
1
Introduction to Mobile Phone Systems

The phrase ‘viewing the world through rose-tinted glasses’ finds its
origins in literature at least as far back as 1861. The phrase implies that
‘viewers’ have a different – usually optimistic – view of the world from
the ‘standard’ view, as if they are seeing it through a set of nicely tinted
lenses. Computer operating systems are like tinted glasses, allowing the
viewer to see a collection of hardware and software – memory, disk
drives, CPU chips, Bluetooth transmitters, email programs and telephony
applications in an ordered and controllable way: as a set of resources
that can be harnessed to accomplish various tasks. An operating system is
the model through which a computer’s hardware and software can work
together and the structure that provides controlled access between them.

Consider the many different sets of ‘tinted glasses’ that are in use
today for manipulating computing resources. Many of today’s hardware
platforms are used by multiple operating systems. For example, Intel-
based hardware, such as the Pentium family of CPUs, can support several
different operating systems. The Microsoft Windows family of operating
systems represents a set of many different operating systems – from Win-
dows 95 to Windows XP – that run on the same hardware platform. The
Linux operating system and BeOS provide other examples. These different
systems form a set of different models of resource allocation and usage
that operate on the same hardware. These operating systems are very
different in how they view a computer system, but they are very much
the same in many respects.

This book takes a close look at the variety of operating systems
with a focus on a specific type of operating system: that of mobile

CO
PYRIG

HTED
 M

ATERIA
L



2 INTRODUCTION TO MOBILE PHONE SYSTEMS

phones. Mobile phone operating systems must embrace conventional
system components as well as additional components crucial to mobile
phones: communications and interface design. We look at each of these
additional components. To be more specific, this book looks at mobile
phone operating systems by examining Symbian OS. Symbian OS is an
operating system that was designed from its beginnings to be implemented
on mobile phones. Its design comprises conventional operating system
modeling, employs a strong communications model and has a very
flexible user interface model. Its origins are found in handheld computing
and its usage on mobile platforms is growing dramatically. (It is predicted
that, by 2008, half of all mobile phones will have a full-featured operating
system, such as Symbian OS, running them.)

It is difficult to study mobile phone operating systems, even given
the plethora of mobile phones, without also looking at conventional
operating systems. We examine operating systems that power servers
and desktop systems. We compare Symbian OS to these conventional
systems, especially by comparing it to Linux.

In order to study operating systems, we must first define what an
operating system is and understand the divide between an operating
system and a hardware device. This chapter defines operating systems
and the components that make them up. It then looks at the history
of operating systems, including a history of Symbian OS. It finishes by
looking at how operating systems fit onto various computing platforms.

1.1 What Is an Operating System?

There are many definitions of an operating system. All definitions agree
on several points. First, an operating system is a software program. No
matter where it is stored – on a hard drive, in ROM, on compact flash
storage – an operating system is eventually loaded into a computer’s
memory and its instructions are executed just like any other software
program.

Secondly, an operating system is a resource model. Operating systems
are designed to present the various hardware resources of a computer to
software and to a user. An operating system builds a model, a system, of
how to deal with the resources of a computer. Software must work with
this model to access and use those resources. The model provides a lens
through which users view resources such as the communications system
and the user interface.



WHAT IS AN OPERATING SYSTEM? 3

Thirdly, an operating system binds the hardware and the software
together. Because it presents the hardware to the software, an operating
system is the glue that holds the two sides together. The software sees
and accesses the hardware as it is presented through the operating system
model. The hardware deals with the software through the same operating
system model. A good operating system is based on an intuitive model that
allows effective communication between the software and the hardware.

Finally, an operating system is essential. Without an operating system,
a computer would not function. Its software could not be executed; its
hardware would not be utilized. Any general-purpose computer has an
operating system in some form. Thus, learning about operating systems
means learning about an essential part of the computer.

The Operating Environment

To understand operating systems as the glue between hardware and
software, let us examine these two elements and how they relate through
the operating system.

Hardware is the physical part of the computer. It is the set of all
the tangible components that provide the operational foundation for the
software. Software is the set of programs and applications that execute
their instructions on the hardware. A software program must use hardware
in some way – for input, for output or to operate the hardware somehow.

Consider the example of a message manager application running on
a mobile phone (see Figure 1.1). It collects text messages as they arrive,
analyzes each message and responds to certain ones as the application’s
user has specified. The hardware receives radio signals and notifies the
operating system that data is arriving. The operating system engages
the sending source by working with the radio hardware to receive a
text message using the appropriate data protocol. Once the complete
message has arrived correctly, the operating system stores the message
and notifies the message manager. The message manager application
uses the operating system to access the stored message – which requires
the operating system to interact with the hardware. The manager reviews
the message and takes some kind of action, perhaps deleting the message
or making an automatic reply. The automatic reply again requires the
operating system to create a new message and to access the hardware for
storage and transmission of the new message.

It is important to realize here that neither the hardware nor the software
sees an operating system. The hardware is following a prescribed set of



4 INTRODUCTION TO MOBILE PHONE SYSTEMS

Radio Notify

EngageEngage

Notify

Access

New Msg

EngageEngage

Sent

S
o
f
t
w
a
r
e

H
a
r
d
w
a
r
e

O
p
e
r
a
t
i
n
g

s
y
s
t
e
m

Figure 1.1 The relationship between hardware, operating system and software

instructions built into its memory. The software is using an application
programming interface (API) to manipulate text from storage and to
compose and send a message. Both sides see a different picture, yet
both sides are drawn together and work to accomplish a joint goal. The
operating system acts as the go-between and provides an operational
picture to both sides.

The focus of a mobile phone is in the software that enables a user to
use it. It is software that enables a user to make a phone call, send a
message, set an alarm, or write on the display with electronic ‘ink’. The
user of the phone realizes that the hardware exists – it is in his hand,
after all – but is most likely not aware of the operating system. A good
operating system is transparent, allowing the user to use the software to
interact with the hardware without showing its own face.

A Resource Model

The focus of an operating system is on providing ways for the software to
use the hardware to do what the user wants. It is the goal of an operating
system to make this happen seamlessly and transparently. Essentially, the



WHAT IS AN OPERATING SYSTEM? 5

operating system must provide the software with an accessible model
of the hardware. The hardware must become a set of resources to be
operated by the software. Management of that hardware resource is the
job of the operating system.

Software manipulates hardware resources through an application pro-
gramming interface. APIs can be provided by the operating system
designer or by a third party. Software does not usually work with hard-
ware directly, but manipulates resources by communicating with the
operating system through a function call interface. The operating system
builds a model of the hardware and provides system function calls that
access that hardware model in specific ways (see Figure 1.2).

Consider the previous message manager example. The operating sys-
tem has many choices to make as it works with messages. It could, for
example, store the message text in a file and give an application a way
to find the file name and to work with that file directly. The application
would have to open the file (again, through the operating system resource
model) and process the raw message data. Another way to present the
message would be to store the message in a file, but present an application
with an abstract object called a ‘text message’ that the application could
work with. The application would make function calls that the operating
system would intercept, deriving information about the message and
returning that information. The application would not be aware of where
the object was stored. These are two models of message handling: one

Operating System

APIs

System
Calls

User Application

Figure 1.2 Structure of access to an operating system



6 INTRODUCTION TO MOBILE PHONE SYSTEMS

more raw and direct, the other more abstract and object-oriented. The
choice that the operating system makes about which one to use builds
the character of the operating system.

A good system model is one that effectively and transparently provides
software with an intuitive way to access system resources. System models
are often based on abstraction. Abstraction involves the hiding of irrele-
vant data and the presentation of only useful, relevant information. We
often label abstractions as ‘objects’. For example, system resources are
the abstract objects that the operating system presents to the software.
They might represent a resource as a hardware object, with the detail
abstracted away, or as a set of functions that can use the hardware. A file
is an abstract object that represents a way to use hardware storage. A text
message is an abstract object that represents a way to use both software
and hardware resources to access that message. These are concepts built
and supported by the operating system and provided to applications.

A good operating system has more goals than simply providing a useful
model to software applications.

• Robustness : a good operating system is reliable and tolerates prob-
lems well. The system does not stop working due to isolated hardware
or software errors and fails gracefully if it must deal with several
errors at the same time. Robust operating systems provide services to
software unless the hardware fails.

• Scalability : a good operating system incorporates resources as they
are added to the system. This can be transparent to the user – the best
way – or can involve some kind of user interaction. The plug-and-play
concepts of Microsoft Windows – where devices are discovered and
installed automatically – is an example of good scalability. On the
other hand, old versions of Linux used to require recompilation of the
operating system when new devices were added. This is an example
of bad scalability.

• Extensibility : the operating system should be designed to adapt to
new technologies that extend the operating system beyond the point
at which it was implemented. For example, it should be able to
adapt to new forms of file storage without a complete redesign of the
operating system.

• Throughput (the work that a processor can complete in a specific
time period) : an operating system must perform well and achieve



HISTORY OF OPERATING SYSTEMS 7

high throughput. A good operating system minimizes the time spent
providing services while maximizing throughput.

• Portability : a good operating system should be portable, that is, able
to be run on many different hardware platforms.

• Security: an operating system must be secure. It must prevent unau-
thorized users and processes from accessing stored data and system
services.

Many Operating Systems Fit the Bill

Even though the list of criteria for a good operating system looks a bit
daunting, many operating systems have been created over the years
that meet these criteria. In addition, many operating systems did some
of these very well and steered the industry in one particular area. A list
of operating systems can be found at http://en.wikipedia.org/wiki/
List of operating systems.

Many operating systems are not very portable. They are specifically
designed to run on a single platform. In addition, you will note that
‘popularity’ is not an item on the criteria list. Most operating systems
were not popular, yet were designed to address a specific system
model.

1.2 History of Operating Systems
Operating systems are the heart of every general-purpose computer. Since
1957, operating systems have been an essential component of computers.
This section outlines a brief history of operating systems, highlighting the
history of Symbian OS.

General-Purpose Operating Systems
The earliest computers did not have operating systems. They were dedi-
cated computing devices that performed a single task, thereby needing
only one ‘program’ to execute. From the ancient Incas in Central America
to the Difference Engine constructed by Charles Babbage in 1847 to
the early days of modern computing (the ENIAC in 1946, the Mark I in
1948), early computers focused on single tasks that had direct access to
hardware and no operating system.



8 INTRODUCTION TO MOBILE PHONE SYSTEMS

Operating systems were invented when it became clear that access
to ‘the system’ needed to be standardized. Until the mid-1950s, pro-
grammers wrote their own routines for accessing resources, particularly
system input and output. Patterns of programming were beginning to
emerge, such as repeated use of certain mathematical functions. The
need for basic, standardized operating system functionality, including
device drivers and execution libraries, was becoming apparent. Critical
mass was reached as computer systems were designed to allow queuing
of jobs, or programs, to run one after the other.

The first operating system was released in 1957. Called BESYS, this
operating system was implemented by Bell Labs to handle the execution
of many short programs, queued up so that the operators did not have
to load each program just prior to its execution. BESYS shared CPU
time between several jobs at once, thus making it the first multitasking
operating system.

Operating system research and implementation moved very fast in the
1960s. Two influential examples were OS/360, released by IBM in 1964,
and MULTICS, released by Bell Labs, MIT and General Electric in 1965.

OS/360 was influential because it combined a powerful command
language with the ability to run many jobs at once. The command
language controlled job execution and specified how each job was
to access resources. In addition, OS/360 worked on various computer
models; it became the standard among batch processors.

MULTICS was influential because it took a very different approach from
OS/360: it allowed users to use the operating system directly. It had a
unique structure – using a central core of software called a ‘kernel’ – and
allowed users to extend the operating system through software based
on the kernel. Based on the foundational ideas introduced in MULTICS,
Unix was invented at Bell Labs by a man named Ken Thompson in 1972.
Thompson teamed with Dennis Ritchie, the author of a programming
language called ‘C’, to produce the source code of the Unix operating
system in that language. Unix was distributed almost free of charge and,
in the 1970s, it spread to many platforms.

Since the spread of Unix, there have been many developments in oper-
ating systems. One of the biggest was brought about by a development in
computers: the personal computer. The ideas invented by MULTICS and
honed by Unix were streamlined to fit into a personal computer with the
introduction of MS-DOS in 1981. MS-DOS ran on an IBM PC using the
Intel 8088 chipset. Its first version was indeed primitive, but as hardware
resources were improved upon and faster processors with more memory



HISTORY OF OPERATING SYSTEMS 9

were packaged as desktop computers, MS-DOS evolved into Microsoft
Windows and has taken on many of the foundational concepts embedded
in Unix.

As we look at the evolution of operating systems, it is interesting to see
the progression of computer resources that also evolved:

• computers started by running one task at a time and have progressed
to running many tasks at the same time

• storage hardware has evolved from needing a large physical size for
only 100 KB of data to packing 100 GB into a matchbox-sized disk

• electronic storage has made access much faster

• memory has progressed from only a few kilobytes to many gigabytes;
even handheld and mobile phone platforms sport 128 MB (and larger)
memories

• communication has gone from none to a large collection of possibili-
ties: wired and wireless, serial and parallel, radio and infrared.

Operating systems have developed to take advantage of all of these
aspects of computer hardware.

Symbian OS

Handheld devices were developed in the late 1980s as a way to capture
the usefulness of a desktop device in a smaller, more mobile package.
Although the first attempts at a handheld computer (for example, the Apple
Newton) were not met with much excitement, the handheld computers
developed in the mid-1990s were better tailored to the user and the way
that they used computers ‘on the go’. By the turn of the 21st century,
handheld computers had evolved into smartphones – a combination of
computer technology and mobile phone technology. Symbian OS was
developed specifically to run on the smartphone platform.

The heritage of Symbian OS begins with some of the first handheld
devices. The operating system began its existence in 1988 as SIBO (an
acronym for ‘16-bit organizer’). SIBO ran on computers developed by
Psion Computers, which developed the operating system to run on small-
footprint devices. The first computer to use SIBO, the MC laptop machine,
died when it was barely out of the gate, but several successful computer
models followed the MC. In 1991, Psion produced the Series 3: a small



10 INTRODUCTION TO MOBILE PHONE SYSTEMS

computer with a half-VGA-sized screen that could fit into a pocket. The
Series 3 was followed by the Series 3c in 1996, with additional infrared
capability; the Sienna in 1996, which used a smaller screen and had
more of an ‘organizer’ feel; and the Series 3mx in 1998, with a faster
processor. Each of these SIBO machines was a great success, primarily
for three reasons: SIBO had good power management, included light and
effective applications, and interoperated easily with other computers,
including PCs and other handheld devices. SIBO was also accessible
to developers: programming was based in C, had an object-oriented
design and employed application engines, a signature part of Symbian
OS development. This engine approach was a powerful feature of SIBO;
it made it possible to standardize an API and to use object abstraction
to remove the need for the application programmer to worry about data
formats.

In the mid-1990s, Psion started work on a new operating system.
This was to be a 32-bit system that supported pointing devices on
a touch screen, used multimedia, was more communication-rich, was
more object-oriented, and was portable to different architectures and
device designs. The result of Psion’s effort was the introduction of EPOC
Release 1. Psion built on its experience with SIBO and produced a
completely new operating system. It started with many of the foundational
features that set SIBO apart and built up from there.

EPOC was programmed in C++ and was designed to be object-
oriented from the beginning. It used the engine approach pioneered
by SIBO and expanded this design idea into a series of servers that
coordinated access to system services and peripheral devices. EPOC
expanded the communication possibilities, opened up the operating
system to multimedia, introduced new platforms for interface items such
as touch screens, and generalized the hardware interface. EPOC was
further developed into two more releases: EPOC Release 3 (ER3) and
EPOC Release 5 (ER5). These ran on new platforms such as the Psion
Series 5 and Series 7 computers.

As EPOC was being developed, Psion was also looking to emphasize
the ways that its operating system could be adapted to other hardware
platforms. From mobile phones to Internet appliances, many devices
could work well with EPOC. The most exciting opportunities were in
the mobile phone business, where manufacturers were already searching
for a new, advanced, extensible and standard operating system for its
next generation of devices. To take advantage of these opportunities,
Psion and the leaders in the mobile phone industry – for example, Nokia,



COMPUTER SYSTEMS AND THEIR OPERATING SYSTEMS 11

Ericsson, Motorola and Matsushita (Panasonic) – formed a joint venture,
called Symbian, which was to take ownership of and further develop the
EPOC operating system core, now called Symbian OS.

Symbian OS was explicitly targeted at several generalized platforms.
It was flexible enough to meet the industry’s requirements for develop-
ing a variety of advanced mobile devices and phones, while allowing
manufacturers the opportunity to differentiate their products. It was also
decided that Symbian OS would actively adopt current, state-of-the-art
key technologies as they became available. This decision reinforced the
design choices of object orientation and a client–server architecture.

1.3 Computer Systems and their Operating Systems

In addition to following computers and their history, a different way to
appreciate the relationship between operating systems and hardware is
to look at them from a system perspective. Each type of computer system
has an operating system that was designed for it – to take advantage of its
unique features.

Mainframe Systems

Mainframe systems are characterized by a large central computer with
a large number and wide variety of possible peripherals. These types
of computers were the first to be used to run scientific and commercial
applications.

Initially, mainframe systems needed to run only a single program at
a time. The operating system would accept jobs – packages consisting
of control commands, program code and data. The control commands
dictated how to compile the program, how much memory it would take,
what other resources would be used, etc. Operating systems for these
types of computers could be quite simple. An operating system needed to
read in the job, use the control commands to configure how the program
would be loaded up and executed, and manage the program’s access
to resources and data. When a program executed, the operating system
would remain in memory, tucked away in its own section. The BESYS
operating system was created in this environment.

Mainframe systems became more complex for two reasons. First,
running multiple jobs in sequence became desirable. A sequence of
jobs – called a batch – would be sorted into groups based on what



12 INTRODUCTION TO MOBILE PHONE SYSTEMS

resources would be used. Often, using a resource required that the
resource be on and configured in a certain way. Secondly, disk technology
developed to the point where jobs could be placed on a disk drive
rather than recorded on punched cards. This was a great step forward,
because mistakes were easier to correct, and jobs could be submitted and
processed more rapidly. Once disk access was available, an operating
system could sort the jobs and choose which was most appropriate to run
at a given time. This type of job scheduling allowed more efficient use
of computer resources in addition to faster turnaround time for program
execution.

In this kind of environment, idle time becomes an issue. There was
a large difference between the speed of the CPU processor and the
I/O speed of each device connected to the computer. Therefore, as the
CPU accesses a device, much waiting is involved. This problem was
exacerbated by the fact that older mainframes would run a single job at
a time.

Eventually, mainframes and their operating systems came to embrace
two more concepts: multiprogramming and time-sharing. To take advan-
tage of the waiting time of a CPU, operating systems were designed to
schedule multiple jobs at once. These several jobs would share the CPU:
when one job caused the CPU to wait, another job took its place and
executed on the CPU. This type of multiprogramming – where multiple
programs ran on a single CPU – extended the idea of job schedul-
ing to include CPU scheduling. This multiuse environment has several
implications for memory and for I/O.

Time-sharing is an extension of CPU scheduling. If you consider a
user interacting with a computer as just another job, then multiple users
can interact with the computer at the same time. Time-sharing refers to
the way that users share the CPU with other tasks, both other users and
other jobs. OS/360 was implemented to support this kind of environment:
a time-sharing, job-scheduling computing environment. Users would
interact with the computer by creating jobs through terminals, saving
them, then submitting them online to the computer. Output from these
jobs was eventually generated and delivered to the user for consideration.

Mainframe systems shrank in size and eventually became small enough
to put into a room with very little cooling equipment. The user interaction
software evolved as well. The job-control program eventually became a
command shell, a program that accepted commands interactively from
a user, executed those commands and placed the output back on the
screen. MULTICS was created in this environment and Unix perfected



COMPUTER SYSTEMS AND THEIR OPERATING SYSTEMS 13

the use of this kind of interaction. Multiprogramming was the norm
in these operating systems and all ‘jobs’ – including the user-command
shell – competed for system resources, especially the CPU. Issues that
affected performance – such as which job got priority and algorithms to
effectively schedule all usage of the CPU – became very important and
widely discussed.

Desktop Systems

Computers continued to shrink until it was feasible to combine a monitor,
a CPU and a keyboard into a single package that could occupy a desktop.
These systems distributed computing power to users, rather than having
users access the computing power of a single machine.

IBM constructed the first personal computer; MS-DOS was the oper-
ating system that was used for this first PC. Initially, MS-DOS was a
single-job operating system. Like the old mainframes, it ran a single
job (now called a process) at a time and the operating system made
choices about which job to run and how to manage resources. Hardware
systems grew faster and supported more peripherals; operating systems,
like those supporting mainframes, grew and added features to support
these hardware systems. MS-DOS eventually incorporated multiprogram-
ming and could support multiple processes using the CPU. As graphical
user interfaces became more widely used to interact with the computer
(in the place of a command shell), MS-DOS was upgraded to become
Microsoft Windows and other operating systems, such as MacOS from
Apple, emerged.

Desktop systems now support multiprogramming, time-sharing, net-
working and many types of peripherals. These systems assume that they
exist in an environment that is shared by multiple PCs and multiple users.
The operating systems embrace many users at once and encourage users
to venture out over networks to share resources from other computers.

Distributed Systems

A distributed system is an extension of multiple connected stand-alone
systems. These systems depend on each other to varying degrees. Some
distributed systems simply share a few resources – such as printers and
disk drives – while others share many resources – such as CPU time and
input devices. Distributed systems assume that they are connected by
some sort of communication network.



14 INTRODUCTION TO MOBILE PHONE SYSTEMS

There are several models of distributed systems that operating systems
have taken advantage of. The client–server model views some computers
as servers, that is, providing a service of some sort, and some computers
as clients that ask for and receive a service. Web browsing is a distributed
activity that is based on the client–server model. Browsers are clients
that ask servers for pages. Peer-to-peer distribution is a model in which
computers are both servers and clients, using some and being used by
others. The interdependent model is a peer-to-peer model where peers
are tightly interconnected, such that they cannot operate if other peers
are not also functioning. In the interdependent model, each peer has
functions that are crucial to the entire network’s operations.

There are several examples of operating systems for distributed com-
puting systems. Good examples of the client–server model are the many
distributions of Linux. The appeal of Gentoo Linux is that it is solely based
on the Internet for its distribution. It uses the Internet for upgrading itself,
for installing itself and for updating its applications. For these uses, the
operating system is a client, communicating with one of many Gentoo
servers.

For an example of an interconnected distributed operating system we
have to go back to the 1980s. During those years, an operating system
called Domain/OS was implemented that ran on computers made by the
Apollo company. Domain/OS was a version of Unix that was truly dis-
tributed between computers on a network. The execution of a command
or program might occur on the local computer a user was connected to or
it might occur on another computer in the network. No matter where the
command was executed, the results – text or graphics – appeared on the
local screen. The decision about which specific computer executed any
given command was based on an algorithm, which made the location
decision based on factors such as load and network performance.

Handheld Systems

As computers inexorably shrank in size, handheld devices became
feasible. These computers – usually fully fledged systems with all the
peripherals and issues of desktop systems – fit into and can be used with
one hand. At first glance, these systems look as if they could simply take
on the operating systems of their bigger siblings, but they pose some
unique challenges.

First, the internal environment is more restrictive. Less memory, less
storage space and slower processors all dictate that the operating system



COMPUTER SYSTEMS AND THEIR OPERATING SYSTEMS 15

must be tailored for a handheld environment, not just shrunk. Often,
memory becomes ‘disk’ space: memory space is shared between a
storage system and memory used by the system to run programs. The
early Palm handhelds had 2 MB of memory for operating system space
and file storage. In the face of these restrictions, the conventional models
of operating systems change to accommodate the different environment.

Secondly, resources must be handled with more care. The resources
on a handheld platform are more fragile – in the sense that a restricted
environment puts more of a load on a resource. A restricted environment
leaves less room for software to protect a resource. This means that an
operating system must have a good model in place for dealing with
resource access from multiple sources.

Thirdly, power restraints are crucial. While desktop systems are always
connected to AC power, handheld systems are almost always run on
batteries. Extensive running of hardware resources drain battery life
dramatically. And power loss must be handled gracefully.

These considerations mean that an operating system must be written
specifically for a handheld device. It faces many pressures; it must support
the multiprogramming of a desktop system in a (sometimes severely)
restricted environment that must sip battery power while coordinating
access to many resources. This is a considerable task, but operating
systems have risen to handle it. Linux has been scaled to fit on several
handheld devices. Microsoft Windows has also been fitted for handheld
platforms. The early versions of Symbian OS were designed for a handheld
environment.

Mobile Phone Systems

As even handheld devices got smaller, it became possible to fuse a hand-
held device with a mobile phone. All the considerations of a handheld
platform are multiplied when a handheld device becomes a communi-
cations tool. All the restrictions and issues are present while the system
requirements take on communication issues as well. The resource model
of the handheld platform is now augmented with communications and
the functionality that comes with those communications.

On a mobile phone, the environment restrictions can be even more
severe than on a handheld device. The data requirements of multimedia
communication – text messages, phone calls, photographs, video clips
and MP3s – are tremendous, yet must fit onto a restricted storage space.
A mobile phone now has even more resources that must be carefully dealt



16 INTRODUCTION TO MOBILE PHONE SYSTEMS

with. And power is even tighter than normal, as the power requirements
of a mobile phone are much higher than that of a handheld device.

In the face of even tighter constraints, operating systems have risen
to the challenge. Several operating systems, such as Symbian OS, have
been tailored for mobile phones.

Real-time Systems
A real-time system is a special-purpose computer system where rigid time
requirements have been placed on either the processor or input/output
operations. These time constraints are well-defined and system failure
occurs when they are not met.

Real-time systems come in two varieties. Hard real-time systems guar-
antee that time constraints are met. Soft real-time systems place a priority
on time-critical processes. In both cases, real-time systems have a spe-
cific structure. Any time-consuming task or device is eliminated and
real-time service often comes from a dedicated computer. Disk drives or
slow memory cannot be tolerated. All system services – hardware or soft-
ware – must be bounded; that is, they must have specific response-time
boundaries or they cannot be used.

In a sense, some mobile phone functions are real-time functions. The
service of a phone call, for example, is a real-time service. But most
functions of a mobile phone can be carried out by a non-dedicated,
general-purpose operating system designed for the mobile phone plat-
form.

Symbian OS was not initially a real-time operating system but the latest
versions (Symbian OS v9 onwards) are powered by a real-time kernel.

1.4 Summary

This chapter has introduced the idea of an operating system and its rela-
tionships to both hardware and software. We defined what an operating
system is and discussed the modeling that an operating system does for
both hardware and software. We examined the operating systems from a
historical perspective and an operational perspective.

The next chapter considers the character of operating systems. It
discusses some of the common features of operating systems as they exist
today and makes some working definitions that we use throughout the
book. We also take a much closer look at the central operating system of
this book: Symbian OS.


