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A taste of likelihood

When it is not in our power to follow what is true, we ought to follow what is most
probable. – René Descartes

1.1 Introduction

The word likelihood has its origins in the late fourteenth century (Simpson and
Weiner 1989), and examples of its usage include as an indication of probability
or promise, or grounds for probable inference. In the early twentieth century, Sir
Ronald Fisher (1890–1962) presented the ‘absolute criterion’ for parameter esti-
mation (Fisher 1912), and some nine years later he gave this criterion the name
likelihood (Fisher 1921, Aldrich 1997). Fisher’s choice of terminology was ideal,
because the centuries-old interpretation of the word likelihood is also applicable to
the formal statistical definition of likelihood that is used throughout this book.

Here, likelihood is used within the traditional framework of frequentist statistics,
and maximum likelihood (ML) is presented as a general-purpose tool for inference,
including the evaluation of statistical significance, calculation of confidence inter-
vals (CIs), model assessment, and prediction. The frequentist theory underpinning
the use of maximum likelihood is covered in Part III, where it is seen that maxi-
mum likelihood estimators (MLEs) have optimal properties for sufficiently large
sample sizes. It is for this reason that maximum likelihood is the most widely used
form of traditional parametric inference. The pragmatic use of ML inference is the
primary focus of this book and is covered in Part II. The reader who is already
comfortable with the concept of likelihood and its basic properties can proceed to
Part II directly.

Maximum Likelihood Estimation and Inference: With Examples in R, SAS and ADMB, First Edition. Russell B. Millar.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Likelihood is also a fundamental concept underlying other statistical paradigms,
especially the Bayesian approach. Bayesian inference is not considered here, but
consideration of the philosophical distinctions between frequentist and Bayesian
statistics is examined in Chapter 14. In addition, it is seen that some maximum
likelihood methodology can be motivated using Bayesian considerations. This in-
cludes techniques for prediction (Section 4.6), and the use of integrated likelihood
(Section 9.3).

A simple binomial example (Example 1.1) is used in Section 1.2 to motivate and
demonstrate many of the essential properties of likelihood that are developed in later
chapters. In this example, the likelihood is simply the probability of observing y =
10 successes from 100 trials. The fundamental conceptual point is that likelihood
expresses the probability of observing 10 successes as a function of the unknown
success probability p. That is, the likelihood function does not consider other values
of y. It takes the knowledge that y = 10 was the observed number of successes and it
uses the binomial probability of the outcome y = 10, evaluated at different possible
values of p, to judge the relative likelihood of those different values of p.

1.2 Motivating example

Throughout this book, adding a zero subscript to a parameter (e.g. p0) is used
generically to denote a specified value of the parameter. This is typically either its
true unknown value, or a hypothesized value.

1.2.1 ML estimation and inference for the binomial

Example 1.1 applies ML methodology to the binomial model in order to obtain the
MLE of the binomial probability, the standard error of the MLE, and confidence
intervals. This example is revisited and extended in subsequent chapters. For ex-
ample, Sections 4.2.2 and 4.3.1 look at issues concerning approximate normality
of the MLE, and Example 4.10 considers prediction of a new observation from the
binomial distribution.

Example 1.1. Binomial. A random sample of one hundred trials was performed
and ten resulted in success. What can be inferred about the unknown probability of
success, p0?

For any potential value of p (0 ≤ p ≤ 1) for the probability of success, the
probability of y successes from n trials is given by the binomial probability formula
(Section 15.4.1). With y = 10 successes from n = 100 trials, this is

L(p) = Prob(10 successes)

= 100!

90! 10!
p10(1 − p)90

= 1.731 × 1013 × p10(1 − p)90 , 0 ≤ p ≤ 1 . (1.1)
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Figure 1.1 Binomial likelihood for 10 successes from 100 trials.

The above probability is the likelihood, and has been denoted L(p) to make its
dependence on p explicit.

A plot of L(p) (Figure 1.1) shows it to be unimodal with a peak at p = 0.1.
This is the MLE and will be denoted p̂. For the binomial model, the MLE of the
probability of success is always the observed proportion of successes p̂ = y/n

(Example 2.5). �

The curve in Figure 1.1 looks somewhat like the bell-shaped curve of the normal
density function. However, it is not a density (it is a likelihood function) and
nor is it bell-shaped. On close inspection it can be seen that the curve is slightly
right-skewed.

Box 1.1

In the above example, the MLE p̂ is simply a point-estimate of p0, and is of
limited use without any sense of how reliable it is. For example, it would be more
meaningful to have a range of plausible values of the unknown p0, or to know if
some pre-specified value, e.g. p0 = 0.5, was reasonable. Such questions can be
addressed by examining the shape of the likelihood function, or more usually, the
shape of the log-likelihood function.

The (natural) log of the likelihood function is used far more predominantly in
likelihood inference than the likelihood function itself, for several good reasons:

1. The likelihood and log-likelihood are both maximized by the MLE.

2. Likelihood values are often extremely small (but can also be extremely large)
depending on the model and amount of data. This can make numerical opti-
mization of the likelihood highly problematic, compared to optimization of
the log-likelihood.
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3. The plausibility of parameter values is quantified by ratios of likelihood
(Section 2.3), corresponding to a difference on the log scale.

4. It is from the log-likelihood (and its derivatives) that most of the theoretical
properties of MLEs are obtained (see Part III).

The theoretical properties alluded to in Point 4 are the basis for the two most
commonly used forms of likelihood inference – inference based on the likelihood
ratio (LR) and inference based on asymptotic normality of the MLE. These two
forms of likelihood-based inference are asymptotically equivalent (Section 12.5) in
the sense that they lead to the same conclusions for sufficiently large sample sizes.
However, in real situations there can be a non-negligible difference between these
two approaches (Section 4.3).

Using the likelihood ratio approach in the context of Example 1.1, an interval
of plausible values of the unknown parameter p0 is obtained as all values p for
which the log-likelihood is above a certain threshold. In Section 3.4 it is shown that
the threshold can be chosen so that the resulting interval has desirable frequentist
properties. In the continuation of Example 1.1 below, the threshold is chosen so that
the resulting interval is a (approximate) 95 % confidence interval for parameter p.

The curvature of the log-likelihood is of fundamental importance in both the
theory and practice of likelihood inference. The curvature is quantified by the second
derivative, that is, the change in slope. When evaluated at the MLE, the second
derivative is negative (because the slope changes from being positive for p < p̂ to
negative for p > p̂) and the larger its absolute value the more sharply curved the log-
likelihood is at its maximum. Intuitively, a sharply curved log-likelihood is desirable
because this narrows the range over which the log-likelihood is close to its maximum
value, that is, it narrows the range of plausible parameter values. In Section 3.2 it is
seen that the variance of the MLE can be estimated by the inverse of the negative
of the second derivative of the log-likelihood. This is particularly convenient in
practice because some optimization algorithms evaluate the second derivative of
the objective function as part of the algorithmic calculations (see Section 5.2). In
the maximum likelihood context, the objective function is the log-likelihood, and
the estimated variance of the MLE is an easily-calculated byproduct from such
optimizers. The approximate normality of MLEs enables confidence intervals and
hypothesis tests to be performed using well-established techniques.

The likelihood ratio and curvature-based methods of likelihood inference are
demonstrated in the following continuation of Example 1.1.

Example 1.1 continued. The log-likelihood function for p, 0 < p < 1, is

l(p) = log L(p)

= log
(

100!

90! 10!

)
+ 10 log p + 90 log(1 − p)

= 30.48232 + 10 log p + 90 log(1 − p) , (1.2)
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Figure 1.2 Binomial log-likelihood for 10 successes from 100 trials, and 95 %
likelihood ratio confidence interval.

and the maximized value of this log-likelihood is l(p̂) = l(0.1) ≈ −2.03.
In Section 3.4 it is seen that an approximate 95 % likelihood ratio confidence

interval for parameter p is given by all values p0 for which l(p0) is within about 1.92
of the maximized value of the log-likelihood. (The value 1.92 arises as one half of
the 0.95 quantile of a chi-square distribution with one degree of freedom.) So, in this
case, the interval is given by all values of p0 for which l(p0) is −3.95 or higher. The
confidence interval can be read from Figure 1.2, or obtained numerically for greater
accuracy. This interval is (0.051, 0.169) to the accuracy of three decimal places.
From the equivalence between confidence intervals and hypothesis tests (Section
13.2) it can be concluded that the null hypothesis H0 : p = p0 will be rejected at
the 5 % level for any value of p0 outside of the interval (0.051, 0.169).

To perform inference based on the curvature of the log-likelihood, the second
derivative of the log-likelihood is required. This second derivative is given in Equa-
tion (11.15), and for n = 100 trials and y = 10 successes it is

l
′′
(p) = ∂2l(p)

∂p2
= −10

p2
− 90

(1 − p)2
. (1.3)

Evaluating this second derivative at the MLE p̂ = 0.1 gives

l
′′
(p̂) = − 10

0.01
− 90

0.81
≈ −1111.111 .

The inverse of the negative of l
′′
(0.1) is exactly 0.0009, and according to likeli-

hood theory (Sections 3.2 and 12.2), this is the approximate variance of p̂. The
approximate standard error is therefore

√
0.0009 = 0.03.

Recall that for a binomial experiment, the true variance of p̂ is p0(1 − p0)/n,
which is estimated by p̂(1 − p̂)/n. This estimate of variance is also 0.0009, the
same as that obtained from using −1/l

′′
(0.1). (In fact, for the binomial the two

variance estimates are always the same, for any values of n and y.)
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For sufficiently large n, the distribution of p̂ can be approximated by a normal
distribution, thereby permitting approximate tests and confidence intervals for p

to be performed using familiar techniques. These are often called Wald tests or
intervals, due to the influential work of Abraham Wald in establishing the large-
sample approximate normality of MLEs (e.g. Wald 1943). The (1 − α)100 % Wald
confidence interval for p can be obtained using the familiar formula that calculates
the upper (or lower) bounds as the point estimate plus (or minus) z1−α/2 times the
estimated standard error (ŝe), where z1−α/2 is the (1 − α/2) quantile of the standard
normal distribution. Thus, the approximate 95 % Wald confidence interval is

p̂ ± z0.975 ŝe(p̂), (1.4)

where z0.975 ≈ 1.96 and ŝe(p̂) = 0.03. This interval is (0.041, 0.159). Equivalently,
this interval is the collection of the values of p0 such the null hypothesis H0 : p = p0

is not rejected at the 5 % level by the Z-statistic. This is the values of p0 that satisfy
the inequality

|Z| =
∣∣∣∣ p̂ − p0

ŝe(p̂)

∣∣∣∣ < z0.975 . (1.5)

�

Although the Wald CI and test statistic in (1.4) and (1.5) may be the most
commonly taught and used methods of such inference for the binomial model,
it is hoped that this text will convince the reader to avoid Wald (i.e. approximate
normality) methodology whenever it is practicably feasible. See the next section
for more on this.

Box 1.2

1.2.2 Approximate normality versus likelihood ratio

The Wald form of confidence interval used in (1.4) is based on the approximate
normal distribution of p̂. This is the most commonly used method for constructing
approximate confidence intervals because of its intuitive appeal and computational
ease. It was shown earlier that the likelihood ratio can be used as an alternative
method for constructing confidence intervals – which should be used?

From a pragmatic point of view, there is considerable intuitive appeal in the
Wald construction of a 95 % (say) confidence interval, with bounds given by 1.96
standard errors each side of the point estimate. This form of CI will be the most
familiar to anyone with a basic grounding in frequentist statistics. However, when
the LR and Wald intervals differ substantially, it is generally the case that the LR
approach is superior, in the sense that the CIs obtained using likelihood ratio will
have actual coverage probability closer to the a priori chosen value of (1-α) (see
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Section 4.3.1). In fact, the results of Brown et al. (2001) question the popular usage
of the Wald CI for binomial inference because of its woeful performance, even
for some values of n and p for which the normal approximation to the binomial
distribution is generally considered reasonable (typically, min(np̂, n(1 − p̂)) ≥ 5).
Unfortunately, the LR confidence interval is not as widely used because it requires
(a little) knowledge of likelihood theory, but more importantly because it can not
generally be calculated explicitly.

Application of Wald tests and construction of CIs extends to multi-parameter
inference, but becomes more cumbersome and unfamiliar when simultaneous in-
ference about two or more parameters is required. It is then that LR-based inference
tends to be more commonly used. In particular, multi-parameter inference is typ-
ical of model selection problems, and in this area LR-based inference dominates.
Also, it should be noted that model selection criterion such as Akaike’s Information
Criterion (AIC) (Section 4.4.1) make direct use of the likelihood.

In addition to the Wald and LR intervals, there are several other competing
methods for constructing approximate confidence intervals for the probability
parameter p in a binomial experiment. These include the Wilson score (see Box
3.1, Example 12.10, and Exercise 12.7), Agresti-Coull, and the misnamed ‘ex-
act’ CIs. The comparisons performed by Agresti and Coull (1998) and Brown
et al. (2002) suggest that the LR and Wilson score CIs are to be preferred.

Box 1.3

Summary

To conclude, Example 1.1 demonstrates likelihood inference in a nutshell. Much
of the rest of this book is devoted to providing pragmatic guidance on the use (and
potential abuse) of inferential methods based on likelihood ratios and approximate
normality of MLEs, and their application to more complex and realistic models.
These concepts extend naturally to models with two or more parameters, although
the implementation can become challenging. For example, in a model where the
number of parameters is s > 2, the second derivative of the log-likelihood is an
s-dimensional square matrix (the Hessian) and the negative of its inverse provides
an approximate variance matrix for the MLEs.

1.3 Using SAS, R and ADMB

This book is not just about understanding maximum likelihood inference, it is
also very much about doing it with real data. Examples in SAS and R (Ihaka and
Gentleman 1996, R Development Core Team 2010) are provided throughout Part II,
along with a smattering of examples demonstrating Automatic Differentiation
Model Builder (ADMB, ADMB-project (2008a, or any later version)).
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Unlike the SAS and R environments, ADMB is a tool specifically designed for
complex optimization problems. Due to the learning curve required to use ADMB,
its use is difficult to justify if existing functionality within SAS or R can be used
instead. Other than the quick demonstration of ADMB later in this chapter, it is
used sparingly until Chapter 10 where it becomes the best choice for the general-
purpose fitting of latent variable models. Some of its additional capabilities are
noted in Sections 4.2.3 and 5.4.2.

The SAS examples presented in this text were implemented using SAS
for Windows version 9.2. The SAS procedures used throughout are found in
the statistics module SAS/STAT (SAS Institute 2008), with the exception that
occasional use was made of the nonlinear optimizer PROC NLP which is in the
operations research module SAS/OR. Some users of SAS/STAT may find that their
licence does not extend to SAS/OR and hence will not be able to use PROC NLP.
For this reason, PROC NLP is used sparingly and alternative SAS code is given
where possible.

SAS procedures typically produce a lot of output by default. The output often
includes a lot of superfluous information such as details about the contents of the
data-set being used, computational information, and unwanted summary statistics.
Throughout, the Output Delivery System (ODS) in the SAS software has been used
to select only the required parts of the output produced by the SAS procedure.

Delwiche and Slaughter (2003, or any later edition) provides an excellent intro-
duction to SAS. For ease of readability, the SAS code presented herein follows their
typographical convention. This convention is to write SAS keywords in uppercase,
and to use lowercase for variable names, data-set names, comments, etc. Note that
SAS code is not case sensitive.

The R examples were run using R for Windows version 2.12.0. R is freely
available under the terms of the Free Software Foundation’s GNU General Public
License (see http://www.R-project.org. Most of the R functions used
herein are incorporated in the default installation of R. Others are available within
specified R library packages, and can be easily loaded from within the R session.

ADMB is freely available via the ADMB project (http://www.admb-
project.org), where full instructions for using ADMB can also be found. A
short description of automatic differentiation is given in Section 15.6. In brief,
ADMB is implemented by programming the objective function within an ADMB
template file. The objective function is just the (negative) log-likelihood (and in
latent variable models the density function of the latent variables also needs to be
specified). An executable file is then created from the template file. Fortunately,
much of the detail in creating the executable can be hidden behind convenient user
interfaces. The ADMB examples in this book were run from within R using the
interface provided by the PBSadmb package.

In many applications of ML inference it will be possible to make use of existing
SAS procedures and R functions that are appropriate to the type of data being mod-
elled, notwithstanding that this convenience often comes at the loss of flexibility.
Rather than using existing functionality that is specific to the binomial model, the
implementations of Example 1.1 presented below demonstrate a selection of the
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general-purpose tools available in SAS and R, and the use of ADMB. In particular,
calculation of likelihood ratio confidence intervals is an application of profile
likelihood (Section 3.6), and the examples below make use of general-purpose
code for this purpose.

1.3.1 Software resources

Several small pieces of code have been written to facilitate techniques described
in this text. These are listed in Section 15.5, along with a brief description of
their functionality. These software resources are freely available for download from
http://www.stat.auckland.ac.nz/∼millar. This web resource also
contains the complete code, and the data, for all examples used in this text.

1.4 Implementation of the motivating example

The code used below demonstrates how an explicit log-likelihood function is
maximized within each of SAS, R and ADMB, and the calculation of the Wald and
likelihood-ratio confidence intervals. Some efficiencies could have been gained by
taking advantage of built-in functionality within the software. For example, in the
SAS example, the binomial model could have been expressed using the statement
MODEL y ∼ BINOMIAL(n,p), but the general-purpose likelihood specifica-
tion has been used here for illustration. In R, various functionality (e.g. the mle
function in package stat4, or maxLik function in the package of the same name)
could have been used to shortcut some of the required code. However, the savings
are minimal, and it is instructive to see the individual programming steps.

The first term of the binomial log-likelihood given in Equation (1.2) is a constant,
and hence is irrelevant to maximization of the log-likelihood. However, it is good
practice always to include the constant terms because it removes possible sources of
confusion when fits of different model types are being compared (e.g. using Akaike’s
information criterion), or when verifying the fit of a model by using an alternative
choice of software. Inclusion of the constant terms in the log-likelihood is becoming
standard in most software applications of ML, but do not take this for granted.

The description of the code that is presented below is relatively complete, but
this level of explanation is too unwieldy to be used throughout the remainder of this
text. For more explanation on programming details and syntax, the reader should
refer to the abundant online resources and documentation for each of these software.

1.4.1 Binomial example in SAS

The SAS code below uses PROC NLMIXED to implement Example 1.1, and
produces the output shown in Figure 1.3.
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Parameter estimates

Parameter Estimate
Standard

Error DF tValue Pr>|t| Alpha Lower Upper Gradient
p 0.1000 0.03000 1E6 3.33 0.0009 0.05 0.04120 0.1588 8.566E−7

Figure 1.3 The parameter estimates table from PROC NLMIXED, including the
95 % Wald confidence interval (0.0412,0.1588).

DATA binomial;
y=10; n=100;

RUN;

*Select only the parameter estimates table;
ODS SELECT ParameterEstimates;

PROC NLMIXED DF=1E6 DATA=binomial;
PARMS p=0.5;
BOUNDS 0<p<1;
loglhood=LOG(COMB(n,y))+y*log(p)+(n-y)*log(1-p);
MODEL y˜GENERAL(loglhood);

RUN;

Some features of the above code are:

• The default output includes several tables, including tables of log-likelihood
values and fit statistics. The Output Delivery System statementODS SELECT
ParameterEstimates; is used to select only the required table.

• By default, NLMIXED calculates Wald intervals using a t-distribution with
degrees of freedom equal to the number of observations (rows in the dataset).
To get the normal-based Wald interval in (1.4), the value for the degrees of
freedom needs to be set to a large number. In this case, it was set to one million
using the procedure option DF=1E6.

• The PARMS statement is an optional statement used to explicitly list the pa-
rameters and their initial values.

• The BOUNDS statement is an optional statement used to specify the range of
the parameter values (i.e. the parameter space).

• The model is specified using theMODEL statement. Here, the model is given as
GENERAL(loglhood) to specify that PROC NLMIXED should maximize
the value of the log-likelihood, loglhood, as specified by the preceding
programming statement.

• In the SAS output in Figure 1.3, Gradient gives the slope of the log-
likelihood upon termination of the optimization. It should be near zero. If not,
then convergence of the optimizer to a maximum of the log-likelihood may
not have been achieved.
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• The t-Value and Pr>|t| columns in Figure 1.3 should be ignored. They
are the Wald test statistic and p-value for the null hypothesis H0 : p = 0. This
is not a relevant hypothesis here.

One current limitation (in SAS 9.2) is that PROC NLMIXED does not produce
likelihood ratio confidence intervals. A general-purpose macro called Plkhci has
been written for this purpose.

%INCLUDE "PlkhciMacro.sas";

%MACRO BinomialProfile(p);
PROC NLMIXED DF=1E6 DATA=Binomial; TECH=NONE;

loglhood=LOG(COMB(n,y))+y*log(&p)+(n-y)*log(1-&p);
MODEL y˜GENERAL(loglhood);

RUN;
%MEND;
%Plkhci(BinomialProfile,0.0,0.1,-2.0259739,side="L");
%Plkhci(BinomialProfile,0.1,1.0,-2.0259739,side="R");

• The user-defined macro BinomialProfile contains a modified version
of the NLMIXED code that was used to produce the output in Figure 1.3, and
this is passed as an argument to the profile likelihood macro Plkhci. More
description of these macros is found in Sections 3.4.1 and 15.5.3. Note that
macro commands are specified using the % symbol.

• The Plkhci macro finds the likelihood ratio confidence bounds. It writes
the following lines to the log window of the SAS session:

Left-sided 95% LR CI bound is 0.051413
Right-sided 95% LR CI bound is 0.168779

For SAS installations that include the operations research OR module, PROC
NLP provides an easier option for obtaining the likelihood ratio confidence interval,
via itsPROFILE statement. Figure 1.4 shows the table that is produced from running
the following code.

*Select only the desired table;
ODS SELECT WaldPLLimits;
PROC NLP COV=2 VARDEF=N;

MAX loglhood;
PROFILE p / alpha=0.05;
PARMS p=0.5;
BOUNDS 0<p<1;
n=100; y=10;
loglhood=LOG(COMB(n,y))+y*LOG(p)+(n-y)*LOG(1-p);

RUN;
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Wald and PL confidence limits

N Parameter Estimate Alpha

Profile
likelihood
confidence

limits

Wald
confidence

limits
1 p 0.100000 0.050000 0.051414 0.168773 0.041201 0.158799

Figure 1.4 Likelihood ratio and Wald confidence limits from PROC NLP.

• PROC NLP provides a choice of several different estimates of variance and
the option COV=2 specifies use of the curvature-based estimate employed
in the motivating example. Also, by default, PROC NLP makes a degrees-
of-freedom adjustment to the estimate of variance. This adjustment is not
appropriate in the maximum likelihood context, and the procedure option
VARDEF=N prevents this.

• The MAX loglike statement specifies that the value of loglike is to be
maximized.

• The PROFILE statement requests calculation of a likelihood ratio confidence
interval for parameter p, with confidence level (1 − α)100 %.

1.4.2 Binomial example in R

The R code presented below uses the general-purpose minimizeroptim, and hence
the objective function to be minimized is the negative of the log-likelihood. This
is explicitly defined as function nloglhood, with argument p. The likelihood
ratio confidence interval is obtained using the plkhci function (from the Bhat
package) for profile likelihood confidence intervals.

> #Define the negative log-likelihood function
> nloglhood=function(p)
+ return( -(log(choose(100,10))+10*log(p)+90*log(1-p)) )
> #Minimize the negative log-likelihood
> binom.fit=optim(0.5,nloglhood,lower=0.0001,upper=0.9999,
+ hessian=T)
> phat=binom.fit$par #The MLE
> phat.var=1/binom.fit$hessian #Variance is inverse hessian
> #Calculate approximate 95% Wald CI
> phat+c(-1,1)*qnorm(0.975)*sqrt(phat.var)
[1] 0.04120779 0.15879813

> library(Bhat) #Loading package Bhat
> #Set up list for input into plkchi function
> control.list=list(label="p",est=phat,low=0,upp=1)
> #Calculate approximate 95% likelihood ratio CI
> plkhci(control.list,nloglhood,"p")
[1] 0.05141279 0.16877909
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• In the call of optim, the first argument specifies that the initial parameter
value to be used by the optimizer is 0.5. The lower and upper arguments
specify the parameter space – in this case they were set to 0.0001 and 0.9999
because computational error occurred if bounds of 0 and 1 were used due to
nloglhood being undefined at these values. The hessian=T argument
requests that the value of the second derivative of the negative log-likelihood
(calculated at the MLE) be included in binom.fit.

• The list object binom.fit has several components, including the value of
the calculated MLE, binom.fit$par, and the second derivative of the
negative log-likelihood, binom.fit$hessian.

• The first argument to the profile likelihood function plkhci is a list with
elements giving the parameters of nloglhood, the MLE, and lower and
upper bounds of the parameter space.

1.4.3 Binomial example in ADMB

The following ADMB template file,BinomialMLE.tpl, is used to find the MLE
and its approximate standard error.

DATA_SECTION
init_number y
init_number n

PARAMETER_SECTION
init_bounded_number p(0,1)
objective_function_value nloglhood

PROCEDURE_SECTION
nloglhood=-(lgamma(n+1)-lgamma(y+1)-lgamma(n-y+1)); // Constant term
nloglhood=nloglhood-(y*log(p)+(n-y)*log(1-p));

• ADMB requires a data section, and the data are contained in a file with name
BinomialMLE.dat. This text file contains a single row, the contents of
which is 10 100.

• The parameter section specifies the parameter and that it is bounded between
0 and 1. It also specifies the variable that will contain the value of the negative
log-likelihood, and this is calculated in the procedure section.

• The lgamma function is the log-gamma function, and for non-negative inte-
gers x, lgamma(x + 1) = log(x!).

An executable program is generated from the template file, and executed, using
the following R code. This uses functions from the PBSadmb package.
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library(PBSadmb)
readADopts()
makeAD("BinomialMLE")
runAD("BinomialMLE")

• readADopts reads a text file containing information about the ADMB
installation.

• makeAD creates a C++ file from the template file, compiles it, and links it
to produce an executable with name BinomialMLE.exe.

• runAD runs the executable. A number of files are produced, including text
fileBinomialMLE.std containing the MLE and its standard error, and text
file BinomialMLE.par containing the value of the negative log-likelihood
at the MLE.

A few additional lines of code are required to obtain the likelihood ratio confi-
dence interval. The parameter section requires addition of a likeprof number
specification to name the quantity of interest. In this case it is p, but this name is
already in use, so the variable pcopy is used to copy the value of p. The prelim-
inary calculations section is used to set options for the grid of pcopy values over
which the objective function is evaluated.

DATA_SECTION
init_number y
init_number n

PARAMETER_SECTION
init_bounded_number p(0,1)
objective_function_value nloglhood
likeprof_number pcopy

PRELIMINARY_CALCS_SECTION
pcopy.set_stepnumber(500);
pcopy.set_stepsize(0.01);

PROCEDURE_SECTION
nloglhood=-(lgamma(n+1)-lgamma(y+1)-lgamma(n-y+1)); // Constant term
nloglhood=nloglhood-(y*log(p)+(n-y)*log(1-p));
pcopy=p;

Within R, the executable is created as before. The runAD function now
requires the optional lprof argument to pass to the executable, to force cal-
culation of the likelihood ratio confidence interval. If the template file is named
BinomialLRCI.tpl, then the runAD call looks like

runAD("BinomialLRCI",argvec="-lprof > RunWindow.txt")
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which also redirects a copious log file into the text file RunWindow.txt. This
produces a text file pcopy.plt, in which the bounds of the 95 % confidence
interval, calculated to be 0.0514 and 0.1687 can be found.

1.5 Exercises

1.1 The Poisson distribution is the default distribution for the modelling of count
data. If the value y = 3 is observed from a Poisson distribution with unknown
parameter λ then the log-likelihood is l(λ) = −λ + 3 log λ − log(6). This
log-likelihood is maximized by λ̂ = 3.

1. Plot l(λ) for values of λ from 0.1 to 15.

2. By suitable modification to the program code in Section 1.3, use R, SAS or
ADMB to verify that λ̂ = 3, and to calculate the 95 % Wald and likelihood
ratio confidence intervals for λ.


