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Background

The use of chiral auxiliaries in the synthesis of enantiomerically pure compounds
has found wide application for a variety of reactions over the last three decades.
Despite the extensive developments in this area by many academic and industrial
research groups, new auxiliary controlled reactions continue to evolve frequently
[1]. First objectives in this area have been to develop chiral enolate-derived reac-
tions, wherein the chiral auxiliary (X.) is both readily available and easily recov-
ered after the desired bond construction has been achieved (Scheme 1).
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Scheme 1 Diastereoselective synthesis with chiral auxiliaries.

Generally, the major issues which have to be addressed in the development of
diastereoselective transformations using chiral auxiliaries are threefold in nature.
Subsequent to a facile introduction, the chiral auxiliary X, must provide a strong
predisposition for a highly selective enolization process; it must provide a strong
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Figure 1 Selected chiral auxiliaries which have been successfully applied in asymmetric
synthesis.

bias for enolate diastereoface selection in the new bond construction; and its non-
destructive and mild cleavage must occur without racemization of the desired
products. Today an arsenal of chiral auxiliaries is available meeting the above cri-
teria in full or in part. Of the numerous chiral auxiliaries that have been devel-
oped over the past years some of the effectively applied auxiliaries are shown
in Fig. 1. The majority of chiral auxiliaries are derived from inexpensive, chiral
natural sources and most of the diastereoselective reactions reported proceed
with high levels of diastereoselection. The most widely employed auxiliary con-
trolled reactions are the asymmetric alkylations, aldol and Diels-Alder reactions.

Results
From the numerous auxiliary controlled reactions reported, a notable early exam-
ple of an effective diastereoselective alkylation and Diels-Alder reaction has been
developed by the Helmchen group, using the concave camphor-derived chiral aux-
iliaries 1 and 2 (Scheme 2) [2]. In this asymmetric alkylation procedure, a selective
deprotonation leads to the corresponding E- or Z- ester enolate, which upon reac-
tion with an alkyl halide and subsequent reduction results in enantiopure pure
alcohols, valuable chiral building blocks and synthons for the synthesis of natural
products. Remarkably, both diastereomers can be selectively obtained starting
from the same chiral camphor derivative by simply changing the solvent.

One of the most utilized type of auxiliaries is the class of chiral oxazolidinones
1, initially developed in the Evans group [3]. These chiral imides have been ap-
plied to a wide range of asymmetric transformations and the methodology devel-
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Oxazolidinones of type 1, which were initially developed for an efficient asym-
metric C—C bond construction in the synthesis of several polyketide-derived nat-
ural products, have proved to be a gold standard and have continually been em-
ployed by the Evans group and numerous other groups over the last 20 years.

The first asymmetric reactions involving these chiral enolate synthons were the
aldol and alkylation reactions. In these reactions selective enolization to form the Z-
enolates (Z:E > 100) were achieved using either lithium and sodium amide bases
or dibutylboryl trifluorosulfonate. Subsequent alkylation or aldol reaction of the
corresponding metal enolates resulted in the products with highest levels of asym-
metric induction (Scheme 3). Based on these seminal observations many other
reactions employing chiral oxazolidinones have been reported over the years

and the application will continue to be of great importance in the future [4].
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Scheme 3 Initial asymmetric alkylation, aldol and Diels-Alder reactions.

The original reports on the asymmetric aldol reactions mediated by boron or
titanium resulted in the syn aldol product with very high diastereoselectivity.
More recent studies by the Evans group have demonstrated an extension of the
aldol process, which employs the same oxazolidinone 1 or the thiazolidine thione
2, in the presence of catalytic amounts of magnesium salts, forming the anti aldol
products, which were previously more difficult to access (Scheme 4) [5].

The significant cost effectiveness and facile scale-up of these magnesium halide
catalyzed anti aldol reactions render them valuable methods for the preparation of
various chiral building blocks and biologically important compounds, especially
as all four diastereoisomers can be prepared from a single isomer of the auxiliary.
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Scheme 4  Catalytic diastereoselective anti-aldol reactions.

The application of aldol reactions in natural product synthesis has recently been
highlighted in the synthesis of FR-182877 by Evans, where all stereochemical re-
lationships in the target structure were obtained from chiral oxazolidinone auxili-
ary controlled aldol reactions. Similar to the syntheses of himachalene [6] and
phomoidride B [7], the asymmetric aldol reaction was the fundamental step for
the construction of the key fragments of FR-182877, which were then united
via a Suzuki coupling, followed by macrolactonization and oxidation. A subse-
quent Diels-Alder-Hetero-Diels-Alder reaction cascade culminated in the synth-
esis of hexacyclic FR-182877 (Scheme 5) [8].
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Scheme 5  Synthesis of FR-182877 using the auxiliary controlled aldol reactions
and a Diels-Alder reaction cascade.
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Summary

Asymmetric reactions employing chiral auxiliaries have experienced a remarkable
progress over the past decades. Recent results from our groups, as well as many
others, demonstrate that auxiliary-controlled reactions are still essential tools in
the construction of complex molecular targets. The ready availability of the start-
ing materials, the facile and versatile cleavage, as well as the applicability and re-
liability in a variety of stereoselective transformations, allows chiral auxiliaries to
endure today as excellent synthetic intermediates in asymmetric synthesis.
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