
1 Light as Waves, Rays and Photons

Are not the rays of light very small bodies emitted from shining substances?

Isaac Newton, Opticks

All these 50 years of conscious brooding have brought me no nearer to the answer to the question ‘What are light

quanta?’. Nowadays every Tom, Dick and Harry thinks he knows it, but he is mistaken.

Albert Einstein, A Centenary Volume, 1951.

How wonderful that we have met with a paradox. Now we have some chance of making progress.

Niels Bohr (quoted by L.I. Ponomarev in The Quantum Dice).

Light is an electromagnetic wave: light is emitted and absorbed as a stream of discrete photons,

carrying packets of energy and momentum. How can these two statements be reconciled? Similarly,

while light is a wave, it nevertheless travels along straight lines or rays, allowing us to analyse lenses

and mirrors in terms of geometric optics. Can we use these descriptions of waves, rays and photons

interchangeably, and how should we choose between them? These problems, and their solutions,

recur throughout this book, and it is useful to start by recalling how they have been approached as the

theory of light has evolved over the last three centuries.

1.1 The Nature of Light

In his famous book Opticks, published in 1704, Isaac Newton described light as a stream of particles

or corpuscles. This satisfactorily explained rectilinear propagation, and allowed him to develop

theories of reflection and refraction, including his experimental demonstration of the splitting of

sunlight into a spectrum of colours by using a prism. The particles in rays of different colours were

supposed to have different qualities, possibly of mass, or size or velocity. White light was made up of

a compound of coloured rays, and the colours of transparent materials were due to selective

absorption. It was, however, more difficult for him to explain the coloured interference patterns in

thin films, which we now call Newton’s rings (see Chapter 9). For this, and for the partial reflection of

light at a glass surface, he suggested a kind of periodic motion induced by his corpuscles, which

reacted on the particles to give ‘fits of easy reflection and transmission’. Newton also realized that

double refraction in a calcite crystal (Iceland spar) was best explained by attributing a rectangular
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cross-section (or ‘sides’) to light rays, which we would now describe as polarization (Chapter 7). He

nevertheless argued vehemently against an actual wave theory, on the grounds that waves would

spread in angle rather than travel as rays, and that there was no medium to carry light waves from

distant celestial bodies.

The idea that light was propagated as some sort of wave was published by René Descartes in

La Dioptrique (1637); he thought of it as a pressure wave in an elastic medium. Christiaan Huygens, a

Dutch contemporary of Newton, developed the wave theory; his explanation of rectilinear propaga-

tion is now known as ‘Huygens’ construction’. He correctly explained refraction in terms of a lower

velocity in a denser medium. Huygens’ construction is still a useful concept, and we use it later in this

chapter.

It was not, however, until 100 years after Newton’s Opticks that the wave theory was firmly

established and the wavelength of light was found to be small enough to explain rectilinear

propagation. In Thomas Young’s double slit experiment (see Chapter 8), monochromatic light

from a small source passed through two separate slits in an opaque screen, creating interference

fringes where the two beams overlapped; this effect could only be explained in terms of waves.

Augustin Fresnel, in 1821, then showed that the wave must be a transverse oscillation, as contrasted

with the longitudinal oscillation of a sound wave; following Newton’s ideas of rays with ‘sides’,

this was required by the observed polarization of light as in double refraction. Fresnel also

developed the theories of partial reflection and transmission (Chapter 5), and of diffraction at

shadow edges (Chapter 10). The final vindication of the wave theory came with James Clerk

Maxwell, who synthesized the basic physics of electricity and magnetism into the four Maxwell

equations, and deduced that an electromagnetic wave would propagate at a speed which equalled that

of light.

The end of the nineteenth century therefore saw the wave theory on an apparently unassailable

foundation. Difficulties only remained with understanding the interaction of light with matter, and in

particular the ‘blackbody spectrum’ of thermal radiation. This was, however, the point at which the

corpuscular theory came back to life. In 1900 Max Planck showed that the form of the blackbody

spectrum could be explained by postulating that the walls of the body containing the radiation

consisted of harmonic oscillators with a range of frequencies, and that the energies of those with

frequency n were restricted to integral multiples of the quantity hn. Each oscillator therefore had a

fundamental energy quantum

E ¼ hn ð1:1Þ

where h became known as Planck’s constant. In 1905 Albert Einstein explained the photoelectric

effect by postulating that electromagnetic radiation was itself quantized, so that electrons are emitted

from a metal surface when radiation is absorbed in discrete quanta. It seemed that Newton was right

after all! Light was again to be understood as a stream of particles, later to become known as photons.

What had actually been shown, however, was that light energy and the momentum carried by a light

wave existed in discrete units, or quanta; photons should be thought of as events at which these quanta

are emitted or absorbed.

If light is a wave that has properties usually associated with particles, could material particles

correspondingly have wave-like properties? This was proposed by Louis de Broglie in 1924, and

confirmed experimentally three years later in two classical experiments by George Thomson and by

Clinton Davisson and Lester Germer. Both showed that a beam of particles, like a light ray

encountering an obstacle, could be diffracted, behaving as a wave rather than a geometric ray. The

diffraction pattern formed by the spreading of an electron beam passing through a hole in a metal
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sheet, for example, was the same as the diffraction pattern in light which we explore in Chapter 10.

Furthermore, the wavelength l involved was simply related to the momentum p of the electrons by

l ¼ h

p
: ð1:2Þ

The constant h was again Planck’s constant, as in the theory of quanta in electromagnetic radiation;

for material waves l is the de Broglie wavelength. A general wave theory of the behaviour of matter,

wave mechanics, was developed in 1926 by Erwin Schrödinger following de Broglie’s ideas. Wave

mechanics revolutionized our understanding of how microscopic particles were described and placed

limitations on the extent of information one could have about such systems – the famous Heisenberg

uncertainty relationship.

The behaviour of both matter and light evidently has dual aspects: they are in some sense both

particles and waves. Which aspect best describes their behaviour depends on the circumstances; light

propagates, diffracts and interferes as a wave, but is emitted and absorbed discontinuously as photons,

which are discrete packets of energy and momentum. Photons do not have a continuous existence, as

does for example an electron in the beam of an accelerator machine; in contrast with a material

particle it is not possible to say where an individual photon is located within a light beam. In some

contexts we nevertheless think of the light within some experimental apparatus, such as a cavity or a

laser, as consisting of photons, and we must then beware of following Newton and being misled by

thinking of photons as particles with properties like those of material particles.

Although photons and electrons have very similar wave-like characteristics, there are several

fundamental differences in their behaviour. Photons have zero mass; the momentum p of a photon in

equation (1.1) is related to its kinetic energy E by E ¼ pc, as compared with E ¼ p2=2m for particles

moving well below light speed. Unlike electrons, photons are not conserved and can be created or

destroyed in encounters with material particles. Again, their statistical behaviour is different in

situations where many photons or electrons can interact, as for example the photons in a laser or

electrons in a metal. No two electrons in such a system can be in exactly the same state, while there is

no such restriction for photons: this is the difference between Fermi–Dirac and Bose–Einstein

statistics respectively for electrons and for photons.

In the first two-thirds of this bookwe shall be able to treat lightmainly as awave phenomenon, returning

to the concept of photons when we consider the absorption and emission of electromagnetic waves.

1.2 Waves and Rays

We now return to the question: how can light be represented by a ray? Huygens’ solution was to

postulate that light is propagated as a wavefront, and that at any instant every point on the wavefront is

the source of a wavelet, a secondary wave which propagates outward as a spherical wave (Figure 1.1)

Each wavelet has infinitesimal amplitude, but on the common envelope where countless wavelets

intersect, they reinforce each other to form a new wavefront of finite amplitude. In this way,

successive positions of the wavefront can be found by a step-by-step process. The envelope1 of the

1To define the envelope evolved after a short time from a wavefront segment, take a finite number N of

wavelets with evenly spaced centres, and note the intersection points between adjacent wavelets. In the limit that

N goes to infinity, the intersection points crowd together and constitute the envelope, which is the new wavefront.
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wavelets is perpendicular to the radius of each wavelet, so that the ray is the normal to a wavefront.

This simple Huygens wavefront concept allows us to understand both the rectilinear propagation of

light along ray paths and the basic geometric laws of reflection and refraction. There are obvious

limitations: for example, what happens at the edge of a portion of the wavefront, as in Figure 1.1, and

why is there no wave reradiated backwards? We return to these questions when we consider

diffraction theory in Chapter 10.

Reflection of a plane wavefront W1 reaching a totally reflecting surface is understood according to

Huygens in terms of secondary wavelets set up successively along the surface as the wavefront

reaches it (Figure 1.2(a)). These secondary wavelets propagate outwards and combine to form the

reflected wavefront W2. The rays are normal to the incident and reflected wavefronts. Light has

travelled along each ray from W1 to W2 in the same time, so all path lengths from W1 to W2 via the

mirror must be equal. The basic law of reflection follows: the incident and reflected rays lie in the

same plane and the angles of incidence (i) and reflection (r) are equal.

Figure 1.2(b) shows the same reflection in terms of rays. Here we may find the same law of

reflection as an example of Fermat’s principle of least time, which states that the time of propagation

is a minimum (or more strictly either a maximum or a minimum) along a ray path.2 It is easy to see

that the path of a light ray between the two points A and B (Figure 1.2 (b)) is a minimum if the angles

i; r are equal. The proof is simple: construct the mirror image A0 of A in the reflecting surface, when

the line A0PB must be straight for a minimum distance. Any other path AP0B is longer.

P r

W

W /

Figure 1.1 Huygens’ secondary wavelets. A spherical wavefront W has originated at P and after a time t has a
radius R ¼ ct, where c is the speed of light. Huygens’ secondary wavelets originating on W at time t combine to
form a new wavefront W 0 at time t0, when the radii of the wavelets are cðt0 � tÞ

2This explanation of the basic law of reflection was first given by Hero of Alexandria (First century AD).
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Why are these two approaches essentially the same? Fermat tells us that the time of travel is the same

along all paths close to an actual ray. In terms of waves this means that waves along these paths all

arrive together, and reinforce one another as in Huygens’ construction. When we consider periodic

waves, we will express this by saying that they are in phase.

ir

W W2
1

(a)

Figure 1.2 Reflection at a plane surface. (a) Huygens wave construction. The reflected wave W2 is made up of
wavelets generated as successive points on the incident plane wave W1 reach the surface. (b) Fermat’s principle.
The law of reflection is found by making the path of a reflected light ray between the points A and B a minimum
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The basic law of refraction (Snell’s law) may be found by applying either Huygens’ or Fermat’s

principles to a boundary between two media in which the velocities of propagation v1; v2 are

different; as Huygens realized, his secondary waves must travel more slowly in an optically denser

medium. The refractive indices are defined as n1 ¼ c=v1; n2 ¼ c=v2 where c is the velocity of light in

free space. As we now show, the Fermat approach shown in Figure 1.3 leads to Snell’s law via some

simple trigonometry.

The Fermat condition is that the travel time (n1APþ n2PB)/c is stationary (minimum, maximum,

or point of inflection); this means that for any small change in the light path of order E, the change in
travel time vanishes as E2 (or even faster). The distance n1APþn2PB is called the optical path. We

consider a small virtual displacement of the light rays from APB to AP0B. Denote the length PP0 as E.
By dropping perpendiculars from P and P0, we create two thin triangles AP0Q and BPR that become

perfect isosceles triangles in the limit of zero displacement. Fermat requires then that the change of

the optical path satisfies3

n1QP� n2P
0R ¼ n1E sin y1 � n2E sin y2 ¼ OðE2Þ: ð1:3Þ

Dividing by E, and going to the limit E ¼ 0, this leads directly to Snell’s law of refraction:

n1 sin y1 ¼ n2 sin y2: ð1:4Þ

Notice that this derivation works for a smoothly curving surface of any shape.

In Chapter 5 we show how the laws of reflection and refraction may be derived from electro-

magnetic wave theory.

Figure 1.3 Refraction at a surface between transparent media with refractive indices n1 and n2. We assume the
light rays and the surface normal all lie in the plane of the paper. Snell’s law corresponds to a stationary value of
the optical path n1AP þ n2PB between the fixed endpoints A, B; for small virtual variations such as shifting the
point P to P0, the optical path changes negligibly

3The notation O(E2) designates a quantity that varies as E2 in the limit of vanishing epsilon.
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1.3 Total Internal Reflection

Referring again to Figure 1.3, and noting that the geometry is the same if the ray direction is reversed,

we consider what happens if a ray inside the refracting medium meets the surface at a large angle of

incidence y2, so that sin y2 is greater than n1=n2 and equation (1.4) would give sin y1 > 1. There can

then be no ray above the surface, and there is total internal reflection. The internally reflected ray is at

the same angle of incidence to the normal as the incident ray.

The phenomenon of total internal reflection is put to good use in the light pipe (Figure 1.4), in

which light entering the end of a glass cylinder is reflected repeatedly and eventually emerges at the

far end. The same principle is applicable to the transmission of light down thin optical fibres, but here

the relation of the wavelength of light to the fibre diameter must be taken into account (Chapter 6).

1.4 The Light Wave

We now consider in more detail the description of the light wave, starting with a simple expression for

a plane wave of any quantity c, travelling in the positive direction z with velocity v:

c ¼ f ðz � vtÞ: ð1:5Þ

The function f ðzÞ describes the shape of c at the moment t ¼ 0, and the equation states that the shape

of c is unchanged at any later time t, with only a movement of the origin by a distance vt along the z

axis (Figure 1.5). The minus sign in ðz � vtÞ indicates motion in the þz direction; a plus sign

would correspond to motion in the �z direction. The variable quantity c may be a scalar, e.g. the

pressure in a sound wave, or it may be a vector. If it is a vector, it may be transverse, i.e.

i

r

Figure 1.4 The light pipe. Rays entering at one end are totally internally reflected, and can be conducted along
long paths which may include gentle curves

Figure 1.5 A wave travelling in the z direction with unchanging shape and with velocity v. At time t ¼ 0 the
waveform is c ¼ f ðzÞ, and at time t it is c ¼ f ðz� vtÞ
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perpendicular to the direction of propagation, as are the waves in a stretched string, or the electric

and magnetic fields in the electromagnetic waves which are our main concern. (These are the

‘sides’ which Newton attributed to his rays.) For most of optics it is sufficient to consider only the

transverse electric field; indeed, as we shall see later, the results of scalar wave theory are sufficiently

general that for many purposes we may just think of the magnitude of the electric field and forget

about its vector nature.

At any one time the variation of c with z, i.e. the slope of the graph in Figure, 1.5, is @c=@z, and at

any one place the rate of change of c is @c=@t. Changing to the variable z0 ¼ ðz � vtÞ and using the

chain rule for partial differentiation:

@c
@z

¼ @c
@z0

@z0

@z
¼ @c

@z0
ð1:6Þ

@c
@t

¼ @c
@z0

@z0

@t
¼ �v

@c
@z0

: ð1:7Þ

Similarly, the second differential of c with respect to z, i.e. @2c=@z2, which is the curvature of

the graph in Figure 1.5, is related to the second differential with respect to time, i.e. the acceleration

of c, by

@2c
@t2

¼ v2
@2c
@z2

: ð1:8Þ

This so-called one-dimensional wave equation applies to any wave propagating in the z direction with

uniform velocity and without change of form.

The wave equation (1.8) may be extended to three dimensions, giving

@2c
@x2

þ @2c
@y2

þ @2c
@z2

¼ 1

v2
@2c
@t2

ð1:9Þ

or in a more general and concise notation4

r2c ¼ 1

v2
@2c
@t2

: ð1:10Þ

The form of the wave f ðz � vtÞ may be any continuous function, but it is convenient to analyse such

behaviour in terms of harmonic waves, taking the simple form of a sine or cosine. (In Chapter 4 we

show that any continuous function can be synthesized from the superposition of harmonic waves.) At

any point such a wave varies sinusoidally with time t, and at any time the wave varies sinusoidally

with distance z. The waveform is seen in Figure 1.6, which introduces the wavelength l and period t.
At any point there is an oscillation with amplitude A. Equation (1.5) then becomes

c ¼ A sin 2p
z

l
� t

t

� �h i
; ð1:11Þ

4Recall that r2 is the Laplacian operator: r2 ¼ @2=@x2 þ @2=@y2 þ @2=@z2:
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which is easily demonstrated to be a solution of the general wave equation (1.8) provided l=t ¼ v.
The frequency of oscillation is n ¼ 1=t. It is often convenient to use an angular frequency o ¼ 2pn,
and a propagation constant or wave number5 k ¼ 2p=l. Equation (1.11) may then be written in terms

of k as

c ¼ A sinðkz � otÞ: ð1:12Þ

The vector quantity k ¼ ð2p=lÞk̂, where k̂ is the unit vector in the direction of k, is also termed the

wave vector.

Another powerful way of writing harmonic plane wave solutions of Equation (1.10) is in terms of

complex exponentials

c ¼ A exp½iðkz � otÞ�: ð1:13Þ

Due to several elegant mathematical properties, including ease of differentiation and of visualization,

complex functions like this can vastly simplify the process of combining waves of different

amplitudes and phases, as we shall see in Chapter 4.

Velocity v

Distance

λ

(a)

A

y

Figure 1.6 A progressive sine wave: (a) the wave at a fixed time; (b) the oscillation at a fixed point P

5Beware: the term wave number is also used in spectroscopy for 1=l, without the factor 2p.
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1.5 Electromagnetic Waves

Although the idea that light was propagated as a combination of electric and magnetic fields was

developed qualitatively by Michael Faraday, it required a mathematical formulation by Maxwell

before the process could be clearly understood. In Chapter 5 we derive the electromagnetic wave

equation from Maxwell’s equations, and show that all electromagnetic waves travel with the same

velocity in free space. There are two variables in an electromagnetic wave, the electric and magnetic

fields E and B; both are vector quantities, but each can be represented by the variable c in the wave

equation (1.10). As shown in Chapter 5, they are both transverse to the direction of propagation, and

mutually perpendicular. Their magnitudes6 are related by

E ¼ vB ð1:14Þ

where v is the velocity of light in the medium. Since the electric and magnetic fields are mutually

perpendicular and their magnitudes are in a fixed ratio, only one need be specified, and the magnitude

and direction of the other follow. Equation (1.14) is true in general, but note that the velocity v in a

dielectric such as glass is less than the free space velocity c; the refractive index n of the medium is

n ¼ c

v
: ð1:15Þ

As Huygens realized, light travels more slowly in dense media than in a vacuum.

In a transverse wave moving along a direction z the variable quantity is a vector which may be in

any direction in the orthogonal plane x; y. The relevant variable for electromagnetic waves is

conventionally chosen as the electric field E. The polarization of the wave is the description of the

behaviour of the vector E in the plane x; y. The plane of polarization is defined as the plane containing

the electric field vector and the ray, i.e. the z axis. If the vector E remains in a fixed direction, the wave

is linearly or plane polarized; if the direction changes randomly with time, the wave is randomly

polarized, or unpolarized. The vector E can also rotate uniformly at the wave frequency, as observed

at a fixed point on the ray; the polarization is then circular, either right- or left-handed, depending on

the direction of rotation.

Polarization plays an important part in the interaction of electromagnetic waves with matter, and

Chapter 7 is devoted to a more detailed analysis.

1.6 The Electromagnetic Spectrum

The wavelength range of visible light covers about one octave of the electromagnetic spectrum,

approximately from 400 to 800 nm (1 nanometre ¼ 10�9 m). The electromagnetic spectrum covers a

vast range, stretching many decades through infrared light to radio waves and many more decades

through ultraviolet light and X-rays to gamma rays (Figure 1.7). The differences in behaviour across

the electromagnetic spectrum are very large. Frequencies (n) and wavelengths (l) are related to the

velocity of light (c) by ln ¼ c. The frequencies vary from 104 Hz for long radio waves (1 hertz equals

6We use the SI system of electromagnetic units throughout.
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one cycle per second), to more than 1021 Hz for commonly encountered gamma rays; the highest

energy cosmic gamma rays so far detected reach to 1035 Hz (4� 1020 eV). It is unusual to encounter a

quantum process in the radio frequency spectrum, and even more unusual to hear a physicist refer to

the frequency of a gamma ray, instead of the energy and the momentum carried by a gamma ray

photon.

Although wave aspects dominate the behaviour of the longest wavelengths, and photon aspects

dominate the behaviour of short-wavelength X-rays and gamma rays, the whole range is governed by

the same basic laws. It is in the optical range (waves in or near the visible range) that we most usually

encounter the ‘wave particle duality’ which requires a familiarity with both concepts.

The propagation of light is determined by its wave nature, and its interaction with matter is

determined by quantum physics. The relation of the energy of the photon to common levels of energy

in matter determines the relative importance of the quantum at different parts of the spectrum: cosmic

gamma rays, with a high photon energy and a high photon momentum, can act on matter explosively

or like a high-velocity billiard ball, while long infrared or radio waves, with low photon energies,

usually only interact with matter through classical electric and magnetic induction. We can explore

these extremes in the following examples.

Figure 1.7 The electromagnetic spectrum
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1. What would be the velocity of a tennis ball, mass 60 g, with the same energy as a 1020 eV cosmic

gamma ray photon?

Electron volt ¼ 1:602� 10�19 J. Kinetic energy 1
2

mv2 ¼ 1020 eV ¼ 1020 � 1:6� 10�19 J. Velo-

city of 0.06 kg tennis ball is

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1020 � 1:6� 10�19

6� 10�2

r
¼ 23m s�1ð¼ 83 kmh�1Þ:

2. At what temperature would a molecule of hydrogen gas have, on average, the same energy as a

photon of the 21 cm hydrogen spectral line?

In statistical physics each degree of freedom has an average energy of 1
2

kT . A hydrogen molecule

has 5 degrees of freedom (3 translational and 2 rotational); hence thermal energy ¼ 5
2

kT. Photon

energy hn ¼ hc=l, so that T ¼ 2
5

hc=kl ¼ 0:068K.

3. What wavelength of electromagnetic radiation has the same photon energy as an electron

accelerated to 100 eV?

Photon energy ¼ hn ¼ hc=l ¼ 100� 1:6� 10�19J. So

l ¼ 6:63� 10�34 � 3:00� 108

1:6� 10�17
¼ 1:24� 10�8 m ¼ 12:4 nm

(ultraviolet light; see Figure (1.7)).

4. An X-ray photon with wavelength 1:5� 10�11 m arrives at a solid. How much energy (in eV) can it

give to the solid?

hn ¼ hc

l
¼ 6:63� 10�34 � 3:00� 108

1:5� 10�11
¼ 1:32� 10�14 J ¼ 8:3� 104 eV:

The photon energy of visible light waves, ranging from 1.8 to 3.1 electron volts (eV), is such that

quantum effects dominate only some of the processes of emission and absorption or detection. The

visible spectrum contains the marks of quantum processes in the profusion of colour from line

emission and in line absorption; it can also display a continuum of emission over a wide range of

wavelengths, giving ‘white’ light, whose actual colour is determined by the large-scale structure of

the continuum spectrum rather than its fine detail.

1.7 Stimulated Emission: The Laser

At the start of this chapter we remarked on the apparently complete understanding of optics at the

beginning of the twentieth century. The wave nature of light was fully understood, stemming from the

classical experiments of Young, Fresnel and Michelson, and substantiated by Maxwell’s electro-

magnetic theory. Much of the content of our later chapters on interference and diffraction is derived

directly from that era (with some refinements). Even Planck’s bombshell announcement in 1900 that

blackbody radiation is emitted by quantized oscillators, and Einstein’s demonstration in 1905 of the

reality of photons through his explanation of the photoelectric effect, completed rather than disturbed

the picture; they had cleared up a mystery about the interchange of energy between matter and
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electromagnetic waves. Einstein’s theory of that interaction, however, contained the seed of another

revolution in optics, which germinated half a century later with the invention of the laser.

Einstein in 1917 showed that there are three basic processes involved in the interchange of energy

between a light wave and the discrete energy levels in an atom. All three involve a quantum jump of

energy within the atom; typically in the visible region this is around 2 eV. Figure 1.8 illustrates the

three basic photon processes; the processes are illustrated adopting a model with only two energy

levels, although there are many more energy levels even in the simplest atom. As depicted in

Figure 1.8, the first is the absorption of a photon which can occur when the quantum energy hn of the
photon equals the energy difference between the two levels (a resonant condition) and the photon

falls on an atom in the lower level; the atom then gains a quantum of energy. The second is

spontaneous emission, when an atom in the upper level emits a photon, losing a quantum of energy in

the process. The third is stimulated emission, in which the emission of a photon is triggered by the

arrival at an excited atom of another, resonant photon. This third process was shown by Einstein to be

essential in the overall balance between emission and absorption. What emerged later was that the

emitted photon is an exact copy of the incident photon, with the same direction, frequency and phase;

further, each could then stimulate more photon emissions, leading to the build-up of a coherent wave

which can attain a very great irradiance (or ‘intensity’, in old terminology).7 The build-up requires the

number of atoms in the higher energy level to exceed the number in the lower level, a condition

known as population inversion, so that the rate of stimulated emission exceeds the rate of absorption.

The energy supply used to create the population inversion is often referred to as a pump, which in

Figure 1.9 is light absorbed between a ground level E0 and level E1. If the excitation of this level is

short-lived, and it decays to a lower but longer-lived level E2, the process leads to an accumulation

Spontaneous emission

Resonant absorption

Stimulated emission

Figure 1.8 Three basic photon processes: absorption, spontaneous emission and stimulated emission. For
simplicity only two energy levels are shown

7See Appendix 1 for the definition of irradiance and other radiometric terms.
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and overpopulation of atoms in the level E2 compared with E0. Stimulated emission, fed by energy

from a pump, is the essential process in a laser. Prior to the laser, stimulated emission had been

demonstrated in 1953 in the microwave region of the spectrum by Basov, Prokhorov and Townes,8 an

achievement for which they were awarded the Nobel Prize. We describe in Chapter 15 the earliest

laser, due to T.H. Maiman in 1960.

The process of stimulated emission in a laser builds up a stream of identical photons, which add

coherently as the most nearly ideal monochromatic light, with very narrow frequency spread and

correspondingly great coherence length (Chapter 13). Paradoxically, lasers, which depend funda-

mentally on quantum processes, produce the most nearly ideal waves. Lasers have allowed the

classical experimental techniques of interferometry and spectroscopy to be extended into new

domains, which we explore in Chapter 9 on the measurement of length and Chapter 12 on high-

resolution spectrometry.

Largely as a result of the discovery and development of lasers, a new subject of photonics has

developed from pre-laser studies of transmission and absorption in dielectrics. Coherent laser beams

easily achieve an irradiance many orders of magnitude greater than that of any thermal source,

leading to very large electric fields and non-linear effects in dielectrics, such as harmonic generation

and frequency conversion. There are many practical applications, some of which are more familiar in

electronic communications, such as switching, modulation and frequency mixing. The title of this

book indicates the current importance of lasers and photonics; the materials involved, including those

used in non-linear optics, are included in Chapters 16 on laser light, 17 on semiconductors, 18 on light

sources and 19 on detectors.

E1

E2

E0

Figure 1.9 Energy levels in the three-level laser. Energy is supplied to the atom by absorption from the ground
level to the excited level E1; spontaneous emission to the long-lived level E2 then results in overpopulation of
that level. Transitions from E2 to ground are then the stimulated emission in the laser

8They demonstrated a maser process, Microwave Amplification by the Stimulated Emission of Radiation. Note

that strictly speaking this and the related laser process refer to amplification; devices which use the process in

oscillators which generate microwaves and light are, however, known simply as masers and lasers.
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1.8 Photons and Material Particles

As we noted in Section 1.1, the wave-like character of electrons was demonstrated in the 1920s,

following the prediction by de Broglie that any particle with mass m ¼ E=c2 (where E is the total

relativistic energy) and moving with velocity v has an associated wave with wavelength l ¼ h=mv.
This association was eventually demonstrated in atoms, and even in molecules; in 1999 the wave–

particle duality of the large molecule fullerene, or C60, was demonstrated in a diffraction experiment

by Arndt et al.9

There can be little doubt of the actual individual existence of a large particle such as a molecule of

fullerene. Can we make a similar statement about the individual existence of photons? Ever since

Planck and Einstein introduced quantum theory there has been a debate about the actual existence of

photons as discrete objects. Light can be depicted as a ray, or as a wave; can it be thought of as a

volley of photons, like a flock of birds moving from one roosting place to another? Should the wave

nature of material particles, which constrains them to their behaviour in diffraction and interferometer

observations, lead us to conclude that light has a similar dual nature?

Consider the classical interferometer typified by Young’s double slit (Figure 1.10), which we

describe in Chapter 8. Monochromatic light from the slit source passes through the pair of slits,

forming an interference pattern on the screen. A detector on the screen records the arrival of

individual photons, which in aggregate trace out the interference pattern, even when the intensity is so

low that each recorded photon must have been the only photon present in the apparatus at any time.

Through which slit did it pass? We naturally try to find out by placing some sort of detector at one or

both slits, but as soon as we detect and locate the photon the interference pattern disappears.

Detecting which slit the photon traverses has the same effect as forcing it to act like a localized

quantum which passes through one slit at a time.

This behaviour is a simple example of the complementarity principle formulated by Bohr; if we

know where the photon is, we cannot have an interference pattern, and if an interference pattern

exists, it is impossible to specify the position of the photon. We can only observe that a photon has

reached the detector, and the probability that it will arrive at any location is determined by its wave

nature.

Diffraction and interference of material particles follow a similar pattern. In principle the double

slit of Figure 1.10 could be demonstrating the de Broglie waves associated with a large molecule such

as fullerene. Exactly the same dilemma arises: the interference pattern is observed even if only one

molecule is in the apparatus at any time, but complementarity prevents us from knowing which slit

the particle goes through, without destroying the interference pattern.

It has been suggested that the photon can exist in two places at once, and even that the large

molecule is similarly ‘delocalized’. This is better expressed by treating the wave as the basic

description in both cases, and equating the probability of observing a particle or photon at a particular

location to the intensity of the wave at that location. If any diffraction phenomenon is involved, the

intensity pattern is determined by the correlation between separate wave components. If the separate

components are ‘de-correlated’ by any process, the interference between wave components dis-

appears. The analysis of correlation, which we present in Chapter 13, provides a unified framework

for understanding diffraction both in light and in material particles. The difference, as noted in

9M. Arndt et al., Nature 401, 680, 1999.
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Section 1.1, is that a photon only exists as a quantized interchange between a field and an emitter or

detector, while the individual existence of a material particle can hardly be questioned.

Problem 1.1
Gallium arsenide (GaAs) is an important semiconductor used in photoelectronic devices. It has a refractive index

of 3.6. For a slab of GaAs of thickness 0.3mm show that a point source of light within the GaAs on the bottom

face will give rise to radiation outside the top face from within a circle of radius R centred immediately above the

point source. Find R.

Problem 1.2
In the Pulfrich refractometer (Figure 1.11), the refractive index n of a liquid is found by measuring the emergent

angle e from the prism whose refractive index is N. Show that if i is nearly 90�

n � ðN2 � sin2 eÞ1=2:

Problem 1.3
The angular radius of a rainbow, measured from a point opposite to the Sun, may be found from the geometry of

the ray in Figure 1.12, which lies in the meridian plane of a spherical drop of water with refractive index n. The

n

e

i

r

Liquid, index 

Prism,
index N

Figure 1.11 Pulfrich refractometer

Figure 1.10 Double slit interferometer. Through which slit did each individual photon or electron go?
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angular radius is a stationary value of the angle through which a ray from the Sun is deviated; show that it is

given by

cos i ¼ n2 � 1

3

� �1=2

:

Note that the internal reflection is near the Brewster angle (see Section 5.4), so that the rainbow light is polarized

along the circumference of the bow.

Problem 1.4
Show that the apparent diameter of the bore of a thick-walled glass capillary tube of refractive index n, as seen

normally from the outside, is independent of the outer diameter, and is n times the actual diameter.

Problem 1.5
Show that the lateral displacement d of a ray passing through a plane-parallel plate of glass with refractive

index n, thickness t, is related to the angle of incidence y by

d � ty 1� 1

n

� �

provided that y is small.

Problem 1.6
If the refractive index n of a slab of material varies in a direction y, perpendicular to the x axis, show by using

Huygens’ construction that a ray travelling nearly parallel to the x axis will follow an arc with radius

n
dn

dy

� ��1

:

(Consider a sector of wavefront dy across, and compare the distances travelled in time t by secondary waves

from each end of the sector.)

r

2 r

i

r

i

Figure 1.12 A ray refracted in the meridian plane of a spherical raindrop.

Problems 17



Problem 1.7
Show that the geometric distance of the horizon as seen by an observer at height h metres is approximately

3.5 h1=2 kilometres. The radius of the Earth � 6000 km.

Use the result of Problem 1.6 to calculate how this is affected by atmospheric refraction, if this is due to pressure

changes only with an exponential scale height of 10 kilometres. The refractive index of air at ground level is

approximately 1.000 28.

Problem 1.8
The refractive index of solids at X-ray wavelengths is generally less than unity, so that a beam of X-rays incident

at a glancing angle may be reflected, as in total internal reflection. If the refractive index is n ¼ 1� d show that

the largest glancing angle for reflection is ’
ffiffiffi
d

p
. Evaluate this critical angle for silver at l ¼ 0:07 nm where

d ¼ 5:8� 10�6. (Note: if y is the angle measured from the normal, the glancing angle is its complement,

p=2� y.)
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