Contents

1.	Basis Sets for Ab Initio Molecular Orbital Calculations and	
	Intermolecular Interactions	1
	David Feller and Ernest R. Davidson	
	Introduction	1
	Some Terminology	4
	Gaussian Compared to Exponential Functions	4
	Contracted Gaussians	4
	Polarization Functions	4 7 8
	Complete Sets	8
	The Basis Set Superposition Error	9
	Choosing a Basis Set	10
	Molecular Geometries	11
	Energy Differences	15
	One-Electron Properties	20
	In-Depth Discussion	20
	Sources of Gaussian Primitives and Contraction	
	Coefficients	20
	Even-Tempered Gaussians	21
	Well-Tempered Gaussians	22
	MINI-i, MIDI-i and MAXI-i etc.	26
	Still Others	27
	Atomic Natural Orbitals	27
	Functions for Augmenting Basis Sets	29
	Weak Interactions	34
	Conclusion	36
	References	37
2.	Semiempirical Molecular Orbital Methods James J. P. Stewart	45
	Introduction	45
	History of Semiempirical Methods	46
	Complete Neglect of Differential Overlap	47

xiii

	Complete Neglect of Differential Overlap Version 2	50
	Intermediate Neglect of Differential Overlap	51
	Neglect of Diatomic Differential Overlap (NDDO)	52
	Modified Neglect of Diatomic Overlap	55
	Austin Model 1	57
	Parametric Method Number 3	58
	Self-Consistent Field Convergers	<i>5</i> 8
	Strong and Weak Points of NDDO Semiempirical Methods	61
	MINDO/3	62
	MNDO, AM1, and PM3	62
	Theoretical Experiments	73
	Stationary Points	74
	General Procedure for Characterizing a Reaction	74
	Reaction Path	75
	Time-Dependent Phenomena	76
	Future of Semiempirical Methods	77
	Summary	78
	References	78
3.	Clifford E. Dykstra, Joseph D. Augspurger, Bernard Kirtman, and David J. Malik	
	Introduction	83
	Overview of Quantum Mechanical Properties	84
	Correspondence between Energy Derivatives and	
	Properties	84
	Differentiation of the Schrödinger Equation	8 <i>5</i>
	The Development of Methods for Property Determinations	87
	Semiempirical Approaches	87
	Ab Initio Methods	89
	Detailed View of Ab Initio Methods	92
	Hamiltonians and Operators	92
	Computational Organization of the Differentiation	
	Process	95
	Derivatives of Electronic Wavefunctions	97
	Local Space Concepts for Extended Systems	99
	Vibrations and Rotations	100
	Direct Property Calculations	103
	Electrical Properties	103
	Magnetic Properties	107 109
	Force Constants Transition Probabilities and Optical Properties	110
	ransition reobadinies and Optical reoperties	TTO

	Contents	xv
	Summary	111
	References	112
4.	The Application of Quantitative Design Strategies in Pesticide Discovery Ernest L. Plummer	119
	Ernesi L. Fiummer	
	Introduction	119
	The Selection of a Strategy	122
	The Well-Designed Substituent Set	126
	The Ideal Substituent Set Should Cover All Factors That	
	Control Activity	127
	The Ideal Substituent Set Should Cover the Selected	A == /
	Factor Space as Completely as Possible	128
	The Ideal Substituent Set Should Span Orthogonal	140
	Dimensions of Parameter Space	129
	The Ideal Set Should Contain the Minimum Number of	129
	Substituents Necessary to Avoid Chance Correlations	
	and Still Meet the Desired Goal	130
		130
	Target Compounds Should Be Chosen to Preserve	
	Synthetic Resources But Should Not Be Chosen Just	424
	Because They Are Easy to Synthesize	131
	The Derivatives Must Be Stable under the Conditions of	
	Bioevaluation	131
	Analysis Strategies	132
	The Topliss Tree	132
	Free-Wilson Analysis	135
	A Strategy for Lead Optimization Using Multiple Linear	
	Regression Analysis	138
	Choose the Optimal Pattern for Substitution	139
	Choose the Factors (Parameters) That Are Likely to Be	
	Important	142
	Select a Substituent Set	143
	Synthesize and Submit for Biological Evaluation	152
	Plot Each Parameter versus Activity	154
	Generate Squared Terms if Justified by the Single	157
	Parameter Plots	157
	Run All Combinations of the Chosen Parameters	137
	through Linear Regression Analysis to the Limits of	4.50
	Statistical Significance	158
	Repeat the Process Until the QSAR Is Stable	160
	Sequential Simplex Optimization (SSO)	161
	Conclusion	164
	References	165

5.	Chemometrics and Multivariate Analysis in Analytical Chemistry Peter C. Jurs	169
	Introduction	169
	Response Surfaces, Sampling, and Optimization	170
	Signal Processing	173
	Principal Components Analysis and Factor Analysis	175
	Calibration and Mixture Analysis	178
	Classification and Clustering	182
	Classification	183
	Clustering	184
	Library Searching	186
	Molecular Structure-Property Relationships	188
	Gas Chromatographic Retention Indices for Diverse Drug	
	Compounds	192
	Simulation of Carbon-13 Nuclear Magnetic Resonance	
	Spectra of Methyl-Substituted Norbornan-2-ols	198
	Summary and Conclusions	207
	References	208
6.	Searching Databases of Three-Dimensional Structures Yvonne C. Martin, Mark G. Bures, and Peter Willet	213
	Why Are Such Methods Needed?	213
	Tools for Searching Two-Dimensional Chemical Structures of	
	Small Molecules	217
	Computer Representation of Two-Dimensional Chemical	
	Structures	218
	Searching Files of Two-Dimensional Chemical Structures	220
	Languages for Chemical Programming	222
	System Design for Chemical Information Systems	224
	Similarity of Small Molecules Based on Two-Dimensional	
	Structure	225
	Substituent Effects on Molecular Properties	225
	Two-Dimensional Topological Descriptors of Molecular	
	Shape	226
	Similarity of Small Molecules Based on Three-Dimensional	
	Structure	226
	Three-Dimensional Similarity Based on Geometric	
	Properties	227
	Three-Dimensional Similarity Based on Steric Properties	231
	Databases of Three-Dimensional Structures of Molecules	234

	Searching Files of Three-Dimensional Structures of Small Molecules	236
	Programs from the Cambridge Crystallographic Data	
	Centre	236
	Searching Based Principally on Shape Properties	237
	Strategies Based on Screen Searching	238
	Strategies Based on a Substructure Specification	
	Language	243
	Databases and Searching of Multiple Three-Dimensional	
	Pharmacophoric Patterns	248
	Searching Files of Three-Dimensional Protein Structures	249
	The Protein Data Bank	249
	Identification of Patterns of Atoms	249
	Identification of Secondary Structure Motifs	252
	Conclusions	253
	Appendix: Sources of Databases and Programs	255
	References	256
7.	Molecular Surfaces	265
, ·	Paul G. Mezey	
	Introduction	265
	Molecular Body and Molecular Surface	266
•	Classical Models for Molecular Surfaces: Hard Spheres and	
	van der Waals Surfaces (VDWSs)	267
	Electron Density Contour Surfaces	269
	The Density Domain Approach to Chemical Bonding (DDA)	271
	Molecular Electrostatic Potential	274
	Molecular Orbitals	276
	Solvent Accessible Surfaces	278
	Union Surfaces	279
	Interpenetration of Molecular Contour Surfaces	281
	Shape Analysis of Molecular Surfaces	282
	Conclusions	288
	References	289
8.	Computer Simulation of Biomolecular Systems Using	
	Molecular Dynamics and Free Energy Peturbation Methods Terry P. Lybrand	295
	Introduction	295
	Models	296

	Methods	297
	Energy Minimization	298
	Normal Mode Analysis	298
	Monte Carlo	299
	Molecular Dynamics	300
	Free Energy Pertubation Methods	308
	Summary	314
	References	315
9.	Aspects of Molecular Modeling	321
	Donald B. Boyd	
	Introduction	321
	Quantum Mechanics	323
	Why Use Quantum Mechanics?	323
	Theory	325
	Approximations	326
	Comparison of Ab Initio and Semiempirical MO	
	Methods	328
	Input	329
	Output	331
	Basis Sets for Ab Initio Calculations	332
	Caveats on Basis Sets	334
	Post-Hartree-Fock Treatments	334
	Selection of an MO Method	336
	Numerical Sensitivity of Geometry Optimization	
	Procedures	337
	Quality of Results from Quantum Mechanical Methods	339
	Information from X-Ray Databases for Molecular Modeling	341
	Standard Geometries	345
	Distance Geometry	345
	Summary	348
	References	351
10.	Successes of Computer-Assisted Molecular Design	355
	Donald B. Boyd	
	Levels of Success	355
	Norfloxacin	359
	Metamitron	360
	Bromobutide	361
	Myclobutanil	362
	Conclusion	364
	References	365

	Contents	xix
11.	Perspectives on Ab Initio Calculations Ernest R. Davidson	373
	Emest K. Daviason	
	Atomic Orbitals Do Not Work	375
	The Error in Ψ Is Largest Where Ψ Is Largest	376
	The Number of Electron Pairs Is $N(N-1)/2$	377
	The Computer Cost, at Fixed Accuracy, Grows Like N!	378
	Computers Do Not Solve Problems, People Do	379
	Appendix: Compendium of Software for Molecular Modeling Donald B. Boyd	383
	Personal Computers	384
	Minicomputers-Superminicomputers-Workstations	387
	Supercomputers	392
	Subject Index	393