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1.1 INTRODUCTION

In this chapter the vibration of a single-degree-of-freedom system will be analyzed and
reviewed. Analysis, measurement, design, and control of a single-degree-of-freedom system
(often abbreviated SDOF) is discussed. The concepts developed in this chapter constitute an
introductory review of vibrations and serve as an introduction for extending these concepts
to more complex systems in later chapters. In addition, basic ideas relating to measurement
and control of vibrations are introduced that will later be extended to multiple-degree-
of-freedom systems and distributed-parameter systems. This chapter is intended to be a
review of vibration basics and an introduction to a more formal and general analysis for
more complicated models in the following chapters.

Vibration technology has grown and taken on a more interdisciplinary nature. This has
been caused by more demanding performance criteria and design specifications for all types
of machines and structures. Hence, in addition to the standard material usually found in
introductory chapters of vibration and structural dynamics texts, several topics from control
theory and vibration measurement theory are presented. This material is included not to
train the reader in control methods (the interested student should study control and system
theory texts) but rather to point out some useful connections between vibration and control
as related disciplines. In addition, structural control has become an important discipline
requiring the coalescence of vibration and control topics. A brief introduction to nonlinear
SDOF systems and numerical simulation is also presented.

1.2 SPRING–MASS SYSTEM

Simple harmonic motion, or oscillation, is exhibited by structures that have elastic restoring
forces. Such systems can be modeled, in some situations, by a spring–mass schematic, as
illustrated in Figure 1.1. This constitutes the most basic vibration model of a structure and can
be used successfully to describe a surprising number of devices, machines, and structures.
The methods presented here for solving such a simple mathematical model may seem to be
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Figure 1.1 (a) Spring–mass schematic, (b) free body diagram, and (c) free body diagram of the static
spring–mass system.

more sophisticated than the problem requires. However, the purpose of the analysis is to lay
the groundwork for the analysis in the following chapters of more complex systems.

If x = x�t� denotes the displacement (m) of the mass m (kg) from its equilibrium position
as a function of time t (s), the equation of motion for this system becomes [upon summing
forces in Figure 1.1(b)]

mẍ + k�x + xs� − mg = 0

where k is the stiffness of the spring (N/m), xs is the static deflection (m) of the spring
under gravity load, g is the acceleration due to gravity (m/s2), and the overdots denote
differentiation with respect to time. (A discussion of dimensions appears in Appendix A, and
it is assumed here that the reader understands the importance of using consistent units.) From
summing forces in the free body diagram for the static deflection of the spring [Figure 1.1(c)],
mg = kxs and the above equation of motion becomes

mẍ�t� + kx�t� = 0 (1.1)

This last expression is the equation of motion of a single-degree-of-freedom system and is
a linear, second-order, ordinary differential equation with constant coefficients.

Figure 1.2 indicates a simple experiment for determining the spring stiffness by adding
known amounts of mass to a spring and measuring the resulting static deflection, xs. The
results of this static experiment can be plotted as force (mass times acceleration) versus xs,
the slope yielding the value of k for the linear portion of the plot. This is illustrated in
Figure 1.3.

Once m and k are determined from static experiments, Equation (1.1) can be solved to
yield the time history of the position of the mass m, given the initial position and velocity
of the mass. The form of the solution of Equation (1.1) is found from substitution of an
assumed periodic motion (from experience watching vibrating systems) of the form

x�t� = A sin��nt + �� (1.2)

where �n = √
k/m is the natural frequency (rad/s). Here, the amplitude, A, and the phase

shift, �, are constants of integration determined by the initial conditions.
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Figure 1.2 Measurement of the spring constant.
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Figure 1.3 Determination of the spring constant.

The existence of a unique solution for Equation (1.1) with two specific initial conditions is
well known and is given by, for instance, Boyce and DiPrima (2000). Hence, if a solution of
the form of Equation (1.2) form is guessed and it works, then it is the solution. Fortunately,
in this case the mathematics, physics, and observation all agree.

To proceed, if x0 is the specified initial displacement from equilibrium of mass m, and v0 is
its specified initial velocity, simple substitution allows the constants A and � to be evaluated.
The unique solution is

x�t� =
√

�2
nx

2
0 + v2

0

�2
n

sin
[
�nt + tan−1

(
�nx0

v0

)]
(1.3)
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Alternatively, x�t� can be written as

x�t� = v0

�n

sin �nt + x0 cos �nt (1.4)

by using a simple trigonometric identity.
A purely mathematical approach to the solution of Equation (1.1) is to assume a solution

of the form x�t� = A e�t and solve for �, i.e.,

m�2e�t + ke�t = 0

This implies that (because e�t �= 0, and A �= 0)

�2 +
(

k

m

)
= 0

or that

� = ±j

(
k

m

)1/2

= ±�nj

where j = �−1�1/2. Then the general solution becomes

x�t� = A1 e−�njt + A2 e�njt (1.5)

where A1 and A2 are arbitrary complex conjugate constants of integration to be determined
by the initial conditions. Use of Euler’s formulae then yields Equations (1.2) and (1.4) (see,
for instance, Inman, 2001). For more complicated systems, the exponential approach is often
more appropriate than first guessing the form (sinusoid) of the solution from watching the
motion.

Another mathematical comment is in order. Equation (1.1) and its solution are valid only
as long as the spring is linear. If the spring is stretched too far, or too much force is applied
to it, the curve in Figure 1.3 will no longer be linear. Then Equation (1.1) will be nonlinear
(see Section 1.8). For now, it suffices to point out that initial conditions and springs should
always be checked to make sure that they fall in the linear region if linear analysis methods
are going to be used.

1.3 SPRING–MASS–DAMPER SYSTEM

Most systems will not oscillate indefinitely when disturbed, as indicated by the solution in
Equation (1.3). Typically, the periodic motion dies down after some time. The easiest way
to treat this mathematically is to introduce a velocity based force term, cẋ, into Equation
(1.1) and examine the equation

mẍ + cẋ + kx = 0 (1.6)
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Figure 1.4 (a) Schematic of the spring–mass–damper system and (b) free body diagram of the system
in part (a).

This also happens physically with the addition of a dashpot or damper to dissipate energy,
as illustrated in Figure 1.4.

Equation (1.6) agrees with summing forces in Figure 1.4 if the dashpot exerts a dissipative
force proportional to velocity on the mass m. Unfortunately, the constant of proportionality, c,
cannot be measured by static methods as m and k are. In addition, many structures dissipate
energy in forms not proportional to velocity. The constant of proportionality c is given in
N s/m or kg/s in terms of fundamental units.

Again, the unique solution of Equation (1.6) can be found for specified initial conditions
by assuming that x�t� is of the form

x�t� = A e�t

and substituting this into Equation (1.6) to yield

A

(
�2 + c

m
� + k

m

)
e�t = 0 (1.7)

Since a trivial solution is not desired, A �= 0, and since e�t is never zero, Equation (1.7)
yields

�2 + c

m
� + k

m
= 0 (1.8)

Equation (1.8) is called the characteristic equation of Equation (1.6). Using simple algebra,
the two solutions for � are

�1�2 = − c

2m
± 1

2

√
c2

m2
− 4

k

m
(1.9)

The quantity under the radical is called the discriminant and, together with the sign of m�c,
and k, determines whether or not the roots are complex or real. Physically, m�c, and k are
all positive in this case, so the value of the discriminant determines the nature of the roots
of Equation (1.8).
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It is convenient to define the dimensionless damping ratio, � , as

� = c

2
√

km

In addition, let the damped natural frequency, �d , be defined (for 0 < � < 1) by

�d = �n

√
1 − �2 (1.10)

Then, Equation (1.6) becomes

ẍ + 2��nẋ + �2
nx = 0 (1.11)

and Equation (1.9) becomes

�1�2 = −��n ± �n

√
�2 − 1 = −��n ± �dj� 0 < � < 1 (1.12)

Clearly, the value of the damping ratio, � , determines the nature of the solution of
Equation (1.6). There are three cases of interest. The derivation of each case is left as a
problem and can be found in almost any introductory text on vibrations (see, for instance,
Meirovitch, 1986 or Inman, 2001).

Underdamped. This case occurs if the parameters of the system are such that

0 < � < 1

so that the discriminant in Equation (1.12) is negative and the roots form a complex conjugate
pair of values. The solution of Equation (1.11) then becomes

x�t� = e−��nt �A cos �dt + B sin �dt� (1.13)

or

x�t� = Ce−��nt sin ��dt + ��

where A, B, C, and � are constants determined by the specified initial velocity, v0, and
position, x0:

A = x0� C =
√

�v0 + ��nx0�
2 + �x0�d�

2

�d

B = v0 + ��nx0

�d

� � = tan−1

(
x0�d

v0 + ��nx0

)
(1.14)

The underdamped response has the form given in Figure 1.5 and consists of a decaying
oscillation of frequency �d .



SPRING–MASS–DAMPER SYSTEM 7

D
is

pl
ac

em
en

t (
m

m
) 1.0

0.0
10 15

Time 
(sec)

–1.0

Figure 1.5 Response of an underdamped system.

Overdamped. This case occurs if the parameters of the system are such that

� > 1

so that the discriminant in Equation (1.12) is positive and the roots are a pair of negative
real numbers. The solution of Equation (1.11) then becomes

x�t� = A e
(
−�+

√
�2−1

)
�nt + B e

(
−�−

√
�2−1

)
�nt (1.15)

where A and B are again constants determined by v0 and x0. They are

A =
v0 +

(
� +√�2 − 1

)
�nx0

2�n

√
�2 − 1

B = −
v0 +

(
� −√�2 − 1

)
�nx0

2�n

√
�2 − 1

The overdamped response has the form given in Figure 1.6. An overdamped system does
not oscillate, but rather returns to its rest position exponentially.

Critically damped. This case occurs if the parameters of the system are such that

� = 1

so that the discriminant in Equation (1.12) is zero and the roots are a pair of negative real
repeated numbers. The solution of Equation (1.11) then becomes

x�t� = e−�nt 	�v0 + �nx0�t + x0
 (1.16)
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Figure 1.6 Response of an overdamped system.
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Figure 1.7 Response of a critically damped system.

The critically damped response is plotted in Figure 1.7 for various values of the initial
conditions v0 and x0.

It should be noted that critically damped systems can be thought of in several ways. First,
they represent systems with the minimum value of damping rate that yields a nonoscillating
system (Problem 1.5). Critical damping can also be thought of as the case that separates
nonoscillation from oscillation.

1.4 FORCED RESPONSE

The preceding analysis considers the vibration of a device or structure as a result of some
initial disturbance (i.e., v0 and x0). In this section, the vibration of a spring–mass–damper
system subjected to an external force is considered. In particular, the response to harmonic
excitations, impulses, and step forcing functions is examined.
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Figure 1.8 (a) Schematic of the forced spring–mass–damper system assuming no friction on the
surface and (b) free body diagram of the system of part (a).

In many environments, rotating machinery, motors, and so on, cause periodic motions
of structures to induce vibrations into other mechanical devices and structures nearby. It is
common to approximate the driving forces, F�t�, as periodic of the form

F�t� = F0 sin �t

where F0 represents the amplitude of the applied force and � denotes the frequency of the
applied force, or the driving frequency (rad/s). On summing the forces, the equation for the
forced vibration of the system in Figure 1.8 becomes

mẍ + cẋ + kx = F0 sin �t (1.17)

Recall from the discipline of differential equations (Boyce and DiPrima, 2000), that the
solution of Equation (1.17) consists of the sum of the homogeneous solution in Equation (1.5)
and a particular solution. These are usually referred to as the transient response and the
steady state response respectively. Physically, there is motivation to assume that the steady
state response will follow the forcing function. Hence, it is tempting to assume that the
particular solution has the form

xp�t� = X sin��t − �� (1.18)

where X is the steady state amplitude and � is the phase shift at steady state. Mathemati-
cally, the method is referred to as the method of undetermined coefficients. Substitution of
Equation (1.18) into Equation (1.17) yields

X = F0/k√
�1 − m�2/k�2 + �c�/k�2

or

Xk

F0

= 1√
	1 − ��/�n�

2
2 + 	2���/�n�

2

(1.19)
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and

tan � = �c�/k�

1 − m�2/k
= 2���/�n�

1 − ��/�n�
2

(1.20)

where �n = √
k/m as before. Since the system is linear, the sum of two solutions is a

solution, and the total time response for the system of Figure 1.8 for the case 0 < � < 1
becomes

x�t� = e−��nt�A sin �dt + B cos �dt� + X sin��t − �� (1.21)

Here, A and B are constants of integration determined by the initial conditions and the
forcing function (and in general will be different from the values of A and B determined for
the free response).

Examining Equation (1.21), two features are important and immediately obvious. First,
as t becomes larger, the transient response (the first term) becomes very small, and hence
the term steady state response is assigned to the particular solution (the second term). The
second observation is that the coefficient of the steady state response, or particular solution,
becomes large when the excitation frequency is close to the undamped natural frequency,
i.e., �≈�n. This phenomenon is known as resonance and is extremely important in design,
vibration analysis, and testing.

Example 1.4.1

Compute the response of the following system (assuming consistent units):

ẍ�t� + 0�4ẋ�t� + 4x�t� = 1√
2

sin 3t� x�0� = −3√
2

� ẋ�0� = 0

First, solve for the particular solution by using the more convenient form of

xp�t� = X1 sin 3t + X2 cos 3t

rather than the magnitude and phase form, where X1 and X2 are the constants to be determined.
Differentiating xp yields

ẋp�t� = 3X1 cos 3t − 3X2 sin 3t
ẍp�t� = −9X1 sin 3t − 9X2 cos 3t

Substitution of xp and its derivatives into the equation of motion and collecting like terms yield

(
−9X1 − 1�2X2 + 4X1 − 1√

2

)
sin 3t + �−9X2 + 1�2X1 + 4X2� cos 3t = 0
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Since the sine and cosine are independent, the two coefficients in parentheses must vanish, resulting
in two equations in the two unknowns X1 and X2. This solution yields

xp�t� = −0�134 sin 3t − 0�032 cos 3t

Next, consider adding the free response to this. From the problem statement

�n = 2 rad/s� � = 0�4
2�n

= 0�1 < 1� �d = �n

√
1 − �2 = 1�99 rad/s

Thus, the system is underdamped, and the total solution is of the form

x�t� = e−��nt �A sin �dt + B cos �dt� + X1 sin �t + X2 cos �t

Applying the initial conditions requires the following derivative

ẋ�t� = e−��nt ��dA cos �dt − �dB sin �dt� + �X1 cos �t

− �X2 sin �t − ��ne−��nt �A sin �dt + B cos �dt�

The initial conditions yield the constants A and B:

x�0� = B + X2 = −3√
2

⇒ B = −X2 − 3√
2

= −2�089

ẋ�0� = �dA + �X1 − ��nB = 0 ⇒ A = 1
�d

���nB − �X1� = −0�008

Thus the total solution is

x�t� = −e−0�2t �0�008 sin 1�99t + 2�089 cos 1�99t� − 0�134 sin 3t − 0�032 cos 3t

Resonance is generally to be avoided in designing structures, since it means large-amplitude
vibrations, which can cause fatigue failure, discomfort, loud noises, and so on. Occasionally,
the effects of resonance are catastrophic. However, the concept of resonance is also very
useful in testing structures. In fact, the process of modal testing (see Chapter 8) is based
on resonance. Figure 1.9 illustrates how �n and � affect the amplitude at resonance. The
dimensionless quantity Xk/F0 is called the magnification factor and Figure 1.9 is called a
magnification curve or magnitude plot. The maximum value at resonance, called the peak
resonance, and denoted by Mp, can be shown (see, for instance, Inman, 2001) to be related
to the damping ratio by

Mp = 1

2�
√

1 − �2
(1.22)

Also, Figure 1.9 can be used to define the bandwidth (BW) of the structure as the value
of the driving frequency at which the magnitude drops below 70.7% of its zero frequency
value (also said to be the 3 dB down point from the zero frequency point). The bandwidth
can be calculated (Kuo and Golnaraghi, 2003, p. 359) in terms of the damping ratio by

BW = �n

√
�1 − 2�2� +

√
4�4 − 4�2 + 2 (1.23)
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ω/ωn

Figure 1.9 Magnification curves for a single-degree-of-freedom system �r = �/�n�.

Two other quantities are used in discussing the vibration of underdamped structures. They
are the loss factor defined at resonance (only) to be

 = 2� (1.24)

and the Q value, or resonance sharpness factor, given by

Q = 1
2�

= 1


(1.25)

Another common situation focuses on the transient nature of the response, namely the
response of (1.6) to an impulse, to a step function, or to initial conditions. Many mechanical
systems are excited by loads, which act for a very brief time. Such situations are usually
modeled by introducing a fictitious function called the unit impulse function, or the Dirac
delta function. This delta function is defined by the two properties

��t − a� = 0� t �= a∫ �

−�
��t − a� dt = 1 (1.26)

where a is the instant of time at which the impulse is applied. Strictly speaking, the quantity
��t� is not a function; however, it is very useful in quantifying important physical phenomena
of an impulse.

The response of the system of Figure 1.8 for the underdamped case (with a=x0 = v0 = 0)
can be shown to be given by

x�t� =
⎧⎨
⎩

0� t < a
e−��t sin �dt

m�d

� t > a
(1.27)
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Figure 1.10 Step response of a single-degree-of-freedom system.

Note from Equation (1.13) that this corresponds to the transient response of the system to
the initial conditions x0 = 0 and v0 = 1/m. Hence, the impulse response is equivalent to
giving a system at rest an initial velocity of �1/m�. This makes the impulse response, x�t�,
important in discussing the transient response of more complicated systems. The impulse is
also very useful in making vibration measurements, as described in Chapter 8.

Often, design problems are stated in terms of certain specifications based on the response
of the system to step function excitation. The response of the system in Figure 1.8 to a step
function (of magnitude m�2

n for convenience), with initial conditions both set to zero, is
calculated for underdamped systems from

mẍ + cẋ + kx = m�2
n��t�� ��t� =

{
0� t < 0
1� t > 0

(1.28)

to be

x�t� = 1 − e−��nt sin��dt + ��√
1 − �2

(1.29)

where

� = arctan

[√
1 − �2

�

]
(1.30)

A sketch of the response is given in Figure 1.10, along with the labeling of several significant
specifications for the case m = 1��n = 2, and � = 0�2.

In some situations, the steady state response of a structure may be at an acceptable level,
but the transient response may exceed acceptable limits. Hence, one important measure is
the overshoot, labeled OS in Figure 1.10 and defined as the maximum value of the response
minus the steady state value of the response. From Equation (1.29) it can be shown that

OS = xmax�t� − 1 = e−��

/√
1−�2

(1.31)

This occurs at the peak time, tp, which can be shown to be

tp = �

�n

√
1 − �2

(1.32)



14 SINGLE-DEGREE-OF-FREEDOM SYSTEMS

In addition, the period of oscillation, Td , is given by

Td = 2�

�n

√
1 − �2

= 2tp (1.33)

Another useful quantity, which indicates the behavior of the transient response, is the settling
time, ts. This is the time it takes the response to get within ±5% of the steady state response
and remain within ±5%. One approximation of ts is given by (Kuo and Golnaraghi, 2003,
p. 263):

ts = 3�2
�n�

(1.34)

The preceding definitions allow designers and vibration analysts to specify and classify
precisely the nature of the transient response of an underdamped system. They also give
some indication of how to adjust the physical parameters of the system so that the response
has a desired shape.

The response of a system to an impulse may be used to determine the response of an
underdamped system to any input F�t� by defining the impulse response function as

h�t� = 1
m�d

e−��nt sin �dt (1.35)

Then the solution of

mẍ�t� + cẋ�t� + kx�t� = F�t�

can be shown to be

x�t� =
∫ t

0
F���h�t − �� d� = 1

m�d

e−��nt
∫ t

0
F��� e��n� sin �d�t − �� d� (1.36)

for the case of zero initial conditions. This last expression gives an analytical representation
for the response to any driving force that has an integral.

1.5 TRANSFER FUNCTIONS AND FREQUENCY METHODS

The preceding analysis of the response was carried out in the time domain. Current vibra-
tion measurement methodology (Ewins, 2000) as well as much control analysis (Kuo and
Golnaraghi, 2003) often takes place in the frequency domain. Hence, it is worth the effort
to reexamine these calculations using frequency domain methods (a phrase usually asso-
ciated with linear control theory). The frequency domain approach arises naturally from
mathematics (ordinary differential equations) via an alternative method of solving differen-
tial equations, such as Equations (1.17) and (1.28), using the Laplace transform (see, for
instance, Boyce and DiPrima, 2000, Chapter 6).

Taking the Laplace transform of Equation (1.28), assuming both initial conditions to be
zero, yields

X�s� =
[

1
ms2 + cs + k

]
��s� (1.37)
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where X�s� denotes the Laplace transform of x�t�, and ��s� is the Laplace transform of the
right-hand side of Equation (1.28). If the same procedure is applied to Equation (1.17), the
result is

X�s� =
[

1
ms2 + cs + k

]
F0�s� (1.38)

where F0�s� denotes the Laplace transform of F0 sin �t. Note that

G�s� = X�s�

��s�
= X�s�

F0�s�
= 1

ms2 + cs + k
(1.39)

Thus, it appears that the quantity G�s�= 	1/�ms2 +cs+k�
, the ratio of the Laplace transform
of the output (response) to the Laplace transform of the input (applied force) to the system,
characterizes the system (structure) under consideration. This characterization is independent
of the input or driving function. This ratio, G�s�, is defined as the transfer function of this
system in control analysis (or of this structure in vibration analysis). The transfer function
can be used to provide analysis of the vibrational properties of the structure as well as to
provide a means of measuring the dynamic response of the structure.

In control theory, the transfer function of a system is defined in terms of an output to
input ratio, but the use of a transfer function in structural dynamics and vibration testing
implies certain physical properties, depending on whether position, velocity, or acceleration
is considered as the response (output). It is quite common, for instance, to measure the
response of a structure by using an accelerometer. The resultant transfer function is then
s2X�s�/U�s�, where U�s� is the Laplace transform of the input and s2X�s� is the Laplace
transform of the acceleration. This transfer function is called the inertance and its reciprocal
is referred to as the apparent mass. Table 1.1 lists the nomenclature of various transfer
functions. The physical basis for these names can be seen from their graphical representation.

The transfer function representation of a structure is very useful in control theory as well
as in vibration testing. The variable s in the Laplace transform is a complex variable, which
can be further denoted by

s = � + j�d

where the real numbers � and �d denote the real and imaginary parts of s respectively.
Thus, the various transfer functions are also complex valued.

In control theory, the values of s where the denominator of the transfer function G�s�
vanishes are called the poles of the transfer function. A plot of the poles of the compliance
(also called receptance) transfer function for Equation (1.38) in the complex s plane is given

Table 1.1 Various transfer functions.

Response Transfer Inverse transfer
measurement function function

Acceleration Inertance Apparent mass
Velocity Mobility Impedance
Displacement Compliance Dynamic stiffness
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Figure 1.11 Complex s plane of the poles of Equation (1.39).
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Figure 1.12 Block diagram representation of a single-degree-of-freedom system.

in Figure 1.11. The points on the semicircle occur where the denominator of the transfer
function is zero. These values of s�s =−��n ±�dj� are exactly the roots of the characteristic
equation for the structure. The values of the physical parameters m�c� and k determine the
two quantities � and �n, which in turn determine the position of the poles in Figure 1.11.

Another graphical representation of a transfer function useful in control is the block
diagram illustrated in Figure 1.12(a). This diagram is an icon for the definition of a transfer
function. The control terminology for the physical device represented by the transfer function
is the plant, whereas in vibration analysis the plant is usually referred to as the structure.
The block diagram of Figure 1.12(b) is meant exactly to imply the formula

X�s�

U�s�
= 1

ms2 + cs + k
(1.40)

The response of Equation (1.38) to a sinusoidal input (forcing function) motivates a second
description of the transfer function of a structure, called the frequency response function
(often denoted by FRF). The frequency response function is defined as the transfer function
evaluated at s = j�, i.e., G�j��. The significance of the frequency response function follows
from Equation (1.21), namely that the steady state response of a system driven sinusoidally
is a sinusoid of the same frequency with different amplitude and phase. In fact, substitution
of j� into Equation (1.40) yields exactly Equations (1.19) and (1.20) from

X

F0

= �G�j��� =√x2��� + y2��� (1.41)

where �G�j��� indicates the magnitude of the complex frequency response function,

� = tan−1 G�j�� = tan−1

[
y���

x���

]
(1.42)
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indicates the phase of the frequency response function, and

G�j�� = x��� + y���j (1.43)

This mathematically expresses two ways of representing a complex function, as the sum
of its real part 	Re G�j�� = x���
 and its imaginary part 	Im G�j�� = y���
, or by its
magnitude ��G�j���� and phase (�). In more physical terms, the frequency response function
of a structure represents the magnitude and phase shift of its steady state response under
sinusoidal excitation. While Equations (1.17), (1.21), (1.41), and (1.42) verify this for a
single-degree-of-freedom viscously damped structure, it can be shown in general for any
linear time-invariant plant (Melsa and Schultz, 1969, p. 187).

It should also be noted that the frequency response function of a linear system can be
obtained from the transfer function of the system, and vice versa. Hence, the frequency
response function uniquely determines the time response of the structure to any known input.

Graphical representations of the frequency response function form an extensive part of
control analysis and also form the backbone of vibration measurement analysis. Next, three
sets of frequency response function plots that are useful in testing vibrating structures
are examined. The first set of plots consists simply of plotting the imaginary part of the
frequency response function versus the driving frequency and the real part of the frequency
response function versus the driving frequency. These are shown for a damped single-degree-
of-freedom system in Figure 1.13 (the compliance frequency response function for � = 0�01
and �n = 20 rad/s).

The second representation consists of a single plot of the imaginary part of the frequency
response function versus the real part of the frequency response function. This type of plot
is called a Nyquist plot (also called an Argand plane plot) and is used for measuring the
natural frequency and damping in testing methods and for stability analysis in control system
design. The Nyquist plot of the mobility frequency response function of a structure modeled
by Equation (1.37) is given in Figure 1.14.

The last plots considered for representing the frequency response function are called Bode
plots and consist of a plot of the magnitude of the frequency response function versus the
driving frequency and the phase of the frequency response function versus the driving fre-
quency (a complex number requires two real numbers to describe it completely). Bode plots

Figure 1.13 Plots of the real part and the imaginary part of the frequency response function.



18 SINGLE-DEGREE-OF-FREEDOM SYSTEMS

Im G(  jω)

Re G(  jω)1/2c 1/c

Figure 1.14 Nyquist plot for Equation 1.39.

have long been used in control system design and analysis as well as for determining the
plant transfer function of a system. More recently, Bode plots have been used in analyzing
vibration test results and in determining the physical parameters of the structure.

In order to represent the complete Bode plots in a reasonable space, log10 scales are often
used to plot �G�j���. This has given rise to the use of the decibel and decades in discussing

Figure 1.15 Bode phase plot for Equation (1.39).

Figure 1.16 Bode magnitude plot for Equation (1.39).
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the magnitude response in the frequency domain. The magnitude and phase plots (for the
compliance transfer function) for the system of Equation (1.17) are shown in Figures 1.15
and 1.16 for different values of � . Note the phase change at resonance (90�), as this is
important in interpreting measurement data.

1.6 MEASUREMENT AND TESTING

One can also use the quantities defined in the previous sections to measure the physical
properties of a structure. As mentioned before, resonance can be used to determine the
natural frequency of a system. Methods based on resonance are referred to as resonance
testing (or modal analysis techniques) and are briefly introduced here and discussed in more
detail in Chapter 8.

As mentioned earlier, the mass and stiffness of a structure can often be determined by
making simple static measurements. However, damping rates require a dynamic measurement
and hence are more difficult to determine. For underdamped systems one approach is to
realize, from Figure 1.5, that the decay envelope is the function e−��nt. The points on the
envelope illustrated in Figure 1.17 can be used to curve-fit the function e−at, where a is the
constant determined by the curve fit. The relation a = ��n can next be used to calculate �
and hence the damping rate c (assuming that m and k or �n are known).

A second approach is to use the concept of logarithmic decrement, denoted by � and
defined by

� = ln
x�t�

x�t + Td�
(1.44)

where Td is the period of oscillation. Using Equation (1.13) in the form

x�t� = Ae−��nt sin��dt + �� (1.45)

Figure 1.17 Free decay measurement method.
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the logarithmic decrement � becomes

� = ln
[

e−��nt sin��dt + ��

e−��n�t+Td � sin��dt + �dTd + ��

]
= ln e��nTd = ��nTd (1.46)

where the sine functions cancel because �dTd is a one-period shift by definition. Further
evaluation of � yields

� = ��nTd = 2��√
1 − �2

(1.47)

Equation (1.47) can be manipulated to yield the damping ratio in terms of the decrement, i.e.,

� = �√
4�2 + �2

(1.48)

Hence, if the decrement is measured, Equation (1.48) yields the damping ratio.
The various plots of the previous section can also be used to measure �n� ��m�c, and

k. For instance, the Bode diagram of Figure 1.16 can be used to determine the natural
frequency, stiffness, and damping ratio. The stiffness is determined from the intercept of
the frequency response function and the magnitude axis, since the value of the magnitude
of the frequency response function for small � is log�1/k�. This can be seen by examining
the function log10 �G�j��� for small �. Note that

log �G�j��� = log
1
k

− 1
2

log

[(
1 − �2

�2
n

)2

+
(

2��

�n

)2
]

= log
(

1
k

)
(1.49)

for very small values of �. Also, note that �G�j��� evaluated at �n yields

k �G�j�n�� =
1

2�
(1.50)

which provides a measure of the damping ratio from the magnitude plot of the frequency
response function.

Note that Equations (1.50) and (1.22) appear to contradict each other, since

1

2�
√

1 − �2
= k max �G�j��� = Mp �= k �G�j�n�� =

1
2�

except in the case of very small � (i.e., the difference between Mp and �G�j�n�� goes to
zero as � goes to zero). This indicates a subtle difference between using the damping ratio
obtained by taking resonance as the value of �, where �G�j�n�� is a maximum, and using the
point where �=�n, the undamped natural frequency. This point is also illustrated by noting
that the damped natural frequency [Equation (1.8)] is �d = �n

√
1 − �2 and the frequency at

which �G�j�n�� is maximum is

�p = �n

√
1 − 2�2 (1.51)

Also note that Equation (1.51) is valid only if 0 < � < 0�707.
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Finally, the mass can be related to the slope of the magnitude plot for the inertance transfer
function, G1�s�, by noting that

G1�s� = s2

ms2 + cs + k
(1.52)

and for large � (i.e., �n << �), the value of �G1�j��� is

�G1�j��� ≈ �1/m� (1.53)

Plots of these values are referred to as straight-line approximations to the actual magnitude
plot (Bode, 1945).

The preceding formulae relating the physical properties of the structure to the magnitude
Bode diagrams suggest an experimental way to determine the parameters of a structure:
namely, if the structure can be driven by a sinusoid of varying frequency and if the magnitude
and phase (needed to locate resonance) of the resulting response are measured, then the Bode
plots and the preceding formulae can be used to obtain the desired physical parameters. This
process is referred to as plant identification in the control’s literature and can be extended
to systems with more degrees of freedom (see, for instance, Melsa and Schultz, 1969, for a
more complete account).

There are several other formulae for measuring the damping ratio and natural frequency
from the results of such experiments (sine sweeps). For instance, if the Nyquist plot of
the mobility transfer function is used, a circle of diameter 1/c results (see Figure 1.14).
Another approach is to plot the magnitude of the frequency response function on a linear
scale near the region of resonance, as shown in Figure 1.18. If the damping is small enough
for the peak at resonance to be sharp, the damping ratio can be determined by measuring the
frequencies at 0.707 at the maximum value (also called the 3 dB down point or half-power
points), denoted by �1 and �2 respectively, and then using the formula (Ewins, 2000)

� = 1
2

[
�2 − �1

�d

]
(1.54)

Figure 1.18 Quadrature peak picking method.
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to compute the damping ratio. This method is referred to as quadrature peak picking and is
illustrated in Figure 1.18.

1.7 STABILITY

In all the preceding analysis, the physical parameters m�c, and k are, of course, positive
quantities. There are physical situations, however, in which expressions in the form of
Equations (1.1) and (1.6) result but have one or more negative coefficients. Such systems
are not well behaved and require some additional analysis.

Recalling that the solution to Equation (1.1) is of the form A sin��t + ��, where A is a
constant, it is easy to see that the response, in this case x�t�, is bounded. That is to say,

�x�t�� < A (1.55)

for all t, where A is some finite constant and �x�t�� denotes the absolute value of x�t�. In
this case, the system is well behaved or stable (called marginally stable in the control’s
literature). In addition, note that the roots (also called characteristic values or eigenvalues) of

�2m + k = 0

are purely complex numbers ±j�n as long as m and k are positive (or have the same sign).
If k happens to be negative and m is positive, the solution becomes

x�t� = A sinh �nt + B cosh �nt (1.56)

which increases without bound as t does. Such solutions are called divergent or unstable.
If the solution of the damped system of Equation (1.6) with positive coefficients is

examined, it is clear that x�t� approaches zero as t becomes large because of the exponential
term. Such systems are considered to be asymptotically stable (called stable in the controls
literature). Again, if one or two of the coefficients are negative, the motion grows without
bound and becomes unstable as before. In this case, however, the motion may become
unstable in one of two ways. Similar to overdamping and underdamping, the motion may
grow without bound and not oscillate, or it may grow without bound and oscillate. The first
case is referred to as divergent instability and the second case is known as flutter instability;
together, they fall under the topic of self-excited vibrations.

Apparently, the sign of the coefficient determines the stability behavior of the system.
This concept is pursued in Chapter 4, where these stability concepts are formally defined.
Figures 1.19 through 1.22 illustrate each of these concepts.

These stability definitions can also be stated in terms of the roots of the characteristic
equation [Equation (1.8)] or in terms of the poles of the transfer function of the system. In
fact, referring to Figure 1.11, the system is stable if the poles of the structure lie along the
imaginary axis (called the j� axis), unstable if one or more poles are in the right half-plane,
and asymptotically stable if all of the poles lie in the left half-plane. Flutter occurs when the
poles are in the right half-plane and not on the real axis (complex conjugate pairs of roots
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Figure 1.19 Response of a stable system. Figure 1.20 Response of an asympotically
stable system.

Figure 1.21 Response of a system with a diver-
gent instability.

Figure 1.22 Response of a system with flutter
instability.

with a positive real part), and divergence occurs when the poles are in the right half-plane
along the real axis. In the simple single-degree-of-freedom case considered here, the pole
positions are entirely determined by the signs of m�c� and k.

The preceding definitions and ideas about stability are stated for the free response of the
system. These concepts of a well-behaved response can also be applied to the forced motion
of a vibrating system. The stability of the forced response of a system can be defined by
considering the nature of the applied force or input. The system is said to be bounded-input,
bounded-output stable (or, simply, BIBO stable) if, for any bounded input (driving force),
the output (response) is bounded for any arbitrary set of initial conditions. Such systems are
manageable at resonance.

It can be seen immediately that Equation (1.17) with c = 0, the undamped system, is not
BIBO stable, since, for f�t� = sin��nt�, the response x�t� goes to infinity (at resonance)
whereas f�t� is certainly bounded. However, the response of Equation (1.17) with c > 0 is
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bounded whenever f�t� is. In fact, the maximum value of x�t� at resonance Mp is illustrated
in Figure 1.9. Thus, the system of Equation (1.17) with damping is said to be BIBO
stable.

The fact that the response of an undamped structure is bounded when f�t� is an impulse
or step function suggests another, weaker, definition for the stability of the forced response.
A system is said to be bounded, or Lagrange stable, with respect to a given input if the
response is bounded for any set of initial conditions. Structures described by Equation (1.1)
are Lagrange stable with respect to many inputs. This definition is useful when f�t� is known
completely or known to fall in some specified class of functions.

Stability can also be thought of in terms of whether or not the energy of the system
is increasing (unstable), constant (stable), or decreasing (asymptotically stable) rather than
in terms of the explicit response. Lyapunov stability, defined in Chapter 4, extends this
idea. Another important view of stability is based on how sensitive a motion is to small
perturbations in the system parameters (m�c, and k) and/or small perturbations in initial
conditions. Unfortunately, there does not appear to be a universal definition of stability
that fits all situations. The concept of stability becomes further complicated for nonlin-
ear systems. The definitions and concepts mentioned here are extended and clarified in
Chapter 4.

1.8 DESIGN AND CONTROL OF VIBRATIONS

One can use the quantities defined in the previous sections to design structures and machines
to have a desired transient and steady state response to some extent. For instance, it is a
simple matter to choose m�c, and k so that the overshoot is a specified value. However,
if one needs to specify the overshoot, the settling time, and the peak time, then there may
not be a choice of m�c, and k that will satisfy all three criteria. Hence, the response cannot
always be completely shaped, as the formulae in Section 1.4 may seem to indicate.

Another consideration in designing structures is that each of the physical parameters m�c,
and k may already have design constraints that have to be satisfied. For instance, the material
the structure is made of may fix the damping rate, c. Then, only the parameters m and k
can be adjusted. In addition, the mass may have to be within 10% of a specified value,
for instance, which further restricts the range of values of overshoot and settling time. The
stiffness is often designed on the basis of the static deflection limitation.

For example, consider the system of Figure 1.10 and assume it is desired to choose values
of m�c, and k so that � and �n specify a response with a settling time ts = 3�2 units and a
time to peak, tp, of 1 unit. Then, Equations (1.32) and (1.34) imply that �n = 1/� and that
� = 1/

√
1 + �2. This, unfortunately, also specifies the overshoot, since

OS = exp

(
−��√
�1 − �2�

)

Thus, all three performance criteria cannot be satisfied. This leads the designer to have to
make compromises, to reconfigure the structure, or to add additional components.

Hence, in order to meet vibration criteria such as avoiding resonance, it may be necessary in
many instances to alter the structure by adding vibration absorbers or isolators (Machinante,
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1984, or Rivin, 2003). Another possibility is to use active vibration control and feedback
methods. Both of these approaches are discussed in Chapters 6 and 7.

As just mentioned, the choice of the physical parameters m�c, and k determines the shape
of the response of the system. In this sense, the choice of these parameters can be considered
as the design of the structure. Passive control can also be considered as a redesign process
of changing these parameters on an already existing structure to produce a more desirable
response. For instance, some mass could be added to a given structure to lower its natural
frequency. Although passive control or redesign is generally the most efficient way to control
or shape the response of a structure, the constraints on m�c, and k are often such that the
desired response cannot be obtained. Then the only alternative, short of starting over, is to
try active control.

There are many different types of active control methods, and only a few will be considered
to give the reader a feel for the connection between the vibration and control disciplines. As
mentioned earlier, the comments made in this text on control should not be considered
as a substitute for studying standard control or linear system texts. Output feedback control
is briefly introduced here and discussed in more detail in Chapter 7.

First, a clarification of the difference between active and passive control is in order.
Basically, an active control system uses some external adjustable or active (for example,
electronic) device, called an actuator, to provide a means of shaping or controlling the
response. Passive control, on the other hand, depends only on a fixed (passive) change in the
physical parameters of the structure. Active control often depends on current measurements
of the response of the system, and passive control does not. Active control requires an
external energy source, and passive control typically does not.

Feedback control consists of measuring the output, or response, of the structure and
using that measurement to determine the force to apply to the structure to obtain a desired
response. The device used to measure the response (sensor), the device used to apply the
force (actuator), and any electronics required to transfer the sensor signal into an actuator
command (control law) make up the control hardware. This is illustrated by the block
diagram in Figure 1.23. Systems with feedback are referred to as closed-loop systems, while
control systems without feedback are called open-loop systems, as illustrated in Figures 1.23
and 1.24 respectively. A major difference between open-loop and closed-loop control is
simply that closed-loop control depends on information about the response of the system,
and open-loop control does not.

The rule that defines how the measurement from the sensor is used to command the
actuator to effect the system is called the control law, denoted by H�s� in Figure 1.23. Much

F(s ) X(s)

+

–
K

Structure 
G(s )

Control Law 
H(s )

Actuator Sensor

Figure 1.23 Closed-loop system.
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Figure 1.24 Open-loop system.

of control theory focuses on clever ways to choose the control law to achieve a desired
response.

A simple open-loop control law is to multiply (or amplify) the response of the system
by a constant. This is referred to as constant gain control. The magnitude of the frequency
response function for the system in Figure 1.23 is multiplied by the constant K, called the
gain. The frequency domain equivalent of Figure 1.23 is

X�s�

F�s�
= KG�s� = K

ms2 + cs + k
(1.57)

where the plant is taken to be a single-degree-of-freedom model of structure. In the time
domain, this becomes

mẍ�t� + cẋ�t� + kx�t� = Kf�t� (1.58)

The effect of this open-loop control is simply to multiply the steady state response by K and
to increase the value of the peak response, Mp.

On the other hand, the closed-loop control, illustrated in Figure 1.23, has the equivalent
frequency domain representation given by

X�s�

F�s�
= KG�s�

1 + KG�s�H�s�
(1.59)

If the feedback control law is taken to be one that measures both the velocity and position,
multiplies them by some constant gains g1 and g2 respectively, and adds the result, the
control law H�s� is given by

H�s� = g1s + g2 (1.60)

As the velocity and position are the state variables for this system, this control law is called
full state feedback, or PD control (for position and derivative). In this case, Equation (1.56)
becomes

X�s�

F�s�
= K

ms2 + �Kg1 + c�s + �Kg2 + k�
(1.61)

The time domain equivalent of this equation (obtained by using the inverse Laplace trans-
form) is

mẍ�t� + �c + Kg1�ẋ�t� + �k + Kg2�x�t� = Kf�t� (1.62)

By comparing Equations (1.58) and (1.62), the versatility of closed-loop control versus
open-loop, or passive, control is evident. In many cases the choice of values of K�g1, and
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g2 can be made electronically. By using a closed-loop control, the designer has the choice
of three more parameters to adjust than are available in the passive case to meet the desired
specifications.

On the negative side, closed-loop control can cause some difficulties. If not carefully
designed, a feedback control system can cause an otherwise stable structure to have an
unstable response. For instance, suppose the goal of the control law is to reduce the stiffness
of the structure so that the natural frequency is lower. From examining Equation (1.62),
this would require g2 to be a negative number. Then, suppose that the value of k was
overestimated and g2 calculated accordingly. This could result in the coefficient of x�t�
becoming negative, causing instability. That is, the response of Equation (1.62) would be
unstable if �k + Kg2� < 0. This would amount to positive feedback and is not likely to arise
by design on purpose, but it can happen if the original parameters are not well known. On
physical grounds, instability is possible because the control system is adding energy to the
structure. One of the major concerns in designing high-performance control systems is to
maintain stability. This introduces another constraint on the choice of the control gains and
is discussed in more detail in Chapter 7. Of course, closed-loop control is also expensive
because of the sensor, actuator, and electronics required to make a closed-loop system. On
the other hand, closed-loop control can always result in better performance provided the
appropriate hardware is available.

Feedback control uses the measured response of the system to modify and add back into
the input to provide an improved response. Another approach to improving the response
consists of producing a second input to the system that effectively cancels the disturbance
to the system. This approach, called feedforward control, uses knowledge of the response
of a system at a point to design a control force that, when subtracted from the uncontrolled
response, yields a new response with desired properties, usually a response of zero. Feed-
forward control is most commonly used for high-frequency applications and in acoustics
(for noise cancellation) and is not considered here. An excellent treatment of feedforward
controllers is given by Fuller, Elliot, and Nelson (1996).

1.9 NONLINEAR VIBRATIONS

The force versus displacement plot for a spring in Figure 1.3 curves off after the deflections
and forces become large enough. Before enough force is applied to deform permanently
or break the spring, the force deflection curve becomes nonlinear and curves away from a
straight line, as indicated in Figure 1.25. Therefore, rather than the linear spring relationship
fk =kx, a model such as fk =�x −�x3, called a softening spring, might better fit the curve.
This nonlinear spring behavior greatly changes the physical nature of the vibratory response
and complicates the mathematical description and analysis to the point where numerical
integration usually has to be employed to obtain a solution. Stability analysis of nonlinear
systems also becomes more complicated.

In Figure 1.25 the force–displacement curves for three springs are shown. Notice that the
linear range for the two nonlinear springs is a good approximation until about 1.8 units of
displacement or 2000 units of force. If the spring is to be used beyond that range, then the
linear vibration analysis of the preceding sections no longer applies.

Consider, then, the equation of motion of a system with a nonlinear spring of the form

mẍ�t� + �x�t� − �x3�t� = 0 (1.63)
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Figure 1.25 Force deflection curves for three different springs, indicating their linear range. The
curve g�x�= kx is a linear spring, the curve f�x�= kx – bx3 is called a softening spring, and the curve
h�x� = kx + bx3 is called a hardening spring (here k = 1000� b = 10).

which is subject to two initial conditions. In the linear system there was only one equilibrium
point to consider, v�t�=x�t�=0. As will be shown in the following, the nonlinear system of
Equation (1.63) has more than one equilibrium position. The equilibrium point of a system,
or set of governing equations, may be defined best by first placing the equation of motion
into state-space form.

A general single-degree-of-freedom system may be written as

ẍ�t� + f�x�t�� ẋ�t�� = 0 (1.64)

where the function f can take on any form, linear or nonlinear. For example, for a linear
spring–mass–damper system the function f is just f�x� ẋ� = 2��nẋ�t� + �2

nx�t�, which is
a linear function of the state variables of position and velocity. For a nonlinear system
the function f will be some nonlinear function of the state variables. For instance, for the
nonlinear spring of Equation (1.63), the function is f�x� ẋ� = �x − �x3.

The general state-space model of Equation (1.64) is written by defining the two state
variables: the position x1 = x�t�, and the velocity x2 = ẋ�t�. Then, Equation (1.64) can be
written as the first-order pair

ẋ1�t� = x2�t�

ẋ2�t� = −f�x1� x2� (1.65)

This state-space form of the equation of motion is used for numerical integration, in control
analysis, and for formally defining an equilibrium position. Define the state vector, x, and a
nonlinear vector function F, as

x�t� =
[

x1�t�
x2�t�

]
and F =

[
x2�t�

−f�x1� x2�

]
(1.66)
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Then, Equations (1.65) may be written in the simple form of a vector equation

ẋ = F�x� (1.67)

An equilibrium point of this system, denoted by xe, is defined to be any value of the vector
x for which F�x� is identically zero (called zero-phase velocity). Thus, the equilibrium point
is any vector of constants, xe, that satisfies the relations

F�xe� = 0 (1.68)

Placing the linear single-degree-of-freedom system into state-space form then yields

ẋ =
[

x2

−2��nx2 − �2
nx1

]
(1.69)

The equilibrium of a linear system is thus the solution of the vector equality[
x2

−2��nx2 − �2
nx1

]
=
[

0
0

]
(1.70)

which has the single solution x1 = x2 = 0. Thus, for any linear system the equilibrium point
is a single point consisting of the origin. On the other hand, the equilibrium condition of the
soft spring system of Equation (1.63) requires that

x2 = 0

−�x1 + �x3
1 = 0 (1.71)

Solving for x1 and x2 yields the three equilibrium points

xe =
[

0
0

]
�

⎡
⎣
√

�

�
0

⎤
⎦ �

⎡
⎣−

√
�

�
0

⎤
⎦ (1.72)

In principle, the soft spring system of Equation (1.63) could oscillate around any of these
equilibrium points, depending on the initial conditions. Each of these equilibrium points may
also have a different stability property.

The existence of multiple equilibrium points also complicates the notion of stability intro-
duced in Section 1.7. In particular, solutions near each equilibrium point could potentially
have different stability behavior. Since the initial conditions may determine the equilibrium
around which the solution centers, the behavior of a nonlinear system will depend on the
initial conditions. In contrast, for a linear system with fixed parameters the solution form is
the same regardless of the initial conditions. This represents another important difference to
consider when working with nonlinear components.

1.10 COMPUTING AND SIMULATION IN MATLAB

Modern computer codes such as Matlab make the visualization and computation of vibra-
tion problems available without much programming effort. Such codes can help enhance
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understanding through plotting responses, can help find solutions to complex problems lack-
ing closed-form solutions through numerical integration, and can often help with symbolic
computations. Plotting certain parametric relations or plotting solutions can often aid in
visualizing the nature of relationships or the effect of parameter changes on the response.
Most of the plots used in this text are constructed from simple Matlab commands, as the
following examples illustrate. If you are familiar with Matlab, you may wish to skip this
section.

Matlab is a high-level code, with many built-in commands for numerical integration
(simulation), control design, performing matrix computations, symbolic manipulation, etc.
Matlab has two areas to enter information. The first is the command window, which
is an active area where the entered command is compiled as it is entered. Using the
command window is somewhat like a calculator. The second area is called an m-file, which
is a series of commands that are saved and then called from the command window for
execution. All of the plots in the figures in this chapter can be reproduced using these simple
commands.

Example 1.10.1

Plot the free response of the underdamped system to the initial conditions x0 = 0�01 m� v0 = 0 for
values of m = 100 kg� c = 25 kg/s, and k = 1000 N/m, using Matlab and Equation (1.13).

To enter numbers in the command window, just type a symbol and use an equal sign after the blinking
cursor. The following entries in the command window will produce the plot of Figure 1.26. Note that
the prompt symbol ‘>>’ is provided by Matlab and the information following it is code typed in by
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0.002

0

– 0.002

– 0.004
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– 0.008

– 0.01
0 5 10 15 20 25 30
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Figure 1.26 Response of an underdamped system (m = 100 kg� c = 25 kg/s, and k = 1000 N/m) to
the initial conditions x0 = 0�01 m� v0 = 0, plotted using Matlab.
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the user. The symbol % is used to indicate comments, so that anything following this symbol is ignored
by the code and is included to help explain the situation. A semicolon typed after a command suppresses
the command from displaying the output. Matlab uses matrices and vectors so that numbers can be
entered and computed in arrays. Thus, there are two types of multiplication. The notationa*b is a vector
operation demanding that the number of rows of a be equal to the number of columns of b. The product
a.*b, on the other hand, multiplies each element of a by the corresponding element in b.

>> clear % used to make sure no previous values are stored
>> %assign the initial conditions, mass, damping and stiffness
>> x0=0.01;v0=0.0;m=100;c=25;k=1000;
>> %compute omega and zeta, display zeta to check if underdamped
>> wn=sqrt(k/m);z=c/(2*sqrt(k*m))
z =
0.0395
>> %compute the damped natural frequency
>> wd=wn*sqrt(1-zˆ2);
>> t=(0:0.01:15*(2*pi/wn));%set the values of time from 0 in
increments of 0.01 up to 15 periods
>> x=exp(-z*wn*t).*(x0*cos(wd*t)+((v0+z*wn*x0)/wd)*sin(wd*t));
% computes x(t)
>> plot(t,x)%generates a plot of x(t) vs t

The Matlab code used in this example is not the most efficient way to plot the response and does
not show the detail of labeling the axis, etc., but is given as a quick introduction.

The next example illustrates the use of m-files in a numerical simulation. Instead of plotting
the closed-form solution given in Equation (1.13), the equation of motion can be numerically
integrated using the ode command in Matlab. The ode45 command uses a fifth-order
Runge–Kutta, automated time step method for numerically integrating the equation of motion
(see, for instance, Pratap, 2002).

In order to use numerical integration, the equations of motion must first be placed in
first-order, or state-space, form, as done in Equation (1.69). This state-space form is used in
Matlab to enter the equations of motion.

Vectors are entered in Matlab by using square brackets, spaces, and semicolons. Spaces
are used to separate columns, and semicolons are used to separate rows, so that a row vector
is entered by typing

>> u = [1 -1 2]

which returns the row

u = 1 -1 2

and a column vector is entered by typing

>> u = [1; -1; 2]
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which returns the column

u =
1
-1
2

To create a list of formulae in an m-file, choose ‘New’ from the file menu and select ‘m-file’.
This will display a text editor window, in which you can enter commands. The following
example illustrates the creation of an m-file and how to call it from the command window
for numerical integration of the equation of motion given in example 1.10.1.

Example 1.10.2

Numerically integrate and plot the free response of the underdamped system to the initial conditions
x0 = 0�01 m� v0 = 0 for values of m = 100 kg� c = 25 kg/s, and k = 1000 N/m, using Matlab and
equation (1.13).

First create an m-file containing the equation of motion to be integrated and save it. This is done
by selecting ‘New’ and ‘m-File’ from the File menu in Matlab, then typing

----------------------
Function xdot=f2(t,x)
c=25; k = 1000; m = 100;
% set up a column vector with the state equations
xdot=[x(2); -(c/m)*x(2)-(k/m)*x(1)];
----------------------

This file is now saved with the name f2.m. Note that the name of the file must agree with the name
following the equal sign in the first line of the file. Now open the command window and enter the
following:

>> ts=[0 30]; % this enters the initial and final time
>> x0 =[0.01 0]; % this enters the initial conditions
>> [t, x]=ode45(‘f2’,ts,x0);
>> plot(t,x(:,1))

The third line of code calls the Runge–Kutta program ode45 and the state equations to be integrated
contained in the file named f2.m. The last line plots the simulation of the first state variable
x1�t� which is the displacement, denoted by x(:,1) in Matlab. The plot is given in Figure 1.27.

Note that the plots of Figures 1.26 and 1.27 look the same. However, Figure 1.26 was obtained
by simply plotting the analytical solution, whereas the plot of Figure 1.27 was obtained by
numerically integrating the equation of motion. The numerical approach can be used suc-
cessfully to obtain the solution of a nonlinear state equation, such as Equation (1.63), just as
easily.
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Figure 1.27 Plot of the numerical integration of the underdamped system of example 1.10.1 resulting
from the Matlab code given in example 1.10.2.

The forced response can also be computed using numerical simulation, and this is often
more convenient than working through an analytical solution when the forcing functions are
discontinuous or not made up of simple functions. Again, the equations of motion (this time
with the forcing function) must be placed in state-space form. The equation of motion for a
damped system with a general applied force is

mẍ�t� + cẋ�t� + kx�t� = F�t�

In state-space form this expression becomes

[
ẋ1�t�
ẋ2�t�

]
=
[

0 1

− k

m
− c

m

][
x1�t�
x2�t�

]
+
[

0
f�t�

]
�

[
x1�0�
x2�0�

]
=
[

x0

v0

]
(1.73)

where f�t�=F�t�/m and F�t� is any function that can be integrated. The following example
illustrates the procedure in Matlab.

Example 1.10.3

Use Matlab to compute and plot the response of the following system:

100ẍ�t� + 10ẋ�t� + 500x�t� = 150 cos 5t� x0 = 0�01� v0 = 0�5
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Figure 1.28 A plot of the numerical integration of the damped forced system resulting from the
Matlab code given in example 1.10.3.

The Matlab code for computing these plots is given. First an m-file is created with the equation
of motion given in first-order form:

---------------------------------------------
function v=f(t,x)
m=100; k=500; c=10; Fo=150; w=5;
v=[x(2); x(1)*-k/m+x(2)*-c/m + Fo/m*cos(w*t)];
---------------------------------------------

Then the following is typed in the command window:

>>clear all
>>xo=[0.01; 0.5]; %enters the initial conditions
>>ts=[0 40]; %enters the initial and final times
>>[t,x]=ode45(’f’,ts,xo); %calls the dynamics and integrates
>>plot(t,x(:,1)) %plots the result

This code produces the plot given in Figure 1.28. Note that the influence of the transient dynamics
dies off owing to the damping after about 20 s.

Such numerical integration methods can also be used to simulate the nonlinear systems dis-
cussed in the previous section. Use of high-level codes in vibration analysis such as Matlab
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is now commonplace and has changed the way vibration quantities are computed. More
detailed codes for vibration analysis can be found in Inman (2001). In addition there are
many books written on using Matlab (such as Pratap, 2002) as well as available online help.

CHAPTER NOTES

This chapter attempts to provide an introductory review of vibrations and to expand the
discipline of vibration analysis and design by intertwining elementary vibration topics with
the disciplines of design, control, stability, and testing. An early attempt to relate vibrations
and control at an introductory level was made by Vernon (1967). More recent attempts
have been made by Meirovitch (1985, 1990) and by Inman (1989) – the first edition of
this text. Leipholz and Abdel-Rohman (1986) take a civil engineering approach to structural
control. The latest attempts to combine vibration and control are by Preumont (2002) and
Benaroya (2004) who also provides an excellent treatment of uncertainty in vibrations. The
information contained in Sections 1.2 and 1.3, and in part of Section 1.4 can be found
in every introductory text on vibrations, such as my own (Inman, 2001) and such as the
standards by Thomson and Dahleh (1993), Rao (2004), and Meirovitch (1986). A complete
summary of most vibration-related topics can be found in Braun, Ewins, and Rao (2002)
and in Harris and Piersol (2002).

A good reference for vibration measurement is McConnell (1995). The reader is encour-
aged to consult a basic text on control such as the older text by Melsa and Schultz (1969),
which contains some topics omitted from modern texts, or by Kuo and Golnaraghi (2003),
which contains more modern topics integrated with Matlab. These two texts also provide
background to specifications and transfer functions given in Sections 1.4 and 1.5 as well
as feedback control discussed in Section 1.8. A complete discussion of plant identifica-
tion as presented in Section 1.6 can be found in Melsa and Schultz (1969). The excellent
text by Fuller, Elliot, and Nelson (1996) examines the control of high-frequency vibration.
Control is introduced here not as a discipline by itself but rather as a design technique for
vibration engineers. A standard reference on stability is Hahn (1967), which provided the
basic ideas for Section 1.7. The topic of flutter and self-excited vibrations is discussed in
Den Hartog (1985). Nice introductions to nonlinear vibration can be found in Virgin (2000),
in Worden and Tomlinson (2001), and in the standards by Nayfeh and Mook (1978) and
Nayfeh and Balachandra (1995).
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PROBLEMS

1.1 Derive the solution of mẍ + kx = 0 and sketch your result (for at least two periods) for
the case x0 = 1� v0 = √

5, and k/m = 4.
1.2 Solve mẍ − kx = 0 for the case x0 = 1� v0 = 0, and k/m = 4, for x�t� and sketch the

solution.
1.3 Derive the solutions given in the text for � > 1� � = 1, and 0 < � < 1 with x0 and v0 as

the initial conditions (i.e., derive Equations 1.14 through 1.16 and the corresponding
constants).

1.4 Solve ẍ − ẋ + x = 0 with x0 = 1 and v0 = 0 for x�t� and sketch the solution.
1.5 Prove that � = 1 corresponds to the smallest value of c such that no oscillation occurs.

(Hint: Let � = −b�b a positive real number, and differentiate the characteristic equa-
tion.)

1.6 Calculate tp� OS� Td�Mp, and BW for a system described by

2ẍ + 0�8ẋ + 8x = f�t�

where f�t� is either a unit step function or a sinusoidal, as required.
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1.7 Derive an expression for the forced response of the undamped system

mẍ�t� + kx�t� = F0 sin �t� x�0� = x0� ẋ�0� = v0

to a sinusoidal input and nonzero initial conditions. Compare your result with Equa-
tion (1.21) with � = 0.

1.8 Compute the total response to the system

4ẍ�t� + 16x�t� = 8 sin 3t� x0 = 1 mm� v0 = 2 mm/s

1.9 Calculate the maximum value of the peak response (magnification factor) for the
system in Figure 1.18 with � = 1/

√
2.

1.10 Derive Equation (1.22).
1.11 Calculate the impulse response function for a critically damped system.
1.12 Solve for the forced response of a single-degree-of-freedom system to a harmonic

excitation with � = 1�1 and �2
n = 4. Plot the magnitude of the steady state response

versus the driving frequency. For what value of �n is the response a maximum
(resonance)?

1.13 Calculate the compliance transfer function for the system described by the differential
equation

a
....
x + b

...
x + cẍ + dẋ + ex = f�t�

where f�t� is the input and x�t� is a displacement. Also, calculate the frequency
response function for this system.

1.14 Derive Equation (1.51).
1.15 Plot (using a computer) the unit step response of a single-degree-of-freedom sys-

tem with �2
n = 4� k = 1 for several values of the damping ratio (� = 0�01� 0�1� 0�5,

and 1.0).
1.16 Let �p denote the frequency at which the peak response occurs [Equation (1.22)]. Plot

�p/�n versus � and �d/�n versus � and comment on the difference as a function of � .
1.17 For the system of problem 1.6, construct the Bode plots for (a) the inertance transfer

function, (b) the mobility transfer function, (c) the compliance transfer function, and
(d) the Nyquist diagram for the compliance transfer function.

1.18 Discuss the stability of the following system: 2ẍ�t�− 3ẋ�t�+ 8x�t�=−3ẋ�t�+ sin 2t.
1.19 Using the system of problem 1.6, refer to Equation (1.62) and choose the gains K�g1,

and g2 so that the resulting closed-loop system has a 5% overshoot and a settling time
of less than 10.

1.20 Calculate an allowable range of values for the gains K�g1, and g2 for the system of
problem 1.6, such that the closed-loop system is stable and the formulae for overshoot
and peak time of an underdamped system are valid.

1.21 Compute a feedback law with full state feedback [of the form given in Equation (1.62)]
that stabilizes (makes asymptotically stable) the system 4ẍ�t�+ 16x�t�= 0 and causes
the closed-loop settling time to be 1 s.

1.22 Compute theequilibriumpositionsof thependulumequationm�2�̈�t�+mg� sin ��t�= 0.
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1.23 Compute the equilibrium points for the system defined by

ẍ + �ẋ + x + x2 = 0

1.24 The linearized version of the pendulum equation is given by

�̈�t� + g

�
��t� = 0

Use numerical integration to plot the solution of the nonlinear equation of problem 1.22
and this linearized version for the case where

g = 0�01�� ��0� = 0�1 rad� �̇�0� = 0�1 rad/s

Compare your two simulations.


