n)~ q(2q-l) + q{2q-\f qn-2(2q-l)2' n = L

(To prove that these functions satisfy the stated recurrences reduces to showing
that the minimum of

n-qy-i ] n-qy-K

for 1 g k g n occurs for k = 2, whenever n g 2 and q ^ 2.)
3 This is clear when we must find all occurrences of the pattern; R. L. Rivest has recently proved it

also for algorithms which stop after finding one occurrence. {Information Processing Letters\ to appear.)
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TABLE 3

state q

0
1
2
3
4
5

6
7
8
9

10
11
12
13
14
1 C

16

17
1 C
xo
1 QJL37

20
21
22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

known characters

• • • • ft a ft

• • • c b a b
• • a c b a b
• b a c b a b

• • • c b a •

• • • c b a •
a b a • • • •
tk A A A A A A
• • • • £ / • •
A A A .#*• A A l»
• • • C • • 0

a ft fl • • • ft

• • • • £ > • •

• ft • • ft • •

• • • c • a ft

• ft • • • • ft

a • • • • a ft

a ft a • • a ft

a • • c ft a •

• # • • ft • ft

• ft • • ft • •

• ft • • • a ft

a • • • ft a ft

a ft a • ft a ft

fl • • C ft tf •
• ft • • ft • ft

• ft • • ft a ft

fl • • c ft a ft
• ft • c ft a ft

a * a c b a b

a

a
a
a
a

a

a
•

•

a

a
a
a

•

a

a

a

a

•

a

a

a

a

a

a

a

a

a

a

a

<W

0
1
2
3
4
5

6

7
0
0
0
0
0
1
0
1
1

1
1
o
\J
9

1

2
2
1

0

3

2

3

3

0

2

1

3

4

4

1

2

4

5

5
6

Jf = 0!

0,1
7,10
0,3
5,12
5,12
0,6

5,12
*5, 12
0,2
0, 13
0,15
0, 16
0,17
7,10
0,20
7 10/ , 1U

7,10
7,10
0,23
0 9S

7,10
0,27
0,28
7,10
0,31
5,12
0,32
5,12
5,12
0,35
0,4
7,10
5,12
5,12
5,12
7,10
0,37
5,12
0,40
0,7

5,12

x = b

1,8
0,2
7,10
0,4
5,12
5,12
0,7
5,12
8,0
6,14
1,8
6, 14
3,18
0,19
3,18
0,21
0,5
0,22
1 94
7 10
/ , ±U

0,26
7,10
7,10
0,30
3,24
0,5
7,10
0,33
0,34
6,14
7,10
0,36
0,37
5,12
5,12
0,38
7,10
5,12
5,12
5,12

•5, 12

X~C

4,9
7,10
2,11
5,12
0,5
5,12
5,12
5,12
8,0
4,9
4,9
8,0
4,9
7,10
4,9
7 10/ , 1U

7,10
7,10
c n
o, u

7 10
7,10
2,11
2,29
7,10
8,0

5,12
2,11
5,12
5,12
8,0

7,10
7,10
5,12
0,38

*5, 12
7, 10
7,10
0,39
5, 12
5,12
5,12

other x

8,0
7,10
7, 10
5,12
5,12
5,12
5,12
5,12
8,0
8,0
8,0
8,0
8,0
7,10
8,0
7 10
/ , J.U

7,10
7, 10
Q 0

7 10
/ , 1U

7, 10
7,10
7,10
7,10
8,0

5,12
7,10
5, 12
5,12
8,0

7,10
7, 10
5,12
5,12
5,12
7,10
7,10
5,12
5,12
5,12
5,12

If the pattern is a a, the recurrence for / changes to

/(/i)=l+ min (-(g(k-l) + g(n-k)) + (l--)(f(k-l)+f(n-k))\ n§2;

but this is actually no change!
Hence the following is an optimum algorithm for all patterns of length 2, in
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the sense of minimum average text characters inspected to find all matches in a
random string:

* := 2;
while k ^ n do

begin c := text[k]\
if c =pattern[2] and text[k - 1 ] = pattern[l]
then mafc/i /lowm/ af (k - 2 ) ;
while c = pattern[l] do

begin A; := A: + 1 ; c := totfffc];
if c ~pattern[2] then match found at {k - 2 ) ;

end;
&:=fc+2;

end;

For patterns of length 3 the recurrence relations become more complex; they
depend on more than simply the length of the strings and knowledge about
characters at the boundaries. The determination of an optimum strategy in this
case remains an open problem. The algorithm sketched at the beginning of this
section shows that an average of O(n(\ogm)/m) bit inspections suffices over a
binary alphabet. Clearly [n/m J is a lower bound, since the algorithm must inspect
at least one bit in any block of n consecutive bits. The pattern am can be handled
with O(n/m) bit inspections on the average; but it seems reasonable to conjecture
that patterns of length m exist for arbitrarily large m, such that an average of at
least en (log m)/m bits must be inspected for all large n. Here c denotes a positive
constant, independent of m and n.

Acknowledgment. Robert S. Boyer and J. Strother Moore suggested many
important improvements to early drafts of this postscript, especially in connection
with errors in the author's first attempts at proving the linearity theorem.
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1. Introduction
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An algorithm is presented that searches for the
location, "/," of the first occurrence of a character
string, "pat," in another string, "string," During the
search operation, the characters of pat are matched
starting with the last character of pat. The information
gained by starting the match at the end of the pattern
often allows the algorithm to proceed in large jumps
through the text being searched. Thus the algorithm
has the unusual property that, in most cases, not all of
the first i characters of string are inspected. The
number of characters actually inspected (on the aver-
age) decreases as a function of the length of pat. For a
random English pattern of length 5, the algorithm will
typically inspect i/4 characters of string before finding
a match at i . Furthermore, the algorithm has been
implemented so that (on the average) fewer than i +
patlen machine instructions are executed. These con-
clusions are supported with empirical evidence and a
theoretical analysis of the average behavior of the
algorithm. The worst case behavior of the algorithm is
linear in * + patlen, assuming the availability of array
space for tables linear in patlen plus the size of the
alphabet.
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Suppose that pat is a string of length patlen and we
wish to find the position i of the leftmost character in
the first occurrence of pat in some string string:
pat: A T - T H A T
s t r i n g : . . . W H I C H - F I N A L L Y - H A L T S . - - A T - T H A T - P O I N T . . .
i: t

The obvious search algorithm considers each character
position of string and determines whether the succes-
sive patlen characters of string starting at that position
match the successive patlen characters of pat, Knuth,
Morris, and Pratt [4] have observed that this algorithm
is quadratic. That is, in the worst case, the number of
comparisons is on the order of / * patlen.1

Knuth, Morris, and Pratt have described a linear
search algorithm which preprocesses pat in time linear
in patlen and then searches string in time linear in / +
patlen. In particular, their algorithm inspects each of
the first i + patlen - 1 characters of string precisely
once.

We now present a search algorithm which is usually
"sublinear": It may not inspect each of the first i +
patlen - 1 characters of string. By "usually sublinear"
we mean that the expected value of the number of
inspected characters in string is c * (/ + patlen), where
c < 1 and gets smaller as patlen increases. There are
patterns and strings for which worse behavior is ex-
hibited. However, Knuth, in [5], has shown that the
algorithm is linear even in the worst case.

The actual number of characters inspected depends
on statistical properties of the characters in pat and
string. However, since the number of characters in-
spected on the average decreases as patlen increases,
our algorithm actually speeds up on longer patterns.

Furthermore, the algorithm is sublinear in another
sense: It has been implemented so that on the average
it requires the execution of fewer than i + patlen
machine instructions per search.

The organization of this paper is as follows: In the
next two sections we give an informal description of
the algorithm and show an example of how it works.
We then define the algorithm precisely and discuss its
efficient implementation. After this discussion we pres-
ent the results of a thorough test of a particular
machine code implementation of our algorithm. We
compare these results to similar results for the Knuth,
Morris, and Pratt algorithm and the simple search
algorithm. Following this empirical evidence is a theo-
retical analysis which accurately predicts the perform-
ance measured. Next we describe some situations in
which it may not be advantageous to use our algorithm.
We conclude with a discussion of the history of our
algorithm.

1 The quadratic nature of this algorithm appears when initial
substrings of pat occur often in string. Because this is a relatively
rare phenomenon in string searches over English text, this simple
algorithm is practically linear in i + patlen and therefore acceptable
for most applications.

36



2. Informal Description

The basic idea behind the algorithm is that more
information is gained by matching the pattern from
the right than from the left. Imagine that pat is placed
on top of the left-hand end of string so that the first
characters of the two strings are aligned. Consider
what we learn if we fetch the patlenth character, char,
of string. This is the character which is aligned with
the last character of pat.

Observation 1. If char is known not to occur in pat,
then we know we need not consider the possibility of
an occurrence of pat starting at string positions 1,2,
. . . or patlen: Such an occurrence would require that
char be a character of pat.

Observation 2. More generally, if the last (right-
most) occurrence of char in pat is deltax characters
from the right end of pat, then we know we can slide
pat down deltax positions without checking for matches.
The reason is that if we were to move pat by less than
deltax, the occurrence of char in string would be aligned
with some character it could not possibly match: Such
a match would require an occurrence of char in pat to
the right of the rightmost.

Therefore unless char matches the last character of
pat we can move past delta x characters of string with-
out looking at the characters skipped; delta x is a
function of the character char obtained from string. If
char does not occur in pat, deltax is patlen. If char does
occur in pat, deltax is the difference between patlen
and the position of the rightmost occurrence of char in
pat.

Now suppose that char matches the last character
of pat. Then we must determine whether the previous
character in string matches the second from the last
character in pat. If so, we continue backing up until
we have matched all of pat (and thus have succeeded
in finding a match), or else we come to a mismatch at
some new char after matching the last m characters of
pat.

In this latter case, we wish to shift pat down to
consider the next plausible juxtaposition. Of course,
we would like to shift it as far down as possible.

Observation 3(a). We can use the same reasoning
described above —based on the mismatched character
char and deltax — to slide pat down k so as to align the
two known occurrences of char. Then we will want to
inspect the character of string aligned with the last
character of pat. Thus we will actually shift our atten-
tion down string by k + m. The distance k we should
slide pat depends on where char occurs in pat. If the
rightmost occurrence of char in pat is to the right of
the mismatched character (i.e. within that part of pat
we have already passed) we would have to move pat
backwards to align the two known occurrences of char.
We would not want to do this. In this case we say that
delta, is "worthless*' and slide pat forward by k = 1
(which is always sound). This shifts our attention down
stringby 1 + m. If the rightmost occurrence of char in

pat is to the left of the mismatch, we can slide forward
by k = deltax(char) — m to align the two occurrences
of char. This shifts our attention down string by
delta x(char) — m + m = delta x{char).

However, it is possible that we can do better than
this.

Observation 3(b). We know that the next m char-
acters of string match the final m characters of pat. Let
this substring of pat be subpat. We also know that this
occurrence of subpat in string is preceded by a character
(char) which is different from the character preceding
the terminal occurrence of subpat in pat. Roughly
speaking, we can generalize the kind of reasoning used
above and slide pat down by some amount so that the
discovered occurrence of subpat in string is aligned
with the rightmost occurrence of subpat in pat which is
not preceded by the character preceding its terminal
occurrence in pat. We call such a reoccurrence of
subpat in pat a "plausible reoccurrence." The reason
we said "roughly speaking" above is that we must
allow for the rightmost plausible reoccurrence of subpat
to "fall off" the left end of pat. This is made precise
later.

Therefore, according to Observation 3(b), if we
have matched the last m characters of pat before
finding a mismatch, we can move pat down by k
characters, where k is based on the position in pat of
the rightmost plausible reoccurrence of the terminal
substring of pat having m characters. After sliding
down by k, we want to inspect the character of string
aligned with the last character of pat. Thus we actually
shift our attention down string by k + m characters.
We call this distance delta2, and we define delta2 as a
function of the position j in pat at which the mismatch
occurred, k is just the distance between the terminal
occurrence of subpat and its rightmost plausible reoc-
currence and is always greater than or equal to 1. m is
just patlen - /.

In the case where we have matched the final m
characters of pat before failing, we clearly wish to shift
our attention down string by 1 + m or deltax(char) or
delta2(j)9 according to whichever allows the largest
shift. From the definition of delta2 as/: -f m wherek is
always greater than or equal to 1, it is clear that delta2

is at least as large as 1 4- m. Therefore we can shift
our attention down string by the maximum of just the
two deltas. This rule also applies when m = 0 (i.e.
when we have not yet matched any characters of pat),
because in that case; = patlen and delta2{j) s: 1.

3. Example

In the following example we use an " f " under
string to indicate the current char. When this "pointer"
is pushed to the right, imagine that it drags the right
end of pat with it (i.e. imagine pat has a hook on its
right end). When the pointer is moved to the left,
keeppaf fixed with respect to string.
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pat: AT-THAT
string: ... WHICH-FINALLY-HALTS.--AT-THAT-POINT ...

Since "F" is known not to occur in pat, we can appeal
to Observation 1 and move the pointer (and thus pat)
down by 7:

pat: A T - T H A T
string: ... W H I C H - F I N A L L Y - H A L T S . - - A T - T H A T - P O I N T ...

t

Appealing to Observation 2, we can move the pointer
down 4 to align the two hyphens:

pat: A T - T H A T
string: ... W H I C H - F I N A L L Y - H A L T S . — A T - T H A T - P O I N T ...

I

Now char matches its opposite in pat. Therefore we
step left by one:

pat: A T - T H A T
string: ... W H I C H - F I N A L L Y - H A L T S . - - A T T H A T P O I N T ...

Appealing to Observation 3(a), we can move the
pointer to the right by 7 positions because "L" does
not occur in pat.2 Note that this only moves pat to the
right by 6.

pat:
string:

A T - T H A T
... W H I C H - F I N A L L Y - H A L T S . - - A T - T H A T - P O I N T ...

Again char matches the last character of pat. Stepping
to the left we see that the previous character in string
also matches its opposite in pat. Stepping to the left a
second time produces:

pat: A T - T H A T
string: ... W H I C H - F I N A L L Y - H A L T S . - - A T - T H A T - P O I N T ...

t

Noting that we have a mismatch, we appeal to Obser-
vation 3(b). The delta2 move is best since it allows us
to push the pointer to the right by 7 so as to align the
discovered substring "AT" with the beginning of pat.3

pat:
string:

A T - T H A T
... W H I C H - F I N A L L Y - H A L T S . - - A T - T H A T - P O I N T ...

This time we discover that each character of pat
matches the corresponding character in string so we
have found the pattern. Note that we made only 14
references to string. Seven of these were required to
confirm the final match. The other seven allowed us to
move past the first 22 characters of string.

2 Note that delta?, would allow us to move the pointer to the
right only 4 positions in order to align the discovered substring "T"
in string with its second from last occurrence at the beginning of the
word "THAT" in pat.

3 The deltai move only allows the pointer to be pushed to the
right by 4 to align the hyphens.

4. The Algorithm

We now specify the algorithm. The notation pat(j)
refers to the ;th character in pat (counting from 1 on
the left).

We assume the existence of two tables, deltax and
delta2. The first has as many entries as there are
characters in the alphabet. The entry for some charac-
ter char will be denoted by delta x(char). The second
table has as many entries as there are character posi-
tions in the pattern. The/th entry will be denoted by
delta2(j). Both tables contain non-negative integers.

The tables are initialized by preprocessing/?^, and
their entries correspond to the values delta x and delta2

referred to earlier. We will specify their precise con-
tents after it is clear how they are to be used.

Our search algorithm may be specified as follows:
stringlen «- length of string,
i *—patlen.

top: if i > stringlen then return false.
/ «— patlen.

loop: if/ ~ 0 then return/ + 1.
ifstringii) = pat(j)

then

; < - / - l .
i «-j - 1.
goto loop.
close;

i +-i + max(deltax (suing (i)), delta2 (/)).
goto fop.

If the above algorithm returns false, then pat does not
occur in string. If the algorithm returns a number,
then it is the position of the left end of the first
occurrence of pat in string.

The deltax table has an entry for each character
char in the alphabet. The definition of deltax is:

deltax(char) = If char does not occur in pat, then pat-
len; else patlen - j , where ; is the
maximum integer such that pat(j) =
char.

The delta2 table has one entry for each of the integers
from 1 to patlen. Roughly speaking, delta2{j) is (a) the
distance we can slide pat down so as to align the
discovered occurrence (in string)* of the last patlen- j
characters of pat with its rightmost plausible reoccurr-
ence, plus (b) the additional distance we must slide the
"pointer'* down so as to restart the process at the right
end of pat. To define delta2 precisely we must define
the rightmost plausible reoccurrence of a terminal
substring of pat. To this end let us make the following
conventions: Let $ be a character that does not occur
in pat and let us say that if i is less than 1 then pat{i) is
$. Let us also say that two sequences of characters [cx

. . . cn] and [dx . . . dn] "unify" if for all i from 1 to n
either ct = d{ or ct = $ or d{ = $.

Finally, we define the position of the rightmost
plausible reoccurrence of the terminal substring which
starts at position; + 1, rpr(j)y for; from 1 to patlen, to
be the greatest k less than or equal to patlen such that
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\pat(j + 1) . . . patipatlen)] and \pat{k) . . . pat{k +
patlen - j — 1)] unify and either/: ^ 1 orpat(k — 1) =£
patij).4 (That is, the position of the rightmost plausible
reoccurrence of the substring subpat, which starts at j
+ 1, is the rightmost place where subpat occurs in pat
and is not preceded by the character pat(j) which
precedes its terminal occurrence — with suitable allow-
ances for either the reoccurrence or the preceding
character to fall beyond the left end of pat. Note that
rpr(j) may be negative because of these allowances.)

Thus the distance we must slide pat to align the
discovered substring which starts at / + 1 with its
rightmost plausible reoccurrence is/ + 1 — rpr(j). The
distance we must move to get back to the end of pat is
just patlen - /. delta2(j) is just the sum of these two.
Thus we define delta2 as follows:

delta2(j) = patlen + 1 — rpr(j).

To make this definition clear, consider the following
two examples:

J.'
pat:
delta (j):

pat:
delta0(j):

1 2 3 4 5 6 7 8 9
A B C X X X A B C

14 13 12 11 10 9 11 10 1

1 2 3 4 5 6 7 8 9
A B Y X C D E Y X

17 16 15 14 13 12 7 10 1

5. Implementation Considerations

The most frequently executed part of the algorithm
is the code that embodies Observations 1 and 2. The
following version of our algorithm is equivalent to the
original version provided that delta0 is a table contain-
ing the same entries as deltax except that
deltao(pat(patlen)) is set to an integer large which is
greater than stringlen + patlen (while delta patipatlen))
is always 0).

stringlen 4- length of string.
i *-patlen.
ifi > stringlen then return false,

fast: i <- i + deltao(string(i)).
ifi •£ stringlen then goto fast,

undo: if i ^ large then return false.
i <- (/ - large) - 1.
; «- patlen - 1.

slow: if; = 0 then return / + 1.
if string® = pat(j)

then

I «-/ - I-
| 4 - | - 1.
goto slow.
close;

i <-i + max (delta iistringQ)), delta2(j)).
goto fast.

4 Note that when; = patlen, the two sequences [pat(patlen -f 1)
. . . pat(paden)] and [pat(k). . pat(k - 1)] are empty and therefore
unify. Thus, rpr(patlen) is simply the greatest k less than or equal to
patlen such that ^ 1 ox pat(k - 1) ^ patipatlen).

Of course we do not actually have two versions of
deltax. Instead we use only delta0, and in place oideltax

in the max expression we merely use the delta0 entry
unless it is large (in which case we use 0).

Note that the fast loop just scans down string,
effectively looking for the last character patipatlen) in
pat, skipping according to deltax. (delta2 can be ignored
in this case since no terminal substring has yet been
matched, i.e. delta2(patlen) is always less than or equal
to the corresponding delta,.) Control leaves this loop
only when i exceeds stringlen. The test at undo decides
whether this situation arose because all of string has
been scanned or because patipatlen) was hit (which
caused / to be incremented by large), If the first case
obtains, pat does not occur in string and the algorithm
returns false. If the second case obtains, then / is
restored (by subtracting large) and we enter the slow
loop which backs up checking for matches. When a
mismatch is found we skip ahead by the maximum of
the original deltax and delta2 and reenter the fast loop.
We estimate that 80 percent of the time spent in
searching is spent in the fast loop.

The fast loop can be coded in four machine instruc-
tions:

fast: char +-string(i).
i «— i -f- deltao(char).
skip the next instruction if/ > stringlen.
goto fast,

undo: . . .

We have implemented this algorithm in PDP-10 assem-
bly language. In our implementation we have reduced
the number of instructions in the fast loop to three by
translating / down by stringlen; we can then test i
against 0 and conditionally jump to fast in one instruc-
tion.

On a byte addressable machine it is easy to imple-
ment "char <r-stringii)" and "i «- i + dettaoichar)" in
one instruction each. Since our implementation was in
PDP-10 assembly language we had to employ byte
pointers to access characters in string. The PDP-10
instruction set provides an instruction for incrementing
a byte pointer by one but not by other amounts. Our
code therefore employs an array of 200 indexing byte
pointers which we use to access characters in string in
one indexed instruction (after computing the index) at
the cost of a small (five-instruction) overhead every
200 characters. It should be noted that this trick only
makes up for the lack of direct byte addressing; one
can expect our algorithm to run somewhat faster on a
byte-addressable machine.

6. Empirical Evidence

We have exhaustively tested the above PDP-10
implementation on random test data. To gather the
test patterns we wrote a program which randomly
selects a substring of a given length from a source
string. We used this program to select 300 patterns of
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length patlen, for each patlen from 1 to 14. We then
used our algorithm to search for each of the test
patterns in its source string, starting each search in a
random position somewhere in the first half of the
source string. All of the characters for both the patterns
and the strings were in primary memory (rather than a
secondary storage medium such as a disk).

We measured the cost of each search in two ways:
the number of references made to string and the total
number of machine instructions that actually got exe-
cuted (ignoring the preprocessing to set up the two
tables).

By dividing the number of references to string by
the number of characters / — 1 passed before the
pattern was found (or string was exhausted), we ob-
tained the number of references to string per character
passed. This measure is independent of the particular
implementation of the algorithm. By dividing the num-
ber of instructions executed by i - 1, we obtained the
average number of instructions spent on each character
passed. This measure depends upon the implementa-
tion, but we feel that it is meaningful since the imple-
mentation is a straightforward encoding of the algo-
rithm as described in the last section.

We then averaged these measures across all 300
samples for each pattern length.

Because the performance of the algorithm depends
upon the statistical properties of pat and string (and
hence upon the properties of the source string from
which the test patterns were obtained), we performed
this experiment for three different kinds of source
strings, each of length 10,000. The first source string
consisted of a random sequence of 0's and l's. The
second source string was a piece of English text ob-
tained from an online manual. The third source string
was a random sequence of characters from a 100-
character alphabet.

In Figure 1 the average number of references to
string per character in string passed is plotted against
the pattern length for each of three source strings.
Note that the number of references to string per
character passed is less than 1. For example, for an
English pattern of length 5, the algorithm typically
inspects 0.24 characters for every character passed.
That is, for every reference to string the algorithm
passes about 4 characters, or, equivalently, the algo-
rithm inspects only about a quarter of the characters it
passes when searching for a pattern of length 5 in an
English text string. Furthermore, the number of refer-
ences per character drops as the patterns get longer.
This evidence supports the conclusion that the algo-
rithm is "sublinear" in the number of references to
string.

For comparison, it should be noted that the Knuth,
Morris, and Pratt algorithm references string precisely
1 time per character passed. The simple search algo-
rithm references string about 1.1 times per character
passed (determined empirically with the English sam-
ple above).

Fig. 1.
1.0
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In Figure 2 the average number of instructions
executed per character passed is plotted against the
pattern length. The most obvious feature to note is
that the search speeds up as the patterns get longer.
That is, the total number of instructions executed in
order to pass over a character decreases as the length
of the pattern increases.

Figure 2 also exhibits a second interesting feature
of our implementation of the algorithm: For sufficiently
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large alphabets and sufficiently long patterns the algo-
rithm executes fewer than 1 instruction per character
passed. For example, in the English sample, less than
1 instruction per character is executed for patterns of
length 5 or more. Thus this implementation is "sub-
linear" in the sense that it executes fewer than / +
patlen instructions before finding the pattern at i. This
means that no algorithm which references each char-
acter it passes could possibly be faster than ours in
these cases (assuming it takes at least one instruction
to reference each character).

The best alternative algorithm for finding a single
substring is that of Knuth, Morris, and Pratt. If that
algorithm is implemented in the extraordinarily effi-
cient way described in [4, pp. 11-12] and [2, Item
179],5 then the cost of looking at a character can be
expected to be at least 3 — p instructions, where p is
the probability that a character just fetched from string
is equal to a given character of pat. Hence a horizontal
line at 3 - p instructions/character represents the best
(and, practically, the worst) the Knuth, Morris, and
Pratt algorithm can achieve.

The simple string searching algorithm (when coded
with a 3-instruction fast loop6) executes about 3.3
instructions per character (determined empirically on
the English sample above).

As noted, the preprocessing time for our algorithm
(and for Knuth, Morris, and Pratt) has been ignored.
The cost of this preprocessing can be made linear in
patlen (this is discussed further in the next section) and
is trivial compared to a reasonably long search. We
made no attempt to code this preprocessing efficiently.
However, the average cost (in our implementation)
ranges from 160 instructions (for strings of length 1)
to about 500 instructions (for strings of length 14). It
should be explained that our code uses a block transfer
instruction to clear the 128-word delta! table at the
beginning of the preprocessing, and we have counted
this single instruction as though it were 128 instruc-
tions. This accounts for the unexpectedly large instruc-
tion count for preprocessing a one-character pattern.

7. Theoretical Analysis

The preprocessing for delta t requires an array the
size of the alphabet. Our implementation first initial-
izes all entries of this array to patlen and then sets up

5 This implementation automatically compiles pat into a machine
code program which implicitly has the skip table built in and which
is executed to perform the search itself. In [2] they compile code
which uses the PDP-10 capability of fetching a character and
incrementing a byte address in one instruction. This compiled code
executes at least two or three instructions per character fetched
from string, depending on the outcome of a comparison of the
character to one from pat.

G This loop avoids checking whether string is exhausted by
assuming that the first character of pat occurs at the end of string.
This can be arranged ahead of time. The loop actually uses the same
three instruction codes used by the above-referenced implementation
of the Knuth, Morris, and Pratt algorithm.

deltax in a linear scan through the pattern. Thus our
preprocessing for deltax *s linear in patlen plus the size
of the alphabet.

At a slight loss of efficiency in the search speed
one could eliminate the initialization of the deltax

array by storing with each entry a key indicating the
number of times the algorithm has previously been
called. This approach still requires initializing the array
the first time the algorithm is used.

To implement our algorithm for extremely large
alphabets, one might implement the deltat table as a
hash array. In the worst case, accessing deltat during
the search itself could require order patlen instruc-
tions, significantly impairing the speed of the algo-
rithm. Hence the algorithm as it stands almost certainly
does not run in time linear in i + patlen for infinite
alphabets.

Knuth, in analyzing the algorithm, has shown that
it still runs in linear time when deltax is omitted, and
this result holds for infinite alphabets. Doing this,
however, will drastically degrade the performance of
the algorithm on the average. In [5] Knuth exhibits an
algorithm for setting up delta2 in time linear in patlen.

From the preceding empirical evidence, the reader
can conclude that the algorithm is quite good in the
average case. However, the question of its behavior in
the worst case is nontrivial. Knuth has recently shed
some light on this question. In [5] he proves that the
execution of the algorithm (after preprocessing) is
linear in i + patlen, assuming the availability of array
space linear in patlen plus the size of the alphabet. In
particular, he shows that in order to discover that pat
does not occur in the first i characters of string, at
most 6 * i characters from string are matched with
characters in pat. He goes on to say that the constant 6
is probably much too large, and invites the reader to
improve the theorem. His proof reveals that the linear-
ity of the algorithm is entirely due to delta2.

We now analyze the average behavior of the algo-
rithm by presenting a probabilistic model of its per-
formance. As will become clear, the results of this
analysis will support the empirical conclusions that the
algorithm is usually "sublinear" both in the number of
references to string and the number of instructions
executed (for our implementation).

The analysis below is based on the following simpli-
fying assumption: Each character of pat and string is
an independent random variable. The probability that
a character from pat or string is equal to a given
character of the alphabet is p.

Imagine that we have just moved pat down string
to a new position and that this position does not yield
a match. We want to know the expected value of the
ratio between the cost of discovering the mismatch
and the distance we get to slide pat down upon finding
the mismatch. If we define the cost to be the total
number of references made to string before discovering
the mismatch, we can obtain the expected value of the
average number of references to string per character
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passed. If we define the cost to be the total number of
machine instructions executed in discovering the mis-
match, we can obtain the expected value of the number
of instructions executed per character passed.

In the following we say "only the last m characters
of pat match" to mean "the last m characters of pat
match the corresponding m characters in string but the
(m -f l)-th character from the right end of pat fails to
match the corresponding character in string."

The expected value of the ratio of cost to characters
passed is given by:

( patlen-1 \ /

2 cost(m) *prob(m) I /
wi=O / /

/patlen—I /patlen \ \
( 2 prob(m) * ( 2 skip(m, k) * k I I

where cost{m) is the cost associated with discovering
that only the lastra characters oipat match; prob{m) is
the probability that only the last m characters of pat
match; andskip(m,k) is the probability that, supposing
only the last m characters of pat match, we will get to
slide pat down by k.

Under our assumptions, the probability that only
the last m characters of pat match is:
prob(m) = pm(l - p ) / ( l - ppatlen).

(The denominator is due to the assumption that a
mismatch exists.)

The probability that we will get to slide pat down
by k is determined by analyzing how i is incremented.
However, note that even though we increment i by the
maximum max of the two deltas, this will actually only
slide pat down by max — m, since the increment of i
also includes the m necessary to shift our attention
back to the end of pat. Thus when we analyze the
contributions of the two deltas we speak of the amount
by which they allow us to slide pat down, rather than
the amount by which we increment /. Finally, recall
that if the mismatched character char occurs in the
already matched final m characters oipat, then deltax

is worthless and we always slide by deltas The proba-
bility that deltax is worthless is just (1 - (1 - p)m). Let
us call this prob delta xworthless(jn).

The conditions under which deltax will naturally let
us slide forward by k can be broken down into four
cases as follows: (a) delta x will let us slide down by 1 if
char is the (m + 2)-th character from the righthand
end of pat (or else there are no more characters in pat)
and char does not occur to the right of that position
(which has probability (1 - p)m * (if m + 1 = patlen
then 1 else p)). (b) delta x allows us to slide down k,
where 1 < k < patlen — m, provided the rightmost
occurrence of char in pat is m + k characters from the
right end of pat (which has probability p * (1 -
p)k+m~iy (c) When/?arfe/i - m > 1, deltax allows us to
slide past patlen — m characters if char does not occur
in pat at all (which has probability (1 - p)patien-i g j v e n

that we know char is not the (m + l)-th character from

the right end oipat). Finally, (d) deltax never allows a
slide longer than patlen - m (since the maximum
value oideltax is patlen).

Thus we can define the probability probdeltax{m,
k) that when only the last m characters oipat match,
deltax will allow us to move down by k as follows:

probdeltax(m, k) ~ if k = 1
then
(1 - p)m * (if m + 1 = patlen then 1 elsep);

elseif 1 < k < patlen - m then/? * (1 - p)fc+m"*;
elseif k = patlen - m then (1 - p)*"""-1;
else (i.e. it > patlen - m) 0.

(It should be noted that we will not put these formulas
into closed form, but will simply evaluate them to
verify the validity of our empirical evidence.)

We now perform a similar analysis for delta2\ delta2

lets us slide down by k if (a) doing so sets up an
alignment of the discovered occurrence of the last m
characters of pat in string with a plausible reoccurrence
of those m characters elsewhere in pat9 and (b) no
smaller move will set up such an alignment. The
probability probpr(m, k) that the terminal substring of
pat of length m has a plausible reoccurrence k charac-
ters to the left of its first character is:

probpr(m, k) — if m + k < patlen
then (1 - p)*pm

e l s e piHrt/en-*

Of course, k is just the distance delta2 lets us slide
provided there is no earlier reoccurrence. We can
therefore define the probability probdelta2(m9 k) that,
when only the last m characters of pat match, delta2

will allow us to move down by k recursively as follows:

probdelta2{my k)

= probpr{m,
/ H-l v

,k)[ 1 - Zi probdelta2(m, n)\ .
\ *=1 /

We slide down by the maximum allowed by the
two deltas (taking adequate account of the possibility
that deltax is worthless). If the values of the deltas
were independent, the probability that we would ac-
tually slide down by k would just be the sum of the
products of the probabilities that one of the deltas
allows a move of k while the other allows a move of
less than or equal to k.

However, the two moves are not entirely indepen-
dent. In particular, consider the possibility that deltax

is worthless. Then the char just fetched occurs in the
last m characters of pat and does not match the (m +
l)-th. But if delta2 gives a slide of 1 it means that
sliding these m characters to the left by 1 produces a
match. This implies that all of the last m characters of
pat are equal to the character m + 1 from the right.
But this character is known not to be char. Thus char
cannot occur in the last m characters of pat, violating
the hypothesis that delta, was worthless. Therefore if
delta, is worthless, the probability that delta2 specifies
a skip of 1 is 0 and the probability that it specifies one
of the larger skips is correspondingly increased.

42



This interaction between the two deltas is also felt
(to a lesser extent) for the next m possible delta2

Js, but
we ignore these (and in so doing accept that our
analysis may predict slightly worse results than might
be expected since we allow some short delta2 moves
when longer ones would actually occur).

The probability that delta2 will allow us to slide
down by k when only the last m characters of pat
match, assuming that deltax is worthless, is:

probdelta'2{myk) = if k - 1
then 0
else

1 - 2 ) probdelta2(m,n)).
n-t /

Finally, we can define skip{m, k), the probability
that we will slide down by k if only the lastm characters
of pat match:

skip(m,k) = if* = 1
then probdeUaxim, 1) * probdelta2(m, 1)

else probdeltatworthless(m) * probdelta'2{m, k)
k-\

+ 2* probdeltax{mt k) * probdelta2(m, n)

+s probdeltax(m, n) * probdelta2(m, k)

+ probdeltax(m, k) * probdelta2(mt k).

Now let us consider the two alternative cost func-
tions. In order to analyze the number of references to
string per character passed over, cost(m) should just be
m + 1, the number of references necessary to confirm
that only the last m characters of pat match.

In order to analyze the number of instructions
executed per character passed over, cost(m) should be
the total number of instructions executed in discovering
that only the last m characters of pat match. By
inspection of our PDP-10 code:

cost(m) = if m = 0 then 3 else 12 + 6 m.

We have computed the expected value of the ratio
of cost per character skipped by using the above
formulas (and both definitions of cost). We did so for
pattern lengths running from 1 to 14 (as in our empiri-
cal evidence) and for the values of p appropriate for
the three source strings used: For a random binary
string p is 0.5, for an arbitrary English string it is
(approximately) 0.09, and for a random string over a
100-character alphabet it is 0.01. The value of p for
English was determined using a standard frequency
count for the alphabetic characters [3] and empirically
determining the frequency of space, carriage return,
and line feed to be 0.23, 0.03, and 0.03, respectively.7

In Figure 3 we have plotted the theoretical ratio of
refe rences to string per character passed over against

7 We have determined empirically that the algorithm's perfor-
man ce on truly random strings where p - 0.09 is virtually identical
to its performance on English strings. In particular, the reference
coun t and instruction count curves generated by such random strings
are almost coincidental with the English curves in Figures 1 and 2.

Fig. 4.
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the pattern length. The most important fact to observe
in Figure 3 is that the algorithm can be expected to
make fewer than i + patlen references to string before
finding the pattern at location /. For example, for
English text strings of length 5 or greater, the algorithm
may be expected to make less than (/ 4- 5)/4 refer-
ences to string. The comparable figure for the Knuth,
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Morris, and Pratt algorithm is of course precisely /.
The figure for the intuitive search algorithm is always
greater than or equal to i.

The reason the number of references per character
passed decreases more slowly as patlen increases is
that for longer patterns the probability is higher that
the character just fetched occurs somewhere in the
pattern, and therefore the distance the pattern can be
moved forward is shortened.

In Figure 4 we have plotted the theoretical ratio of
the number of instructions executed per character
passed versus the pattern length. Again we find that
our implementation of the algorithm can be expected
(for sufficiently large alphabets) to execute fewer than
i + patlen instructions before finding the pattern at
location i. That is, our implementation is usually "sub-
linear" even in the number of instructions executed.
The comparable figure for the Knuth, Morris, and
Pratt algorithm is at best (3 - p) * (i + patlen - I).8

For the simple search algorithm the expected value of
the number of instructions executed per character
passed is (approximately) 3.28 (forp = 0.09).

It is difficult to fully appreciate the role played by
delta2. For example, if the alphabet is large and pat-
terns are short, then computing and trying to use delta2

probably does not pay off much (because the chances
are high that a given character in string does not occur
anywhere in pat and one will almost always stay in the
fast loop ignoring delta2).

9 Conversely, delta2 becomes
very important when the alphabet is small and the
patterns are long (for now execution will frequently
leave the fast loop; delta t will in general be small
because many of the characters in the alphabet will
occur in pat and only the terminal substring observa-
tions could cause large shifts). Despite the fact that it
is difficult to appreciate the role of delta2, it should be
noted that the linearity result for the worst case behav-
ior of the algorithm is due entirely to the presence of
delta2.

Comparing the empirical evidence (Figures 1 and
2) with the theoretical evidence (Figures 3 and 4,
respectively), we note that the model is completely
accurate for English and the 100-character alphabet.
The model predicts much better behavior than we
actually experience in the binary case. Our only expla-
nation is that since delta2 predominates in the binary
alphabet and sets up alignments of the pattern and the
string, the algorithm backs up over longer terminal
substrings of the pattern before finding mismatches.
Our analysis ignores this phenomenon.

However, in summary, the theoretical analysis sup-
ports the conclusion that on the average the algorithm
is sublinear in the number of references to string and,
for sufficiently large alphabets and patterns, sublinear
in the number of instructions executed (in our imple-
mentation).

8. Caveat Programmer

It should be observed that the preceding analysis
has assumed that string is entirely in primary memory
and that we can obtain the ith character in it in one
instruction after computing its byte address. However,
if string is actually on secondary storage, then the
characters in it must be read in.10 This transfer will
entail some time delay equivalent to the execution of,
say, w instructions per character brought in, and (be-
cause of the nature of computer I/O) all of the first i +
patlen - 1 characters will eventually be brought in
whether we actually reference all of them or not. (A
representative figure for w for paged transfers from a
fast disk is 5 instructions/character.) Thus there may
be a hidden cost of w instructions per character passed
over.

According to the statistics presented above one
might expect our algorithm to be approximately three
times faster than the Knuth, Morris, and Pratt algo-
rithm (for, say, English strings of length 6) since that
algorithm executes about three instructions to our one.
However, if the CPU is idle for the w instructions
necessary to read each character, the actual ratios are
closer to w + 3 instructions than to w + 1 instructions.
Thus for paged disk transfers our algorithm can only
be expected to be roughly 4/3 faster (i.e. 5 + 3
instructions to 5 -f 1 instructions) if we assume that
we are idle during I/O. Thus for large values of w the
difference between the various algorithms diminishes
if the CPU is idle during I/O.

Of course, in general, programmers (or operating
systems) try to avoid the situation in which the CPU is
idle while awaiting an I/O transfer by overlapping I/O
with some other computation. In this situation, the
chances are that our algorithm will be I/O bound (we
will search a page faster than it can be brought in),
and indeed so will that of Knuth, Morris, and Pratt if
w > 3. Our algorithm will require that fewer CPU
cycles be devoted to the search itself so that if there
are other jobs to perform, there will still be an overall
advantage in using the algorithm.

8 Although the Knuth, Morris, and Pratt algorithm will fetch
each of the first j + patlen — 1 characters of string precisely once,
sometimes a character is involved in several tests against characters
in pat. The number of such tests (each involving three instructions)
is bounded by \og+{patlen), where <t> is the golden ratio.

•However, if the algorithm is implemented without delta2t

recall that, in exiting the slow loop, one must now take the max of
deltax and patlen - / + 1 to allow for the possibility that deltax is
worthless.

10 We have implemented a version of our algorithm for searching
through disk files. It is available as the subroutine FFILEPOS in the
latest release of INTERLISP-10. This function uses the TEN EX
page mapping capability to identify one file page at a time with a
buffer area in virtual memory. In addition to being faster than
reading the page by conventional methods, this means the operating
system's memory management takes care of references to pages
which happen to still be in memory, etc. The algorithm is as much
as 50 times faster than the standard INTERLISP-10 F1LEPOS
function (depending on the length of the pattern).
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There are several situations in which it may not be
advisable to use our algorithm. If the expected penetra-
tion / at which the pattern is found is small, the
preprocessing time is significant and one might there-
fore consider using the obvious intuitive algorithm.

As previously noted, our algorithm can be most
efficiently implemented on a byte-addressable ma-
chine. On a machine that does not allow byte addresses
to be incremented and decremented directly, two pos-
sible sources of inefficiency must be addressed: The
algorithm typically skips through string in steps larger
than 1, and the algorithm may back up through string.
Unless these processes are coded efficiently, it is prob-
ably not worthwhile to use our algorithm.

Furthermore, it should be noted that because the
algorithm can back up through string, it is possible to
cross a page boundary more than once. We have not
found this to be a serious source of inefficiency.
However, it does require a certain amount of code to
handle the necessary buffering (if page I/O is being
handled directly as in our FFILEPOS). One beauty of
the Knuth, Morris, and Pratt algorithm is that it avoids
this problem altogether.

A final situation in which it is unadvisable to use
our algorithm is if the string matching problem to be
solved is actually more complicated than merely finding
the first occurrence of a single substring. For example,
if the problem is to find the first of several possible
substrings or to identify a location in string defined by
a regular expression, it is much more advantageous to
use an algorithm such as that of Aho and Corasick [1].

It may of course be possible to design an algorithm
that searches for multiple patterns or instances of
regular expressions by using the idea of starting the
match at the right end of the pattern. However, we
have not designed such an algorithm.

9. Historical Remarks

Our earliest formulation of the algorithm involved
only deltax and implemented Observations 1, 2, and
3(a). We were aware that we could do something
along the lines oidelta2 and Observation 3(b), but did
not precisely formulate it. Instead, in April 1974, we
coded the deltax version of the algorithm in Interlisp,
merely to test its speed. We considered coding the
algorithm in PDP-10 assembly language but abandoned
the idea as impractical because of the cost of incre-
menting byte pointers by arbitrary amounts.

We have since learned that R.W. Gosper, of Stan-
ford University, simultaneously and independently dis-
covered the deltax version of the algorithm (private
communication).

In April 1975, we started thinking about the imple-
mentation again and discovered a way to increment
byte pointers by indexing through a table. We then
formulated a version of deltaz and coded the algorithm

more or less as it is presented here. This original
definition of delta2 differed from the current one in the
following respect: If only the last m characters of pat
(call this substring subpat) were matched, delta2 spec-
ified a slide to the second from the rightmost occur-
rence of subpat in pat (allowing this occurrence to "fall
off* the left end of pat) but without any special
consideration of the character preceding this occur-
rence.

The average behavior of that version of the algo-
rithm was virtually indistinguishable from that pre-
sented in this paper for large alphabets, but was
somewhat worse for small alphabets. However, its
worst case behavior was quadratic (i.e. required on
the order of i * patlen comparisons). For example,
consider searching for a pattern of the form CA(BA)r

in a string of the form ((XX)r(AA)(BA)r)* (e.g. r =
2, pat = "CABABA," and string = "XXXXAABA-
BAXXXXAABABA . . . " ) . The original definition
of delta2 allowed only a slide of 2 if the last "BA" of
pat was matched before the next "A" failed to match.
Of course in this situation this only sets up another
mismatch at the same character in string, but the
algorithm had to reinspect the previously inspected
characters to discover it. The total number of refer-
ences to string in passing i characters in this situation
was (r + 1) • (r + 2) • i/(4r + 2), where r = {patlen -
2)/2. Thus the number of references was on the order
of/ * patlen.

However, on the average the algorithm was blind-
ingly fast. To our surprise, it was several times faster
than the string searching algorithm in the Tenex TECO
text editor. This algorithm is reputed to be quite an
efficient implementation of the simple search algorithm
because it searches for the first character of pat one
full word at a time (rather than one byte at a time).

In the summer of 1975, we wrote a brief paper on
the algorithm and distributed it on request.

In December 1975, Ben Kuipers of the M.I.T.
Artificial Intelligence Laboratory read the paper and
brought to our attention the improvement to delta2

concerning the character preceding the terminal sub-
string and its reoccurrence (private communication).
Almost simultaneously, Donald Knuth of Stanford
University suggested the same improvement and ob-
served that the improved algorithm could certainly
make no more than order (i + patlen) * logipatlen)
references to string (private communication).

We mentioned this improvement in the next revi-
sion of the paper and suggested an additional improve-
ment, namely the replacement of both deltax and delta2

by a single two-dimensional table. Given the mis-
matched char from string and the position j in pat at
which the mismatch occurred, this table indicated the
distance to the last occurrence (if any) of the substring
[char,pat(j + 1), . . . , pat(patlen)] in pat. The revised
paper concluded with the question of whether this
improvement or a similar one produced an algorithm
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which was at worst linear and on the average "sub-
linear."

In January 1976, Knuth [5] proved that the simpler
improvement in fact produces linear behavior, even in
the worst case. We therefore revised the paper again
and gave delta2 its current definition.

In April 1976, R.W. Floyd of Stanford University
discovered a serious statistical fallacy in the first version
of our formula giving the expected value of the ratio
of cost to characters passed. He provided us (private
communication) with the current version of this for-
mula.

Thomas Standish, of the University of California at
Irvine, has suggested (private communication) that the
implementation of the algorithm can be improved by
fetching larger bytes in the fast loop (i.e. bytes contain-
ing several characters) and using a hash array to encode
the extended delta{ table. Provided the difficulties at
the boundaries of the pattern are handled efficiently,
this could improve the behavior of the algorithm enor-
mously since it exponentially increases the effective
size of the alphabet and reduces the frequency of
common characters.
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SUMMARY

This paper describes four algorithms of varying complexity used for pattern matching, and
investigates their behaviour. The algorithms are tested using patterns of varying length from
several alphabets. It is concluded that although there is no overall 'best' algorithm, the more
complex algorithms are worth considering as they are generally more efficient in terms of
number of comparisons made and execution time.
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INTRODUCTION

Pattern matching is an integral part of many text editing, data retrieval, symbol
manipulation, and word and data processing problems. Text editing programs are often
required to search through a string of characters looking for instances of a given 'pattern'
string—we wish to find the position at which the pattern occurs as a contiguous
substring of the text.

In general, given a string of text, S\, Sz-. .Srn it is required to find an occurrence, if it
exists, of a pattern. P\P%.. .Pm in the string; such an occurrence is identified by the value
i such that the characters SgSi+\.. .Si-\+m match the characters in the pattern
P\Pz.. .Pm. There may be more than one occurrence of the pattern in the string and
hence more than one value for i.

This paper investigates four algorithms for finding the value of i for the first (leftmost)
occurrence of the patterns.

Algorithm 1 is the 'brute-force' method, the obvious solution to the pattern matching
problem, where the algorithm considers each character position of the text string being
searched and determines whether the successive 'pattern-length' characters of the 'string7

starting at that position match the successive 'pattern-length' characters of the pattern.
Algorithm 2 is based on work done by Knuth, Morris and Pratt.1 It involves the

preprocessing of the pattern to be located to create a table which is then used to tell us
where to resume matching after a character mismatch has occurred.

Algorithm 3 was developed by R. S. Boyer and J. Strother Moore.2 The algorithm
uses the fact that more information can be gained by matching the pattern from the right
than from the left. It also involves preprocessing of the pattern to produce tables that are
used to compute the failure jumps, i.e. how far to skip along in the text after a mismatch
has occurred.

Algorithm 4 is an algorithm developed by O. M. Rabin and R. M. Karp.3 It is another
brute-force approach to string searching which uses a large memory to advantage by
treating each possible /w-character section (where m is the pattern length) of the text as a

Reprinted from Software - Practice and Experience,
Volume 16, No. 6, June 1986, pp. 575-601. Copyright
1986 by John Wiley & Sons, Ltd.
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key in a standard hash table. The algorithm simply computes the hash function for each
of the possible m-character sections of the text and checks if it is equal to the hash
function of the pattern. It is not necessary to keep a whole hash table in memory since
only one key is being sought. The algorithm really only finds an //^-character section in
the text which has the same hash value as the pattern, so to be extra sure a direct
comparison of the text and pattern is made.

AIMS

The purpose of the investigation was to examine four different algorithms of varying
complexity used for pattern matching in strings. Four algorithms are discussed and both
their theoretical and actual behaviours are looked at.

The investigation aimed to compare and contrast the four algorithms and to answer
such questions as:

1. How do the actual performances of the four algorithms compare under test
conditions?

2. How does the predicted theoretical behaviour compare with the actual perform-
ance on test data?

3. Do variables such as the size of the alphabet or the size of the pattern being
searched for have any effect on the performances of the algorithms. (At the outset
it was intuitively expected that the alphabet size would be a major influencing
factor on the performances of the different algorithms; the smaller the size of the
alphabet the higher the probability of matching any two random characters from
that alphabet, and thus it was expected that if the pattern size was of a reasonable
length the simple brute-force approach would suffice because the computational
effort required to produce failure vectors for algorithms 2 and 3 could not be
justified against the simple approach. Similarly the size of the pattern being
searched for was expected to play a large part).

THE ALGORITHMS USED

All the algorithms under consideration were coded in the C programming language and
designed to run under UCB UNIX Version 2.8. For analysis purposes only (and not for
efficiency) the algorithms were implemented in such a way that the program tries to
match the pattern only up to the first occurrence of the pattern.

All the algorithms used could easily be extended to find all occurrences of the pattern
in the input text, since they scan sequentially through the text and can be restarted at the
point directly after the beginning of the match to find the next match. They could also
be extended to take as input a file of any size and to report each line in the file in which
the pattern occurs.

In all cases the C optimizer was used to produce efficient executable code.
The analysis assumes that the string and pattern are entirely in primary memory and

that each character can be obtained in one instruction after computing its byte address.
However, if the string is actually on secondary storage then the characters must be read
in.

Throughout the discussions of the algorithms the following notation is assumed:

pattern — pattern being search for
pattern[j] — jth character of the pattern
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string — text string being searched
stringlk] — kth character of the string
patlen, m — number of characters in pattern

NB. In all descriptions of the algorithms when the pattern is shifted by x places or the
text is moved along x places, this actually means that the pointer into the string is
incremented by x positions.

Algorithm 1

This is the obvious or brute-force approach to solving the problem of pattern
matching and is well documented. The essence of this algorithm is to superimpose the
pattern on top of each substring of the text string of patlen proceeding from left to right,
and to check the characters of the pattern, character by character against the substring of
the text string beneath it. As soon as a mismatch is detected, the pattern is shifted to the
right one character. The algorithm tries to search at every starting position of the text,
abandoning the search as soon as an incorrect character is found; this occurs if an initial
substring of the pattern occurs in the string, and is known as a false start, e.g.

string 2 string

string : A string searchinq example consisting of
t t t

where f signifies a false start.
The pointer into the pattern is incremented four times on execution of the algorithm,

once for each s and twice for the first st; these are the false starts. This then involves the
backing up of the pointers into the pattern and string, which could add complications,
for instance when a large file is being read in from some external device. The
backtracking involved when a partially successful search path fails necessitates a lot of
storage and bookkeeping and tends to execute slowly.

The actual implementation of the algorithm checks each possible position in the text
at which the pattern could match, to see whether it does in fact match. The program
keeps one pointer (k) into the text string and another pointer (j) into the pattern. If j and
k point to the same characters, then they are both incremented to point to the next
character in both the pattern and the string. If j and k point to mismatching characters
then j is reset to correspond to moving the pattern to the right by one position for
matching against text. If the end of the text string is reached then there is no match.

Informal outline of the algorithm
j=0; k=0;
while not at end of pattern or string

if pattern[j] = string[k]
then

k+ + ; j+ + ;
else

k=k - j+1 ; j=0;
endif

endwhile
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Obviously this algorithm can be very inefficient; consider trying to match the pattern
aaa.. .ab of length ra in a string of n a's:

pattern : aaa...ab

string : aaa aaaa

On trying to match the two character strings, the first ra — 1 letters of the pattern will
match the characters in the string, but the final, rath, letter of the pattern will not; a
mismatch will occur. Thus the whole pattern will be moved along by one position and
the matching will be resumed.

pattern i aaa....ab

string t aaa aaaa

Similarly, the first ra~l characters of the pattern will match with the string again until
mismatch occurs on the rath character of the pattern. Continuing this process we see
there will be n— m + \ times that the string and the pattern have ra —1 as in common.
Thus the algorithm will require at least («—ra + l)(ra — 1) comparison operations, i.e.
O(mn)i and thus the number of direct character comparisons in the worst case is
quadratic.

The quadratic nature of this algorithm, however, appears only when initial substrings
of the pattern occur in the text string being searched, which appears to be a fairly rare
phenomenon in English text, and so in the majority of cases the running time is expected
to be less than this. Thus an optimized version of the brute force approach often
provides a good 'standard'. This investigation aimed to show how the algorithm actually
behaves under (simulated) realistic conditions.

Summarizing, the theoretical behaviour of this algorithm in the worst case is
quadratic, O(mn)y whereas the average theoretical behaviour is better than this but is
dependent on statistical properties of the pattern and the text string being searched.

Algorithm 2
The basic idea behind algorithm 2 is to take advantage of the fact that when a

mismatch occurs the false start consists of characters that are already known since they
are already in the pattern. This information can then be used to prevent backing up
through the text string over all those known characters. 'Shifts' can be precomputed
specifying how much to move the given pattern when a mismatch occurs, by
preprocessing the actual pattern (by shifting the pattern against itself) to form a table.
To illustrate this approach, consider Knuth, Morris and Pratt's example, searching for
the pattern abcabcacab in the text string babcbabcabcaabcabcabcacabc. Initially the
pattern is placed at the extreme left and scanning starts at the leftmost character of the
input text:

pattern i abcabcacab

string t babcbabcabcaabcabcabcacabc
t
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where f indicates the current text character.
Since the string pointer points to the character b, which does not match the a in the

pattern, the pattern is shifted one place to the right and the next string character is
inspected:

pattern : abcabcacab

string : babcbabcabcaabcabcabcacabc
t

There is a match, so the pattern remains where it is while the next several characters are
scanned until we come to a mismatch:

pattern : abcabcacab

string t babcbabcabcaabcabcabcacabc
t

mismatch

The first three pattern characters are matched, but there is a mismatch on the fourth;
thus it is known that the last four characters of the input text string have been abc? where
? is not equal to a. There is no need to remember the previously scanned characters since
the position in the pattern yields enough information to recreate them. In this example
as long as the ? character is not equal to a the pattern can be immediately shifted four
more places to the right, since a shift of one, two or three positions could not possibly
lead to a match. Thus the situation appears as

pattern ; abcabcacab

string : babcbabcabcaabcabcabcacabc
t

The characters are scanned again and another partial match occurs; a mismatch occurs
on the eighth pattern character:

pattern : abcabcacab

string t babcbabcabcaabcabcabcacabc
t

mismatch

Similarly we know that the last eight string characters were abcabca? where ? is not equal
to c but might be equal to b. Thus the pattern should be shifted three places to the right:

pattern t abcabcacab

string t babcbabcabcaabcabcabcacabc
t

mismatch
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Comparing the two characters we get a mismatch, so we shift the pattern a further four
places:

pattern : abcabcacab

string : babcbabcabcaabcabcabcacabc
t

This produces another partial match; scanning is continued until mismatch occurs,
again, on the eighth pattern character:

pattern : abcabcacab

string : babcbabcabcaabcabcabcacabc
t

mismatch

The pattern is then shifted a further three places to the right:

pattern : abcabcacab

string : babcababcabcaabcabcabcacabc
t

This time a match is produced and, on scanning, the full pattern is found; the pattern
match has succeeded.

This worked example illustrates that, by knowing the characters in the pattern and the
position in the pattern where a mismatch occurs with a character in the text string, it can
be determined where in the pattern to continue the search for a match without moving
backwards in the input text. It also shows that the process of pattern matching will run
much more efficiently if we have an auxilliary table which will provide us with the
information of how far to slide the pattern when a mismatch has been detected at the jth
character of the pattern. Thus the vector NEXT can now be introduced; NEXT[j] is the
character position in the pattern which should be checked next after a mismatch has
occurred at the jth character of the pattern. Hence the pattern is actually being slid
j-NEXT[j] places relative to the text string.

When the pattern pointer (j) and the string pointer (k) point to mismatching
characters, then we know that the last j characters of the text string up to and including
string[k] were pattern[1].. pattern[j-1] x where x =£ patternfj]. NEXT[j] is the largest i<j such
that the last i characters of the text string were pattern[1]. .pattern[i-1] x and pattern[i] =£
pattern[j]. If no such i exists NEXT[j]=O.

The NEXT vector can easily be calculated by using a secondary vector f. The jth entry
f[j], j>1, is defined as the largest i less than j such that pattern[1]. .pattern[i-1] =
pattern[j-i-M]. .p[j-1]. This holds for i = 1, and f[j] is always greater than or equaLto 1
when j>1. f[1] is defined to be 0. Thus the last i—1 (already matched) characters of the
pattern preceding the mismatched character match the subpattern pattern[1].
pattern[i-1].

The values of the vector f can be determined by sliding a copy of the first j—1
characters of the pattern over itself; sliding from left to right with the first character of
the copy over the second character of the pattern, stopping when either all overlapping
characters match or there are none overlapping. If a mismatch is detected at the jth
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character of the pattern the value of f[j] is exactly the number of overlapping characters
plus one.

The values of the vector NEXT can then be calculated using the following relation:

NFYT[i1 = f fW i f patternlj] 4= pattern[f[j]]
UJ I NEXT[f[j]] if pattemtj] = pattem[f[j]]

The NEXT vector, however, can be calculated in such a way that the values of f[j] need not
be stored in memory (see below). The above example has the following values:

J
patternlj]
NEXT[j]

flil

1
= a

0
0

2
b
1
1

3
c
1
1

4
a
0
1

5
b
1
2

6
c
1
3

7
a
0
4

8
c

5

9
a
0
1

10
b
1
2

NEXT[j]=O means that the pattern is to be slid all the way past the current text character,
that is the pointer to the text string should be incremented. By definition NEXT[1]=0.

On mismatch there is no need to back up the string pointer. If NEXT[j]=£O then we
simply leave the string pointer unchanged and set the pattern pointer to NEXT[j]. Thus
the vector NEXT provides a way of eliminating the back up of the text string pointer.

The inclusion of the NEXT vector can be seen in the informal outline of algorithm 2
below:

j=0; k=0;
while not at end of pattern or string

if patternfj] = string [k]
then

j+ + ; k+ + ;
else

j=NEXT[j];
if j=0

k+ + ;
endwhile

The initialization of the NEXT vector is similar to the actual algorithm above except that
it matches the pattern against itself:

X = 1 ; y=0; NEXT[1]=0;
while not at end of pattern

if pattern [x] =£ pattem[y]
then

y = NEXT[y];
x+ + ; y+ + ;

if pattern[x] = pattern[y]
then

NEXT[x] = NEXT[y];
else

NEXT[x] = y;
endwhile
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After the NEXT vector has been set up, then at each step of the scanning process either
the text string pointer or the pattern pointer is moved. Assuming that the text string is of
length W, both the pattern and string pointers can move at most n times, and so at most
In steps are needed to perform the pattern matching operation. It has been shown by
Knuth, using the same argument as above, that the NEXT vector can be set up in O(ra)
steps, where m is the pattern length, since the NEXT vector is found by shifting the
pattern against itself. Thus the whole algorithm is of O(m+n)y i.e. linear.

Algorithm 2 is very good if it us used to search for highly self-repetitive patterns in
self-repetitive text, but intuitively this does not seem to be a very common phenomenon.
Thus this investigation seeks to find if this algorithm is (significantly) faster and/or more
efficient in character comparisons than the brute-force method in (simulated) realistic
conditions.

The major virtue of this algorithm is that it proceeds sequentially through the input
text and never needs to back up. This makes the algorithm convenient for use on a large
file being read in from some external device, because it avoids rescanning the input text
string and possible complicated buffering operations.

Summarizing, the expected theoretical behaviour of algorithm 2 is linear, 0{m+n),
and can therefore be used as a standard to which the other algorithms can be compared.

Algorithm 3
This algorithm was developed in 1974 by R. S. Boyer and J. S. Moore and the

description that follows is essentially theirs. The underlying idea behind algorithm 3 is
that a faster searching method can be developed by scanning the pattern from right to
left when trying to match it against the text. This is only possible if backing up, that is
moving backwards as well as forwards through the character array, is not a problem.
The algorithm decides which characters to compare next based on the character that
caused the mismatch in the text string as well as the pattern. The next characters to
compare are found by appealing to a number of observations (see below).

The essence of this algorithm is to superimpose the patternp[l].. .p[m] on the string
s[l]. -.s[n]

p[l] p[Z] ...p[m]
s[k-m + l] s[k-m+2] . . . s[k] ... s[n]

and to match the characters of the pattern against those of the underlying segment of the
string in right to left order while the pattern is being moved to the right.

Observation 1
If the rightmost character of the patternp[m] does not match the underlying character

s[k] of the string, and it is also the case that the character corresponding to s[k] does not
occur anywhere in the pattern, then the pattern can be slid, in its entirety, over to the
right all the way past s[k] since no character of the pattern superimposed above s[k]
would ever match. Thus the situation, from above, would be:

p[l] p[2] ...p[m)
s[k] s[k+l] s[k+2] . . . s[k+m] . . . s[n]
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Matching can then be resumed. Since there was no need to compare any of the
s[k—m + l] . . . s[k — 1] with/>[l] . . , p[m — l], then (m — 1) character comparisons were
omitted.

If however s[k] does match withp[ra], then the pattern pointer can be shifted by the
minimum amount consistent with a match:

p [ l ] . . . p [ m - \ ] p[m]
s [ k - m + l ] . . . s [ k - l ] s[k] . . . s [ n ]

T
Current text character

Observation 2
Generally, if the rightmost occurrence of the character corresponding to the character

s[k] in the pattern is r characters from the right end of the pattern, then we can
automatically slide the pattern right r characters without checking for matches, since if
the pattern were moved right by any amount less than r positions, then the character s[k]
would be aligned with some character that it could not possibly match. Such a match
would require an occurrence of the character s[k] in the pattern to the right of the last
occurrence. The distance r is a function of the characters in the text string being
searched. If the character s[k] does not occur in the pattern, then r is patlen positions,
i.e. shift the whole pattern along; this is a direct result ascertainable from observation 1.
If the character $[k] does occur in the pattern, then r is defined as the difference between
the pattern length and the position of the rightmost occurrence of the character s[k] in
the pattern, i.e. simply shift the pattern so that the two known occurrences of the
character corresponding to s[k] coincide.

Assuming that the last character of the pattern, p[m], matches the underlying
character in the string, s [k] say, it must be determined whether the previous character in
the string s[k — 1] matches the second to last character in the pattern:

p[l] ...p[m-l] p[m]
s[k-m] s[k-m+l]... s[k-l] s[k]

T
If the characters match then the process of comparing characters working from right to
left through the pattern continues until either all of the pattern has been matched, and
therefore the algorithm has succeeded in finding a match, or a mismatch is detected at
some character s[k— h] after matching the last h characters of the pattern:

p[\] ...p[m-h] . . . p[m]
s[k-m + l] . . . s[k-h] . . . s[k] . .. s[n]

. t
mismatch

In the second case, it is necessary to shift the pattern down, ideally by as much as
possible, and to resume matching at the next plausible position for matching.
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Observation 3
If the character s[k—h], which caused the mismatch, occurs in the pattern, the pattern

can now be slid down by, say, g positions so as to align the two known occurrences of the
character s[k—h]. Then the character in the string which is aligned with the last
character in the pattern will be compared:

p[m-h-g] . . . p[m-g] . . . p[m]
s[l] . . . . s[k-h] ...s[k] ...s[k+g]....s[n]

resume matching

(s[k—h] and p\m—h— g] are identical).
Thus our attention is shifted down the string by g + h positions. The distance g by

which the pattern can be slid depends on where the character s[k—h] occurs in the
pattern. If the rightmost occurrence of the character corresponding to s[k—h] in the
pattern is to the right of the mismatched character (e.g. it occurs in that part of the
pattern which has already been scanned) then by definition the pattern would have to be
moved backwards to align the two known occurrences of the character corresponding to
s[k—h]. This is obviously to be avoided and thus the pattern is slid down by £=1
positions (this is always sound). Thus our attention to the text string is shifted down by
1 + h positions. Applying this to the above example (£=1):

. . . /> [m- l ] p[m]
s [ k - h ] . . . s[k] s[k + l] . . . s [ n ]

t
On the other hand, if the rightmost occurrence of the character equivalent to s[k—h] in
the pattern is to the left of the mismatch, then we can slide forward by g = r — h
positions, where r comes from observations 1 and 2, to align the two known occurrences
of the character causing the mismatch.

Thus observation 3 is concerned with shifting the pattern after mismatch has occurred
at a character char, say, to align the two known occurrences of char in the pattern and
string and then to resume matching from the rightmost end of the pattern with the
corresponding character in the string.

This can be improved upon by considering not only the known (multiple) occurrences
of a single character but also known occurrences of substrings of the text string in the
pattern:

Observation 4
Having matched the last h characters of the pattern and reached a mismatch:

p[l] ...p[m-h]...p[m]

. . . s[k-m+l] . . . s[k-h] . .. s[k] . . . s[n]

mismatch

Then, by definition it is known that the final h characters of the pattern match with the
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next h characters of the text string (in left to right reading order). The last h characters
of the pattern can be treated as a subpattern,

subpatt = p[m~h + l] . . . p[m] , length h

This occurrence of subpatt in the text string is preceded by a character, here s[k— h]>
which is different from that character preceding the terminal occurrence of subpatt in the
pattern, here p[m—h]. Then, by using roughly similar reasoning to that used in
conjunction with observation 3, the next-to-last (rightmost) occurrence of subpatt can be
located, if it exists, in the pattern. The pattern can then be slid down by some amount,
gj say, so as to align this rightmost occurrence of the subpattern in the pattern which is
not preceded by the character char, which caused the mismatch, with its terminal
occurrence in the pattern s[k-h] . . . s[k]. Thus:

p[l] . .. p[m-h-g] . . . p[m-g] . . . p[m]
s[k+g-m+l] . . . s[k-h] ... s[k] .. . s[k+g] . . . s[n]

resume matching

This reoccurrence of subpatt in the pattern is known as a plausible reoccurrence. Thus
now the character pointer to the string can be incremented by an amount g + /*, so it will
align the last character p[tri] of the pattern in the new patterns position, ready for the
next character comparison.

More precisely if the last h characters of the pattern have been matched before finding
a mismatch, then the pattern can be moved down by g characters, where g is based on
the position in the pattern of the rightmost plausible occurrence of the terminal
substring of the pattern having h characters. After sliding down by g positions, the
characters of the text string aligned with the last character of the pattern are compared.
Thus in actuality we are moving down the string by h + g characters, which allows for
the h matched characters before the mismatch occurred. This distance is called /?, and is
defined as a function of the position j in the pattern at which mismatch occurred, g is
simply the distance between the terminal occurrence of the subpattern and its rightmost
plausible reoccurrence (if it exists) and is always greater than or equal to 1. h is simply
the length of the pattern minus the index position at which mismatch occurred, i.e. that
number of characters which have been matched before a mismatch occurs.

Quite simply by observation 4 the pattern is shifted to the right so that the known
occurrences of a subpattern occurring both in the string and (at least twice) in the
pattern can be aligned. Scanning is then resumed from the far right of the pattern.

Thus if the final h characters of the pattern have been matched before failing at
p[m-~h] then we wish to slide the pattern to the right by an appropriate amount, and to
increment the string pointer by \+h or r(string[& — h]) or /?(/), whichever allows the
largest shift (and therefore decreases the number of comparisons required). Matching
can then be resumed with the last character of the pattern and the corresponding string
character. By definition of R (= h + g) it is obvious that R(j) is always greater than or
equal to 1 + hy g ^ 1. Therefore the string pointer can simply be incremented by the
maximum of the two shifts r and R.
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Worked example
Consider the following example; it is used to illustrate how the preceding observations

can be used to decrease (in the general case) the number of direct character compari-
sons :

pattern : AT-THAT

Str ing : WHICT-FIttoLLY-HALTS.—AT-THAT-POINT
t

mismatch

When the action of pattern matching is started the seventh character of the string, F, is
compared with the last character of the pattern and fails. Since F is known not to appear
anywhere in the pattern, by appealing to observation 1 the string pointer can be
automatically incremented by 7:

pat tern i AT-THAT

Str ing i WHICT-FINALLY-HALTS. —AT-THAT-POINT
t

mismatch

The next comparison is of the hyphen in the string with the T in the pattern. They
mismatch and by appealing to observation 2 the pattern can be moved down 4 positions
to align the two hyphens. Scanning is then resumed from the right end of the pattern,
comparing it directly with the corresponding string character directly below the pattern:

pat t ern : AT-THAT

Str ing : WHICH-FINALLY-HALTS. —AT-THAT-POINT
t

The characters match and so the pointer is moved backwards through both the string
and pattern character arrays:

pattern j AT-THAT

String : WHICH-FINALLY-HALTS.— AT-THAT-POINT
t

mismatch

A mismatch is detected and by observation 3 the string pointer can be moved to the right
by 7 positions, since the character causing the mismatch, L, does not occur anywhere in
the pattern:

pattern t AT-THAT

string : WHICH-FINALLY-HALTS. —AT-THAT-POINT
t
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Again the corresponding characters of the string and pattern match, so the string pointer
is moved backwards. The previous character in the text string matches with its
corresponding character in the pattern and so the pointer is moved back again :

pattern : AT-THAT

String : WHICH-FINALLY-HALTS.—AT-THAT-POINT
t

mismatch

A mismatch is detected again and by now appealing to observation 4 the text pointer can
be moved to the right by 7 places, so as to align the discovered substring AT with the
beginning of the pattern:

pattern : AT-THAT

String : WHICH-FINALLY-HALTS.— AT-THAT-POINT
t

Scanning is now resumed, the characters are successfully compared and both the string
and pattern pointers are decremented and the whole pattern is worked through character
by character. Here it can be seen that each character in the pattern matches the
corresponding character in the string and so the pattern has been found.

It is important to note that only 14 references to the text string were made, and of
these 7 were required to confirm the actual match. The other 7 comparisons allowed the
movement past the first 22 characters of the string, e.g. those preceding the first
occurrence of the pattern.

A brief outline of the algorithm can now be sketched:

j = k = patlen;
repeat

while not end of pattern or string
if pattern[jl = string[k]

J ""/ * r

else
k = k + max(r(string[k]),R(j));
j = patlen;

endif
endwhile

until string found or EOF

The implementation of algorithm 3 depends on the existence of two precomputed
vectors which determine the values of r and R, the failure jumps. A more rigorous
definition of the two string pointer incrementing functions can now be made.

The vector for the r values has an entry for each character in the alphabet being used,
its entry is denoted for r(char) where char is some valid character. The precise definition
is

r(char) = {s (s=patlen) or
( 0<=s<patlen and pattern[patlen~s] = char) }
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If char does not occur in the pattern than r is the pattern length, otherwise it is the
pattern length minus j , where j is the maximum integer such that pattem[j] = char.

This vector is derivable from observations 1 and 2. Assuming that g is the alphabet
size the preprocessing for r requires an array of size q. The implementation sets up the
vector in a linear scan (right to left) through the pattern. Thus the preprocessing for r is
linear in patlen plus the size of the alphabet, O(q+m).

The second vector, for the R values, has as many entries as there are character
positions in the pattern.

To define R(j) precisely it is necessary to define the rightmost plausible reoccurrence of
a terminal substring of the pattern. The following conventions are used : $ is a character
that does not occur in the pattern and if i<0 then pattem[i] is $. Two sequences of
characters c[0. .n] and d[o. .n] 'unify' if for all i from 0 to n either c[i]=d[i] or c[i]=$ or
d[i]=$. The position of the rightmost plausible reoccurrence of the terminal substring,
rpr(j), which starts at position j+1 is defined to be the greatest k less than or equal to
patlen such that (pattem[j-t~1] .. pattern[patlen]) and (pattern[k]..pattern[k+patlen-j-1])
unify and either k<=0 or pattern[k-1]=£pattern[j], i.e. the position of rpr(j) is the
rightmost place where subpatt occurs in the pattern and is not preceded by the character,
pattern[j], which precedes its terminal occurrence. This position may be beyond the left
end of the pattern, and consequently rpr(j) may be negative.

Thus the distance the pattern must be slid down to align the discovered substring
(starting at j+1) with its rightmost plausible reoccurrence is j+1—rpr(j).

The pointer into the string must then be aligned with the last character in the pattern,
i.e. moved patlen-j. Thus R(j), which is the sum of these two values, is defined as

R(j) = patlen + 1 - rpr(j)

In Reference 1 Knuth shows that there is an algorithm for setting up the vector for the R
values in time linear in patlen, that is O(m).

Example
pattern
r
R

b
1

19

a
0
18

d
8
17

b
1

16

a
0
15

patlen =

c
2
8

11

b
1

13

a
0
12

c
2
8

b
1
12

a
0
1

In Reference 1 Knuth has also proved that the execution of the Boyer-Moore algorithm
in the worst case is linear: O(n+m), assuming the availability of array space linear in
patlen plus the size of the alphabet. More specifically he shows that in order to discover
that the pattern does not occur in the first p characters of the string a maximum of bp
characters from the string are matched with characters in the pattern.

In the average case, however, the algorithm is expected to behave sublinearly, that is
the expected value of the number of inspected characters in the string is c*(i+patlen),
where i is the index position of the leftmost character in the first occurrence of the
pattern in the string, and c<1. By using the two precomputed vectors, which depend on
the statistical properties of the characters in the pattern and the string, on average, not
all the string characters preceding the first occurrence of the pattern in the string need to
be inspected; the earlier worked example illustrates this.

60



Summarizing, the expected theoretical behaviour of algorithm 3 is sublinear,
<O(n+m), whereas the theoretical worst case behaviour is linear, O(n+m). A further
modification to this algorithm is described in the paper by Galil.4

Algorithm 4
This is an algorithm developed by R. M. Karp and O. M. Rabin. It is a brute-force

approach to pattern matching which uses a large memory to advantage by treating each
possible m-character section of the text string as a key in a standard hash table. In the
actual implementation m is the length of the pattern being searched for. It does not use
up as much memory as at first thought because it is not necessary to keep a whole hash
table in memory, the problem being set up in such a way that only one key is being
sought, that of the pattern. Thus all that is required is that the hash function of each
possible m-character section of the text is in turn calculated and this is compared with
the hash function of the pattern. This algorithm therefore really only finds the first
m-character section in the text which has the same value as that of the pattern, so for
preciseness, a direct comparison of that section of text and the pattern has then to be
made.

On first thought it seems just as hard to compute the hash function for each
m-character section from the text as it does to check to see if each character in the pattern
is the same as in the text (algorithm 1). Rabin and Karp solved this problem by taking
advantage of a fundamental mathematical property of the mod operation when using the
hash function:

h(k) = k mod q

where k is the key to be hashed and q is the table size.
They based their method on computing the hash function for position i in the text

string, given its hash value for position i — l. To facilitate the application of the hash
function on an m-character section of text, each section was transformed into an integer
key upon which the hashing function could then be performed. This was achieved by
writing the characters as numerals in a base d number system, where d is the number of
possible characters. Thus the numeral x corresponding to the m-character section
string [i] ... string [i+m—1] is

x = string[i] X d"'"1 + string[/ + l] x <T~2 + . . . + string[/+m-l]

This is derived by using the same method as with any numeric system; consider the
representation of the number 345 in base 10. This is equivalent to

x = 3 x 102 + 4 x 101 + 5

Shifting by one position right in the text string, i.e. taking the section string [z + 1] . . -
string [z+m], the value of x becomes

x = string[i+l] X d'"*"1 + string[i+2] X d'"~z + . . . + string[i+m]
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which is equivalent to replacing x by

(x - string))] x d"'~{) x d + string[i+w]

Proof
((string[f) X d"l~x + . . . + string[/+m-l]) - string[i] x d"~l) x d
+ string [i+m]

= (string[« + l] X d"1"1 + . . . + string[i+m-l]) X d + string[/+m]

= string [i + l] x dT~x + . . . + string [i+m]

A fundamental property of the mod operation is that it can be performed at any time
during the above operation and the result will still be the same; if we take the remainder
when divided by q after each arithmetic operation then we arrive at the same answer that
we would get if all the operations were to be performed and then the remainder when
divided by q taken. Thus, assuming that the original value of h(x) = x mod q is already
known, then by shifting one position right in the text the new hashed value can easily be
computed using the above property.

Algorithm 4 can now be outlined:

dm=1; h1=0; h2=0;
for i=0 .. patlen-2

dm = (d*dm) mod q
for i=0 .. patlen-1

hi = (h1*d + rk(pattern[i])) mod q
for i=0 .. patlen-1

h2 = (h2*d + rk(string[i])) mod q
i=0;
while not at end of string and hi !=h2

h2 = (h2+d*q - rk(string[i])*dm) mod q
h2 = (h2*d + rk(string[i])) mod q
i+ + ;

endwhile

rk(char) is a function which returns a unique integer for each character in the specified
alphabet.

The algorithm first computes a hash value, hi, for the pattern and a hash value, h2,
for the first m-character section of the text string and also the computed value d"'~{ mod
q in the variable dm. Then the hashed value of each m-character section starting a
position i for all possible values of i is computed, taking advantage of the associativity of
the mod operation. Each new hash value of h2 is in turn compared with hi. If hi and h2
have the same values, then the characters are directly compared, as a final check.

The table size q is chosen to be a very large prime, so that synonyms, that is keys
which hash to the same value, can be avoided, but it is small enough so that overflow
does not occur.

Intuitively the major drawback of this algorithm is that the computation of the hashed

62



values of the ra-character text string sections is quite expensive in terms of machine
cycles—each value requires three multiplications, and so this investigation aims to show
how its actual performance compares with the other three algorithms. The major
advantage of this method is that it can easily be extended to image processing. It
facilitates 'pattern matching5 in two-dimensional patterns and text, which the other
algorithms do not, and thus can be used in the field of computer graphics and pattern
recognition.

In the very worst case, where each m-character section produces the same hash value,
the algorithm would take O(nm) steps, but because such a large value of q is used with
the mod operations in the hashing functions the likelihood of a collision occurring is
expected to be very small. Thus in the majority, if not all, of cases where there are no
synonyms for the hashed value of the pattern except an identical m-character section, the
number of hashing operations performed is obviously linear, and thus algorithm 4 is
O(m+n).

TESTING

The four algorithms were tested on various types of test data, with patterns of length 2 to
14. Each separate experiment consisted of finding the first occurrence of the pattern in
the text string. Because it was intuitively thought that the performances of the
algorithms depended upon the statistical properties of the pattern and the source string
from which the test patterns were obtained, experiments were performed on five
different source strings, each of length 32,000.

1. Binary strings
The first source string consisted of a random sequence of 0s and Is. A program was

written to randomly generate sequences of binary digits. As the program is called with
an integer argument specifying the number of characters to be produced, this program
was used to generate both the source string and the patterns.

2. Technical English
The second source string consisted of a piece of technical English from an on-line

manual. The patterns were chosen at random from the manual, not all of them occurring
in the test file.

3,4. Random text
The third and fourth source strings consisted of random text from a given character

set. A program was written to produce output text in which each character from a given
character set has an equally likely chance of occurring. The program takes two
arguments, the first specifies the number of characters to be produced, the second
specifies the number of distinct characters allowable, the alphabet size. This program
was also used to produce both the patterns and the source string.

For the experiments the third source string consisted of characters from a 15 character
alphabet, and the fourth source string from a 35 character alphabet.

The range 0-32,767 (the maximum number of 16 bit integer quantities) was divided
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into a number of bands equal to the alphabet size; the text was then produced by
supplying a unique seed to the system random number generator and the random
numbers produced were divided by the number of bands. This was added to a base and,
using ASCII codes, a random character was produced.

5. Pseudo-English text
The fifth source string consisted of characters that occur in the same frequency as they

do in the English language. A program was written that took as input any specified text
file, read it and computed the relative frequencies of each letter occuring in that file.
These frequencies were then converted into probabilities, and characters were produced
in a similar fashion to the above method. The relative frequencies of punctuation marks
as well as letters are taken into account with this method. The limitation of this method
to produce text is that the resulting text strings are only as 'English-like1 as the input
file supplied to the program. This program was used to produce both the source string
and the patterns.

Measures of comparison
Each experiment consisted of finding the first occurrence (or non-occurrence) of the

pattern in the source string. The pattern lengths were varied from 2 to 14, and five
different source files were used. From each experiment the following variables were
noted:

(a) the pattern length
(b) the number of comparisons made
(c) the alphabet size from which the strings arose
(d) the index position of the pattern in the string
(e) the user time for the execution of each experiment.

Once the above measures had been collected, the problem of how to compare the
performances of the algorithms arose. An independent measure was needed so that the
performances could be compared fairly.

The first measure of comparison used was one of those suggested by Boyer and
Moore,2 the number of references made to the text string. To ensure that the measure
was independent of the particular implementation of the algorithm concerned, the
number of references to the string was divided by the number of characters occurring
before the pattern (the index position of the pattern minus one) thus obtaining the
number of inspected characters in the text string per character passed. These measures
were then averaged for each pattern length over all the samples, for each source string in
turn. These results are represented graphically (Figures 1-5).

The second measure of comparison was the actual time spent on execution of the
algorithm. A system utility was used to measure the real time, the time spent in the
system (e.g. executing system calls such as open or close a file etc.) and the time spent in
execution of the command (user time). The CPU times are accurate to l/60th of a
second. As the programs were identical except for the actual code used to pattern match
and the same set of patterns and source files were used with all the different algorithms it
was deemed reasonable to allow a comparison on the user time. As with the first measure
each separate experiment was timed and then averaged for each pattern length over each
source string. These results are also represented graphically (Figure 6-10).
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Results
The two measures as described were then used to compare the relative performances

of the algorithms.
To illustrate the comparative performance for each source string two graphs were

drawn. The first plotted the average number of inspected characters in the text string
per character passed against the pattern length. The second plotted the average user
time for each algorithm against the pattern length.

Additional graphs plotting the number of references per character passed against each
pattern length for each source string using algorithms 1 and 3 are also given (Figures 11
and 12).

DISCUSSION OF RESULTS

Referring to the graphs plotting the average number of references to the text string per
character passed against the pattern length (Figures 1-5), it can be seen that algorithms
2 and 4 reference the string precisely one time per character passed. This corresponds
exactly to their predicted behaviour, and as such they both act as standards to which
algorithms 1 and 3 can be compared.

Algorithm 1 references the text string approximately 1 • 1 times per character passed if
the source string is derived from either random text (both 15 and 35 character alphabets)
or English (pseudo or technical). However it can be seen that this measure tends to
increase if the source string and patterns are obtained from a binary alphabet. For
patterns of length greater than six, from the empirical evidence, the average number of
references to the string per character passed is approximately 2, double the number
made by algorithms 2 and 4. This shows the inefficiency of algorithm 1. It occurs
because the probability of an initial substring of the pattern occurring in the text is much
greater with a two character alphabet than when using a larger alphabet, and so false
starts occur.

The number of references per character passed when using algorithm 3 can be seen to
be less than 1. For example, for a pattern of length 5 from technical English text, the
algorithm typically inspects approximately 0-26 characters for every character passed.
That is, for every reference to the text string the algorithm skips over about 4 characters,
or equivalently algorithm 3 inspects only about a quarter of the characters it passes when
searching for a pattern of length 5.

If a binary alphabet is used then it can be seen from the empirical evidence that
algorithm 3 needs to inspect about 0-84 characters for every character passed, i.e. it
needs to inspect three to four times as many characters to find a match as with English
text.

It should also be noted that the number of references per character drops as the
pattern length increases. The results support the theory that algorithm 3 is sublinear in
the number of references to the string.

The reason why the number of references per character passed decreases more slowly
as the pattern length increases is that for longer patterns the probability is higher that the
character just fetched occurs somewhere in the pattern, and therefore the distance the
pattern can be moved forward (if a mismatch occurs) is shortened.

It is also interesting to note that when using algorithm 3 the average number of
references per character string passed when a binary alphabet is used is significantly
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higher by a factor of about 4 or 5 than with any other source string for patterns greater
than length 5.

In all cases it can be seen that algorithm 3 is much more efficient in terms of direct
character comparisons than any of the other three algorithms.

Referring to the graphs plotting the average user time (Figures 6—10), i.e. time spent
in execution of the actual code used to implement the algorithm, against the pattern
length, it is immediately noticeable that in all cases algorithm 4 takes substantially more
time to execute than any of the other three algorithms. This observation agrees with the
intuitively expected behaviour—that the computation of the hash values is computa-
tionally expensive in terms of machine cycles and so increases the running time of the
algorithm. It is clear from looking at the running times that algorithm 4 is not a feasible
option if offered a choice of all the algorithms.

It can also be seen that algorithm 1 takes more time than either algorithm 2 or 3, on
the whole, for any type of source string.

The comparative increase in the running time of algorithm 3 relative to algorithm 2 on
binary strings is explained by the fact that since R (the failure vector concerned with
subpatterns) predominates in the binary alphabet and sets up alignments of the pattern
and the string, the algorithm backs up over longer terminal substrings of the pattern
before finding mismatches. This is because there is a higher probability of subpatterns
occurring in the text string.

Thus it can be seen that in the majority of cases, except when using either binary
strings or small patterns, algorithm 3 has a faster running time than any of the other
three algorithms.

Nothing can be deduced from the absolute shapes of the lines on the user time graph.
Information can only be derived from the relative positions of the curves for each
algorithm at each pattern length. This is because the patterns were chosen at random
and obviously the user time is related to how far into the text the pattern occurs. The
times for all the four algorithms can be compared at each pattern length because the
same source string and set of patterns were used with each algorithm. The times, which
are accurate to l/60th of a second, also include any time spent preprocessing the pattern,
as with algorithms 2 and 3.

CONCLUSIONS

The results show that both the pattern length and the alphabet size from which the
strings are taken play an important part when considering which algorithm to use.

From the empirical evidence it can be concluded that algorithm 2 should be used with
a binary alphabet or with small patterns drawn from any other alphabet. Algorithm 3
should be used in all other cases. It may not be advisable, however, to use algorithm 3 if
the expected penetration at which the pattern will be found is small, since the
preprocessing time becomes significant; similarly with algorithm 2, and so algorithm 1
would be better in this situation.

It would also be unadvisable to use algorithm 3 if the string matching problem to be
solved is more complicated than finding the first occurrence of a single p ttern. For
instance if the problem is to find the first of several possible patterns or to identify a
location in the text string defined by a regular expression. This is also because the
preprocessing time would be significant.

In no case was algorithm 1 more efficient in terms of either character comparisons
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made or running time compared to algorithms 2 and 3. This shows that the computa-
tional effort required by algorithms 2 and 3 to preprocess the pattern is justified by an
increase in performance.

Although algorithm 4 is linear in the number of references to the text string per
character passed the substantially higher running time of this algorithm does not make it
a feasible option when considering pattern matching in strings. The advantage of this
algorithm over the other three lies in its extension to two-dimensional pattern matching.
It can be used for pattern recognition and image processing and thus in the expanding
field of computer graphics.
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