1

Information Retrieval Models

Djoerd Hiemstra

1.1 Introduction

Many applications that handle information on the internet would be completely inadequate without the
support of information retrieval technology. How would we find information on the world wide web
if there were no web search engines? How would we manage our email without spam filtering? Much
of the development of information retrieval technology, such as web search engines and spam filters,
requires a combination of experimentation and theory. Experimentation and rigorous empirical testing
are needed to keep up with increasing volumes of web pages and emails. Furthermore, experimentation
and constant adaptation of technology is needed in practice to counteract the effects of people who
deliberately try to manipulate the technology, such as email spammers. However, if experimentation
is not guided by theory, engineering becomes trial and error. New problems and challenges for
information retrieval come up constantly. They cannot possibly be solved by trial and error alone. So,
what is the theory of information retrieval?

There is not one convincing answer to this question. There are many theories, here called formal
models, and each model is helpful for the development of some information retrieval tools, but not so
helpful for the development of others. In order to understand information retrieval, it is essential to learn
about these retrieval models. In this chapter, some of the most important retrieval models are gathered
and explained in a tutorial style. But first, we will describe what exactly it is that these models model.

1.1.1 Terminology

An information retrieval system is a software programme that stores and manages information on
documents, often textual documents, but possibly multimedia. The system assists users in finding
the information they need. It does not explicitly return information or answer questions. Instead, it
informs on the existence and location of documents that might contain the desired information. Some
suggested documents will, hopefully, satisfy the user’s information need. These documents are called
relevant documents. A perfect retrieval system would retrieve only the relevant documents and no
irrelevant documents. However, perfect retrieval systems do not exist and will not exist, because
search statements are necessarily incomplete and relevance depends on the subjective opinion of the
user. In practice, two users may pose the same query to an information retrieval system and judge the
relevance of the retrieved documents differently. Some users will like the results, others will not.

Information Retrieval: Searching in the 21st Century edited by A. Goker & J. Davies
© 2009 John Wiley & Sons, Ltd

2 Information Retrieval: Searching in the 21st Century

Information need Documents

i

Query Indexed documents

Matching

Feedback Retrieved documents

Figure 1.1 Information retrieval processes

There are three basic processes an information retrieval system has to support: the representation of
the content of the documents, the representation of the user’s information need, and the comparison
of the two representations. The processes are visualised in Figure 1.1. In the figure, squared boxes
represent data and rounded boxes represent processes.

Representing the documents is usually called the indexing process. The process takes place offline,
that is, the end user of the information retrieval system is not directly involved. The indexing process
results in a representation of the document. Often, full-text retrieval systems use a rather trivial
algorithm to derive the index representations, for instance an algorithm that identifies words in an
English text and puts them to lower case. The indexing process may include the actual storage of the
document in the system, but often documents are only stored partly, for instance only the title and the
abstract, plus information about the actual location of the document.

Users do not search just for fun, they have a need for information. The process of representing their
information need is often referred to as the query formulation process. The resulting representation is
the query. In a broad sense, query formulation might denote the complete interactive dialogue between
system and user, leading not only to a suitable query, but possibly also to the user better understanding
his/her information need: This is denoted by the feedback process in Figure 1.1.

The comparison of the query against the document representations is called the matching process.
The matching process usually results in a ranked list of documents. Users will walk down this document
list in search of the information they need. Ranked retrieval will hopefully put the relevant documents
towards the top of the ranked list, minimising the time the user has to invest in reading the documents.
Simple, but effective ranking algorithms use the frequency distribution of terms over documents, but
also statistics over other information, such as the number of hyperlinks that point to the document.
Ranking algorithms based on statistical approaches easily halve the time the user has to spend on
reading documents. The theory behind ranking algorithms is a crucial part of information retrieval
and the major theme of this chapter.

1.1.2 What is a model?

There are two good reasons for having models of information retrieval. The first is that models guide
research and provide the means for academic discussion. The second reason is that models can serve
as a blueprint to implement an actual retrieval system.

Mathematical models are used in many scientific areas with the objective to understand and reason
about some behaviour or phenomenon in the real world. One might for instance think of a model of our

Information Retrieval Models 3

solar system that predicts the position of the planets on a particular date, or one might think of a model
of the world climate that predicts the temperature, given the atmospheric emissions of greenhouse
gases. A model of information retrieval predicts and explains what a user will find relevant, given
the user query. The correctness of the model’s predictions can be tested in a controlled experiment.
In order to do predictions and reach a better understanding of information retrieval, models should
be firmly grounded in intuitions, metaphors and some branch of mathematics. Intuitions are important
because they help to get a model accepted as reasonable by the research community. Metaphors
are important because they help to explain the implications of a model to a bigger audience. For
instance, by comparing the earth’s atmosphere with a greenhouse, non-experts will understand the
implications of certain models of the atmosphere. Mathematics is essential to formalise a model, to
ensure consistency, and to make sure that it can be implemented in a real system. As such, a model of
information retrieval serves as a blueprint which is used to implement an actual information retrieval
system.

1.1.3 Outline

The following sections will describe a total of eight models of information retrieval rather extensively.
Many more models have been suggested in the information retrieval literature, but the selection made
in this chapter gives a comprehensive overview of the different types of modelling approaches. We
start out with two models that provide structured query languages, but no means to rank the results
in Section 1.2. Section 1.3 describes vector space approaches, Section 1.4 describes probabilistic
approaches, and Section 1.5 concludes this chapter.

1.2 Exact Match Models

In this section, we will address two models of information retrieval that provide exact matching, i.e.
documents are either retrieved or not, but the retrieved documents are not ranked.

1.2.1 The Boolean model

The Boolean model is the first model of information retrieval and probably also the most criticised
model. The model can be explained by thinking of a query term as an unambiguous definition of a set
of documents. For instance, the query term economic simply defines the set of all documents that are
indexed with the term economic. Using the operators of George Boole’s mathematical logic, query
terms and their corresponding sets of documents can be combined to form new sets of documents.
Boole defined three basic operators, the logical product called AND, the logical sum called OR and
the logical difference called NOT. Combining terms with the AND operator will define a document
set that is smaller than or equal to the document sets of any of the single terms. For instance, the
query social AND economic will produce the set of documents that are indexed both with the
term social and the term economic, i.e. the intersection of both sets. Combining terms with the
OR operator will define a document set that is bigger than or equal to the document sets of any of
the single terms. So, the query social OR political will produce the set of documents that are
indexed with either the term social or the term political, or both, i.e. the union of both sets.
This is visualised in the Venn diagrams of Figure 1.2 in which each set of documents is visualised
by a disc. The intersections of these discs and their complements divide the document collection
into 8 non-overlapping regions, the unions of which give 256 different Boolean combinations of
‘social, political and economic documents’. In Figure 1.2, the retrieved sets are visualised by the
shaded areas.

An advantage of the Boolean model is that it gives (expert) users a sense of control over the system.
It is immediately clear why a document has been retrieved, given a query. If the resulting document
set is either too small or too big, it is directly clear which operators will produce respectively a
bigger or smaller set. For untrained users, the model has a number of clear disadvantages. Its main

4 Information Retrieval: Searching in the 21st Century

(B N D

social AND economic social OR political (social OR political)
AND NOT (social AND
economic)

Figure 1.2 Boolean combinations of sets visualised as Venn diagrams

disadvantage is that it does not provide a ranking of retrieved documents. The model either retrieves a
document or not, which might lead to the system making rather frustrating decisions. For instance, the
query social AND worker AND union will of course not retrieve a document indexed with party,
birthday and cake, but will likewise not retrieve a document indexed with social and worker
that lacks the term union. Clearly, it is likely that the latter document is more useful than the former,
but the model has no means to make the distinction.

1.2.2 Region models

Region models (Burkowski 1992; Clarke et al. 1995; Navarro and Baeza-Yates 1997; Jaakkola and
Kilpelainen 1999) are extensions of the Boolean model that reason about arbitrary parts of textual
data, called segments, extents or regions. Region models model a document collection as a linearised
string of words. Any sequence of consecutive words is called a region. Regions are identified by a
start position and an end position. Figure 1.3 shows a fragment from Shakespeare’s Hamlet for which
we numbered the word positions. The figure shows the region that starts at word 103 and ends at
word 131. The phrase ‘stand, and unfold yourself’ is defined by the region that starts on position
128 in the text, and ends on position 131. Some regions might be predefined because they represent
a logical element in the text, for instance the line spoken by Bernardo which is defined by region
(122, 123).

Region systems are not restricted to retrieving documents. Depending on the application, we might
want to search for complete plays using some textual queries, we might want to search for scenes
referring to speakers, we might want to retrieve speeches by some speaker, we might want to search
for single lines using quotations and referring to speakers, etc. When we think of the Boolean model
as operating on sets of documents where a document is represented by a nominal identifier, we could
think of a region model as operating on sets of regions, where a region is represented by two ordinal
identifiers: the start position and the end position in the document collection. The Boolean operators
AND, OR and NOT might be defined on sets of regions in a straightforward way as set intersection,
set union and set complement. Region models use at least two more operators: CONTAINING and
CONTAINED_BY. Systems that supports region queries can process complex queries, such as the fol-
lowing that retrieves all lines in which Hamlet says ‘farewell’: (<LINE> CONTAINING farewell)
CONTAINED_BY (<SPEECH> CONTAINING (<SPEAKER> CONTAINING Hamlet)).

There are several proposals of region models that differ slightly. For instance, the model proposed
by Burkowski (1992) implicitly distinguishes mark-up from content. As above, the query <SPEECH>
CONTAINING Hamlet retrieves all speeches that contain the word ‘Hamlet’. In later publications
Clarke et al. (1995) and Jaakkola and Kilpelainen (1999) describe region models that do not distinguish

Information Retrieval Models 5

<ACT>
<TITLE>ACT? I1%04</TITLE>
<SCENE>
<TITLE>SCENE'?® 119¢ Elsinorel?” al08 platforml09 before!? thel!!
castlel?</TITLE>
<STGDIR>FRANCISCOM3 atl!® nhis!'® post!!® Enter!!” tol'!® him!'?®
BERNARDO?%</STGDIR>
<SPEECH>
<SPEAKER>BERNARDO?'</SPEAKER>
<LINE>Who's'?? there?'??</LINE>
</SPEECH>
<SPEECH>
<SPEAKER>FRANCISCO'?%</SPEAKER>
<LINE>Nay,l25 answer'?® me:?7 stand!?® and'?® unfol1d!'3’
yourself!3l</LINE>

Figure 1.3 Position numbering of example data

mark-up from content. In their system, the operator FOLLOWED_BY is needed to match opening and clos-
ing tags, so the query would be somewhat more verbose: (<speech> FOLLOWED_BY </speech>)
CONTAINING Hamlet. In some region models, such as the model by Clarke er al. (1995), the query
A AND B does not retrieve the intersection of sets A and B, but instead retrieves the smallest regions
that contain a region from both set A and set B.

1.2.3 Discussion

The Boolean model is firmly grounded in mathematics and its intuitive use of document sets provides
a powerful way of reasoning about information retrieval. The main disadvantage of the Boolean model
and the region models is their inability to rank documents. For most retrieval applications, ranking is
of the utmost importance and ranking extensions have been proposed of the Boolean model (Salton
et al. 1983) as well as of region models (Mihajlovic 2006). These extensions are based on models
that take the need for ranking as their starting point. The remaining sections of this chapter discuss
these models of ranked retrieval.

1.3 Vector Space Approaches

Hans Peter Luhn was the first to suggest a statistical approach to searching information (Luhn 1957).
He suggested that in order to search a document collection, the user should first prepare a document
that is similar to the documents needed. The degree of similarity between the representation of the
prepared document and the representations of the documents in the collection is used to rank the
search results. Luhn formulated his similarity criterion as follows:

The more two representations agreed in given elements and their distribution, the higher would
be the probability of their representing similar information.

Following Luhn’s similarity criterion, a promising first step is to count the number of elements that
the query and the index representation of the document share. If the document’s index representation
is a vector d = (dy, d, - - -, d,y) of which each component d; (1 < k < m) is associated with an index

6 Information Retrieval: Searching in the 21st Century

political

social

economic

Figure 1.4 A query and document representation in the vector space model

term; and if the query is a similar vector ¢ = (g1, g2, - - -, ¢m) of which the components are associated
with the same terms, then a straightforward similarity measure is the vector inner product:

score(d, q) = de “qk (1.1)
k=1

If the vector has binary components, i.e. the value of the component is 1 if the term occurs in the
document or query and O if not, then the vector product measures the number of shared terms. A more
general representation would use natural numbers or real numbers for the components of the vectors
d and g.

1.3.1 The vector space model

Gerard Salton and his colleagues suggested a model based on Luhn’s similarity criterion that has a
stronger theoretical motivation (Salton and McGill 1983). They considered the index representations
and the query as vectors embedded in a high-dimensional Euclidean space, where each term is assigned
a separate dimension. The similarity measure is usually the cosine of the angle that separates the two
vectors d and q. The cosine of an angle is O if the vectors are orthogonal in the multidimensional
space and 1 if the angle is 0°. The cosine formula is given by:

ZZI:l dy - qk
JE oY @

The metaphor of angles between vectors in a multidimensional space makes it easy to explain the
implications of the model to non-experts. Up to three dimensions, one can easily visualise the document
and query vectors. Figure 1.4 visualises an example document vector and an example query vector
in the space that is spanned by the three terms social, economic and political. The intuitive
geometric interpretation makes it relatively easy to apply the model to new information retrieval
problems. The vector space model guided research in, for instance, automatic text categorisation and
document clustering.

Measuring the cosine of the angle between vectors is equivalent to normalising the vectors to unit
length and taking the vector inner product. If index representations and queries are properly normalised,
then the vector product measure of Equation (1.1) does have a strong theoretical motivation. The
formula then becomes:

score(d, §) = 1.2)

m

score(d, §) = Zn(dk) - n(qr)
k=1

Information Retrieval Models 7

where

Uk

i ke ()2

1.3.2 Positioning the query in vector space

(1.3)

n(vg) =

Some rather ad hoc, but quite successful retrieval algorithms are nicely grounded in the vector space
model if the vector lengths are normalised. An example is the relevance feedback algorithm by
Joseph Rocchio (Rocchio 1971). Rocchio suggested the following algorithm for relevance feedback,
where goiq is the original query, gnew is the revised query, Jr(e’l) (1 <i <r) is one of the r documents
the user selected as relevant, and Jr(]i)mel(l <1i < n) is one of the n documents the user selected as
non-relevant.

. S S ST R ST
Gnew = {old + ; Z dréll) - ; Z dn((ir)lrel (14)
i=1

i=1

The normalised vectors of documents and queries can be viewed as points on a hypersphere at
unit length from the origin. In Equation (1.4), the first sum calculates the centroid of the points
of the known relevant documents on the hypersphere. In the centroid, the angle with the known
relevant documents is minimised. The second sum calculates the centroid of the points of the known
non-relevant documents. Moving the query towards the centroid of the known relevant documents
and away from the centroid of the known non-relevant documents is guaranteed to improve retrieval
performance.

1.3.3 Term weighting and other caveats

The main disadvantage of the vector space model is that it does not in any way define what the
values of the vector components should be. The problem of assigning appropriate values to the vec-
tor components is known as ferm weighting. Early experiments by Salton (1971) and Salton and
Yang (1973) showed that term weighting is not a trivial problem at all. They suggested so-called
tf.idf weights, a combination of term frequency #f, which is the number of occurrences of a term
in a document, and idf, the inverse document frequency, which is a value inversely related to the
document frequency df, which is the number of documents that contain the term. Many modern
weighting algorithms are versions of the family of #f.idf weighting algorithms. Salton’s original
tf.idf weights perform relatively poorly, in some cases worse than simple idf weighting. They are
defined as:

di = qi = tfk, d) - log (1.5)

N
df (k)

where #f(k,d) is the number of occurrences of the term k in the document d, df(k) is the
number of documents containing k, and N is the total number of documents in the collection.
Another problem with the vector space model is its implementation. The calculation of the
cosine measure needs the values of all vector components, but these are not available in an
inverted file. In practice, the normalised values and the vector product algorithm have to be used.
Either the normalised weights have to be stored in the inverted file, or the normalisation values
have to be stored separately. Both are problematic in case of incremental updates of the index.
Adding a single new document changes the document frequencies of terms that occur in the
document, which changes the vector lengths of every document that contains one or more of these
terms.

8 Information Retrieval: Searching in the 21st Century

1.4 Probabilistic Approaches

Several approaches that try to define term weighting more formally are based on probability theory.
The notion of the probability of something, for instance the probability of relevance notated as P(R),
is usually formalised through the concept of an experiment, where an experiment is the process by
which an observation is made. The set of all possible outcomes of the experiment is called the sample
space. In the case of P(R) the sample space might be {relevant, irrelevant}, and we might define the
random variable R to take the values {0, 1}, where 0 = irrelevant and 1 = relevant.

Let’s define an experiment for which we take one document from the collection at random. If we
know the number of relevant documents in the collection, say 100 documents are relevant, and we
know the total number of documents in the collection, say 1 million, then the quotient of those two
defines the probability of relevance P(R=1) = 100/1000000 = 0.0001. Suppose furthermore that
P(Dy) is the probability that a document contains the term k with the sample space {0, 1}, (0 = the
document does not contain term k, 1 = the document contains term k), then we will use P(R, Dy) to
denote the joint probability distribution with outcomes {(0, 0), (0, 1), (1, 0) and (1, 1)}, and we will use
P(R|Dy) to denote the conditional probability distribution with outcomes {0, 1}. So, P(R=1|Dy=1)
is the probability of relevance if we consider documents that contain the term k.

Note that the notation P(...) is overloaded. Whenever we are talking about a different random
variable or sample space, we are also talking about a different measure P. So, one equation might refer
to several probability measures, all ambiguously referred to as P. Also note that random variables
such as D and T might have different sample spaces in different models. For instance, D in the
probabilistic indexing model is a random variable denoting ‘this is the relevant document’, that has as
possible outcomes the identifiers of the documents in the collection. However, D in the probabilistic
retrieval model is a random variable that has as possible outcomes all possible document descriptions,
which in this case are vectors with binary components dj that denote whether a document is indexed
by term k or not.

1.4.1 The probabilistic indexing model

As early as 1960, Bill Maron and Larry Kuhns (Maron and Kuhns 1960) defined their probabilistic
indexing model. Unlike Luhn, they did not target automatic indexing by information retrieval systems.
Manual indexing was still guiding the field, so they suggested that a human indexer, who runs through
the various index terms 7 that possibly apply to a document D, assigns a probability P(7|D) to a
term given a document instead of making a yes/no decision for each term. So, every document ends
up with a set of possible index terms, weighted by P(T|D), where P(T|D) is the probability that,
if a user wants information of the kind contained in document D, he/she will formulate a query by
using 7. Using Bayes’ rule, i.e.

P(T|D)P(D
P(DIT) = % (1.6)

they then suggest to rank the documents by P(D|T), that is, the probability that the document D is
relevant, given that the user formulated a query by using the term 7'. Note that P(7) in the denominator
of the right-hand side is constant for any given query term 7', and consequently documents might be
ranked by P(T'|D)P (D) which is a quantity proportional to the value of P(D|T). In the formula,
P(D) is the a priori probability of relevance of document D.

Whereas P(T|D) is defined by the human indexer, Maron and Kuhns suggest that P(D) can be
defined by statistics on document usage, i.e. by the quotient of the number of uses of document D
by the total number of document uses. So, their usage of the document prior P(D) can be seen
as the very first description of popularity ranking, which became important for internet search (see
Section 1.4.6). Interestingly, an estimate of P(7'|D) might be obtained in a similar way by storing,
for each use of a document, also the query term that was entered to retrieve the document in the first
place. Maron and Kuhns state that ‘such a procedure would of course be extremely impractical’, but

Information Retrieval Models 9

8990
999

social

Figure 1.5 Venn diagram of the collection given the query term social

in fact, such techniques — rank optimization using so-called click-through rates — are now common in
web search engines as well (Joachims et al. 2005). Probabilistic indexing models were also studied
by Fuhr (1989).

1.4.2 The probabilistic retrieval model

Whereas Maron and Kuhns introduced ranking by the probability of relevance, it was Stephen Robert-
son who turned the idea into a principle. He formulated the probability ranking principle, which he
attributed to William Cooper, as follows (Robertson 1977).

If a reference retrieval system’s response to each request is a ranking of the documents in
the collections in order of decreasing probability of usefulness to the user who submitted the
request, where the probabilities are estimated as accurately as possible on the basis of whatever
data has been made available to the system for this purpose, then the overall effectiveness of
the system to its users will be the best that is obtainable on the basis of that data.

This seems a rather trivial requirement indeed, since the objective of information retrieval systems
is defined in Section 1.1 as to ‘assist users in finding the information they need’, but its implications
might be very different from Luhn’s similarity principle. Suppose a user enters a query containing a
single term, for instance the term social. If all documents that fulfil the user’s need were known,
it would be possible to divide the collection into four non-overlapping document sets as visualised
in the Venn diagram of Figure 1.5. The figure contains additional information about the size of each
of the non-overlapping sets. Suppose the collection in question has 10000 documents, of which 1000
contain the word ‘social’. Furthermore, suppose that only 11 documents are relevant to the query of
which 1 contains the word ‘social’. If a document is taken at random from the set of documents that
are indexed with social, then the probability of picking a relevant document is 1/1000 = 0.0010. If
a document is taken at random from the set of documents that are not indexed with social, then the
probability of relevance is bigger: 10/9000 = 0.0011. Based on this evidence, the best performance
is achieved if the system returns documents that are not indexed with the query term social, that is,
to present first the documents that are dissimilar to the query. Clearly, such a strategy violates Luhn’s
similarity criterion.

Stephen Robertson and Karen Spirck-Jones based their probabilistic retrieval model on this line of
reasoning (Robertson and Spirck-Jones 1976). They suggested to rank documents by P(R|D), that
is the probability of relevance R given the document’s content description D. Note that D is here a
vector of binary components, each component typically representing a term, whereas in the previous
section D was the ‘relevant document’. In the probabilistic retrieval model the probability P(R|D)
has to be interpreted as follows: there might be several, say 10, documents that are represented by
the same D. If 9 of them are relevant, then P(R|D) = 0.9. To make this work in practice, we use
Bayes’ rule on the probability odds P(R|D)/ P(R|D), where R denotes irrelevance. The odds allow
us to ignore P (D) in the computation while still providing a ranking by the probability of relevance.

10 Information Retrieval: Searching in the 21st Century

Additionally, we assume independence between terms given relevance.

P(RID) _ P(DIR)P(R) _ [l P(DR)P(R)
P(R|D) P(DIR)P(R) [l P(DkIR)P(R)

(1.7)

Here, Dy denotes the kth component (term) in the document vector. The probabilities of the terms are
defined as above from examples of relevant documents, that is, in Figure 1.5, the probability of social
given relevance is 1/11. A more convenient implementation of probabilistic retrieval uses the following
three order-preserving transformations. First, the documents are ranked by sums of logarithmic odds,
instead of the odds themselves. Second, the a priori odds of relevance P(R)/P(R) is ignored. Third,
we subtract Y, log(P(Dy = O|R)/P(Dy = 0|R)), i.e. the score of the empty document, from all
document scores. This way, the sum over all terms, which might be millions of terms, only includes
non-zero values for terms that are present in the document.

Z o P(Dy=1|R) P(Dy=0|R)

matching-score(D) = PD 1|§)P(D 0IR)
k= k=

(1.8)

ke matching terms

In practice, terms that are not in the query are also ignored in Equation (1.8). Making full use of the
probabilistic retrieval model requires two things: examples of relevant documents and long queries.
Relevant documents are needed to compute P(Di|R), that is, the probability that the document
contains the term k given relevance. Long queries are needed because the model only distinguishes
term presence and term absence in documents and as a consequence, the number of distinct values of
document scores is low for short queries. For a one-word query, the number of distinct probabilities
is two (either a document contains the word or not), for a two-word query it is four (the document
contains both terms, or only the first term, or only the second, or neither), for a three-word query
it is eight, etc. Obviously, this makes the model inadequate for web search, for which no relevant
documents are known beforehand and for which queries are typically short. However, the model is
helpful in, for instance, spam filters. Spam filters accumulate many examples of relevant (no spam or
‘ham’) and irrelevant (spam) documents over time. To decide if an incoming email is spam or ham,
the full text of the email can be used instead of a just few query terms.

1.4.3 The 2-Poisson model

Bookstein and Swanson (1974) studied the problem of developing a set of statistical rules for the
purpose of identifying the index terms of a document. They suggested that the number of occurrences
tf of terms in documents could be modelled by a mixture of two Poisson distributions as follows,
where X is a random variable for the number of occurrences.

e M (up)? e "2 (uy)”
PX=th=rh—— + (1 — 1) ———— 1.9
(7)) 7 () 7 (1.9)

The model assumes that the documents were created by a random stream of term occurrences. For
each term, the collection can be divided into two subsets. Documents in subset one treat a subject
referred to by a term to a greater extent than documents in subset two. This is represented by A
which is the proportion of the documents that belong to subset one and by the Poisson means u;
and (g = wp) which can be estimated from the mean number of occurrences of the term in the
respective subsets. For each term, the model needs these three parameters, but unfortunately, it is
unknown to which subset each document belongs. The estimation of the three parameters should
therefore be done iteratively by applying, e.g. the expectation maximisation algorithm (Dempster
et al. 1977) or alternatively by the method of moments, as done by Harter (1975).

If a document is taken at random from subset one, then the probability of relevance of this document
is assumed to be equal to, or higher than, the probability of relevance of a document from subset two;

Information Retrieval Models 11

because the probability of relevance is assumed to be correlated with the extent to which a subject
referred to by a term is treated, and because w; > po. Useful terms will make a good distinction
between relevant and non-relevant documents, that is, both subsets will have very different Poisson
means i and po. Therefore, Harter (1975) suggests the following measure of effectiveness of an
index term that can be used to rank the documents given a query.

M1 — K2

NS

The 2-Poisson model’s main advantage is that it does not need an additional term weighting
algorithm to be implemented. In this respect, the model contributed to the understanding of
information retrieval and inspired some researchers in developing new models, as shown in the
next paragraph. The model’s biggest problem, however, is the estimation of the parameters. For
each term there are three unknown parameters that cannot be estimated directly from the observed
data. Furthermore, despite the model’s complexity, it still might not fit the actual data if the
term frequencies differ very much per document. Some studies therefore examine the use of
more than two Poisson functions, but this makes the estimation problem even more intractable
(Margulis 1993).

Robertson et al. (1981) proposed to use the 2-Poisson model to include the frequency of terms
within documents in the probabilistic model. Although the actual implementation of this model is
cumbersome, it inspired Stephen Robertson and Stephen Walker in developing the Okapi BM25 term
weighting algorithm, which is still one of the best performing term weighting algorithms (Robertson
and Walker 1994; Spirck-Jones et al. 2000).

(1.10)

1.4.4 Bayesian network models

In 1991, Howard Turtle proposed the inference network model (Turtle and Croft 1991) which is
formal in the sense that it is based on the Bayesian network mechanism (Metzler and Croft 2004).
A Bayesian network is an acyclic directed graph (a directed graph is acyclic if there is no directed path
A — .- — Z such that A = Z) that encodes probabilistic dependency relationships between random
variables. The presentation of probability distributions as directed graphs, makes it possible to analyse
complex conditional independence assumptions by following a graph theoretic approach. In practice,
the inference network model is comprised of four layers of nodes: document nodes, representation
nodes, query nodes and the information need node. Figure 1.6 shows a simplified inference network
model. All nodes in the network represent binary random variables with values {0, 1}. To see how
the model works in theory, it is instructive to look at a subset of the nodes, for instance the nodes r;,
q1, q3 and I, and ignore the other nodes for the moment. By the chain rule of probability, the joint
probability of the nodes r», g1, g3 and I is:

P(r2,q1.493, 1) = P(r2)P(q11r2) P(g3|r2, q1) P(I|r2, g1, g3) (1.1D)

The directions of the arcs suggest the dependence relations between the random variables. The event
‘information need is fulfilled” (/ = 1) has two possible causes: query node ¢; is true, or query node
q3 is true (remember we are ignoring ¢»). The two query nodes in turn depend on the representation
node r,. So, the model makes the following conditional independence assumptions.

P(ra,q1,q3, 1) = P(r2) P(q1lr2) P(g3lr2) P(Ilq1, q3) (1.12)

On the right-hand side, the third probability measure is simplified because ¢; and g3 are independent,
given their parent r,. The last part P(/|q, g3) is simplified because / is independent of r,, given its
parents ¢g; and g3.

Straightforward use of the network is impractical if there are a large number of query nodes. The
number of probabilities that have to be specified for a node grows exponentially with its number

12 Information Retrieval: Searching in the 21st Century

Figure 1.6 A simplified inference network

of parents. For example, a network with n query nodes requires the specification of 2"*! possible
values of P(I|qi, g2, -+, qy) for the information need node. For this reason, all network layers need
some form of approximation. Metzler and Croft (2004) describe the following approximations. For
the document layer they assume that only a single document is observed at a time, and for every
single document a separate network is constructed for which the document layer is ignored. For the
representation layer of every network, the probability of the representation nodes (which effectively
are priors now, because the document layer is ignored) are estimated by some retrieval model. Note
that a representation node is usually a single term, but it might also be a phrase. Finally, the query
nodes and the information need node are approximated by standard probability distributions defined
by so-called believe operators. These operators combine probability values from representation nodes
and other query nodes in a fixed manner. If the values of P(q|r2), and P(q3|r2) are given by p;
and py, then the calculation of P(/|r;) might be done by operators such as ‘and’, ‘or’, ‘sum’, and
‘wsum’.

Pua(I|r2) = p1 - p2
Por(Ilr) =1 —((1 — p1)(1 — p2)) (1.13)
Pam(I1r2) = (p1 + p2)/2

Pysum(I|r2) = wy p1 + w2 p2

It can be shown that, for these operators, so-called link matrices exists, that is, for each operator
there exists a definition of for instance P(/|q, g3) that can be computed, as shown in Equation (1.13).
So, although the link matrix that belongs to the operator may be huge, it does not exist in practice and
its result can be computed in linear time. One might argue though, that the approximations on each
network layer make it questionable if the approach still deserves to be called a ‘Bayesian network
model’.

1.4.5 Language models

Language models were applied to information retrieval by a number of researchers in the late 1990s
(Ponte and Croft 1998; Hiemstra and Kraaij 1998; Miller et al. 1999). They originate from probabilistic
models of language generation developed for automatic speech recognition systems in the early 1980s
(e.g. Rabiner 1990). Automatic speech recognition systems combine probabilities of two distinct
models: the acoustic model, and the language model. The acoustic model might for instance produce
the following candidate texts in decreasing order of probability: ‘food born thing’, ‘good corn sing’,
‘mood morning’, and ‘good morning’. Now, the language model would determine that the phrase
‘good morning’ is much more probable, i.e. it occurs more frequently in English than the other

Information Retrieval Models 13

phrases. When combined with the acoustic model, the system is able to decide that ‘good morning’
was the most likely utterance, thereby increasing the system’s performance.

For information retrieval, language models are built for each document. By following this approach,
the language model of the book you are reading now would assign an exceptionally high probability
to the word ‘retrieval’, indicating that this book would be a good candidate for retrieval if the query
contains this word. Language models take the same starting point as the probabilistic indexing model
by Maron and Kuhns described in Section 1.4.1. That is, given D — the document is relevant — the
user will formulate a query by using a term 7 with some probability P(7'|D). The probability is
defined by the text of the documents. If a certain document consists of 100 words, and of those
the word ‘good’ occurs twice, then the probability of ‘good’, given that the document is relevant, is
simply defined as 0.02. For queries with multiple words, we assume that query words are generated
independently from each other, i.e. the conditional probabilities of the terms T, 75, - -- given the
document are multiplied:

P(T\, Ty, -+ |D) = [| P(Ti|D) (1.14)

As a motivation for using the probability of the query given the document, one might think of
the following experiment. Suppose we ask one million monkeys to pick a good three-word query for
several documents. Each monkey will point three times at random to each document. Whatever word
the monkey points to, will be the (next) word in the query. Suppose that seven monkeys accidentally
pointed to the words ‘information’, ‘retrieval’ and ‘model’ for document 1, and only two monkeys
accidentally pointed to these words for document 2. Then, document 1 would be a better document
for the query ‘information retrieval model’ than document 2.

The above experiment assigns zero probability to words that do not occur anywhere in the document,
and because we multiply the probabilities of the single words, it assigns zero probability to documents
that do not contain all of the words. For some applications this is not a problem. For instance for
a web search engine, queries are usually short and it will rarely happen that no web page contains
all query terms. For many other applications empty results happen much more often, which might
be problematic for the user. Therefore, a technique called smoothing is applied. Smoothing assigns
some non-zero probability to unseen events. One approach to smoothing takes a linear combination
of P(T;|D) and a background model P(7;) as follows.

P(le-anID)=1_[(AP(T1'|D)+(1—A)P(T1')) (1.15)
i=1

The background model P(7;) might be defined by the probability of term occurrence in the col-
lection, i.e. by the quotient of the total number of occurrences in the collection divided by the length
of the collection. In the equation, A is an unknown parameter that has to be set empirically. Linear
interpolation smoothing accounts for the fact that some query words do not seem to be related to the
relevance of documents at all. For instance in the query ‘capital of the Netherlands’, the words ‘of’
and ‘the’ might be seen as words from the user’s general English vocabulary, and not as words from
the relevant document he/she is looking for. In terms of the experiment above, a monkey would either
pick a word at random from the document with probability A or the monkey would pick a word at ran-
dom from the entire collection. A more convenient implementation of the linear interpolation models
can be achieved with order-preserving transformations that are similar to those for the probabilistic
retrieval model (see Equation 1.8). We multiply both sides of the equation by [, (1 — 1) P(T;) and
take the logarithm, which leads to:

matching score(d) = Z log (1 + th(t];itd)d) . ZC}(C]{Y) 1 iA) (1.16)
1 s

ke matching terms

where, P(T; = t;) = cf(t;)/ >, ¢f(t), and ¢f(t) = >_, 1f(z, d).

14 Information Retrieval: Searching in the 21st Century

There are many approaches to smoothing, most pioneered for automatic speech recognition (Chen
and Goodman 1996). Another approach to smoothing that is often used for information retrieval is
so-called Dirichlet smoothing, which is defined as (Zhai and Lafferty 2004):

n
P(Ty =t T, =t,|D=d) =[]

i=1

ift;,d) + uP(T; =1t;)
Qo tfe, d) +

(1.17)

Here, p is a real number p > 0. Dirichlet smoothing accounts for the fact that documents are too
small to reliably estimate a language model. Smoothing by Equation (1.17) has a relatively big effect
on small documents, but relatively small effect on bigger documents.

The equations above define the probability of a query given a document, but obviously, the system
should rank by the probability of the documents given the query. These two probabilities are related
by Bayes’ rule as follows.

PN, T, -, T,|D)P(D)

POIT T, Ty) = ——p e (1.18)
’ ’ £ n

The left-hand side of Equation (1.18) cannot be used directly because the independence assumption
presented above assumes terms are independent, given the document. So, in order to compute the
probability of the document D given the query, we need to multiply Equation (1.15) by P(D) and
divide it by P(Tj,---, T,). Again, as stated in the previous paragraph, the probabilities themselves
are of no interest, only the ranking of the document by the probabilities is. And since P (71, -, T,)
does not depend on the document, ranking the documents by the numerator of the right-hand side
of Equation (1.18) will rank them by the probability given the query. This shows the importance of
P(D), the marginal probability, or prior probability of the document, i.e. it is the probability that the
document is relevant if we do not know the query (yet). For instance, we might assume that long
documents are more likely to be useful than short documents. In web search, such so-called static
rankings (see Section 1.4.6), are commonly used. For instance, documents with many links pointing
to them are more likely to be relevant, as shown in the next section.

1.4.6 Google’s PageRank model

When Sergey Brin and Lawrence Page launched the web search engine Google in 1998 (Brin and
Page 1998), it had two features that distinguished it from other web search engines. It had a simple
no-nonsense search interface, and, it used a radically different approach to rank the search results.
Instead of returning documents that closely match the query terms (i.e. by using any of the models in the
preceding sections), they aimed at returning high-quality documents, i.e. documents from trusted sites.
Google uses the hyperlink structure of the web to determine the quality of a page, called PageRank.
Web pages that are linked at from many places around the web are probably worth looking at: they
must be high-quality pages. If pages that have links from other high-quality web pages, for instance
DMOZ or Wikipedia!, then that is a further indication that they are likely to be worth looking at.
The PageRank of a page d is defined as P(D = d), i.e. the probability that d is relevant as used in
the probabilistic indexing model in Section 1.4.1 and as used in the language modelling approach in
Section 1.4.5. It is defined as:

P(D=d) = (1-1) > P(D=i)P(D=d|D=i) (1.19)

1
#pages ili links to d

If we ignore (1—X)/#pages for the moment, then the PageRank P (D =d) is recursively defined
as the sum of the PageRanks P(D=i) of all pages i that link to d, multiplied by the probability
P(D=d|D=i) of following a link from i to d. One might think of the PageRank as the probability
that a random surfer visits a page. Suppose we ask the monkeys from the previous section to surf the

!'See http://dmoz.org and http://wikipedia.org

Information Retrieval Models 15

web from a randomly chosen starting point ;. Each monkey will now click on a random hyperlink
with the probability P(D = d|D = i) which is defined as one divided by the number of links on
page i. This monkey will end up in d. But other monkeys might end up in d as well: those that started
on another page that happens to link to d. After letting the monkeys surf a while, the highest-quality
pages, i.e. the best-connected pages, will have most monkeys that look at it.

The above experiment has a similar problem with zero probabilities as the language modelling
approach. Some pages might have no links pointing to them, so they will get a zero PageRank. Others
might not link to any other page, so you cannot leave the page by following hyperlinks. The solution
is also similar to the zero probability problem in the language modelling approach: we smooth the
model by some background model, in this case the background is uniformly distributed over all pages.
With some unknown probability A a link is followed, but with probability 1 — A a random page is
selected, which is like a monkey typing in a random (but valid) URL.

PageRank is a so-called static ranking function, that is, it does not depend on the query. It is
computed once off-line at indexing time by iteratively calculating the page rank of pages at time
t + 1 from the page ranks as calculated in a previous interations at time ¢ until they do not change
significantly anymore. Once the PageRank of every page is calculated it can be used during querying.
One possible way to use PageRank during querying is as follows: select the documents that contain all
query terms (i.e. a Boolean AND query) and rank those documents by their page rank. Interestingly, a
simple algorithm such as this would not only be effective for web search, it can also be implemented
very efficiently (Richardson et al. 2006). In practice, web search engines such as Google use many
more factors in their ranking than just page rank alone. In terms of the probabilistic indexing model
and the language modelling approaches, static rankings are simply document priors, i.e. the a priori
probability of the document being relevant, that should be combined with the probability of terms
given the document. Document priors can be easily combined with standard language modelling
probabilities and are as such powerful means to improve the effectiveness of, for instance, queries for
home pages in web search (Kraaij er al. 2002).

1.5 Summary and Further Reading

There is no such thing as a dominating model or theory of information retrieval, unlike the situation
in, for instance, the area of databases where the relational model is the dominating database model.
In information retrieval, some models work for some applications, whereas others work for other
applications. For instance, the region models introduced in Section 1.2.2 have been designed to
search in semi-structured data; the vector space models in Section 1.3 are well suited for similarity
search and relevance feedback in many (also non-textual) situations if a good weighting function is
available; the probabilistic retrieval model of Section 1.4.2 might be a good choice if examples of
relevant and non-relevant documents are available; language models in Section 1.4.5 are helpful in
situations that require models of language similarity or document priors; and the PageRank model of
Section 1.4.6 is often used in situations that need modelling of more of less static relations between
documents. This chapter describes these and other information retrieval models in a tutorial style
in order to explain the consequences of modelling assumptions. Once the reader is aware of the
consequences of modelling assumptions, he or she will be able to choose a model of information
retrieval that is adequate in new situations.

Whereas the citations in the text are helpful for background information and for putting things in a
historical context, we recommend the following publications for people interested in a more in-depth
treatment of information retrieval models. A good starting point for the region models of Section 1.2.2
would be the overview article of Hiemstra and Baeza-Yates (2009). An in-depth description of the
vector space approaches of Section 1.3, including, for instance, latent semantic indexing is given by
Berry et al. (1999). The probabilistic retrieval model of Section 1.4.2 and developments based on the
model are well described by Spérck-Jones ef al. (2000); de Campos et al. (2004) edited a special issue
on Bayesian networks for information retrieval as described in Section 1.4.4. An excellent overview of
statistical language models for information retrieval is given by Zhai (2008). Finally, a good follow-up
article on Google’s PageRank is given by Henzinger (2001).

16

Information Retrieval: Searching in the 21st Century

Exercises

1.1 In the Boolean model of Section 1.2.1, there are a large number of queries that can be formu-
lated with three query terms, for instance one OR two OR three, Or (one OR two) AND
three, or possibly (one AND three) OR (two AND three). Some of these queries,
however, for instance the last two queries, return the same set of documents. How many
different sets of documents can be specified given three query terms? Explain your answer.

(@ 8

(®) 9

(c) 256

(d) unlimited

1.2 Given a query ¢ and a document d in the vector space model of Section 1.3.1. Suppose
the similarity between g and d is 0.08. Suppose we interchange the full contents of the
document with the query, that is, all words from g go to d and all words from d 2o to q.
What will now be the similarity between ¢ and dr Explain your answer.

(a) smaller than 0.08

(b) equal: 0.08

(c) bigger than 0.08

(d) it depends on the term weighting algorithm

1.3 In the vector approach of Section 1.3 that uses Equation (1.1) and #f.idf term weighting,
suppose we add some documents to the collection. Do the weights of the terms in the
documents that were indexed before change? Explain your answer.

(a) no

(b) yes, it affects the #f’s of terms in other documents

(c) yes, it affects the idf’s of terms in other documents

(d) yes, it affects the #f’s and the idf’s of terms in other documents

1.4 In the vector space model using the cosine similarity of Equation (1.2) and #fidf term
weighting, suppose we add some documents to the collection. Do the weights of the terms
in the documents that were indexed before change? Explain your answer.

(a) no, other documents are unaffected

(b) yes, the same weights as in Exercise 1.3

(c) yes, more weights change than in Exercise 1.3, but not all
(d) yes, all weights in the index change

1.5 In the probabilistic model of Section 1.4.2, two documents might get the same score. How
many different scores do we expect to get if we enter three query terms? Explain your answer.
(@ 8
(® 9
(c) 256
(d) unlimited

1.6 For the probabilistic retrieval model of Section 1.4.2, suppose we query for the word
retrieval, and document D has more occurrences of retrieval than document E. Which
document will be ranked first? Explain your answer.

(a) D will be ranked before E
(b) E will be ranked before D

Information Retrieval Models

17

(c) it depends on the model’s implementation
(d) it depends on the lengths of D and E

1.7 In the language modeling approach of Section 1.4.5, suppose the model does not use
smoothing. In the case we query for the word retrieval, and document D consisting of 100
words in total, contains the word retrieval 4 times. What is P(T = retrieval|D)?

(a) smaller than 4/100 = 0.04

(b) equal to 4/100 = 0.04

(c) bigger than 4/100 = 0.04

(d) it depends on the term weighting algorithm

1.8 In the language modeling approach of Section 1.4.5, suppose we use a linear combination
of a document model and a collection model as in Equation (1.15). What happens if we
take A = 12 Explain your answer.

(a) all docucments get a probability > 0

(b) documents that contain at least one query term get a probability > 0
(c) only documents that contain all query terms get a probability > 0
(d) the system returns a randomly ranked list

18 Information Retrieval: Searching in the 21st Century

References

Berry, M. W, Z. Drmac and E. R. Jessup (1999). Matrices, vector spaces, and information retrieval.
SIAM Review 41(2) 335-362.

Bookstein, A. and D. Swanson (1974). Probabilistic models for automatic indexing. Journal of the
American Society for Information Science 25(5) 313-318.

Brin, S. and L. Page (1998). The anatomy of a large-scale hypertextual Web search engine. Computer
Networks and ISDN Systems 30(1-7) 107-117.

Burkowski, F. (1992). Retrieval activities in a database consisting of heterogeneous collections of
structured texts. In Proceedings of the 15th ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR’92) pp. 112—125.

Campos, L. M. de, J. M. Fernandez-Luna and J. F. Huete (eds) (2004). Special issue on Bayesian
networks and information retrieval. Information Processing and Management 40(5).

Chen, S. and J. Goodman (1996). An empirical study of smoothing techniques for language mod-
eling. In Proceedings of the Annual Meeting of the Association for Computational Linguistics,
pp. 310-318.

Clarke, C., G. Cormack, and F. Burkowski (1995). Algebra for structured text search and a framework
for its implementation. The Computer Journal 38(1) 43-56.

Dempster, A., N. Laird, and D. Rubin (1977). Maximum likelihood from incomplete data via the
em-algorithm plus discussions on the paper. Journal of the Royal Statistical Society 39(B) 1-38.
Fuhr, N. (1989). Models for retrieval with probabilistic indexing. Information processing and man-

agement 25(1) 55-72.

Harter, S. (1975). An algorithm for probabilistic indexing. Journal of the American Society for Infor-
mation Science 26(4) 280-289.

Henzinger, M. R. (2001) Hyperlink Analysis for the Web. IEEE Internet Computing 5(1) 45-50.

Hiemstra, D. and R. Baeza-Yates (2009). Structured text retrieval models. In M. Tamer zsu and Ling
Liu (eds), Encyclopedia of Database Systems, Springer.

Hiemstra, D. and W. Kraaij (1998). Twenty-One at TREC-7: Ad-hoc and cross-language track. In
Proceedings of the 7th Text Retrieval Conference TREC-7, pp. 227—-238. NIST Special Publication
500-242.

Jaakkola, J. and P. Kilpelainen (1999). Nested text-region algebra. Technical Report CR-1999-2,
Department of Computer Science, University of Helsinki.

Joachims, T., L. Granka, B. Pan, H. Hembrooke and G. Gay (2005). Accurately interpreting click-
through data as implicit feedback. In Proceedings of the 28th ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR’05), pp. 154—161.

Kraaij, W., T. Westerveld, and D. Hiemstra (2002). The importance of prior probabilities for entry page
search. In Proceedings of the 25th ACM Conference on Research and Development in Information
Retrieval (SIGIR’02), pp. 27-34.

Luhn, H. (1957). A statistical approach to mechanised encoding and searching of litary information.
IBM Journal of Research and Development 1(4) 309-317.

Margulis, E. (1993). Modelling documents with multiple Poisson distributions. Information Processing
and Management 29 215-227.

Maron, M. and J. Kuhns (1960). On relevance, probabilistic indexing and information retrieval. Journal
of the Association for Computing Machinery 7 216-244.

Metzler, D. and W. Croft (2004). Combining the language model and inference network approaches
to retrieval. Information Processing and Management 40(5) 735-750.

Mihajlovic, V. (2006). Score Region Algebra: A flexible framework for structured information retrieval .
PhD Thesis, University of Twente.

Miller, D., T. Leek and R. Schwartz (1999). A hidden Markov model information retrieval system. In
Proceedings of the 22nd ACM Conference on Research and Development in Information Retrieval
(SIGIR’99), pp. 214-221.

Information Retrieval Models 19

Navarro, G., and R. Baeza-Yates (1997). Proximal nodes: A model to query document databases by
content and structure. ACM Transactions on Information Systems 15 400-435.

Ponte, J. and W. Croft (1998). A language modeling approach to information retrieval. In Proceedings
of the 21st ACM Conference on Research and Development in Information Retrieval (SIGIR’98)
pp. 275-281.

Rabiner, L. (1990). A tutorial on hidden markov models and selected applications in speech recog-
nition. In A. Waibel and K. Lee (eds), Readings in speech recognition, pp. 267-296. Morgan
Kaufmann.

Richardson, M., A. Prakash, and E. Brill (2006). Beyond PageRank: machine learning for static
ranking. In Proceedings of the 15th International Conference on World Wide Web, pp. 707715-.
ACM Press.

Robertson, S. (1977). The probability ranking principle in ir. Journal of Documentation 33(4)
294-304.

Robertson, S. and K. Spirck-Jones (1976). Relevance weighting of search terms. Journal of the
American Society for Information Science 27 129-146.

Robertson, S. and S. Walker (1994). Some simple effective approximations to the 2-poisson model
for probabilistic weighted retrieval. In Proceedings of the 17th ACM Conference on Research and
Development in Information Retrieval (SIGIR’94), pp. 232-241.

Robertson, S. E., C. J. van Rijsbergen, and M. F. Porter (1981). Probabilistic models of indexing and
searching. In R. Oddy et al. (eds), Information Retrieval Research, pp. 35—56. Butterworths.

Rocchio, J. (1971). Relevance feedback in information retrieval. In G. Salton (ed.), The Smart Retrieval
System: Experiments in Automatic Document Processing, pp. 313—323. Prentice Hall.

Salton, G. (1971). The SMART retrieval system: Experiments in automatic document processing.
Prentice-Hall.

Salton, G. and E. A. Fox and H. Wu (1983). Extended Boolean information retrieval . Communications
of the ACM 26(11) 1022-1036.

Salton, G. and M. McGill (1983). Introduction to Modern Information Retrieval. McGraw-Hill.

Salton, G. and C. Yang (1973). On the specification of term values in automatic indexing. Jounral of
Documentation 29(4) 351-372.

Spérck-Jones, K., S. Walker, and S. Robertson (2000). A probabilistic model of information retrieval:
Development and comparative experiments (part 1 and 2). Information Processing and Management
36(6) 779-840.

Turtle, H. and W. Croft (1991). Evaluation of an inference network-based retrieval model. ACM
Transactions on Information Systems 9(3) 187-222.

Zhai, C. and J. Lafferty (2004). A study of smoothing methods for language models applied to
information retrieval. ACM Transactions on Information Systems 22(2) 179-214.

Zhai, C. (2008). Statistical Language Models for Information Retrieval. Foundations and Trends in
Information Retrieval 2(3) 137-213.

