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Introduction

1.1 GENERAL INTELLIGENCE AND CONSCIOUS MACHINES

Suppose that you were going to see a conscious machine, perhaps a robot. What
would you expect to see? Recent advances in robotics have produced animal and
humanoid robots that are able to move in very naturalistic ways. Would you find
these robots conscious? I do not think so. As impressive as the antics of these
artefacts are, their shortcoming is easy to see; the lights may be on, but there is
‘nobody’ at home. The program-controlled microprocessors of these robots do not
have the faintest trace of consciousness and the robots themselves do not know
what they are doing. These robots are no more aware of their own existence than a
cuckoo clock on a good day.

Artificial intelligence (AI) has brought chess-playing computer programs that can
beat grand masters and other ‘intelligent’ programs that can execute given specific
tasks. However, the intelligence of these programs is not that of the machine; instead
it is the intelligence of the programmer who has laid down the rules for the execution
of the task. At best and with some goodwill these cases of artificial intelligence
might be called ‘specific intelligence’ as they work only for their specific and limited
application. In contrast, ‘general intelligence’ would be flexible and applicable over
a large number of different problems. Unfortunately, artificial general intelligence
has been elusive. Machines do not really understand anything, as they do not utilize
meanings.

Robots do not fare well in everyday tasks that humans find easy. Artificial
intelligence has not been able to create general intelligence and common sense.
Present-day robots are definitely not sentient entities. Many researchers have recog-
nized this and see this as a shortcoming that must be remedied if robots are ever to
be as versatile as humans. Robots should be conscious.

Exactly which features and abilities would distinguish a conscious robot from its
nonconscious counterpart? It may well be that no matter how ‘conscious’ a robot
might be, some philosophers would still pretend to find one or another successful
argument against its consciousness.
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2 INTRODUCTION

An engineering approach may bypass the philosophical mess by defining what
the concept of ‘machine consciousness’ would involve. However, care should be
taken here to consider first what natural consciousness is like so that the cautionary
example of artificial intelligence is not repeated; AI is definitely artificial but has
somehow managed to exclude intelligence.

Folk psychology describes human consciousness as ‘the immaterial feeling of
being here’. This is accompanied by the awareness of self, surroundings, personal
past, present and expected future, awareness of pain and pleasure, awareness of
one’s thoughts and mental content. Consciousness is also linked to thinking and
imagination, which themselves are often equated to the flow of inner speech and
inner imagery. Consciousness is related to self, mind and free will. Consciousness
is also seen to allow one to act and execute motions fluently, without any apparent
calculations. A seen object can be readily grasped and manipulated. The environment
is seen as possibilities for action.

Folk psychology is not science. Thus it is not able to determine whether the above
phenomena were caused by consciousness or whether consciousness is the collection
of these phenomena or whether these phenomena were even real or having anything
to do with consciousness at all. Unfortunately philosophy, while having done much
more, has not done much better.

A robot that could understand the world and perceive it as possibilities for
action would be a great improvement over existing robots. Likewise, a robot
that would communicate with natural language and would even have the flow
of natural language inner speech could easily cooperate with humans; it would
be like one of us. It can be seen that the machine implementation of the folk
psychology hallmarks of consciousness would be beneficial regardless of their
actual relationship to ‘true’ consciousness, whatever that might eventually turn
out to be.

This can be the starting point for the engineering approach. The folk psychology
hallmarks of consciousness should be investigated in terms of cognitive sciences
and defined in engineering terms for machine implementation. This would lead to
an implementable specification for a ‘conscious machine’.

This ‘conscious machine’ would be equipped with sensors and perception pro-
cesses as well as some means for a physical response. It would perceive the world
in a direct way, as objects and properties out there, just as humans do, and perceive
itself as being in the centre of the rest of the world. It would be able to process
information, to think, in ways seemingly similar to human thinking, and it would
have the flow of inner speech and imagery. It would also be able to observe its own
thoughts and introspect its mental content. It would perceive this mental content as
immaterial. It would motivate itself and have a will of its own. It would judge the
world and its own actions by emotional good–bad criteria. It would be aware of its
own existence. It would be able to move and execute actions as freely and readily
as humans do. It would emulate the processes of the human brain and cognition. It
would appear to be conscious.

This leads to two questions: first, how do the human brain and mind actually work
and, second, how could the workings of the brain be best emulated in an artificial
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system? Unfortunately the exact answer is not yet known to the first question and
it may well be that a definite answer can be found only after we have learned to
create successful artificial minds. Thus, models of machine cognition may also help
to model human cognition.

1.2 HOW TO MODEL COGNITION?

Presently there are five main approaches to the modelling of cognition that could
be used for the development of cognitive machines: the computational approach
(artificial intelligence, AI), the artificial neural networks approach, the dynam-
ical systems approach, the quantum approach and the cognitive approach.
Neurobiological approaches exist, but these may be better suited for the eventual
explanation of the workings of the biological brain.

The computational approach (also known as artificial intelligence, AI) towards
thinking machines was initially worded by Turing (1950). A machine would be
thinking if the results of the computation were indistinguishable from the results
of human thinking. Later on Newell and Simon (1976) presented their Physical
Symbol System Hypothesis, which maintained that general intelligent action can be
achieved by a physical symbol system and that this system has all the necessary
and sufficient means for this purpose. A physical symbol system was here the
computer that operates with symbols (binary words) and attached rules that stipulate
which symbols are to follow others. Newell and Simon believed that the computer
would be able to reproduce human-like general intelligence, a feat that still remains
to be seen. However, they realized that this hypothesis was only an empirical
generalization and not a theorem that could be formally proven. Very little in the
way of empirical proof for this hypothesis exists even today and in the 1970s the
situation was not better. Therefore Newell and Simon pretended to see other kinds
of proof that were in those days readily available. They proposed that the principal
body of evidence for the symbol system hypothesis was negative evidence, namely
the absence of specific competing hypotheses; how else could intelligent activity be
accomplished by man or machine? However, the absence of evidence is by no means
any evidence of absence. This kind of ‘proof by ignorance’ is too often available in
large quantities, yet it is not a logically valid argument. Nevertheless, this issue has
not yet been formally settled in one way or another. Today’s positive evidence is
that it is possible to create world-class chess-playing programs and these can be
called ‘artificial intelligence’. The negative evidence is that it appears to be next
to impossible to create real general intelligence via preprogrammed commands and
computations.

The original computational approach can be criticized for the lack of a cognitive
foundation. Some recent approaches have tried to remedy this and consider sys-
tems that integrate the processes of perception, reaction, deliberation and reasoning
(Franklin, 1995, 2003; Sloman, 2000).

There is another argument against the computational view of the brain. It is known
that the human brain is slow, yet it is possible to learn to play tennis and other
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activities that require instant responses. Computations take time. Tennis playing and
the like would call for the fastest computers in existence. How could the slow brain
manage this if it were to execute computations?

The artificial neural networks approach, also known as connectionism, had its
beginnings in the early 1940s when McCulloch and Pitts (1943) proposed that the
brain cells, neurons, could be modelled by a simple electronic circuit. This circuit
would receive a number of signals, multiply their intensities by the so-called synaptic
weight values and sum these modified values together. The circuit would give an
output signal if the sum value exceeded a given threshold. It was realized that these
artificial neurons could learn and execute basic logic operations if their synaptic
weight values were adjusted properly. If these artificial neurons were realized as
hardware circuits then no programs would be necessary and biologically plausible
artificial replicas of the brain might be possible. Also, neural networks operate in
parallel, doing many things simultaneously. Thus the overall operational speed could
be fast even if the individual neurons were slow.

However, problems with artificial neural learning led to complicated statisti-
cal learning algorithms, ones that could best be implemented as computer pro-
grams. Many of today’s artificial neural networks are statistical pattern recognition
and classification circuits. Therefore they are rather removed from their origi-
nal biologically inspired idea. Cognition is not mere classification and the human
brain is hardly a computer that executes complicated synaptic weight-adjusting
algorithms.

The human brain has some 1011 neurons and each neuron may have tens of
thousands of synaptic inputs and input weights. Many artificial neural networks
learn by tweaking the synaptic weight values against each other when thousands
of training examples are presented. Where in the brain would reside the computing
process that would execute synaptic weight adjusting algorithms? Where would
these algorithms have come from? The evolutionary feasibility of these kinds of
algorithms can be seriously doubted. Complicated algorithms do not evolve via
trial and error either. Moreover, humans are able to learn with a few examples
only, instead of having training sessions with thousands or hundreds of thousands
of examples. It is obvious that the mainstream neural networks approach is not a
very plausible candidate for machine cognition although the human brain is a neural
network.

Dynamical systems were proposed as a model for cognition by Ashby (1952)
already in the 1950s and have been developed further by contemporary researchers
(for example Thelen and Smith, 1994; Gelder, 1998, 1999; Port, 2000; Wallace,
2005). According to this approach the brain is considered as a complex system with
dynamical interactions with its environment. Gelder and Port (1995) define a dynam-
ical system as a set of quantitative variables, which change simultaneously and
interdependently over quantitative time in accordance with some set of equations.
Obviously the brain is indeed a large system of neuron activity variables that change
over time. Accordingly the brain can be modelled as a dynamical system if the
neuron activity can be quantified and if a suitable set of, say, differential equations
can be formulated. The dynamical hypothesis sees the brain as comparable to analog
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feedback control systems with continuous parameter values. No inner representations
are assumed or even accepted. However, the dynamical systems approach seems to
have problems in explaining phenomena like ‘inner speech’. A would-be designer
of an artificial brain would find it difficult to see what kind of system dynamics
would be necessary for a specific linguistically expressed thought. The dynamical
systems approach has been criticized, for instance by Eliasmith (1996, 1997), who
argues that the low dimensional systems of differential equations, which must rely
on collective parameters, do not model cognition easily and the dynamicists have a
difficult time keeping arbitrariness from permeating their models. Eliasmith laments
that there seems to be no clear ways of justifying parameter settings, choosing
equations, interpreting data or creating system boundaries. Furthermore, the collec-
tive parameter models make the interpretation of the dynamic system’s behaviour
difficult, as it is not easy to see or determine the meaning of any particular parameter
in the model. Obviously these issues would translate into engineering problems for
a designer of dynamical systems.

The quantum approach maintains that the brain is ultimately governed by
quantum processes, which execute nonalgorithmic computations or act as a mediator
between the brain and an assumed more-or-less immaterial ‘self’ or even ‘conscious
energy field’ (for example Herbert, 1993; Hameroff, 1994; Penrose, 1989; Eccles,
1994). The quantum approach is supposed to solve problems like the apparently
nonalgorithmic nature of thought, free will, the coherence of conscious experience,
telepathy, telekinesis, the immortality of the soul and others. From an engineering
point of view even the most practical propositions of the quantum approach are
presently highly impractical in terms of actual implementation. Then there are some
proposals that are hardly distinguishable from wishful fabrications of fairy tales.
Here the quantum approach is not pursued.

The cognitive approach maintains that conscious machines can be built because
one example already exists, namely the human brain. Therefore a cognitive machine
should emulate the cognitive processes of the brain and mind, instead of merely
trying to reproduce the results of the thinking processes. Accordingly the results
of neurosciences and cognitive psychology should be evaluated and implemented
in the design if deemed essential. However, this approach does not necessarily
involve the simulation or emulation of the biological neuron as such, instead,
what is to be produced is the abstracted information processing function of the
neuron.

A cognitive machine would be an embodied physical entity that would interact
with the environment. Cognitive robots would be obvious applications of machine
cognition and there have been some early attempts towards that direction. Holland
seeks to provide robots with some kind of consciousness via internal models (Holland
and Goodman, 2003; Holland, 2004). Kawamura has been developing a cognitive
robot with a sense of self (Kawamura, 2005; Kawamura et al., 2005). There are
also others. Grand presents an experimentalist’s approach towards cognitive robots
in his book (Grand, 2003).

A cognitive machine would be a complete system with processes like perception,
attention, inner speech, imagination, emotions as well as pain and pleasure. Various
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technical approaches can be envisioned, namely indirect ones with programs, hybrid
systems that combine programs and neural networks, and direct ones that are based
on dedicated neural cognitive architectures. The operation of these dedicated neural
cognitive architectures would combine neural, symbolic and dynamic elements.
However, the neural elements here would not be those of the traditional neural
networks; no statistical learning with thousands of examples would be implied, no
backpropagation or other weight-adjusting algorithms are used. Instead the networks
would be associative in a way that allows the symbolic use of the neural signal
arrays (vectors). The ‘symbolic’ here does not refer to the meaning-free symbol
manipulation system of AI; instead it refers to the human way of using symbols
with meanings. It is assumed that these cognitive machines would eventually be
conscious, or at least they would reproduce most of the folk psychology hallmarks
of consciousness (Haikonen, 2003a, 2005a). The engineering aspects of the direct
cognitive approach are pursued in this book.

1.3 THE APPROACH OF THIS BOOK

This book outlines an engineering approach towards cognitive and conscious
machines. These machines would perceive the world directly, as objects and
properties out there, and integrate these percepts seamlessly into their cognitive
processes. They would have the flow of inner speech and imagery. They would
observe and introspect their mental content and perceive this mental content as
immaterial. They would judge the world and their own actions by emotional good–
bad criteria. They would be self-motivated agents with a will of their own. They
would be able to move and execute actions as freely and readily as humans do.
They would produce the hallmarks of consciousness.

The requirements for the direct perception of the world and the seamless inte-
gration would seem to call for a special way of perception and information rep-
resentation. Here the traditional way of information representation of the artificial
intelligence, the representation of information as statements in a formal language,
is rejected. Instead, associative nonnumeric neural networks, distributed representa-
tions and cognitive architectures are investigated as the solution.

The book chapters proceed in logical order and build on previously presented
matter; thus they should be studied sequentially. Some matters may appear trivial
to advanced readers. However, in that case the reader should pay attention as
apparently familiar matters may also have novel twists and meanings in this context.
The last chapter, ‘Machine Consciousness’, should also be accessible to enlightened
nonengineer readers who are interested in machine consciousness research. The
contents of the book chapters are summarized here.

Chapter 1, ‘Introduction’, is the introduction in the present chapter.
Chapter 2, ‘Information, Meaning and Representation’, notes that humans operate

with meanings while computers normally do not. It is argued that the brain is not
a digital computer and therefore a cognitive robot should not be one either. Instead
of digital representation of information a nonnumeric information representation by
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large signal arrays, vectors, is proposed. This method is used in the approach of
this book.

Chapter 3, ‘Associative Neural Networks’, presents neural networks that can be
used for the associative processing of signal vectors. With these networks vectors
can be associated with each other and can be evoked by each other. The neural
network that executes this operation is called an associator. The limitations of the
traditional neural associator are pointed out and enhanced associators that remedy
these limitations are introduced. These associators are based on artificial associative
neurons and here one specific execution of these, the Haikonen associative neuron,
is presented. The proposed associators are not statistical neural networks and do not
utilize learning algorithms such as ‘backpropagation’.

Chapter 4, ‘Circuit Assemblies’, presents some example realizations and def-
initions for the basic circuit assemblies that are used as building blocks in the
systems that are introduced later on in this book. These circuits include the
basic associative neuron group, a ‘Winner-Takes-All’ circuit, an ‘Accept-and-
Hold’ circuit, associative predictors and sequencers, timed sequence circuits and
others.

Chapter 5, ‘Machine Perception’, describes the principles and circuits that would
allow direct perception of the world, apparently as such in the machine. The
associative neuron-based perception/response feedback loop is introduced as the
fundamental building block that is applicable to every sensory modality, such as
kinesthetic, haptic, visual and auditory perception. The purpose of this chapter is
not to give an exhaustive treatment on the issues of perception, which would be
many; instead the purpose is to present the basic ideas that are necessary for the
understanding of the cognitive system that is outlined in the following chapters.

Chapter 6, ‘Motor Actions for Robots’, describes the integration of motor systems
into the associative system. According to this approach a robot will be able to
execute motor actions in the directly perceived environment without any numeric
computations. Hierarchical control loops allow the planning and evocation of action
in associative terms and the control of the actual execution in motor control terms.
Simple control examples are described.

Chapter 7, ‘Machine Cognition’, argues that reactive processes are not sufficient
for an autonomous robot and deliberative processes are needed. These processes call
for higher-level cognition and the use of mental models. The issues of understanding,
memories, perception of time, imagination and reasoning in the cognitive machine
are considered.

Chapter 8, ‘Machine Emotions’, describes how the functional equivalents of
pain, pleasure, good and bad can be evolved into a system of values, motivations,
attention and learning control, and emotional decision making. The Haikonen System
Reactions Theory of Emotions is applied to the cognitive machine.

Chapter 9, ‘Natural Language in Robot Brains’, outlines how natural language
can be used and understood by the machine using the associative neural net-
works. The author’s ‘multimodal model of language’ that seamlessly integrates
language, multisensory perception and motor actions is utilized here. The grounding
of word meaning is explained. The robot utilizes natural language also as ‘inner
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speech’, which is a running self-commentary of the moment-to-moment situation of
the robot.

Chapter 10, ‘A Cognitive Architecture for Robot Brains’, summarizes the
presented principles in an outline for the system architecture of the complete cogni-
tive machine, the ‘robot brain’. This machine is not a digital computer; instead it is a
system based on distributed signal representations that are processed by associative
neuron groups and additional circuits. This system is embodied, it has sensors and
motor systems and it utilizes meanings that are grounded to the percepts of envi-
ronment and the system itself, both the body and the ‘mental content’. This system
is also self-motivated with values.

Chapter 11, ‘Machine Consciousness’, summarizes the essential issues of
machine consciousness and explains how the approach of this book may produce
machines that can be called conscious. The immateriality of mind, the reportability
aspect of consciousness, the internal interaction aspect of consciousness, qualia,
self-consciousness, free will, testing of consciousness and other issues are consid-
ered. It is argued that the presented approach can produce machines that exhibit
most, if not all, of the folk psychology hallmarks of consciousness. The chapter
concludes with some legal and moral issues that may arise when cognitive robots
are introduced.

Please note that the circuit diagrams and other construction examples in this book
are presented only for illustrative purposes; they are not intended to be taken
as actual product construction guidance. Anyone trying to replicate these circuits
and systems should consider the safety and other requirements of the specific
application.


