
CHAPTER ONE

FUNDAMENTALS OF STABILITY THEORY

1.1 INTRODUCTION

It is not necessary to be a structural engineer to have a sense of what it
means for a structure to be stable. Most of us have an inherent understand-
ing of the definition of instability—that a small change in load will cause a
large change in displacement. If this change in displacement is large
enough, or is in a critical member of a structure, a local or member instabil-
ity may cause collapse of the entire structure. An understanding of stability
theory, or the mechanics of why structures or structural members become
unstable, is a particular subset of engineering mechanics of importance to
engineers whose job is to design safe structures.

The focus of this text is not to provide in-depth coverage of all stability
theory, but rather to demonstrate how knowledge of structural stability
theory assists the engineer in the design of safe steel structures. Structural
engineers are tasked by society to design and construct buildings, bridges,
and a multitude of other structures. These structures provide a load-bearing
skeleton that will sustain the ability of the constructed artifact to perform its
intended functions, such as providing shelter or allowing vehicles to travel
over obstacles. The structure of the facility is needed to maintain its shape
and to keep the facility from falling down under the forces of nature or those
made by humans. These important characteristics of the structure are known
as stiffness and strength.

1

CO
PYRIG

HTED
 M

ATERIA
L



This book is concerned with one aspect of the strength of structures,
namely their stability. More precisely, it will examine how and under what
loading condition the structure will pass from a stable state to an unstable
one. The reason for this interest is that the structural engineer, knowing the
circumstances of the limit of stability, can then proportion a structural
scheme that will stay well clear of the zone of danger and will have an ad-
equate margin of safety against collapse due to instability. In a well-
designed structure, the user or occupant will never have to even think of the
structure’s existence. Safety should always be a given to the public.

Absolute safety, of course, is not an achievable goal, as is well known to
structural engineers. The recent tragedy of the World Trade Center collapse
provides understanding of how a design may be safe under any expected
circumstances, but may become unstable under extreme and unforeseeable
circumstances. There is always a small chance of failure of the structure.

The term failure has many shades of meaning. Failure can be as obvious
and catastrophic as a total collapse, or more subtle, such as a beam that suf-
fers excessive deflection, causing floors to crack and doors to not open or
close. In the context of this book, failure is defined as the behavior of the
structure when it crosses a limit state—that is, when it is at the limit of its
structural usefulness. There are many such limit states the structural design
engineer has to consider, such as excessive deflection, large rotations at
joints, cracking of metal or concrete, corrosion, or excessive vibration under
dynamic loads, to name a few. The one limit state that we will consider here
is the limit state where the structure passes from a stable to an unstable
condition.

Instability failures are often catastrophic and occur most often during erec-
tion. For example, during the late 1960s and early 1970s, a number of major
steel box-girder bridges collapsed, causing many deaths among erection per-
sonnel. The two photographs in Figure 1.1 were taken by author Galambos in
August 1970 on the site two months before the collapse of a portion of the
Yarra River Crossing in Melbourne, Australia. The left picture in Figure 1.1
shows two halves of the multi-cell box girder before they were jacked into
place on top of the piers (see right photo), where they were connected with
high-strength bolts. One of the 367.5 ft. spans collapsed while the iron-
workers attempted to smooth the local buckles that had formed on the top
surface of the box. Thirty-five workers and engineers perished in the disaster.

There were a number of causes for the collapse, including inexperience
and carelessness, but the Royal Commission (1971), in its report pinpointed
the main problem: ‘‘We find that [the design organization] made assump-
tions about the behavior of box girders which extended beyond the range of
engineering knowledge.’’ The Royal Commission concluded ‘‘ . . . that the
design firm ‘‘failed altogether to give proper and careful regard to the
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process of structural design.’’ Subsequent extensive research in Belgium,
England, the United States, and Australia proved that the conclusions of the
Royal Commission were correct. New theories were discovered, and im-
proved methods of design were implemented. (See Chapter 7 in the Stability
Design Criteria for Metal Structures (Galambos 1998)).

Structural instability is generally associated with the presence of com-
pressive axial force or axial strain in a plate element that is part of a cross-
section of a beam or a column. Local instability occurs in a single portion of
a member, such as local web buckling of a steel beam. Member instability
occurs when an isolated member becomes unstable, such as the buckling of
a diagonal brace. However, member instability may precipitate a system in-
stability. System instabilities are often catastrophic.

This text examines the stability of some of these systems. The topics in-
clude the behavior of columns, beams, and beam-columns, as well as the
stability of frames and trusses. Plate and shell stability are beyond the scope
of the book. The presentation of the material concentrates on steel struc-
tures, and for each type of structural member or system, the recommended
design rules will be derived and discussed. The first chapter focuses on basic
stability theory and solution methods.

1.2 BASICS OF STABILITY BEHAVIOR:
THE SPRING-BAR SYSTEM

A stable elastic structure will have displacements that are proportional to
the loads placed on it. A small increase in the load will result in a small
increase of displacement.

As previously mentioned, it is intuitive that the basic idea of instability is
that a small increase in load will result in a large change in the displace-
ment. It is also useful to note that, in the case of axially loaded members,

Fig. 1.1 Stability-related failures.
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the large displacement related to the instability is not in the same direction
as the load causing the instability.

In order to examine the most basic concepts of stability, we will consider
the behavior of a spring-bar system, shown in Figure 1.2. The left side in
Figure 1.2 shows a straight vertical rigid bar of length L that is restrained at
its bottom by an elastic spring with a spring constant k. At the top of the bar
there is applied a force P acting along its longitudinal axis. The right side
shows the system in a deformed configuration. The moment caused by the
axial load acting through the displacement is resisted by the spring reaction
ku. The symbol u represents the angular rotation of the bar in radians.

We will begin with the most basic solution of this problem. That is, we
will find the critical load of the structure. The critical load is the load that,
when placed on the structure, causes it to pass from a stable state to an un-
stable state. In order to solve for the critical load, we must consider a de-
formed shape, shown on the right in Figure 1.2. Note that the system is
slightly perturbed with a rotation u. We will impose equilibrium on the de-
formed state. Summing moments about point A we obtain

X
MA ¼ 0 ¼ PL sin u� ku (1.1)

Solving for P at equilibrium, we obtain

Pcr ¼
ku

L sin u
(1.2)

If we consider that the deformations are very small, we can utilize small
displacement theory (this is also referred to in mechanics texts as small
strain theory). Small displacement theory allows us to simplify the math by

P L sin θP

L Rigid Bar

Undeformed System Deformed System

k = Spring constant

kθ
k A

θ

Fig. 1.2 Simple spring-bar system.
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recognizing that for very small values of the angle, u, we can use the
simplifications that

sin u ¼ u

tan u ¼ u

cos u ¼ 1

Substituting sin u ¼ u, we determine the critical load Pcr of the spring-bar
model to be:

Pcr ¼
ku

Lu
¼ k

L
(1.3)

The equilibrium is in a neutral position: it can exist both in the undeformed
and the deformed position of the bar. The small displacement response of
the system is shown in Figure 1.3. The load ratio PL=k ¼ 1 is variously
referred in the literature as the critical load, the buckling load, or the load at
the bifurcation of the equilibrium. The bifurcation point is a branch point;
there are two equilibrium paths after Pcr is reached, both of which are
unstable. The upper path has an increase in P with no displacement. This
equilibrium path can only exist on a perfect system with no perturbation and
is therefore not a practical solution, only a theoretical one.

Another means of solving for the critical load is through use of the prin-
ciple of virtual work. Energy methods can be very powerful in describing
structural behavior, and have been described in many structural analysis

Stable Equilibrium

P

Unstable Equilibrium Bifurcation point at Pcr

θ

Fig. 1.3 Small displacement behavior of spring-bar system.
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and structural mechanics texts. Only a brief explanation of the method
will be given here. The total potential P of an elastic system is defined by
equation 1.4 as

P ¼ U þ Vp (1.4)

1. U is the elastic strain energy of a conservative system. In a conserva-
tive system the work performed by both the internal and the external
forces is independent of the path traveled by these forces, and it de-
pends only on the initial and the final positions. U is the internal
work performed by the internal forces; U ¼ Wi

2. Vp is the potential of the external forces, using the original deflected
position as a reference. Vp is the external work; Vp ¼ �We.

Figure 1.4 shows the same spring-bar system we have considered, includ-
ing the distance through which the load P will move when the bar displaces.

The strain energy is the work done by the spring,

U ¼ Wi ¼
1

2
ku2: (1.5)

The potential of the external forces is equal to

Vp ¼ �We ¼ �PLð1� cos uÞ (1.6)

The total potential in the system is then given by:

P ¼ U þ Vp ¼
1

2
ku2 � PLð1� cos uÞ (1.7)

PP

k

θ 

L 
– 

L 
co

s 
θ

L

Fig. 1.4 Simple spring-bar system used in energy approach.
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According to the principle of virtual work the maxima and minima are
equilibrium positions, because if there is a small change in u, there is no
change in the total potential. In the terminology of structural mechanics, the
total potential is stationary. It is defined by the derivative

dP

du
¼ 0 (1.8)

For the spring bar system, equilibrium is obtained when

dP

du
¼ 0 ¼ ku� PL sin u (1.9)

To find Pcr, we once again apply small displacement theory ðsin u ¼ uÞ and
obtain

Pcr ¼ k=L

as before.

Summary of Important Points

� Instability occurs when a small change in load causes a large change
in displacement. This can occur on a local, member or system level.

� The critical load, or buckling load, is the load at which the system
passes from a stable to an unstable state.

� The critical load is obtained by considering equilibrium or potential
energy of the system in a deformed configuration.

� Small displacement theory may be used to simplify the calculations if
only the critical load is of interest.

1.3 FUNDAMENTALS OF POST-BUCKLING BEHAVIOR

In section 1.2, we used a simple example to answer a fundamental question
in the study of structural stability: At what load does the system become
unstable, and how do we determine that load? In this section, we will con-
sider some basic principles of stable and unstable behavior. We begin by
reconsidering the simple spring-bar model in Figure 1.2, but we introduce a
disturbing moment, Mo at the base of the structure. The new system is
shown in Figure 1.5.
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Similar to Figure 1.1, the left side of Figure 1.5 shows a straight, vertical
rigid bar of length L that is restrained at its bottom by an infinitely elastic
spring with a spring constant k. At the top of the bar there is applied a force
P acting along its longitudinal axis. The right sketch shows the deformation
of the bar if a disturbing moment Mo is acting at its base. This moment is
resisted by the spring reaction ku, and it is augmented by the moment
caused by the product of the axial force times the horizontal displacement
of the top of the bar. The symbol u represents the angular rotation of the bar
(in radians).

1.3.1 Equilibrium Solution

Taking moments about the base of the bar (point A) we obtain the following
equilibrium equation for the displaced system:

X
MA ¼ 0 ¼ PL sin uþMo � ku

Letting uo ¼ Mo=k and rearranging, we can write the following equation:

PL

k
¼ u� uo

sin u
(1.10)

This expression is displayed graphically in various contexts in Figure 1.6.
The coordinates in the graph are the load ratio PL=k as the abscissa and

the angular rotation u (radians) as the ordinate. Graphs are shown for three
values of the disturbing action

uo ¼ 0; uo ¼ 0:01; and uo ¼ 0:05:

L sin θ
PP

Rigid Bar

kθ
A

Mo

kθ = Restoring moment
Mo = Disturbing moment
k = S pring constant

k

L

θ

Undeformed System Deformed System

Fig. 1.5 Spring-bar system with disturbing moment.
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When uo ¼ 0, that is PL
k
¼ u

sin u
, there is no possible value of PL=k less than

unity since u is always larger than sin u. Thus no deflection is possible if
PL=k< 1:0. At PL=k> 1:0 deflection is possible in either the positive or the
negative direction of the bar rotation. As u increases or decreases the force
ratio required to maintain equilibrium becomes larger than unity. However,
at relatively small values of u, say, below 0.1 radians, or about 5�, the load-
deformation curve is flat for all practical purposes. Approximately, it can be
said that equilibrium is possible at u ¼ 0 and at a small adjacent deformed
location, say u< 0:1 or so. The load PL=k ¼ 1:0 is thus a special type of
load, when the system can experience two adjacent equilibrium positions:
one straight and one deformed. The equilibrium is thus in a neutral position:
It can exist both in the undeformed and the deformed position of the bar.
The load ratio PL=k ¼ 1 is variously referred in the literature as the critical
load, the buckling load, or the load at the bifurcation of the equilibrium. We
will come back to discuss the significance of this load after additional
features of behavior are presented next.

The other two sets of solid curves in Figure 1.6 are for specific small
values of the disturbing action uo of 0. 01 and 0.05 radians. These curves
each have two regions: When u is positive, that is, in the right half of the
domain, the curves start at u ¼ uo when PL=k ¼ 0 and then gradually exhib-
it an increasing rotation that becomes larger and larger as PL=k ¼ 1:0 is
approached, finally becoming affine to the curve for uo ¼ 0 as u becomes
very large. While this in not shown in Figure 1.6, the curve for smaller and
smaller values of uo will approach the curve of the bifurcated equilibrium.
The other branches of the two curves are for negative values of u. They are

θ (radians)

–1 0 1

P
L

/k

0

1

2

Stable region

Unstable region

θo = 0

θo = 0.01

θo = 0.05

Fig. 1.6 Load-deflection relations for spring-bar system with disturbing moment.
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in the left half of the deformation domain and they lie above the curve for
uo ¼ 0. They are in the unstable region for smaller values of �u, that is,
they are above the dashed line defining the region between stable and unsta-
ble behavior, and they are in the stable region for larger values of �u. (Note:
The stability limit will be derived later.) The curves for �u are of little prac-
tical consequence for our further discussion.

The nature of the equilibrium, that is, its stability, is examined by disturb-
ing the already deformed system by an additional small rotation u�, as
shown in Figure 1.7.

The equilibrium equation of the disturbed geometry isX
MA ¼ 0 ¼ PL sin ðuþ u�Þ þMo � kðuþ u�Þ

After rearranging we get, noting that uo ¼ Mo
k

PL

k
¼ uþ u� � uo

sin ðuþ u�Þ (1.11)

From trigonometry we know that sin ðuþ u�Þ ¼ sin u cos u� þ cos u sin u�.
For small values of u� we can use cos u� � 1:0; sin u� � u�, and therefore

PL

k
¼ uþ u� � uo

sin uþ u�cos u
(1.12)

This equation can be rearranged to the following form: PL
k

sin u� uþ uoþ
u�ðPL

k
cos u� 1Þ ¼ 0. However, PL

k
sin u� uþ uo ¼ 0 as per equation 1.10,

u� 6¼ 0, and thus

PL

k
cos u� 1 ¼ 0 (1.13)

L sin (θ + θ*)
PP

Rigid bar

k(θ + θ*)

Mo
Ak

θ

θ*

L

Fig. 1.7 Disturbed equilibrium configuration.
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Equation 1.13 is the locus of points for which u� 6¼ 0 while equilibrium is
just maintained, that is the equilibrium is neutral. The same result could
have been obtained by setting the derivative of F ¼ PL

k
sin u� uþ uo with

respect to u equal to zero:

dF

du
¼ PL

k
cos u� 1:

The meaning of the previous derivation is that when

1. cos u< 1
PL=k

, the equilibrium is stable—that is, the bar returns to its
original position when q� is removed; energy must be added.

2. cos u ¼ 1
PL=k

, the equilibrium is neutral—that is, no force is required
to move the bar a small rotation u�.

3. cos u> 1
PL=k

, the equilibrium is unstable—that is, the configuration

will snap from an unstable to a stable shape; energy is released.

These derivations are very simple, yet they give us a lot of information:

1. The load-deflection path of the system that sustains an applied action
uo from the start of loading. This will be henceforth designated as an
imperfect system, because it has some form of deviation in either
loading or geometry from the ideally perfect structure that is straight
or unloaded before the axial force is applied.

2. It provides the critical, or buckling, load at which the equilibrium
become neutral.

3. It identifies the character of the equilibrium path, whether it is neu-
tral, stable, or unstable.

It is good to have all this information, but for more complex actual struc-
tures it is often either difficult or very time-consuming to get it. We may not
even need all the data in order to design the system. Most of the time it is
sufficient to know the buckling load. For most practical structures, the deter-
mination of this critical value requires only a reasonably modest effort, as
shown in section 1.2.

In the discussion so far we have derived three hierarchies of results, each
requiring more effort than the previous one:

1. Buckling load of a perfect system (Figure 1.2)

2. The post-buckling history of the perfect system (Figure 1.5)

3. The deformation history of the ‘‘imperfect’’ system (Figure 1.7)
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In the previous derivations the equilibrium condition was established by
utilizing the statical approach. Equilibrium can, however, be determined by
using the theorem of virtual work. It is sometimes more convenient to use
this method, and the following derivation will feature the development of
this approach for the spring-bar problem.

1.3.2 Virtual Work Solution

We also examine the large displacement behavior of the system using the
energy approach described in section 1.2. The geometry of the system is
shown in Figure 1.8

For the spring-bar system the strain energy is the work done by the
spring, U ¼ Wi ¼ 1

2
ku2. The potential of the external forces is equal to

Vp ¼ We ¼ �PLð1� cos uÞ �Mou. With uo ¼ Mo
k

the total potential
becomes

P

k
¼ u2

2
� PL

k
ð1� cos uÞ � uou (1.14)

The total potential is plotted against the bar rotation in Figure 1.9 for the
case of uo ¼ 0:01 and PL=k ¼ 1:10. In the range �1:5 � u � 1:5 the total
potential has two minima (at approximately u ¼ 0:8 and �0:7) and one
maximum (at approximately u ¼ �0:1). According to the Principle of
Virtual Work, the maxima and minima are equilibrium positions, because
if there is a small change in u, there is no change in the total potential.
In the terminology of structural mechanics, the total potential is stationary.
It is defined by the derivative dP

du
¼ 0. From equation 1.6, dP

du
¼ 0 ¼

2u
2
� PL

k
sin u� uo, or

PL

k
¼ u� uo

sin u
(1.15)

P
P

L

Mok

θ

L 
– 

L 
co

s 
θ

Fig. 1.8 Geometry for the total potential determination.

12 FUNDAMENTALS OF STABILITY THEORY



This equation is identical to equation 1.10. The status of stability is
illustrated in Figure 1.10 using the analogy of the ball in the cup (stable
equilibrium), the ball on the top of the upside-down cup (unstable
equilibrium), and the ball on the flat surface.

The following summarizes the problem of the spring-bar model’s energy
characteristics:

P

k
¼ u2

2
�PL

k
ð1� cos uÞ � uou!Total potential

dðP=kÞ
du

¼ u� uo �
PL

k
sin u ¼ 0! PL

k
¼ u� uo

sin u
!Equilibrium

d2ðP=kÞ
du2

¼ 1� PL

k
cos u ¼ 0! PL

k
¼ 1

cos u
! Stability

(1.16)

These equations represent the energy approach to the large deflection
solution of this problem.

For the small deflection problem we set uo ¼ 0 and note that
1� cos u� u2

2
. The total potential is then equal to P ¼ ku2

2
� PLu2

2
. The deriv-

ative with respect to u gives the critical load:

dP

du
¼ 0 ¼ uðk � PLÞ!Pcr ¼ k=L (1.17)

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5

Π/k

–0.04

0.00

0.04

0.08

0.12

Maximum
unstable

Minimum
stable

θ
Fig. 1.9 Total potential for uo ¼ 0:01 and PL=k ¼ 1:10.
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Thus far, we have considered three methods of stability evaluation:

1. The small deflection method, giving only the buckling load.

2. The large deflection method for the perfect structure, giving informa-
tion about post-buckling behavior.

3. The large deflection method for the imperfect system, giving the
complete deformation history, including the reduction of stiffness in
the vicinity of the critical load.

Two methods of solution have been presented:

1. Static equilibrium method

2. Energy method

• Minimum of ∏
 • Stable

  equilibrium

• Energy must be

 added

 to change

 configuration.

d 

2∏
d θ2

Ball in cup can be
disturbed, but it will

return to the
center.

• Maximum of ∏
 • Unstable

  equilibrium

• Energy is

 released as

 configuration is

 changed. 

Ball will roll down if
disturbed.  

• Transition from

 minimum to

 maximum

 • Neutral

  equilibrium

• There is no

 change in energy.

Ball is free to roll.

> 0

< 0d 

2∏
dθ2

= 0
d 

2∏
d θ2

Fig. 1.10 Table illustrating status of stability.
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Such stability-checking procedures are applied to analytically exact and ap-
proximate methods for real structures in the subsequent portions of this book.

The spring-bar system of Figure 1.5 exhibited a particular post-buckling
characteristic: The post-buckling deflections increased as the load was
raised above the bifurcation point, as seen in Figure 1.6. Such hardening
behavior is obviously desirable from the standpoint of safety. However,
there are structural systems where the post-buckling exhibits a softening
character. Such a spring-bar structure will be considered next for the system
of Figure 1.11.

Equilibrium is obtained by taking moments about the pinned base of the
rigid bar that is restrained by a horizontal spring a distance a above its base
and is disturbed by a moment Mo:

ðka sin uÞ a cos u�Mo � PL sin u ¼ 0

Rearrangement and introduction of the imperfection parameter uo ¼ Mo

ka2

gives the following equation:

PL

ka2
¼ sin u cos u� uo

sin u
(1.18)

The small deflection ideal geometry assumption ðuo ¼ 0; sin u ¼ u;
cos u ¼ 1Þ leads to the buckling load

Pcr ¼
ka2

L
(1.19)

k

a

L

ka sin θ 

L sin θ 

Mo

a cos θ 

PP

θ

Fig. 1.11 Softening spring-bar structure.
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From the large deflection-ideal geometry assumption ðuo ¼ 0Þ we get the
post-buckling strength:

Pcr ¼
ka2

L
cos u (1.20)

The load-rotation curves from equations 1.18 and 1.20 are shown in Fig-
ure 1.12 for the perfect ðuo ¼ 0Þ and the imperfect ðuo ¼ 0:01Þ system. The
post-buckling behavior is softening—that is, the load is decreased as the
rotation increases. The deflection of the imperfect system approaches that of
the perfect system for large bar rotations. However, the strength of the
imperfect member will never attain the value of the ideal critical load. Since
in actual structures there will always be imperfections, the theoretical
buckling load is upper bound.

The nature of stability is determined from applying a virtual rotation to the
deformed system. The resulting equilibrium equation then becomes equal to

½ka sin ðuþ u�Þ�a cos ðuþ u�Þ �Mo � PL sin ðuþ u�Þ ¼ 0

Noting that u� is small, and so sin u� ¼ u�; cos u� ¼ 1. Also making use of
the trigonometric relationships

sin ðuþ u�Þ ¼ sin u cos u� þ cos u sin u� ¼ sin uþ u�cos u

cos ðuþ u�Þ ¼ cos u cos u� � sin u sin u� ¼ cos u� u� sin u

we can arrive at the following equation:

½ka2 sin u cos u�Mo � PL sin u�
þ u�½ka2ðcos 2u� sin 2uÞ � PLcos u�
� u�½ka2cos u sin u� ¼ 0

–1.0 –0.5 0.0 0.5 1.0

P
L 

/ k
a

2  

0.0

0.5

1.0

1.5

stable

unstable

θo = 0.01

θo = 0.01

θ (radians)

θo = 0

Fig. 1.12 Load-rotation curves for a softening system.
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The first line is the equilibrium equation, and it equals zero, as demonstrated
above. The bracket in the third line is multiplied by the square of a small
quantity ðu� 	 u2Þ and so it can be neglected. From the second line
we obtain the stability condition that is shown in Figure 1.12 as a dashed
line:

PL

ka2
¼ cos2u� sin2u

cos u

¼ 2 cos2u� 1

cos u

(1.21)

This problem is solved also by the energy method, as follows:

Total potential: P ¼ kða sin uÞ2

2
�Mou� PLð1� cos uÞ

Equilibrium:
qP

qu
¼ ka2 sin u cos u�Mo � PL sin u ¼ 0! PL

ka2

¼ sin u cos u

sin u

The two spring-bar problems just discussed illustrate three post-buckling
situations that occur in real structures: hardening post-buckling behavior,
softening post-buckling behavior, and the transitional case where the post-
buckling curve is flat for all practical purposes. These cases are discussed
in various contexts in subsequent chapters of this book. The drawings in
Figure 1.13 summarize the different post-buckling relationships, and indi-
cate the applicable real structural problems. Plates are insensitive to initial
imperfections, exhibiting reliable additional strength beyond the buckling
load. Shells and columns that buckle after some parts of their cross section
have yielded are imperfection sensitive. Elastic buckling of columns, beams,
and frames have little post-buckling strength, but they are not softening, nor
are they hardening after buckling.

Before leaving the topic of spring-bar stability, we will consider two
more topics: the snap-through buckling and the multidegree of freedom
column.

Stability:
qP

qu
¼ ka2½cos2u� sin2u� � PL cos u ¼ 0! PL

ka2
¼ 2 cos2u� 1

cos u
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1.4 SNAP-THROUGH BUCKLING

Figure 1.14 shows a two-bar structure where the two rigid bars are at an
angle to each other. One end of the right bar is on rollers that are restrained
by an elastic spring. The top Figure 1.14 shows the loading and geometry,
and the bottom features the deformed shape after the load is applied. Equili-
brium is determined by taking moments of the right half of the deformed
structure about point A.

X
MA ¼ 0 ¼ P

2
½L cos ða� uÞ� � DkL sin ða� uÞ

From the deformed geometry of Figure 1.14 it can be shown that

D ¼ 2L cos ða� uÞ � 2L cos u

The equilibrium equation thus is determined to be

P

kL
¼ 4½ sin ða� uÞ � tan ða� uÞcos a� (1.22)

LoadLoadLoad

000

Deflection

Imperfection
insensitive

(plates)

Imperfection
sensitive

(shells,inelastic columns) 

(elastic beams
columns
frames)

straight

initial curvature

Pcr

Fig. 1.13 Illustration of post-buckling behavior.
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The state of the equilibrium is established by disturbing the deflected
structure by an infinitesimally small virtual rotation u�. After performing
trigonometric and algebraic manipulations it can be shown that the curve
separating stable and unstable equilibrium is

P

kL
¼ 4

1� 2 cos 2ða� uÞ þ cos ða� uÞcos a

sin ða� uÞ

� �
(1.23)

If we substitute PL=k from equation 1.22 into equation 1.23, we get, after
some elementary operations, the following equation that defines the angle u

at the limit of stable equilibrium:

cos3ða� uÞ � cos a ¼ 0 (1.24)

The curve shown in Figure 1.15 represents equilibrium for the case of
a ¼ 30�. Bar rotation commences immediately as load is increased from
zero. The load-rotation response is nonlinear from the start. The slope of the
curve increases until a peak is reached at P=kl ¼ 0:1106 and u ¼ 0:216
radians. This is also the point of passing from stable to unstable equilibrium
as defined by equations 1.23 and 1.24. The deformation path according to
equation 1.22 continues first with a negative slope until minimum is
reached, and then it moves up with a positive slope. However, the actual
path of the deflection of the structure does not follow this unstable path, but
the structure snaps through to u ¼ 1:12 radians. Such behavior is typical of
shell-type structures, as can be easily demonstrated by standing on the top of

α

LL

k

P

α

A

L cos α

L cos(α – θ) 

L sin α L sin(α – θ)

Δ

Δk

P

P/2

Fig. 1.14 The snap-through structure.
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an empty aluminum beverage can and having someone touch the side of the
can. A similar event takes place any time a keyboard of a computer is
pushed. Snap-through is sudden, and in a large shell structure it can have
catastrophic consequences.

Similarly to the problems in the previous section, the energy approach can be
also used to arrive at the equilibrium equation of equation 1.22 and the stability
limit of equation 1.23 by taking, respectively, the first and second derivative of
the total potential with respect to u. The total potential of this system is

P ¼ 1

2
kf2L½cos ða� uÞ � cos a�g2 � PL½ sin a� sin ða� uÞ� (1.25)

The reader can complete to differentiations to verify the results.

1.5 MULTI-DEGREE-OF-FREEDOM SYSTEMS

The last problem to be considered in this chapter is a structure made up of
three rigid bars placed between a roller at one end and a pin at the other end.
The center bar is connected to the two edge bars with pins. Each interior
pinned joint is restrained laterally by an elastic spring with a spring constant
k. The structure is shown in Figure 1.16a. The deflected shape at buckling is
presented as Figure 1.16b. The following buckling analysis is performed by
assuming small deflections and an initially perfect geometry. Thus, the only
information to be gained is the critical load at which a straight and a buckled
configuration are possible under the same force.

θ (radians)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

P
L 

/ k

–0.15

–0.10

–0.05

0.00

0.05

0.10

0.15
snap-throughA

B

Fig. 1.15 Load-rotation curve for snap-through structure for a ¼ 30�.
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Equilibrium equations for this system are obtained as follows:

Sum of moments about Point 1:
P

M1 ¼ 0 ¼ kD1Lþ kD2ð2LÞ � R2ð3LÞ
Sum of vertical forces:

P
Fy ¼ 0 ¼ R1 þ R2 � kD1 � kD2

Sum of moments about point 3, to the left:
P

M3 ¼ 0 ¼ PD1 � R1L

Sum of moments about point 4, to the right:
P

M4 ¼ 0 ¼ PD2 � R2L

Elimination of R1 and R2 from these four equations leads to the following
two homogeneous simultaneous equations:

P� 2kL

3
� kL

3

� kL

3
P� 2kL

3

2
64

3
75 D1

D2

� �
¼ 0 (1.26)

The deflections D1 and D2 can have a nonzero value only if the determinant
of their coefficients becomes zero:

P� 2kL

3
� kL

3

� kL

3
P� 2kL

3

�������

�������
¼ 0 (1.27)

Decomposition of the determinant leads to the following quadratic equation:

3
P

kL

� �2

�4
P

kL
þ 1 ¼ 0 (1.28)

This equation has two roots, giving the following two critical loads:

Pcr1 ¼ kL

Pcr2 ¼
kL

3

(1.29)

PinRigid bar

k k

P P

R1 R2

P
P1 2

3 4

(a)

(b)

L L L

kΔ1 kΔ2

Δ1 Δ2

Fig. 1.16 Three-bar structure with intermediate spring supports.
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The smaller of the two critical loads is then the buckling load of interest to
the structural engineer. Substitution each of the critical loads into equation
1.26 results in the mode shapes of the buckled configurations, as illustrated
in Figure 1.17.

Finally then, Pcr ¼ kL
3

is the governing buckling load, based on the small
deflection approach.

The energy method can also be used for arriving at a solution to this prob-
lem. The necessary geometric relationships are illustrated in Figure 1.18, and
the small-deflection angular and linear deformations are given as follows:

D1 ¼ c L and D2 ¼ uL

D1 � D2

L
¼ g ¼ c� u

e3 ¼ L� L cos u� Lu2

2

e2 ¼ e3 þ L½1� cos ðc� uÞ� ¼ L

2
2u2 þ c2 � 2cu
� �

e3 ¼ e2 þ
Lc2

2
¼ L u2 þ c2 � cu

� �

The strain energy equals UP ¼ k
2
ðD2

1 þ D2
2Þ ¼ kL2

2
ðc2 þ u2Þ.

k k

Pcr 1 = kL

Pcr 2 =

(a)

(b)

k k

3

kL

Δ1 = Δ2

Δ1 = –Δ2

Fig. 1.17 Shapes of the buckled modes.
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Fig. 1.18 Deflections for determining the energy solution.
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The potential of the external forces equals VP ¼ �Pe1 ¼
�PLðu2 þ c2 � cuÞ

The total potential is then

P ¼ U þ VP ¼
kL2

2
ðc2 þ u2Þ � PLðu2 þ c2 � cuÞ (1.30)

For equilibrium, we take the derivatives with respect to the two angular
rotations:

qP

qc
¼ 0 ¼ kL2

2
ð2cÞ � 2PLcþ PLu

qP

qu
¼ 0 ¼ kL2

2
ð2uÞ � 2PLuþ PLc

Rearranging, we get

ðkL2 � 2PLÞ PL

PL ðkL2 � 2PLÞ

� �
u

c

� �
¼ 0

Setting the determinant of the coefficients equal to zero results in the
same two critical loads that were already obtained.

1.6 SUMMARY

This chapter presented an introduction to the subject of structural stability.
Structural engineers are tasked with designing and building structures that
are safe under the expected loads throughout their intended life. Stability is
particularly important during the erection phase in the life of the structure,
before it is fully braced by its final cladding. The engineer is especially in-
terested in that critical load magnitude where the structure passes from a
stable to an unstable configuration. The structure must be proportioned so
that the expected loads are smaller than this critical value by a safe margin.

The following basic concepts of stability analysis are illustrated in this
chapter by several simple spring-bar mechanisms:

� The critical, or buckling load, of geometrically perfect systems

� The behavior of structures with initial geometric or statical
imperfections

� The amount of information obtained by small deflection and large de-
flection analyses

� The equivalence of the geometrical and energy approach to stability
analysis
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� The meaning of the results obtained by a bifurcation analysis, a compu-
tation of the post-buckling behavior, and by a snap-through investigation

� The hardening and the softening post-buckling deformations

� The stability analysis of multi-degree-of-freedom systems

We encounter each of these concepts in the subsequent parts of this text,
as much more complex structures such as columns, beams, beam-columns,
and frames are studied.

PROBLEMS

1.1. Derive an expression for the small deflection bifurcation load in terms
of EI

L2.

1.2. Determine the critical load of this planar structural system if

a ¼ L; L1 ¼ L and L2 ¼ 3L:

Hint: The flexible beam provides a rotational and translational spring to the
rigid bar compression member.

1.3. Determine the critical load of this planar structural system.
Hint: The flexible beam provides a rotational and translational spring
to the rigid bar compression member.

P P

L

L

EI

Rigid bars

Fig. p1.1

a/2

a/2

L2L1

P

P

Rigid bar
EI

Fig. p1.2
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1.4. In the mechanism a weightless infinitely stiff bar is pinned at the point
shown. The load P remains vertical during deformation. The weight W
does not change during buckling. The spring is unstretched when the
bar is vertical. The system is disturbed by a moment Mo at the pin.

a. Determine the critical load P according to small deflection
theory.

b. Calculate and plot the equilibrium path p� u for 0 � u � p
2

when uo ¼ 0 and

uo ¼ 0:01; p ¼ PL�Wb

ka2
and uo ¼

Mo

ka2
; a ¼ 0:75L and b ¼ 1:5L:

a

a

P

P

Rigid bars

EI

P

PL L L

Fig. p1.3

P

k

L

1.5L

0.75L

Mo

W

θ

Fig. p1.4
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c. Investigate the stability of the equilibrium path.

d. Discuss the problem.

Note: This problem was adapted from Chapter 2, Simitses ‘‘An intro-
duction to the elastic stability of structures’’ (see end of Chapter 2 for
reference details).

1.5. Develop an expression for the critical load using the small-deflection
assumption. Employ both the equilibrium and the energy method.
Note: that the units of K1 are inch-kip/radian, and the units of K2 are
kip/inch

1.6. Develop an expression for the critical load using the small-deflection
assumption. The structure is made up of rigid bars and elastic springs.
Employ both the equilibrium and the energy method.

P

L / 2

L / 2

K1K2

Fig. p1.5

P

K K

2h

h

2h

Fig. p1.6
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1.7. The length of the bar is L, and it is in an initially rotated condition fi

from the vertical. The spring is undistorted in this initial configuration.
A vertical load P is applied to the system, causing it to deflect an angle
f from the vertical. The load P remains vertical at all times. Derive
equations for equilibrium and stability, using the equilibrium and the
energy methods. Plot P versus f for fi ¼ 0:05 radians.

K
P

Deformed position

Initial position:
Spring is undeformed

φi

φ

Fig. p1.7
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