
CHAPTER 1

MECHANICS OF PNEUMATIC TIRES

Aside from aerodynamic and gravitational forces, all other major forces and
moments affecting the motion of a ground vehicle are applied through the
running gear–ground contact. An understanding of the basic characteristics of
the interaction between the running gear and the ground is, therefore, essential
to the study of performance characteristics, ride quality, and handling behavior
of ground vehicles. The running gear of a ground vehicle is generally required
to fulfill the following functions:

• To support the weight of the vehicle
• To cushion the vehicle over surface irregularities
• To provide sufficient traction for driving and braking
• To provide adequate steering control and direction stability

Pneumatic tires can perform these functions effectively and efficiently;
thus, they are universally used in road vehicles, and are also widely used
in off-road vehicles. The study of the mechanics of pneumatic tires is of
fundamental importance to the understanding of the performance and char-
acteristics of ground vehicles. Two basic types of problem in the mechanics
of tires are of special interest to vehicle engineers. One is the mechanics of
tires on hard surfaces, which is essential to the study of the characteristics
of road vehicles. The other is the mechanics of tires on deformable surfaces
(unprepared terrain), which is of prime importance to the study of off-road
vehicle performance.

The mechanics of tires on hard surfaces is discussed in this chapter, whereas
the behavior of tires over unprepared terrain is discussed in Chapter 2.

A pneumatic tire is a flexible structure of the shape of a toroid filled
with compressed air. The most important structural element of the tire is the
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carcass. It is made up of a number of layers of flexible cords of high mod-
ulus of elasticity encased in a matrix of low modulus rubber compounds,
as shown in Fig. 1.1. The cords are made of fabrics of natural, synthetic, or
metallic composition, and are anchored around the beads made of high tensile
strength steel wires. The beads serve as the “foundations” for the carcass and
provide adequate seating of the tire on the rim. The ingredients of the rubber
compounds are selected to provide the tire with specific properties. The rub-
ber compounds for the sidewall are generally required to be highly resistant
to fatigue and scuffing, and styrene—butadiene compounds are widely used
[1.1].1 The rubber compounds for the tread vary with the type of tire. For
instance, for heavy truck tires, the high load intensities necessitate the use of
tread compounds with high resistance to abrasion, tearing, and crack growth,
and with low hysteresis to reduce internal heat generation and rolling resis-
tance. Consequently, natural rubber compounds are widely used for truck
tires, although they intrinsically provide lower values of the coefficient of
road adhesion, particularly on wet surfaces, than various synthetic rubber
compounds universally used for passenger car and racing car tires [1.1]. For
tubeless tires, which have become dominant, a thin layer of rubber with high
impermeability to air (such as butyl rubber compounds) is attached to the
inner surface of the carcass.

The load transmission of a pneumatic tire is analogous to that of a bicycle
wheel, where the hub hangs on the spokes from the upper part of the rim,
which in turn is supported at its lower part by the ground. For an inflated
pneumatic tire, the inflation pressure causes tension to be developed in the
cords comprising the carcass. The load applied through the rim of the wheel
hangs primarily on the cords in the sidewalls through the beads.

The design and construction of the carcass determine, to a great extent,
the characteristics of the tire. Among the various design parameters, the geo-
metric dispositions of layers of rubber-coated cords (plies), particularly their
directions, play a significant role in the behavior of the tire. The direction of
the cords is usually defined by the crown angle, which is the angle between
the cord and the circumferential center line of the tire, as shown in Fig. 1.1.
When the cords have a low crown angle, the tire will have good cornering
characteristics, but a harsh ride. On the other hand, if the cords are at right
angle to the centerline of the tread, the tire will be capable of providing a
comfortable ride, but poor handling performance.

A compromise is adopted in a bias-ply tire, in which the cords extend
diagonally across the carcass from bead to bead with a crown angle of approxi-
mately 40◦, as shown in Fig. 1.1(a). A bias-ply tire has two plies (for light-load
tires) or more (up to 20 plies for heavy-load tires). The cords in adjacent plies
run in opposite directions. Thus, the cords overlap in a diamond-shaped (criss-
cross) pattern. In operation, the diagonal plies flex and rub, thus elongating the
diamond-shaped elements and the rubber-filler. This flexing action produces

1Numbers in brackets designate references at the end of the chapter.
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Fig. 1.1 Tire construction. (a) Bias-ply tire. (b) Radial-ply tire.
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a wiping motion between the tread and the road, which is one of the main
causes of tire wear and high rolling resistance [1.2, 1.3].

The radial-ply tire, on the other hand, is constructed very differently from
the bias-ply tire. It was first introduced by Michelin in 1948 and has now
become dominant for passenger cars and trucks and increasingly for heavy-
duty earth-moving machinery. However, the bias-ply tire is still in use for
motorcycles, certain agricultural machinery, and some military equipment.
The radial-ply tire has one or more layers of cords in the carcass extending
radially from bead to bead, resulting in a crown angle of 90◦, as shown in
Fig. 1.1(b). A belt of several layers of cords of high modulus of elasticity
(usually steel or other high-strength materials) is fitted under the tread, as
shown in Fig. 1.1(b). The cords in the belt are laid at a low crown angle
of approximately 20◦. The belt is essential to the proper functioning of the
radial-ply tire. Without it, a radial-ply carcass can become unstable since the
tire periphery may develop into a series of buckles due to the irregularities in
cord spacing when inflated. For passenger car tires, usually there are two radial
plies in the carcass made of synthetic material, such as rayon or polyester,
and two plies of steel cords and two plies of cords made of synthetic material,
such as nylon, in the belt. For truck tires, usually there is one radial steel ply
in the carcass and four steel plies in the belt. For the radial-ply tire, flexing
of the carcass involves very little relative movement of the cords forming the
belt. In the absence of a wiping motion between the tire and the road,
the power dissipation of the radial-ply tire could be as low as 60% of that
of the bias-ply tire under similar conditions, and the life of the radial-ply
tire could be as long as twice that of the equivalent bias-ply tire [1.3]. For
a radial-ply tire, there is a relatively uniform ground pressure over the entire
contact area. In contrast, the ground pressure for a bias-ply tire varies greatly
from point to point as tread elements passing through the contact area undergo
complex localized wiping motion.

There are also tires built with belts in the tread on bias-ply construction.
This type of tire is usually called the bias-belted tire. The cords in the belt are
of materials with a higher modulus of elasticity than those in the bias plies.
The belt provides high rigidity to the tread against distortion, and reduces tread
wear and rolling resistance in comparison with the conventional bias-ply tire.
Generally, the bias-belted tire has characteristics midway between those of
the bias-ply and the radial-ply tire.

In the United States, the Department of Transportation requires tire manu-
facturers to provide information on tire dimensions and ratings on the sidewall
of every tire. For instance, for a tire P185/70 R14 87S, “P” indicates a
passenger car tire; “185” is the nominal width of the cross section in mil-
limeters; “70” is the aspect ratio, which is the ratio of the height of the
sidewall to the cross-sectional width; “R” stands for radial-ply tire; “14” is
the rim diameter in inches; “87” is a code indicating the maximum load
the tire can carry at its maximum rated speed; “S” is a speed rating which
indicates the maximum speed that the tire can sustain without failure: S,
112 mph (180 km/h); T, 118 mph (190 km/h); H, 130 mph (210 km/h); V,
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149 mph (240 km/h); Z, 149 mph (240 km/h) or more. Traction and tempera-
ture capabilities are indicated on a scale from A to C, A being the best and C
the worst. The traction rating is based on straight-line stopping ability on a wet
surface. The temperature rating is an index of the tire’s ability to withstand
the heat that high speeds, heavy loads, and hard driving generate. Tread-wear
index is an indication of expected tire life. It is rated against a reference tire
with an index of 100. For instance, a tread-wear rating of 420 means that the
tire should last 4.2 times as long as the reference tire. A tread-wear index of
180 is considered to be quite low and an index of 500, quite high.

Although the construction of pneumatic tires differs from one type to
another, the basic issues involved are not dissimilar. In the following sections,
the mechanics fundamental to all types of tire are discussed. The characteris-
tics peculiar to a particular kind of tire are also described.

1.1 TIRE FORCES AND MOMENTS

To describe the characteristics of a tire and the forces and moments acting on
it, it is necessary to define an axis system that serves as a reference for the
definition of various parameters. One of the commonly used axis systems rec-
ommended by the Society of Automotive Engineers is shown in Fig. 1.2 [1.4].

Fig. 1.2 Tire axis system.
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The origin of the axis system is the center of tire contact. The X axis is the
intersection of the wheel plane and the ground plane with a positive direc-
tion forward. The Z axis is perpendicular to the ground plane with a positive
direction downward. The Y axis is in the ground plane, and its direction is
chosen to make the axis system orthogonal and right hand.

Three forces and three moments act on the tire from the ground. Tractive
force (or longitudinal force) Fx is the component in the X direction of the
resultant force exerted on the tire by the road. Lateral force Fy is the com-
ponent in the Y direction, and normal force Fz is the component in the Z
direction. Overturning moment Mx is the moment about the X axis exerted
on the tire by the road. Rolling resistance moment My is the moment about
the Y axis, and aligning torque Mz is the moment about the Z axis.

With this axis system, many performance parameters of the tire can be
conveniently defined. For instance, the longitudinal shift of the center of
normal pressure is determined by the ratio of the rolling resistance moment
to the normal load. The lateral shift of the center of normal pressure is defined
by the ratio of the overturning moment to the normal load. The integration
of longitudinal shear stresses over the entire contact patch represents the
tractive or braking force. A driving torque about the axis of rotation of the tire
produces a force for accelerating the vehicle, and a braking torque produces
a force for decelerating the vehicle.

There are two important angles associated with a rolling tire: the slip angle
and the camber angle. Slip angle α is the angle formed between the direction
of wheel travel and the line of intersection of the wheel plane with the road
surface. Camber angle γ is the angle formed between the XZ plane and the
wheel plane. The lateral force at the tire–ground contact patch is a function
of both the slip angle and the camber angle.

1.2 ROLLING RESISTANCE OF TIRES

The rolling resistance of tires on hard surfaces is primarily caused by the
hysteresis in tire materials due to the deflection of the carcass while rolling.
Friction between the tire and the road caused by sliding, the resistance due
to air circulating inside the tire, and the fan effect of the rotating tire on the
surrounding air also contribute to the rolling resistance of the tire, but they are
of secondary importance. Available experimental results give a breakdown of
tire losses in the speed range 128–152 km/h (80–95 mph) as 90–95% due to
internal hysteresis losses in the tire, 2–10% due to friction between the tire
and the ground, and 1.5–3.5% due to air resistance [1.5, 1.6]. Of the total
energy losses within the tire structure, it is found that for a radial truck tire,
hysteresis in the tread region, including the belt, contributes 73%, the sidewall
13%, the region between the tread and the sidewall, commonly known as the
shoulder region, 12%, and the beads 2%.

When a tire is rolling, the carcass is deflected in the area of ground contact.
As a result of tire distortion, the normal pressure in the leading half of the



1.2 ROLLING RESISTANCE OF TIRES 9

contact patch is higher than that in the trailing half. The center of normal
pressure is shifted in the direction of rolling. This shift produces a moment
about the axis of rotation of the tire, which is the rolling resistance moment.
In a free-rolling tire, the applied wheel torque is zero; therefore, a horizontal
force at the tire–ground contact patch must exist to maintain equilibrium.
This resultant horizontal force is generally known as the rolling resistance.
The ratio of the rolling resistance to the normal load on the tire is defined as
the coefficient of rolling resistance.

A number of factors affect the rolling resistance of a pneumatic tire. They
include the structure of the tire (construction and materials) and its operating
conditions (surface conditions, inflation pressure, speed, temperature, etc.).
Tire construction has a significant influence on its rolling resistance. Figure 1.3
shows the rolling resistance coefficient at various speeds of a range of bias-ply
and radial-ply passenger car tires at rated loads and inflation pressures on a
smooth road [1.7]. The difference in rolling resistance coefficient between a
bias-ply and a radial-ply truck tire of the same size under rated conditions
is shown in Fig. 1.4 [1.8]. Thicker treads and sidewalls and an increased
number of carcass plies tend to increase the rolling resistance because of
greater hysteresis losses. Tires made of synthetic rubber compounds generally
have higher rolling resistance than those made of natural rubber. Tires made
of butyl rubber compounds, which are shown to have better traction and
roadholding properties, have an even higher rolling resistance than those made
of conventional synthetic rubber. It is found that the rolling resistance of tires

Fig. 1.3 Variation of rolling resistance coefficient of radial-ply and bias-ply car tires
with speed on a smooth, flat road surface under rated load and inflation pressure. (Repro-
duced with permission from Automotive Handbook, 2nd ed., Robert Bosch, Germany.)
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Fig. 1.4 Variation of rolling resistance coefficient of radial-ply and bias-ply truck
tires with speed under rated load and inflation pressure. (Reproduced with permission
from reference 1.8.)

with tread made of synthetic rubber compounds and that made of butyl rubber
compounds are approximately 1.06 and 1.35 times that made of natural rubber
compounds, respectively [1.9].

Surface conditions also affect the rolling resistance. On hard, smooth sur-
faces, the rolling resistance is considerably lower than that on a rough road.
On wet surfaces, a higher rolling resistance than on dry surfaces is usually
observed. Figure 1.5 shows a comparison of the rolling resistance of passenger

Fig. 1.5 Variation of tire rolling resistance with pavement surface texture. (Repro-
duced with permission of the Society of Automotive Engineers from reference 1.10.)
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Fig. 1.6 Texture of various types of pavement surface. (Reproduced with permission
of the Society of Automotive Engineers from reference 1.10.)

car tires over six road surfaces with different textures, ranging from polished
concrete to coarse asphalt [1.10]. The profiles of these six surfaces are shown
in Fig. 1.6. It can be seen that on the asphalt surface with coarse sealcoat
(surface no. 6) the rolling resistance is 33% higher than that on a new con-
crete surface (surface no. 2), while on the polished concrete (surface no. 1), it
shows a 12% reduction in comparison with that on the new concrete surface.

Inflation pressure affects the flexibility of the tire. Depending on the
deformability of the ground, the inflation pressure affects the rolling resistance
of the tire in different manners. On hard surfaces, the rolling resistance gen-
erally decreases with the increase in inflation pressure. This is because, with
higher inflation pressure, the deflection of the tire decreases, with consequently
lower hysteresis losses. Figure 1.7 shows the effects of inflation pressure on
the rolling resistance of a radial-ply tire (GR78-15), a bias-ply tire, and a
bias-belted tire (both G78-15) under various normal loads, expressed in terms
of the percentage of the rated load at an inflation pressure of 165 kPa (24 psi)
[1.11]. The results were obtained with the inflation pressure being regulated,
that is, the pressure was maintained at a specific level throughout the tests. It
can be seen that inflation pressure has a much more significant effect on the
rolling resistance of the bias and bias-belted tires than the radial-ply tire. On
deformable surfaces, such as sand, high inflation pressure results in increased
ground penetration work, and therefore higher rolling resistance, as shown in
Fig. 1.8 [1.12]. Conversely, lower inflation pressure, while decreasing ground
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Fig. 1.7 Variation of rolling resistance of radial-ply, bias-belted, and bias-ply car
tires with load and inflation pressure. (Reproduced with permission of the Society of
Automotive Engineers from reference 1.11.)

Fig. 1.8 Variation of rolling resistance coefficient with inflation pressure of tires on
various surfaces. (Reproduced with permission from reference 1.12.)
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Fig. 1.9 Variation of shoulder-crown wear with inflation pressure for radial-ply,
bias-ply, and bias-belted car tires. (Reproduced with permission of the Society of Auto-
motive Engineers from reference 1.11.)

penetration, increases the deflection of the tire and hence internal hysteresis
losses. Therefore, an optimum inflation pressure exists for a particular tire on
a given deformable surface, which minimizes the sum of ground penetration
work and internal losses of the tire.

Inflation pressure affects not only the rolling resistance, but also the tread
wear of a tire. Figure 1.9 shows the effects of inflation pressure on tread
wear of a radial-ply, a bias-ply, and a bias-belted tire [1.11]. The wear rate at
165 kPa (24 psi) is used as a reference for comparison. It can be seen that the
effects of inflation pressure on tread wear are more significant for the bias-ply
and bias-belted tire than the radial-ply tire.

Rolling resistance is also affected by driving speed because of the increase
of work in deforming the tire and of vibrations in the tire structure with the
increase in speed. The effects of speed on the rolling resistance of bias-ply and
radial-ply passenger car and truck tires are illustrated in Figs. 1.3 and 1.4,
respectively. For a given tire under a particular operating condition, there
exists a threshold speed above which the phenomenon popularly known as
standing waves will be observed, as shown in Fig. 1.10. The approximate
value of the threshold speed Vth may be determined by the expression Vth =√

Ft/ρt , where Ft is the circumferential tension in the tire and ρt is the den-
sity of tread material per unit area [1.13]. Standing waves are formed because,
owing to high speed, the tire tread does not recover immediately from dis-
tortion originating from tire deflection after it leaves the contact surface, and
the residual deformation initiates a wave. The amplitude of the wave is great-
est immediately on leaving the ground, and is damped out in an exponential
manner around the circumference of the tire. The formation of the standing
wave greatly increases energy losses, which in turn cause considerable heat
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Fig. 1.10 Formation of standing waves of
a tire at high speeds.

generation that could lead to tire failure. This places an upper limit on the
safe operating speed of tires.

Operating temperature, tire diameter, and tractive force also have effects on
the rolling resistance of a tire. Tire temperature affects the rolling resistance in
two ways: one is by changing the temperature of the air in the tire cavity, and
thereby changing the operating inflation pressure; and the other is by chang-
ing the stiffness and hysteresis of the rubber compounds. Figure 1.11 shows
the dependence of the rolling resistance on the internal tire temperature for
an automobile tire [1.5]. The variation of rolling resistance coefficient with
shoulder temperature of a radial-ply passenger car tire is shown in Fig. 1.12
[1.14]. It can be seen that the rolling resistance at a shoulder temperature of
−10◦C is approximately 2.3 times that at 60◦C for the tire examined. It is
also found that the shoulder temperature of the tire, and not the ambient tem-
perature, is a basic determining factor of the tire rolling resistance coefficient.
The effect of tire diameter on the coefficient of rolling resistance is shown in
Fig. 1.13 [1.12]. It can be seen that the effect of tire diameter is negligible on

Fig. 1.11 Effect of internal temperature on rolling resistance coefficient of a car tire.
(Reproduced with permission of the Council of the Institution of Mechanical Engineers
from reference 1.5.)
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Fig. 1.12 Variation of rolling resistance coefficient with shoulder temperature for
a car tire P195/75R14. (Reproduced with permission of the Society of Automotive
Engineers from reference 1.14.)

Fig. 1.13 Effect of tire diameter on rolling resistance coefficient on various surfaces.
(Reproduced with permission from reference 1.12.)
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Fig. 1.14 Effect of tractive and braking effort on rolling resistance coefficient of a
car tire. (Reproduced with permission from Mechanics of Pneumatic Tires, edited by
S.K. Clark, Monograph 122, National Bureau of Standards, 1971.)

hard surfaces (concrete), but is considerable on deformable or soft ground.
Figure 1.14 shows the effect of the braking and tractive effort coefficient on
the rolling resistance coefficient [1.6].

When considering the effects of material, construction, and design param-
eters of tires on rolling resistance, it is necessary to have a proper perspective
of the energy losses in the tire and the characteristics of the tire–vehicle sys-
tem as a whole. Although it is desirable to keep the rolling resistance as low
as possible, it should be judged against other performance parameters, such as
tire endurance and life, traction, cornering properties, cushioning effect, and
cost. For instance, from the standpoint of rolling resistance, synthetic rubber
compounds are less favorable than natural rubber compounds, yet because
of significant advantages in cost, tread life, wet-road grip, and tire squeal,
they have virtually displaced natural rubber compounds from passenger car
tires, particularly for treads. For high-performance vehicles, there may be
some advantage for using butyl rubber tires because of the marked gains in
traction, roadholding, silence, and comfort, in spite of their poor hysteresis
characteristics [1.5].

The complex relationships between the design and operational parameters
of the tire and its rolling resistance make it extremely difficult, if not impos-
sible, to develop an analytic method for predicting the rolling resistance. The
determination of the rolling resistance, therefore, relies almost entirely on
experiments. To provide a uniform basis for collecting experimental data, the
Society of Automotive Engineers recommends rolling resistance measurement
procedures for various types of tire on different surfaces, which may be found
in the SAE Handbook .

Based on experimental results, many empirical formulas have been pro-
posed for calculating the rolling resistance of tires on hard surfaces. For
instance, based on the experimental data shown in Fig. 1.3, for radial-ply
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passenger car tires under rated loads and inflation pressures on a smooth
road, the relationship between rolling resistance coefficient fr and speed V

(up to 150 km/h or 93mph) may be expressed by

fr = 0.0136 + 0.40 × 10−7V 2 (1.1)

and for bias-ply passenger car tires,

fr = 0.0169 + 0.19 × 10−6V 2 (1.2)

where V is in km/h.
Based on the experimental data shown in Fig. 1.4, for the radial-ply truck

tire under rated load and inflation pressure, the relationship between the rolling
resistance coefficient fr and speed V (up to 100 km/h or 62 mph) may be
described by

fr = 0.006 + 0.23 × 10−6V 2 (1.3)

and for the bias-ply truck tire,

fr = 0.007 + 0.45 × 10−6V 2 (1.4)

where V is in km/h.
The rolling resistance coefficient of truck tires is usually lower than that

of passenger car tires on road surfaces. This is primarily due to the higher
inflation pressure used in truck tires (typically 620–827 kPa or 90–120 psi as
opposed to 193–248 kPa or 28–36 psi for passenger car tires).

In preliminary performance calculations, the effect of speed may be ignored,
and the average value of fr for a particular operating condition may be used.
The average values of fr for various types of tire over different surfaces are
summarized in Table 1.1.

TABLE 1.1 Coefficient of Rolling Resistance

Road surface Coefficient of rolling resistance

Car tires
Concrete, asphalt 0.013
Rolled gravel 0.02
Tarmacadam 0.025
Unpaved road 0.05
Field 0.1–0.35

Truck tires
Concrete, asphalt 0.006–0.01

Source: Automotive Handbook, 4th edition, Bosch, 1996. (Reproduced with permission of Robert
Bosch, Germany.)
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1.3 TRACTIVE (BRAKING) EFFORT AND LONGITUDINAL SLIP (SKID)

When a driving torque is applied to a pneumatic tire, a tractive force is
developed at the tire–ground contact patch, as shown in Fig. 1.15 [1.6]. At the
same time, the tire tread in front of and within the contact patch is subjected
to compression. A corresponding shear deformation of the sidewall of the tire
is also developed.

As tread elements are compressed before entering the contact region, the
distance that the tire travels when subject to a driving torque will be less than
that in free rolling. This phenomenon is usually referred to as longitudinal
slip. The longitudinal slip of the vehicle running gear, when a driving torque
is applied, is usually defined by

i =
(
1 − V

rω

)
× 100% =

(
1 − re

r

)
× 100% (1.5)

where V is the linear speed of the tire center, ω is the angular speed of the
tire, r is the rolling radius of the free-rolling tire, and re is the effective rolling

Fig. 1.15 Behavior of a tire under the action of a driving torque. (Reproduced with
permission from Mechanics of Pneumatic Tires, edited by S.K. Clark, Monograph 122,
National Bureau of Standards, 1971.)
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radius of the tire, which is the ratio of the linear speed of the tire center to
the angular speed of the tire.

When a driving torque is applied, the tire rotates without the equivalent
translatory progression; therefore, rω > V and a positive value for slip results.
If a tire is rotating at a certain angular speed but the linear speed of the tire
center is zero, then, in accordance with Eq. 1.5, the longitudinal slip of the
tire will be 100%. This is often observed on an icy surface, where the driven
tires are spinning at high angular speeds, while the vehicle does not move
forward. The definition of longitudinal slip given by Eq. 1.5 is adopted in the
analysis of the mechanics of tires in this book.

A definition of longitudinal slip different from that given by Eq. 1.5 appears
in some publications. For instance, in the SAE Handbook Supplement, Vehicle
Dynamics Terminology J670e [1.4], longitudinal slip is defined as “the ratio
of the longitudinal slip velocity to the spin velocity of the straight free-rolling
tire expressed as a percentage.” The longitudinal slip velocity is taken as
“the difference between the spin velocity of the driven or braked tire and
the spin velocity of the straight free-rolling tire.” Both spin velocities are
measured at the same linear velocity at the wheel center in the X direc-
tion (Fig. 1.2). A positive value of slip results from a driving torque. In
essence, the definition of longitudinal slip i ′ suggested by the SAE can be ex-
pressed by

i ′ =
(rω

V
− 1
)

× 100% =
(

r

re

− 1

)
× 100% (1.6)

where V , ω, r , and re are defined in the same way as that for Eq. 1.5. It
should be noted that in accordance with the definition suggested by the SAE,
when a tire is rotating at a certain angular speed but the linear speed of
the tire center is zero, the longitudinal slip i ′ of the tire will be denoted as
infinite.

As the tractive force developed by a tire is proportional to the applied
wheel torque under steady-state conditions, slip is a function of tractive effort.
Generally speaking, at first the wheel torque and tractive force increase lin-
early with slip because, initially, slip is mainly due to elastic deformation
of the tire tread. This corresponds to section OA of the curve shown in
Fig. 1.16. A further increase of wheel torque and tractive force results in
part of the tire tread sliding on the ground. Under these circumstances, the
relationship between the tractive force and the slip is nonlinear. This corre-
sponds to section AB of the curve shown in Fig. 1.16. Based on available
experimental data, the maximum tractive force of a pneumatic tire on hard
surfaces is usually reached somewhere between 15 and 20% slip. Any further
increase of slip beyond that results in an unstable condition, with the trac-
tive effort falling rapidly from the peak value µpW to the pure sliding value
µsW , as shown in Fig. 1.16, where W is the normal load on the tire and µp

and µs are the peak and sliding values of the coefficient of road adhesion,
respectively.
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Fig. 1.16 Variation of tractive effort with longitudinal slip of a tire.

A general theory that can accurately predict the relationship between the
tractive effort and the longitudinal slip of pneumatic tires on hard surfaces
has yet to be evolved. However, several theories have been proposed that
could provide a basic understanding of the physical nature of the processes
involved. One of the earliest theoretical treatises on the relationship between
the tractive effort and the longitudinal slip of pneumatic tires was presented
by Julien [1.15].

In Julien’s theory, it is assumed that the tire tread can be regarded as an
elastic band, and that the contact patch is rectangular and the normal pressure
is uniformly distributed [1.15]. It is further assumed that the contact patch
can be divided into an adhesion region and a sliding region. In the adhesion
region, the interacting forces depend on the elastic properties of the tire,
whereas in the sliding region, the interacting forces depend upon the adhesive
properties of the tire–ground interface. When a driving torque is applied to a
tire, in the region in front of the contact patch, the driving torque produces a
longitudinal strain ε (in compression) in the tread. It remains constant in the
adhesion region of the contact patch, where no sliding between the tire tread
and the ground takes place. Let e0 be the longitudinal deformation of the tire
tread in front of the contact patch, and let e be the longitudinal deformation
of the tread at a point at a distance x behind the front contact point

e = e0 + xε (1.7)

Assume that e0 is proportional to ε, and e0 = λε. Then

e = (λ + x)ε (1.8)
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It is further assumed that, within the adhesion region, where no sliding
between the tire tread and the ground takes place, the tractive force per unit
contact length is proportional to the deformation of the tread. Thus,

dFx

dx
= kte = kt (λ + x)ε (1.9)

where kt is the tangential stiffness of the tire tread and Fx is the tractive
force. Based on experimental data of a sample of heavy truck tires under
rated loads and inflation pressures, it is found that the value of kt varies in
a narrow range from approximately 3930 kN/m2 (570 lb/in.2) for a radial-ply
tire to 4206 kN/m2 (610 lb/in.2) for a bias-ply tire.

Fx =
∫ x

0
kt (λ + x)ε dx = ktλxε

(
1 + x

2λ

)
(1.10)

Let p be the normal pressure, b the width of the contact patch, and µp the
peak value of the coefficient of road adhesion. Then no sliding will take place
between the tread and the ground if the following condition is satisfied:

dFx

dx
= kt (λ + x)ε ≤ µppb (1.11)

This implies that if a point at a distance of x behind the front contact point
is in the adhesion region, then x must be less than a characteristic length lc,
which defines the length of the region where no sliding between the tire tread
and the ground takes place; that is,

x ≤ lc = µppb

ktε
− λ = µpW

ltkt ε
− λ (1.12)

where W is the normal load on the tire and lt is the contact length of the tire.
If lt ≤ lc, then the entire contact area is an adhesion region. Letting

x = lt in Eq. 1.10, the tractive force becomes

Fx = ktλlt ε

(
1 + lt

2λ

)
= Ktε (1.13)

where Kt = ktλ lt [1 + lt /2λ].
Since the longitudinal strain ε is a measure of the longitudinal slip i of

the tire, it is concluded that if the entire contact patch is an adhesion region,
the relationship between the tractive force Fx and the slip i is linear. This
corresponds to the region between points O and A on the tractive effort–slip
curve shown in Fig. 1.16.
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The condition for sliding at the rear edge of the contact area is given by

lt = lc = µpW

ltkt i
− λ (1.14)

This means that, if the slip or tractive force reaches the respective critical
value ic or Fxc given below, sliding in the trailing part of the contact patch
begins:

ic = µpW

ltkt (lt + λ)
(1.15)

Fxc = µpW [1 + (lt /2λ)]

1 + (lt /λ)
(1.16)

A further increase of slip or tractive force beyond the respective critical
value results in the spread of the sliding region from the trailing edge toward
the leading part of the contact patch. The tractive force Fxs developed in the
sliding region is given by

Fxs = µpW(1 − lc/ lt ) (1.17)

and the tractive force Fxa developed in the adhesion region is given by

Fxa = ktλilc

(
1 + lc

2λ

)
(1.18)

where lc is determined by Eq. 1.12.
Hence, the relationship between the total tractive force and the slip when

part of the tire tread sliding on the ground is expressed by

Fx = Fxs + Fxa = µpW − λ(µpW − K ′i)2

2ltK ′i
(1.19)

where K ′ = lt ktλ.
This equation clearly indicates the nonlinear behavior of the tractive effort–

longitudinal slip relationship when sliding occurs in part of the contact area.
This corresponds to the region beyond point A of the curve shown in Fig. 1.16.

When sliding extends over the entire contact patch, the tractive force Fx

is equal to µpW . Under this condition, the slip i is obtained by setting lc
to zero in Eq. 1.14. The value of the slip im where the maximum tractive
effort occurs is equal to µpW /lt ktλ and corresponds to point B shown in
Fig. 1.16. A further increase of tire slip results in an unstable situation, with
the coefficient of road adhesion falling rapidly from the peak value µp to the
pure sliding value µs .
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In practice, the normal pressure distribution over the tire–ground contact
patch is not uniform. There is a gradual drop of pressure near the edges. It
is expected, therefore, that a small sliding region will be developed in the
trailing part of the contact area, even at low slips.

Using Julien’s theory to define the relationship between tractive effort and
longitudinal slip, in addition to the parameters µp, W , and lt , the value of
λ, which determines the longitudinal deformation of the tire tread prior to
entering the contact patch, must be known. To determine the value of λ for
a given tire would require considerable effort and elaborate experiments. In
view of this, a simplified theory has been developed in which the effect of λ

is neglected. From Eq. 1.9, by neglecting the term λ, the tractive force per
unit contact length in the adhesion region at a distance of x from the front
contact point is given by

dFx

dx
= ktxε = ktxi (1.20)

If there is no sliding between the tire tread and the ground for the entire
contact patch, the relationship between the tractive force and slip can be
expressed by

Fx =
∫ lt

0
kt ix dx = (kt l

2
t /2)i (1.21)

The term kt l
2
t /2 may be taken as the slope Ci of the tractive effort–slip curve

at the origin as shown in Fig. 1.16; that is,

kt l
2
t

2
= Ci = tan θ = ∂Fx

∂i

∣∣∣∣
i=0

(1.22)

where Ci is usually referred to as the longitudinal stiffness of the tire.
If no sliding takes place on the contact patch, the relationship between the

tractive force and the slip will, therefore, be linear:

Fx = Cii (1.23)

Equation 1.23 applies to section OA of the curve shown in Fig. 1.16.
With the increase of slip beyond point A shown in Fig. 1.16, the tractive

force per unit contact length at the trailing edge of the contact patch reaches
the adhesion limit, and sliding between the tread and the ground takes place.

dFx

dx
= kt lt i = µppb = µpW

lt
(1.24)
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This indicates that when the slip or tractive force reaches the respective critical
value ic or Fxc given below, sliding in the trailing part of the contact patch
begins:

ic = µpW

kt l
2
t

= µpW

2Ci

(1.25)

Fxc = Ciic = µpW

2
(1.26)

In other words, if slip i ≤ ic or the tractive force Fx ≤ Fxc, the relationship
between the tractive force and slip is linear, as shown in Fig. 1.16. Equation
1.26 indicates that the upper limit for the linear range of the tractive force–slip
relationship is identified by the tractive force being equal to one-half of its
maximum value (µpW /2).

A further increase of slip or tractive force beyond the respective critical
value (i.e., i > ic or Fx > Fxc) results in the spread of the sliding region from
the trailing edge towards the leading part of the contact patch. The tractive
force Fxs developed in the sliding region is given by

Fxs = µpW

(
1 − lc

lt

)
= µpW

(
1 − µpW

2Cii

)
(1.27)

and the tractive force Fxa developed in the adhesion region is expressed by

Fxa = 1

2

µpWlc

lt
= µ2

pW 2

4Cii
(1.28)

Hence, the relationship between the total tractive force and the slip when part
of the tread is sliding on the ground (i.e., i > ic or Fx > Fxc) is given by

Fx = Fxs + Fxa = µpW

(
1 − µpW

4Cii

)
(1.29)

The equation above indicates the nonlinear nature of the tractive effort–
longitudinal slip relationship when sliding occurs in part of the contact patch.
It is applicable to predicting the tractive effort–slip relation when the tractive
effort is lower than its maximum value µpW .

In comparison with Julien’s theory, the simplified theory described above
requires only three parameters, µp, W , and Ci , to define the tractive effort–
longitudinal slip relationship. As pointed out previously, the value of Ci can
easily be identified from the initial slope of the measured tractive effort–slip
curve.

When a braking torque is applied to the tire, a stretching of the tread
elements occurs prior to entering the contact area, as shown in Fig. 1.17, in
contrast with the compression effect for a driven tire. The distance that the
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Fig. 1.17 Behavior of a tire under the action of a braking torque. (Reproduced with
permission from Mechanics of Pneumatic Tires, edited by S.K. Clark, Monograph 122,
National Bureau of Standards, 1971.)

tire travels when a braking torque is applied, therefore, will be greater than
that in free rolling. The severity of braking is often measured by the skid of
the tire is , which is defined as

is =
(
1 − rω

V

)
× 100%

=
(
1 − r

re

)
× 100% (1.30)

For a locked wheel, the angular speed ω of the tire is zero, whereas the linear
speed of the tire center is not zero. Under this condition, the skid is denoted
100%. It should be noted that using the definition of slip suggested by the
SAE and given by Eq. 1.6, for a locked tire, the slip will be −100%.

A simplified theory for the relationship between the braking effort and
the skid can also be developed, following an approach similar to that for
the relationship between the tractive force and the slip described previously.
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According to the definitions of slip i and skid is given by Eqs. 1.5 and 1.30,
respectively, the expressions for slip i and skid is are related by

|i| = |is/(1 − is)| (1.31)

If no sliding takes place on the contact patch, the relationship between the
braking effort and the skid can be established by replacing Ci and i in Eq.
1.23 with Cs and is /(1 − is), respectively.

Fx = Csis/(1 − is) (1.32)

where Fx is the braking effort acting in the opposite direction of motion of
the tire center, and Cs is the slope of the braking effort–skid curve at the
origin, and is given by [1.8]

Cs = ∂Fx

∂is

∣∣∣∣
is=0

(1.33)

Cs is referred to as the longitudinal stiffness of the tire during braking. Similar
to the parameter Ci , the value of Cs can easily be identified from the initial
slope of the measured braking effort–skid curve.

It is interesting to note from Eq. 1.32 that, using the definition of skid given
by Eq. 1.30, the relationship between braking effort and skid is nonlinear, even
at low skids, where no sliding takes place between the tread and the ground.

The critical value of skid isc, at which sliding between the tread and the
ground begins, can be established by replacing Ci and i in Eq. 1.25 with Cs

and is /(1 − is), respectively:

isc = µpW

2Cs + µpW
(1.34)

The corresponding critical value of braking effort Fxc, above which sliding
between the tread and the ground begins, is given by

Fxc = Csisc

1 − isc
= µpW

2
(1.35)

When sliding takes place in part of the contact patch (i.e., is > isc), the
relationship between the braking effort and the skid can be established by
replacing Ci and i in Eq. 1.29 with Cs and is /(1 − is), respectively.

Fx = µpW

[
1 − µpW(1 − is)

4Csis

]
(1.36)

While the theory described above represents a simplified model for the highly
complex phenomenon of tire–ground interaction, it has been proven to be
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Fig. 1.18 Variation of braking effort coefficient with skid of a car tire on various
surfaces. (Reproduced with permission of the Society of Automotive Engineers from
reference 1.17.)

useful in representing tire behavior in the simulations of the dynamics of
passenger cars [1.8, 1.16].

Figure 1.18 shows the variation of the braking effort coefficient, which
is the ratio of the braking effort to the normal load, with skid for a bias-ply
passenger car tire over various surfaces [1.17]. The peak and sliding values of
the coefficient of road adhesion of a bias-ply, a bias-belted, and a radial-ply
passenger car tire of the same size with various inflation pressures at a speed
of 64 km/h (40 mph) on a dry, aggregate asphalt surface are shown in Fig. 1.19
[1.11]. It appears that on a dry surface, the coefficient of road adhesion does
not vary significantly with tire construction and inflation pressure. Average
peak and sliding values of the coefficient of road adhesion µp and µs on
various surfaces are given in Table 1.2 [1.12].

TABLE 1.2 Average Values of Coefficient of Road Adhesion

Surface Peak value µp Sliding value µs

Asphalt and concrete (dry) 0.8–0.9 0.75
Asphalt (wet) 0.5–0.7 0.45–0.6
Concrete (wet) 0.8 0.7
Gravel 0.6 0.55
Earth road (dry) 0.68 0.65
Earth road (wet) 0.55 0.4–0.5
Snow (hard-packed) 0.2 0.15
Ice 0.1 0.07

Source: Reference 1.12.
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Fig. 1.19 Variation of peak and sliding values of braking effort coefficient with infla-
tion pressure for bias-ply, bias-belted, and radial-ply car tires on dry pavement. (Repro-
duced with permission of the Society of Automotive Engineers from reference 1.11.)

Among the operational parameters, speed and normal load have noticeable
effects on the tractive (braking) effort–slip (skid) characteristics. Figure 1.20
shows the influence of speed on the braking effort coefficient–skid charac-
teristics of a bias-ply truck tire on a dry asphalt surface [1.18]. As shown
in Fig. 1.20, speed appears to have a significant effect on the tractive (brak-
ing) performance of a tire. Therefore, it has been suggested that to improve
the prediction of the relationship between the tractive (braking) effort and
the slip (skid), the effect of the sliding speed between the tire tread and the
ground should be incorporated into the theories described previously [1.8].
Figure 1.21 shows the effect of normal load on the braking performance of a
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Fig. 1.20 Effect of speed on braking performance of a truck tire on asphalt. (Repro-
duced with permission from reference 1.18.)

bias-ply truck tire on a dry asphalt surface [1.18]. The value of the longitudinal
stiffness Cs increases noticeably with an increase of the normal load. This is
because the tire contact length increases with the normal load for a given infla-
tion pressure. According to Eq. 1.21, to develop a given longitudinal force,
the longer tire contact length results in lower longitudinal slip (or skid).

A sample of the peak and sliding values of the coefficient of road adhesion
µp and µs for truck tires at 64 km/h (40 mph) on dry and wet concrete
pavements is shown in Table 1.3 [1.19]. The pavements were aggressively
textured, like those of relatively new roads meeting the requirements of the
U.S. Federal Interstate Highway System.

It can be seen from Table 1.3 that the ratio of the peak value µp to the
sliding value µs for truck tires on dry concrete pavement is around 1.4,
whereas on wet concrete pavement, it ranges from approximately 1.3 to 1.6.
It is also noted that there appear to be no clear distinctions between the tractive
(braking) performance of bias-ply and radial-ply truck tires.

The significant difference between the peak values µp and the sliding value
µs of the coefficient of road adhesion indicates the importance of avoiding
wheel lockup during braking (skid is = 100%) or wheel spinning during
acceleration (slip i = 100%). This is one of the impetuses to the development
of antilock brake systems and traction control systems for road vehicles, which
is discussed in Chapter 3.
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Fig. 1.21 Effect of normal load on braking performance of a truck tire on asphalt.
(Reproduced with permission from reference 1.18.)

1.4 CORNERING PROPERTIES OF TIRES

1.4.1 Slip Angle and Cornering Force

Whenapneumatic tire is not subject to any force perpendicular to thewheel plane
(i.e., side force), it will move along the wheel plane. If, however, a side force Fs

is applied to a tire, a lateral force will be developed on the contact patch, and the
tire will move along a path at an angle α with the wheel plane, as OA shown in
Fig. 1.22. The angleα is usually referred to as the slip angle, and the phenomenon
of side slip is mainly due to the lateral elasticity of the tire.

The lateral force developed on the tire–ground contact patch is usually
called the cornering force Fyα when the camber angle of the wheel is zero. The
relationship between the cornering force and the slip angle is of fundamental
importance to the directional control and stability of road vehicles.
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TABLE 1.3 Values of Coefficient of Road Adhesion for Truck Tires on Dry
and Wet Concrete Pavement at 64 km/h (40 mph)

Dry WetTire
Tire type construction µp µs µp µs

Goodyear Super Hi Miler (rib) Bias-ply 0.850 0.596 0.673 0.458
General GTX (rib) Bias-ply 0.826 0.517 0.745 0.530
Firestone Transteel (rib) Radial-ply 0.809 0.536 0.655 0.477
Firestone Transport 1 (rib) Bias-ply 0.804 0.557 0.825 0.579
Goodyear Unisteel R-1 (rib) Radial-ply 0.802 0.506 0.700 0.445
Firestone Transteel Traction (lug) Radial-ply 0.800 0.545 0.600 0.476
Goodyear Unisteel L-1 (lug) Radial-ply 0.768 0.555 0.566 0.427
Michelin XZA (rib) Radial-ply 0.768 0.524 0.573 0.443
Firestone Transport 200 (lug) Bias-ply 0.748 0.538 0.625 0.476
Uniroyal Fleet Master Super Lug Bias-ply 0.739 0.553 0.513 0.376
Goodyear Custom Cross Rib Bias-ply 0.716 0.546 0.600 0.455
Michelin XZZ (rib) Radial-ply 0.715 0.508 0.614 0.459

Average 0.756 0.540 0.641 0.467

Source: UMTRI, reference 1.19.

Fig. 1.22 Behavior of a tire subject to a side force.
(Reproduced with permission from Mechanics of
Pneumatic Tires, edited by S.K. Clark, Monograph
122, National Bureau of Standards, 1971.)
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When the tire is moving at a uniform speed in the direction of OA, the side
force Fs applied at the wheel center and the cornering force Fyα developed
in the ground plane are usually not collinear, as shown in Fig. 1.22. At small
slip angles, the cornering force in the ground plane is normally behind the
applied side force, giving rise to a torque (or couple), which tends to align the
wheel plane with the direction of motion. This torque is called the aligning or
self-aligning torque, and is one of the primary restoring moments that help the
steered tire return to the original position after negotiating a turn. The distance
tp between the side force and the cornering force is called the pneumatic trail,
and the product of the cornering force and the pneumatic trail determines the
self-aligning torque.

The relationships between the slip angle and the cornering force of various
types of tire under a variety of operating conditions have been investigated
extensively. Typical plots of the cornering force as a function of the slip angle
for a bias-ply and a radial-ply passenger car tire are shown in Fig. 1.23 [1.6].
It can be seen that for slip angles below a certain value, such as 4◦ shown in
Fig. 1.23, the cornering force is approximately proportional to the slip angle.
Beyond that, the cornering force increases at a lower rate with an increase of
the slip angle, and it reaches a maximum value where the tire begins sliding
laterally. For passenger car tires, the maximum cornering force may occur
at a slip angle of about 18◦, while for racing car tires, the cornering force
may peak at approximately 6◦. Figure 1.23 shows that the cornering force
of a bias-ply tire increases more slowly with an increase of the slip angle
than that of a radial-ply tire. These characteristics are considered to be more

Fig. 1.23 Cornering characteristics of a bias-ply and a radial-ply car tire. (Reproduced
with permission from Mechanics of Pneumatic Tires, edited by S.K. Clark, Monograph
122, National Bureau of Standards, 1971.)
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Fig. 1.24 Cornering characteristics of bias-ply and radial-ply truck tires on dry con-
crete. (Reproduced with permission from reference 1.8.)

suited to two-wheeled vehicles, such as motorcycles. A more gradual increase
of the cornering force with the slip angle enables the driver to exercise better
control over a two-wheeled vehicle. This is one of the reasons why bias-ply
tires are used for motorcycles [1.1]. Figure 1.24 shows the variations of the
ratio of the cornering force to the normal load with the slip angle for radial-ply
and bias-ply truck tires of size 10.00–20 with different tread designs (ribbed
or lugged) [1.8]. Similar to that shown in Fig. 1.23 for passenger car tires,
the cornering force of radial-ply truck tires increases more rapidly with an
increase of the slip angle than that of bias-ply truck tires.

A number of factors affect the cornering behavior of pneumatic tires. The
normal load on the tire strongly influences the cornering characteristics. Some
typical results are shown in Fig. 1.25 [1.6]. It can be seen that for a given slip
angle, the cornering force generally increases with an increase of the normal
load. However, the relationship between the cornering force and the normal
load is nonlinear. Thus, the transfer of load from the inside to the outside tire
during a turning maneuver will reduce the total cornering force that a pair of
tires can develop. Consider a pair of tires on a beam axle, each with normal
load Fz, as shown in Fig. 1.26. The cornering force per tire with normal
load Fz is Fy for a given slip angle. If the vehicle undergoes a steady-state
turn, owing to lateral load transfer, the normal load on the inside tire will
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Fig. 1.25 Effect of normal load on the cornering characteristics of a car tire. (Repro-
duced with permission from Mechanics of Pneumatic Tires, edited by S.K. Clark,
Monograph 122, National Bureau of Standards, 1971.)

Fig. 1.26 Effect of lateral load transfer on the cor-
nering capability of a pair of tires on an axle.

be reduced to Fzi and that on the outside tire will be increased to Fzo. As a
result, the total cornering force of the two tires will be the sum of Fyi and
Fyo, which is less than 2Fy , as shown in Fig. 1.26. This implies that for a pair
of tires on a beam axle to develop the required amount of cornering force to
balance a given centrifugal force during a turn, the lateral load transfer results
in an increase in the slip angle of the tires.

To provide a measure for comparing the cornering behavior of different
tires, a parameter called cornering stiffness Cα is used. It is defined as the
derivative of the cornering force Fyα with respect to slip angle α evaluated
at zero slip angle:

Cα = ∂Fyα

∂α

∣∣∣∣
α=0

(1.37)

Figure 1.27 shows a comparison of the relationships between the cornering
stiffness and the normal load for a sample of passenger car, light truck, and
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Fig. 1.27 Comparison of cornering stiffness of car, light truck, and heavy truck tires.
(Reproduced with permission from reference 1.8.)

heavy truck tires [1.8]. In the figure, RL indicates the rated load for a specific
tire. For the three passenger car tires tested, the cornering stiffness reaches a
maximum at the rated load, and decreases with a further increase in the normal
load. However, for the light truck and heavy truck tires shown, the cornering
stiffness keeps increasing beyond the rated load, although at a lower rate.

To evaluate the effect of the normal load on the cornering ability of tires, a
parameter called the cornering coefficient, which is defined as the cornering
stiffness per unit normal load, is often used. Figure 1.28 shows a typical
relationship between the cornering coefficient and the normal load of a tire
[1.12]. It shows that the cornering coefficient decreases with an increase in
the normal load.

Inflation pressure usually has a moderate effect on the cornering properties
of a tire. In general, the cornering stiffness of tires increases with an increase
of the inflation pressure. Figure 1.29 shows a comparison of the cornering
coefficients at different inflation pressures of a radial-ply, a bias-belted, and a
bias-ply passenger car tire [1.11]. Table 1.4 shows a sample of the values of
the cornering coefficient for truck tires at rated loads and inflation pressures
(unless specified) [1.19].



36 MECHANICS OF PNEUMATIC TIRES

Fig. 1.28 Effect of normal load on the cornering coefficient of a tire. (Reproduced
with permission from reference 1.12.)

Fig. 1.29 Variation of cornering coefficient with inflation pressure for radial-ply,
bias-ply, and bias-belted car tires. (Reproduced with permission of the Society of
Automotive Engineers from reference 1.11.)
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TABLE 1.4 Cornering Coefficients for Truck Tires at Rated Loads
and Inflation Pressures (Unless Specified)

Tire Cornering
Tire type construction coefficient (deg−1)

Michelin Radial XZA (1/3 tread) Radial-ply 0.1861
Michelin Radial XZA (1/2 tread) Radial-ply 0.1749
Michelin Pilote XZA Radial-ply 0.1648
Michelin Radial XZA Radial-ply 0.1472
Goodyear Unisteel G159, 11R22.5 LRF at
655 kPa (95 psi)

Radial-ply 0.1413

Michelin XZZ Radial-ply 0.1370
Goodyear Unisteel 11, 10R22.5 LRF at
620 kPa (90 psi)

Radial-ply 0.1350

Goodyear Unisteel G159, 11R22.5 LRG at
792 kPa (115 psi)

Radial-ply 0.1348

Goodyear Unisteel 11, 10R22.5 LRF at
758 kPa (110 psi)

Radial-ply 0.1311

Firestone Transteel Radial-ply 0.1171
Firestone Transteel Traction Radial-ply 0.1159
Goodyear Unisteel R-1 Radial-ply 0.1159
Goodyear Unisteel L-1 Radial-ply 0.1121
Firestone Transport 1 Bias-ply 0.1039
General GTX Bias-ply 0.1017
Goodyear Super Hi Miler Bias-ply 0.0956
Goodyear Custom Cross Rib Bias-ply 0.0912
Uniroyal Fleet Master Super Lub Bias-ply 0.0886
Firestone Transport 200 Bias-ply 0.0789

Source: UMTRI and TRIF, reference 1.19.

1.4.2 Slip Angle and Aligning Torque

As mentioned in Section 1.4.1, the side force Fs applied at the wheel center
and the cornering force Fyα developed in the ground plane are usually not
collinear, as shown in Fig. 1.22. This gives rise to a torque commonly known
as the aligning or self-aligning torque. Figure 1.30 shows a plot of the cor-
nering force versus the aligning torque for a passenger car tire at various slip
angles and under different normal loads [1.20]. Figures 1.31 and 1.32 show
the variations of the aligning torque with the slip angle and the normal load for
a bias-ply truck tire (10.00-20/F ) and for a radial-ply truck tire (10.00-20/G),
respectively [1.8]. It is interesting to note that with a given normal load, the
aligning torque first increases with an increase of the slip angle. It reaches a
maximum at a particular slip angle, and then decreases with a further increase
of the slip angle. This is mainly caused by the sliding of the tread in the trail-
ing part of the contact patch at high slip angles, which results in shifting the
point of application of the cornering force forward. Table 1.5 shows a sample
of measured values of pneumatic trail for truck tires at a slip angle of 1◦ and
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Fig. 1.30 Variation of self-aligning torque with cornering force of a car tire under
various normal loads. (Reproduced with permission of the Society of Automotive
Engineers from reference 1.20.)

Fig. 1.31 Variation of self-aligning torque with normal load and slip angle for a
bias-ply truck tire, 10.00–20/F . (Reproduced with permission from reference 1.8.)



1.4 CORNERING PROPERTIES OF TIRES 39

Fig. 1.32 Variation of self-aligning torque with normal load and slip angle for a
radial-ply truck tire, 10.00–20/G. (Reproduced with permission from reference 1.8.)

TABLE 1.5 Pneumatic Trails for Truck Tires at a Slip Angle of 1◦ Under
Rated Loads and Inflation Pressures (Unless Specified)

Pneumatic trails

Tire type Tire construction cm in.

Michelin Radial 11R22.5 XZA (1/3 Tread) Radial-ply 6.17 2.43
Goodyear Unisteel II, 10R22.5 LRF at
620 kPa (90 psi)

Radial-ply 6.15 2.42

Michelin Radial 11R22.5 XZA (1/2 Tread) Radial-ply 5.89 2.32
Goodyear Unisteel G159, 11R22.5 LRG at
655 kPa (95 psi)

Radial-ply 5.87 2.31

Michelin Radial 11R22.5 XZA Radial-ply 5.51 2.17
Goodyear Unisteel G159, 11R22.5 LRG at
792 kPa (115 psi)

Radial-ply 5.46 2.15

Goodyear Unisteel II, 10R22.5 LRF at
758 kPa (110 psi)

Radial-ply 5.41 2.13

Michelin Radial 11R22.5 XZA Radial-ply 5.38 2.12
Michelin Pilote 11/80R22.5 XZA Radial-ply 4.62 1.82
New Unspecified Model 10.00-20/F Bias-ply 5.89 2.32
Half-Worn Unspecified Model 10.00-20/F Bias-ply 7.14 2.81
Fully-Worn Unspecified Model 10.00-20/F Bias-ply 6.55 2.58

Source: UMTRI, reference 1.19.
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under rated loads and inflation pressures (unless specified) [1.19]. It is shown
that the pneumatic trail for truck tires varies in the range from 4.6 cm (1.8 in.)
to 7.1 cm (2.8 in.). A typical value for a new bias-ply truck tire is 5.8 cm
(2.3 in.), while that for a new radial-ply tire is 5.3 cm (2.1 in.).

Longitudinal force affects the aligning torque significantly. Generally
speaking, the effect of a driving torque is to increase the aligning torque
for a given slip angle, while a braking torque has the opposite effect. Infla-
tion pressure and normal load also have noticeable effects on the aligning
torque because they affect the size of the tire contact patch. Higher normal
load and lower inflation pressure result in longer tire contact length, and hence
pneumatic trail. This causes an increase in the aligning torque.

1.4.3 Camber and Camber Thrust

Camber is the inclination of the wheel plane from a plane perpendicular to
the road surface when viewed from the fore and aft directions of the vehicle,
as shown in Fig. 1.33. Its main purpose is to achieve axial bearing pressure
and to decrease the kingpin offset. Camber on passenger cars is between 1/2
and 1◦. High camber angles promote excessive tire wear [1.12].

Camber causes a lateral force developed on the contact patch. This lateral
force is usually referred to as camber thrust Fyγ , and the development of
this thrust may be explained in the following way. A free-rolling tire with a
camber angle would revolve about point O, as shown in Fig. 1.33. However,
the cambered tire in a vehicle is constrained to move in a straight line. A
lateral force in the direction of the camber is, therefore, developed in the
ground plane. It is interesting to note that the camber thrust acts ahead of the
wheel center, and therefore forms a small camber torque. The relationship
between the camber thrust and the camber angle (at zero slip angle) for a
bias-ply passenger car tire is illustrated in Fig. 1.34 [1.21]. It has been shown

Fig. 1.33 Behavior of a cambered tire.
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Fig. 1.34 Variation of camber thrust with camber angle and normal load for a car
tire. (Reproduced with permission of the Society of Automotive Engineers from
reference 1.21.)

that the camber thrust is approximately one-fifth the value of the cornering
force obtained from an equivalent slip angle for a bias-ply tire and somewhat
less for a radial-ply tire. To provide a measure for comparing the camber
characteristics of different tires, a parameter called “camber stiffness” is often
used. It is defined as the derivative of the camber thrust with respect to the
camber angle evaluated at zero camber angle.

Cγ = ∂Fyγ

∂γ

∣∣∣∣
γ=0

(1.38)

Similar to the cornering stiffness, the normal load and inflation pressure
have an influence on the camber stiffness. Figure 1.35 shows the variations
of the camber stiffness with normal load for three truck tires at an inflation
pressure of 620 kPa (90 psi) [1.8]. It is found that for truck tires, the value
of the camber stiffness is approximately one-tenth to one-fifth of that of the
cornering stiffness under similar operating conditions.

The total lateral force of a cambered tire operating at a slip angle is the
sum of the cornering force Fyα and the camber thrust Fyγ :

Fy = Fyα ± Fyγ (1.39)

If the cornering force and the camber thrust are in the same direction, the
positive sign should be used in the above equation. For small slip and camber
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Fig. 1.35 Variation of camber stiffness with normal load for heavy truck tires. (Repro-
duced with permission from reference 1.8.)

angles, the relationship between the cornering force and the slip angle and
that between the camber thrust and the camber angle are essentially linear;
the total lateral force of a cambered tire at a slip angle can, therefore, be
determined by

Fy = Cαα ± Cγ γ (1.40)

As discussed previously, the lateral forces due to slip angle and camber angle
produce an aligning torque. The aligning torque due to slip angle, however,
is usually much greater.

1.4.4 Characterization of Cornering Behavior of Tires

A number of attempts have been made to develop mathematical models for
the cornering behavior of pneumatic tires. There are two basic types of model.
One is based on the assumption that the tread of the tire is equivalent to a
stretched string restrained by lateral springs, representative of the sidewall
with the wheel rim acting as the base of the springs, as shown in Fig. 1.36(a).
In the other model, the tread is considered equivalent to an elastic beam with
continuous lateral elastic support, as shown in Fig. 1.36(b) [1.15, 1.22].

In both models, it is assumed that the cornering behavior of a tire can be
deduced from the characteristics of the equatorial line of the tire, which is the
intersection of the undeformed tire tread with the wheel plane. The portion
of the equatorial line in the contact area is called the contact line. One of the
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Fig. 1.36 Models for cornering behavior of tires. (a) Stretched string model. (b) Beam
on elastic foundation model. (Reproduced with permission from Vehicle Dynamics by
J.R. Ellis, Business Books, 1969.)

major differences in these two basic models is that in the stretched-string
model, discontinuities of the slope of the equatorial line are permissible,
whereas for the beam model, that is not the case. It has been shown that for
small slip angles, the stretched-string model can provide a basic understanding
of the lateral behavior of a pneumatic tire. In the following, the stretched-string
model as proposed by Temple and von Schlippe is discussed [1.15].

Consider a tire in a steady-state motion with a fixed slip angle. The shape
of the equatorial line BC in the contact area shown in Fig. 1.37 is the path of
the tire, and it is immobile relative to the ground when no sliding takes place.
Let the chained line AB in the figure represent the projection of the portion
of the equatorial line outside and in front of the contact patch. As the tire
rolls forward, points of AB becomes points of BC. This indicates that AB

and BC must have a common tangent at point B. At the rear of the contact
patch, such conditions do not hold, and a kink may be present at point C.
Thus, it can be stated that for a rolling tire, the slope of the equatorial line is
continuous at the front edge of the contact area, but not necessarily at the rear.

Fig. 1.37 Behavior of the equatorial line of a rolling tire subject to a side force.
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Consider an element of the distorted equatorial line shown in Fig. 1.37.
Let the lateral deflection from the wheel center plane be y, and the distance
measured along the undistorted equatorial line be x, with the origin at the
center of the contact patch. It is assumed that the lateral force applied to the
rim by the element due to lateral deflection y is given, in differential form, by

dFy1 = kyy dx (1.41)

where ky is the lateral stiffness of the tire. This equation applies at all points
of the periphery. Based on experimental data of a sample of bias-ply and
radial-ply heavy truck tires under rated loads and inflation pressures, it is
found that the value of ky varies in a narrow range. The average value is
approximately 2275 kN/m2 (330 lb/in.2)

In an element of the equatorial line, there is another force component
acting in the lateral direction, which is due to the tension in the string. This
component is proportional to the curvature of the equatorial line, and for small
deflection is given, in differential form, by

dFy2 = −Ft

d2y

dx2
dx (1.42)

where Ft represents the tension in the string. It is usually convenient to write
Ft = kyl

2
r ,where lr is termed the “relaxation length,” in which the lateral

deflection, described by an exponential function, decreases to 1/2.718 of its
prior value, as shown in Fig. 1.37.

Let lt be the contact length with the origin for x at the center, and let y1
and y2 be the deflections of the equatorial line at the front and rear ends of the
contact patch, as shown in Fig. 1.37. Over the part of the tire not in contact
with the ground (i.e., free region) having total length lh, the tire is not loaded
by external means, and therefore from Eqs. 1.41 and 1.42,

ky

(
y − l2r

d2y

dx2

)
= 0 (1.43)

The solution of this differential equation will yield the deflected shape of the
equatorial line in the free region, which is given by

y = y2 sinh [(x − lt /2)/ lr ] + y1 sinh [(lt /2 + lh − x)/ lr ]

sinh (lh/ lr )
(1.44)

If r is the tire radius, under normal conditions lh lies between 4.5r and
6r , whereas lr is approximately equal to r [1.15]. Hence, Eq. 1.44 may be
approximated by an exponential function. For the free region near the front
of the contact area (i.e., x > lt /2),

y = y1 exp

[−(x − lt /2)

lr

]
(1.45)
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For the free region near the rear of the contact area (i.e., x < lt /2 + lh),

y = y2 exp

[−(lt /2 + lh − x)

lr

]
(1.46)

Thus, in the free region not in contact with the ground but near either end of
the contact patch, the shape of the equatorial line is an exponential curve.

The expressions for the lateral deflection and the lateral forces acting on an
element of the tread described above permit the determination of the cornering
force and the aligning torque in terms of constants ky and lr and contact length
lt . This can be achieved in two ways:

1. Integrating the lateral force exerted on the tire over the contact length,
but including an infinitesimal length of the equatorial line in the free
region at either end, as proposed by Temple.

2. Integrating the lateral force exerted on the rim by the tire over the
entire circumference, including the contact length, as proposed by von
Schlippe. The essence of these two methods is illustrated in Fig. 1.38.

Following Temple’s method, and assuming that the equatorial line in the
contact region is a straight line, one can obtain the total lateral force Fy by
integration:

Fy = ky

∫ lt /2

−lt /2

(
y − l2r

d2y

dx2

)
dx

= ky

∫ lt /2

−lt /2
y dx − kyl

2
r

(
dy

dx

)]lt /2

−lt /2

Fig. 1.38 Lateral force acting on the wheel rim and on the tire–road contact patch.



46 MECHANICS OF PNEUMATIC TIRES

= ky(y1 + y2)lt /2 + kylr (y1 + y2)

= ky(y1 + y2)(lr + lt /2) (1.47)

For a nonrolling tire subject to a pure side force,

y1 = y2 = y0 and Fy = 2kyy0(lr + lt /2) (1.48)

The moment of lateral force about a vertical axis through the center of contact
(i.e., the aligning torque) is given by

Mz = ky

∫ lt /2

−lt /2
x

(
y − l2r

d2y

dx2

)
dx

= ky

∫ lt /2

−lt /2
xy dx − kyl

2
r

(
x

dy

dx
− y

)]lt /2

−lt /2

= ky

(lt /2)2

3
(y1 − y2) + kylr

(
lr + lt

2

)
(y1 − y2)

= ky(y1 − y2)

[
(lr/2)2

3
+ lr

(
lr + lt

2

)]
(1.49)

Following von Schlippe’s approach, one can obtain the same expressions.
For a tire rolling at a slip angle α, the slope of the equatorial line in the

contact area is equal to tan α if the tread in the contact patch is not sliding.
Thus,

α � tanα = y1 − y2

lt
= −y1

lr
(1.50)

Substituting the above expression into Eqs. 1.47 and 1.49, the relationships
between the magnitudes of the lateral force and the self-aligning torque and
the slip angle become

Fy

α
= 2ky

(
lr + lt

2

)2

(1.51)

Mz

α
= kylt

[
(lt /2)2

3
+ lr

(
lr + lt

2

)]
(1.52)

The pneumatic trail tp is given by

tp = Mz

Fy

= (lt /2)[(lt /2)2/3 + lr (lr + lt /2)]

(lr + lt /2)2
(1.53)
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The two basic parameters ky and lr , which specify the characteristics of
the lateral elasticity of the pneumatic tire, can be measured by suitable tests.
It is noted that the ratio of Fy /α to Mz/α is independent of ky , and therefore
lr can be determined from the measured values of Fy /α and Mz/α (contact
length of the tire lt being known). On the other hand, the ratio of (Fy /y0)2 of a
nonrolling tire to Fy /α is independent of lr , and therefore ky can be determined
from the measured values of (Fy /y0)2 and Fy /α. Measurements of ky and lr
have been carried out by several investigators. For instance, values of lr for
a family of aircraft tires of different sizes but with similar proportion were
found by von Schlippe to vary from 0.6r to 0.9r approximately. Values of ky

measured by von Schlippe were about 90% of the inflation pressure [1.15].
Equations 1.51 and 1.52 indicate that, if no sliding between the tread and

the ground occurs, the lateral force and the aligning torque increase linearly
with the slip angle. This is the case for small slip angles, as shown in Fig. 1.23.
As the slip angle increases, sliding between the tread and the ground occurs.
The assumption that the equatorial line in the contact patch is a straight line
is no longer valid. Thus, the theory proposed by Temple and von Schlippe is
restricted to small slip angles.

As noted above, using Temple’s or von Schlippe’s theory to define the
relationship between the cornering force and the slip angle, the values of
ky and lr must be known. Their determination is usually quite an involved
process. In view of this, a simplified theory has been proposed [1.8]. In
the simplified model, it is assumed that if no sliding takes place, the lateral
deflection of y ′ of a tread element on the ground at a longitudinal distance of
x from the front of the contact patch (along the wheel plane) is proportional
to tan α and is given by

y ′ = x tanα (1.54)

where the lateral deflection y ′ is measured with respect to the front contact
point and perpendicular to the wheel plane, and α is the slip angle.

If k′
y is the equivalent lateral stiffness of the tire, then when no lateral

sliding between the tire tread and the ground takes place, the lateral force per
unit contact length is given by

dFyα

dx
= k′

yx tanα (1.55)

and the cornering force developed on the entire contact patch is expressed by

Fyα =
∫ lt

0
k′
yx tanα dx

= (k′
yl

2
t /2) tanα

(1.56)

where lt is the contact length of the tire.
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The term (k′
yl

2
t /2) may be taken as the cornering stiffness Cα defined by

Eq. 1.37, that is, the slope of the cornering force–slip angle curve at the
origin, which can easily be identified:

k′
yl

2
t

2
= Cα = ∂Fyα

∂α

∣∣∣∣
α=0

(1.57)

Therefore, when no lateral sliding takes place on the contact patch, the rela-
tionship between the cornering force and the slip angle is expressed by

Fyα = Cα tanα (1.58)

If the slip angle α is small, tan α ≈ α, and Eq. 1.58 may be rewritten as

Fyα = Cαα (1.59)

Following an approach similar to that for analyzing the relationship between
the tractive effort and the longitudinal slip described in Section 1.3, the critical
values of the slip angle αc and the cornering force Fyαc, at which lateral sliding
in the trailing part of the contact patch begins, can be determined. The critical
value of αc is given by

αc = µpW

2Cα

(1.60)

and the critical value of Fyαc is given by

Fyαc = µpW

2
(1.61)

Similar to the relationship between the tractive effort–longitudinal slip
described in Section 1.3, Eq. 1.61 indicates that the relationship between the
cornering force and the slip angle will be linear and no lateral sliding will take
place, if the cornering force is less than one-half of its peak value (µpW /2).

When lateral sliding between the tire tread and the ground takes place
(i.e., α > αc or Fyα > Fyαc), the relationship between the cornering force
and the slip angle, analogous to Eq. 1.29, is expressed by

Fyα = µpW

(
1 − µpW

4Cα tanα

)
= µpW

(
1 − µpW

4Cαα

)
(1.62)

The above equation indicates the nonlinear nature of the cornering force–slip
angle relationship when lateral sliding takes place in part of the contact patch.

While the theories described above provide physical insight into certain
aspects of the cornering behavior of the pneumatic tire, they are simplified
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representations of a highly complex process. In the simulations of the lateral
dynamic behavior of road vehicles, to more accurately represent tire char-
acteristics, measured tire data, rather than theoretical relationships, are often
used. Measured tire data in tabular form or represented by empirical equations
may be entered as input to the simulation models. For instance, the following
empirical equation has been proposed to represent the relationship between
the cornering force Fyα and the slip angle α [1.22]:

Fyα = c1α + c2α
2 + c3α

3 (1.63)

where c1, c2, and c3 are empirical constants derived from fitting Eq. 1.63 to
the measured data of a given tire.

As mentioned previously, normal load has a significant influence on the
development of cornering force. To take the effects of normal load into
account, the coefficients c1, c2, and c3 may be expressed as a quadratic func-
tion of normal load [1.22]. This would require an additional curve-fitting
exercise.

In the discussion of the cornering behavior of pneumatic tires described
above, the effect of the longitudinal force has not been considered. However,
quite often both the side force and the longitudinal force are present, such as
braking in a turn. In general, tractive (or braking) effort will reduce the cor-
nering force that can be generated for a given slip angle; the cornering force
decreases gradually with an increase of the tractive or braking effort. At low
values of tractive (or braking) effort, the decrease in the cornering force is
mainly caused by the reduction of the cornering stiffness of the tire. A further
increase of the tractive (or braking) force results in a pronounced decrease of
the cornering force for a given slip angle. This is due to the mobilization
of the available local adhesion by the tractive (or braking) effort, which
reduces the amount of adhesion available in the lateral direction.

The difference in behavior between a bias-ply and a radial-ply passenger
car tire is shown in Fig. 1.39 [1.6]. It is interesting to note that for a radial-ply
tire, the cornering force available at a given slip angle is more or less the
same for both braking and driving conditions. For a bias-ply tire, however, at
a given slip angle, a higher cornering force is obtained during braking than
when the tire is driven. The fact that the presence of the tractive (or braking)
effort requires a higher slip angle to generate the same cornering force is also
illustrated in Fig. 1.39. Figure 1.40 shows the effects of longitudinal force
on the development of cornering force for a truck tire at different slip angles
[1.23]. Similar to that shown in Fig. 1.39, for a truck tire, the cornering force
available at a given slip angle also decreases with an increase of the longitu-
dinal force. Note that if an envelope around each family of curves of Fig. 1.39
is drawn, a curve approximately semielliptical in shape may be obtained. This
enveloping curve is often referred to as the friction ellipse.

The friction ellipse concept is based on the assumption that the tire may
slide on the ground in any direction if the resultant of the longitudinal force
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Fig. 1.39 Effect of tractive and braking effort on the cornering characteristics of (a) a
bias-ply and (b) a radial-ply car tire. (Reproduced with permission from Mechanics of
Pneumatic Tires, edited by S.K. Clark, Monograph 122, National Bureau of Standards,
1971.)
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Fig. 1.40 Effect of longitudinal force on the cornering characteristics of a truck tire.
(Reproduced with permission of the Society of Automotive Engineers from reference
1.23.)

Fig. 1.41 The friction ellipse concept relating the maximum cornering force to a
given longitudinal force.

(either tractive or braking) and lateral (cornering) force reaches the maximum
value defined by the coefficient of road adhesion and the normal load on the
tire. However, the longitudinal and lateral force components may not exceed
their respective maximum values Fxmax and Fymax, as shown in Fig. 1.41.
Fxmax and Fymax can be identified from measured tire data, and constitute
the major and minor axes of the friction ellipse, respectively, as shown in
Fig. 1.41.
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Based on the experimental observations described above, attempts have
been made to formulate an analytical framework for predicting the longitudi-
nal force and cornering force as functions of combined longitudinal slip (or
skid) and slip angle.

One of the simplest theories for predicting the cornering force available at
a specific slip angle in the presence of a tractive or braking force is based on
the friction ellipse concept described above. The procedure for determining
the available cornering force based on this simple theory is outlined below.

1. From measured tire data, the relationship between the cornering force
and the slip angle under free rolling conditions (i.e., in the absence of
tractive or braking effort) is first plotted, as shown in Fig. 1.42(a).

2. The cornering forces at various slip angles under free rolling conditions
are then marked on the vertical axis of Fig. 1.42(b), as shown. For
instance, the cornering force developed at a slip angle of 4◦ is identified
as Fy4 on the vertical axis, which constitutes the minor axis of an ellipse
to be established.

3. From measured tire data, the maximum tractive or braking force, Fx max,
in the absence of lateral force, is marked on the horizontal axis in
Fig. 1.42(b) as shown, which constitutes the major axis of the ellipse.

4. The available cornering force Fy at a given slip angle, such as the 4◦
angle shown in Fig. 1.42(b), for any given tractive or braking force Fx

is then determined from the following equation:

(Fy/Fy4)
2 + (Fx/Fx max)

2 = 1 (1.64)

The above equation describes an ellipse with the measured values of Fx max
and Fy4 as the major and minor axes, respectively.

Fig. 1.42 Construction of a friction ellipse relating cornering force to longitudinal
force for a given slip angle.
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Following the procedure outlined above, the available cornering force at
any slip angle in the presence of any given tractive or braking force can
be determined, and a set of curves illustrating the relationships between he
cornering force and the tractive (or braking) force at various slip angles can
be plotted, as shown in Fig. 1.42(b). It is noted that for a given slip angle,
the cornering force is reduced as a tractive (or braking) force is applied to
the tire. This is consistent with the trends of the measured data shown in
Figs. 1.39 and 1.40.

Based on the simplified theory for the relationship between the braking
force and the longitudinal skid described in Section 1.3 and that between the
cornering force and the slip angle described earlier in this section, another
semiempirical method for predicting the braking force and cornering force in
the presence of both the longitudinal skid and slip angle has been proposed
[1.8]. In this method, it is assumed that when no sliding takes place, the
braking force per unit contact length at a distance of x from the front contact
point is given by (see Eqs. 1.20 and 1.31)

dFx

dx
= ktxis/(1 − is) (1.65)

where is is the longitudinal skid, as defined by Eq. 1.30.
If, at the same time, the tire develops a slip angle α, then due to the

longitudinal skid, the tread in contact with the ground will be elongated at a
rate equal to 1/(1 − is). As a result, the lateral deflection y ′ of a point on the
tread in contact with the ground is given by (see Eq. 1.54)

y ′ = x tanα/(1 − is) (1.66)

The corresponding lateral force per unit contact length is, therefore, expressed
by (see Eq. 1.55)

dFyα

dx
= k′

yx tanα/(1 − is) (1.67)

Let p be the uniform normal pressure on the contact patch, b the contact
width, and µ the coefficient of road adhesion. Then, based on the concept of
friction ellipse described above, no sliding will take place at a point located at
a distance of x from the front contact point if the resultant of the braking force
and lateral force per unit contact length is less than a minimum value defined
by the coefficient of road adhesion µ and the normal pressure p, that is,

√
[ktxis/(1 − is)]2 + [k′

yx tanα/(1 − is)]2 = µpb = µW

lt
(1.68)

where W is the normal load and lt is the contact length of the tire.
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This implies that if a point at a distance x from the front contact point is in
the adhesion region, then x must be less than a characteristic length lc, which
defines the length of the adhesion region where no sliding between the tire
tread and the ground takes place. The value of lc in relation to the contact
length lt can be derived from Eq. 1.68, and is given by

lc

lt
= µW(1 − is)

2
√

(kt l
2
t is/2)2 + (k′

yl
2
t tanα/2)2

= µW(1 − is)

2
√

(Csis)2 + (Cα tanα)2
(1.69)

where kt l
2
t /2 = Cs and k′

yl
2
t /2 = Cα , as described by Eqs. 1.33 and 1.57,

respectively.
If lc/lt ≥ 1, the entire contact patch is an adhesion region. The braking

force is given by

Fx =
∫ lt

0
[ktxis/(1 − is)] dx = kt l

2
t is/2(1 − is)

= Csis/(1 − is) (1.70)

and the cornering force Fyα as a function of slip angle α and skid is is
expressed by

Fyα =
∫ lt

0
[k′

yx tanα/(1 − is)] dx

= k′
yl

2
t tanα/2(1 − is)

= Cα tanα/(1 − is) (1.71)

If lc/lt < 1, then sliding between the tread and the ground will take place.
The braking force developed on the adhesion region Fxa is given by

Fxa =
∫ lc

0
[ktxis/(1 − is)] dx

= µ2W 2Csis(1 − is)

4[(Csis)2 + (Cα tanα)2]
(1.72)

and the braking force developed on the sliding region Fxs is expressed by

Fxs = µWCsis√
(Csis)2 + (Cα tanα)2

[
1 − µW(1 − is)

2
√

(Csis)2 + (Cα tanα)2

]
(1.73)
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The total braking force Fx is given by

Fx = Fxa + Fxs

= µWCsis√
(Csis)2 + (Cα tanα)2

[
1 − µW(1 − is)

4
√

(Csis)2 + (Cα tanα)2

]
(1.74)

Similarly, if sliding between the tread and the ground takes place, then the
cornering force developed on the adhesion region is given by

Fyαa =
∫ lc

0
[k′

yx tanα/(1 − is)]dx

= µ2W 2Cα tanα(1 − is)

4[(Csis)2 + (Cα tanα)2]
(1.75)

and the cornering force developed on the sliding region is expressed by

Fyαs = µWCα tanα√
(Csis)2 + (Cα tanα)2

[
1 − µW(1 − is)

2
√

(Csis)2 + (Cα tanα)2

]
(1.76)

The total cornering force Fyα is given by

Fyα = Fyαa + Fyαs

= µWCα tanα√
(Csis)2 + (Cα tanα)2

[
1 − µW(1 − is)

4
√

(Csis)2 + (Cα tanα)2

]
(1.77)

The parameters, µ, W, Cs , and Cα may change with operating conditions.
For instance, it has been found that on a given surface, the values of µ, Cs ,
and Cα are functions of the normal load and operating speed of the tire. In a
dynamic maneuver involving both braking and steering, the normal load and
speed of the tires on a vehicle change as the maneuver proceeds. To achieve
more accurate predictions, the effects of normal load and speed on the val-
ues of µ, Cs , Cα , and other tire parameters should be properly taken into
account [1.8].

The semiempirical method for modeling tire behavior described above
has been incorporated into a computer model for simulating the directional
response and braking performance of commercial vehicles [1.8]. The method
presented above is for predicting the braking force and cornering force of a
tire during combined braking and cornering. Following the same approach,
however, a method for predicting the tractive force and cornering force as
functions of combined longitudinal slip and slip angle can be formulated.
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Example 1.1. A truck tire 10 × 20/F with a normal load of 24.15 kN
(5430 lb) is traveling on a dry asphalt pavement with a coefficient of road
adhesion µ = 0.85. The cornering stiffness of the tire Cα is 133.30 kN/rad
(523 lb/deg) and the longitudinal stiffness Cs is 186.82 kN/unit skid (42,000 lb/
unit skid).

Estimate the braking force and the cornering force that the tire can develop
at a slip angle α = 4◦ and a longitudinal skid of 10%.

Solution. To determine whether sliding takes place on the tire contact patch
under the given operating conditions, the ratio lc/lt is calculated using
Eq. 1.69:

lc

lt
= µW(1 − is)

2
√

(Csis)2 + (Cα tanα)2

= 0.85 × 24.15 × (1 − 0.1)

2
√
186.82 × 0.1)2 + (133.30 × 0.0699)2

= 0.442

Since lc/lt < 1, sliding takes place in part of the contact patch.
The braking force can be predicted using Eq. 1.74:

Fx = Fxa + Fxs

= µWCsis√
(Csis)2 + (Cα tanα)2

[
1 − µW(1 − is)

4
√

(Csis)2 + (Cα tanα)2

]

= 0.85 × 24.15 × 186.82 × 0.1√
(186.82 × 0.1)2 + (133.30 × 0.0699)2

·
[
1 − 0.85 × 24.15 × (1 − 0.1)

4
√

(186.82 × 0.1)2 + (133.30 × 0.0699)2

= 14.30 kN (3215 lb)

The cornering force can be predicted using Eq. 1.77:

Fyα = Fyαa + Fyαs

= µWCα tanα√
(Csis)2 + (Cα tanα)2

[
1 − µW(1 − is)

4
√

(Csis)2 + (Cα tanα)2

]

= 0.85 × 24.15 × 133.30 × 0.0699√
(186.82 × 0.1)2 + (133.30 × 0.0699)2

·
[
1 − 0.85 × 24.15 × (1 − 0.1)

4
√

(186.82 × 0.1)2 + (133.30 × 0.0699)2

]

= 7.14 kN (1605 lb)
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In recent years, an empirical method for characterizing tire behavior known
as the Magic Formula has been developed and used in vehicle handling sim-
ulations [1.24–1.27]. The Magic Formula, in its basic form, can be used to fit
experimental tire data for characterizing the relationships between the corner-
ing force and slip angle, self-aligning torque and slip angle, or braking effort
and skid. It is expressed by [1.24–1.27]

y(x) = D sin {C arctan [Bx − E(Bx − arctanBx)]} (1.78)

Y (X) = y(x) + Sv

x = X + Sh (1.79)

where Y (X) represents cornering force, self-aligning torque, or braking effort,
and X denotes slip angle or skid. Coefficient B is called the stiffness factor,
C the shape factor, D the peak factor, and E the curvature factor. Sh and Sv

are the horizontal shift and vertical shift, respectively.
Equation 1.78 produces a curve that passes through the origin, x = y

= 0, and reaches a maximum at x = xm, as shown in Fig. 1.43. Beyond
that it decreases and finally approaches an asymptote ya . For given values
of the coefficients, the curve shows an antisymmetric shape with respect to
the origin, x = y = 0. To allow the curve to have an offset with respect
to the origin, two shifts Sh and Sv are introduced, as shown in Fig. 1.43.
Consequently, a new set of coordinates X and Y , representing cornering force,
self-aligning torque, or braking effort and slip angle or skid, respectively, is
established. This enables the effects of ply-steer, conicity, or rolling resistance

Fig. 1.43 Characteristics of the Magic Formula for fitting tire test data. (From
Pacejka, H.B. and Besselink, I.J.M. (1997), Proceedings of the 2nd International
Colloquium on Tyre Models for Vehicle Dynamic Analysis, pp. 234–249,  Swets
& Zeitlinger. Used with permission.)
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on cornering force, self-aligning torque, or braking effort to be taken into
account.

Figure 1.43 illustrates the meaning of some of the coefficients in Eq. 1.78.
For instance, if Fig. 1.43 represents the cornering force and slip angle relation-
ship of a tire, then coefficient D represents the peak value with respect to x, y
coordinates and the product BCD corresponds to the slope of the curve at the
origin, representing the cornering stiffness of the tire, as defined by Eq. 1.37.

The Magic Formula is capable of producing characteristics that closely
match measured data. Figures 1.44, 1.45, and 1.46 show a comparison of
the experimental data and fitted curves using Eqs. 1.78 and 1.79 for the
relationships of cornering force and slip angle, self-aligning torque and slip
angle, and braking effort and skid of a passenger car tire, respectively [1.25].

As an example, the values of the coefficients in Eqs. 1.78 and 1.79 for
predicting cornering force Fy , self-aligning torque, Mz, and braking effort Fx

of a car tire are given in Table 1.6. In using the values of the coefficients
in the table to predict the cornering force, self-aligning torque, and braking
effort, the resulting values are in N, N·m, and N, respectively, and that the
slip angle is in degrees and skid is defined by Eq. 1.30 and considered to be
a negative value.

It is found that some of the coefficients in Eqs. 1.78 and 1.79 are functions
of the normal load and/or camber angle of the tire [1.24]. For instance, peak
factor D may be expressed as a function of normal load Fz as follows:

D = a1F
2
z + a2Fz (1.80)

where Fz is in kN, and a1 and a2 are empirical coefficients.

Fig. 1.44 Comparison of the measured and fitted relationships between side force
and slip angle using the Magic Formula. (Reprinted with permission from SAE paper
No. 890087  1989 Society of Automotive Engineers, Inc.)
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Fig. 1.45 Comparison of the measured and fitted relationships between self-aligning
torque and slip angle using the Magic Formula. (Reprinted with permission from SAE
paper No. 890087  1989 Society of Automotive Engineers, Inc.)

Fig. 1.46 Comparison of the measured and fitted relationships between braking force
and skid using the Magic Formula. (Reprinted with permission from SAE paper No.
890087,  1989 Society of Automotive Engineers, Inc.)
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TABLE 1.6 Values of the Coefficients in the Magic Formula for a Car Tire
(Slip Angle in Degrees and Skid in Minus %)

Load,
Fz, kN B C D E Sh Sv BCD

Fy , N 2 0.244 1.50 1936 −0.132 −0.280 −118 780.6
4 0.239 1.19 3650 −0.678 −0.049 −156 1038
6 0.164 1.27 5237 −1.61 −0.126 −181 1091
8 0.112 1.36 6677 −2.16 0.125 −240 1017

Mz, N · m 2 0.247 2.56 −15.53 −3.92 −0.464 −12.5 −9.820
4 0.234 2.68 −48.56 −0.46 −0.082 −11.7 −30.45
6 0.164 2.46 −112.5 −2.04 −0.125 −6.00 −45.39
8 0.127 2.41 −191.3 −3.21 −0.009 −4.22 −58.55

Fx , N 2 0.178 1.55 2193 0.432 0.000 25.0 605.0
4 0.171 1.69 4236 0.619 0.000 70.6 1224
6 0.210 1.67 6090 0.686 0.000 80.1 2136
8 0.214 1.78 7711 0.783 0.000 104 2937

Source: Reference 1.24.

For cornering stiffness (i.e., the initial slope of the cornering force–slip
angle curve):

BCD = a3 sin[a4 arctan (a5Fz)] (1.81)

where a3, a4, and a5 are empirical coefficients.
For aligning stiffness (i.e., the initial slope of the self-aligning torque–slip

angle curve) or longitudinal stiffness (i.e., the initial slope of the braking
effort–skid curve):

BCD = a3F
2
z + a4Fz

ea5Fz
(1.82)

The shape factor C appears to be practically independent of Fz, and the
average values for the particular car tire tested may be taken as follows
(based on the data shown in Table 1.6):

For the cornering force–slip angle relationship, C = 1.30
For the self-aligning torque–slip angle relationship, C = 2.40
For the braking effort–skid relationship, C = 1.65

The stiffness factor B can be derived from

B = BCD

CD
(1.83)
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TABLE 1.7 Values of Coefficients a1 to a8 for a Car Tire (Fz in kN)

a1 a2 a3 a4 a5 a6 a7 a8

Fy , N −22.1 1011 1078 1.82 0.208 0.000 −0.354 0.707
Mz, N · m −2.72 −2.28 −1.86 −2.73 0.110 −0.070 0.643 −4.04
Fx , N −21.3 1144 49.6 226 0.069 −0.006 0.056 0.486

Source: Reference 1.24.

The curvature factor E as a function of normal load Fz is given by

E = a6F
2
z + a7Fz + a8 (1.84)

where a6, a7, and a8 are empirical coefficients.
Table 1.7 gives the values of coefficients a1 to a8 for the same tire as in

Table 1.6. It should be noted that in Eqs. 1.80–1.84, Fz is in kN.
Camber angle γ is found to have an influence on the relationships between

cornering force and slip angle and self-aligning torque and slip angle, in the
form of horizontal and vertical shifts, Sh and Sv [1.24]. The additional shifts
due to camber angle γ may be expressed by

	Sh = a9γ

	Sv = (a10F
2
z + a11Fz)γ (1.85)

where a9, a10, and a11 are empirical coefficients.
The change in stiffness factor 	B is obtained by multiplying B by (1 −

a12 |γ |):

	B = (1 − a12|γ |)B (1.86)

where a12 is an empirical coefficient.
The value of the self-aligning torque at high slip angles will change due to

this change in stiffness factor B. To compensate for this effect, the curvature
factor E for self-aligning torque Mz must be divided by (1 − a13 |γ |).

The values of coefficients a9 to a13 for the same tire as in Table 1.6 are
given in Table 1.8.

TABLE 1.8 The Values of Coefficients a9 to a13 for a Car Tire (Camber Angle
in Degrees)

a9 a10 a11 a12 a13

Fy , N 0.028 0.000 14.8 0.022 0.000
Mz, kN 0.015 −0.066 0.945 0.030 0.070

Source: Reference 1.24.
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When brakes are applied during a turning maneuver, the tires on a vehi-
cle develop both slip angles and skids. Under these circumstances, Eqs. 1.78
and 1.79 are inadequate for characterizing tire behavior. To characterize the
combined effects of slip angle and skid on the cornering force, self-aligning
torque, or braking effort, empirical weighting functions G are introduced,
which when multiplied by the original functions given in Eqs. 1.78 and 1.79
produce the interactive effects of skid on cornering force and self-aligning
torque, or of slip angle on braking effort [1.26–1.28]. When the tire oper-
ates only with slip angle or skid, the weighting functions G take the value
of one. However, when a tire operates under a given slip angle and at the
same time its skid gradually increases, then the weighting function for cor-
nering force Fy may first show a slight increase in magnitude, then reach its
peak, followed by a continuous decrease. The weighting function G takes the
following form:

G = D′ cos[C ′ arctan (B ′x)] (1.87)

where B ′, C ′, and D′ are empirical coefficients, and x is either slip angle
or skid. For instance, if Eq. 1.87 represents the weighting function for deter-
mining the effect of skid on the cornering force Fy at a given slip angle,
then x in Eq. 1.87 represents the skid of the tire. For details concerning the
characterization of tire behavior under the combined effects of slip angle and
skid, please refer to references 1.26–1.28.

The discussions presented above are for characterizing the steady-state
cornering behavior of tires. When a vehicle is in transient motion, such as
when the steering wheel angle and/or braking effort vary with time during
a turning maneuver, the slip angle and/or skid of the tire is in a transient
state. The equations given previously may be inadequate for characterizing
the transient response of the tire. Studies on the transient cornering behavior
of tires have been made [1.27, 1.29, 1.30].

Example 1.2. Using the Magic Formula, estimate the braking effort devel-
oped by a tire with a normal load of 6 kN (1349 lb), at a skid of −25%,
and having empirical coefficients B, C, D, E, Sh, and Sv shown in
Table 1.6.

Solution. For this case, the variables Y and X in the Magic Formula, Eqs.
1.78 and 1.79, represent the braking effort Fx and skid is , respectively. Note
that skid is in the Magic Formula is expressed in percentage and considered
to be a negative value and that the value of the arctan function should be
expressed in radians.

Fx = D sin [C arctan (B(is + Sh) − E{B(is + Sh)

− arctan [B(is + Sh)]})] + Sv
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Using the appropriate values of the empirical coefficients for a normal load
of 6 kN (1349 lb) given in Table 1.6, the braking effort at a skid of −25% is
calculated as follows:

Fx = 6090 sin [1.67 arctan (0.210 (−25 + 0) − 0.686{0.210(−25 + 0)

− arctan [0.210(−25 + 0)]})]
+ 80.1

= 6090 sin {1.67 arctan [−5.25 − 0.686(−5.25 + 1.3826)]}
+ 80.1 = −5433 N (−1221 lb)

1.5 PERFORMANCE OF TIRES ON WET SURFACES

The behavior of tires on wet surfaces is of considerable interest from a vehi-
cle safety point of view, as many accidents occur on slippery roads. The
performance of tires on wet surfaces depends on the surface texture, water
depth, tread pattern, tread depth, tread material, and operating mode of the tire
(i.e., free-rolling, braking, accelerating, or cornering). To achieve acceptable
performance on wet surfaces, maintaining effective contact between the tire
tread and the road is of importance, and there is no doubt about the necessity
of removing water from the contact area as much as possible.

To maintain effective contact between the tire and the road, the tire tread
should have a suitable pattern to facilitate the flow of fluid from the contact
area, and the surface of the pavement should have an appropriate texture to
facilitate drainage as well. To provide good skid resistance, road surfaces must
fulfill two requirements: an open macrotexture to facilitate gross draining, and
microharshness to produce sharp points that can penetrate the remaining water
film [1.31].

The effects of tread pattern and speed on the braking performance of tires
on various wet surfaces have been studied experimentally by a number of
investigators. Figures 1.47 and 1.48 show the variations of the peak values
µp and the sliding values µs of the coefficient of road adhesion with speed
for a smooth tire, a tire with ribs, and a tire with ribs and sipes on wet
quartzite, asphalt, gravel, and concrete [1.31]. It can be seen that there is a
marked difference in the coefficient of road adhesion between patterned tires,
including the ribbed and siped tires, and smooth tires on wet asphalt and
concrete surfaces. The tread pattern increases the value of the coefficient of
road adhesion and reduces its speed dependency. In contrast, there is little
pattern effect on wet quartzite surfaces, and a high level of road adhesion is
maintained over the entire speed range. Thus, it can be concluded that the
advantages of a patterned tire over a smooth tire are pronounced only on
badly drained surfaces.
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Fig. 1.47 Effect of tread design on the peak value of road adhesion coefficient µp

over wet surfaces. (Reproduced with permission from Mechanics of Pneumatic Tires,
edited by S.K. Clark, Monograph 122, National Bureau of Standards, 1971.)

Tread pattern can function satisfactorily on a wet road only when the
grooves and sipes constitute a reservoir of sufficient capacity, and its effec-
tiveness decreases with the wear of the tread or the tread depth. The decline
in value of the coefficient of road adhesion with the decrease of tread depth is
more pronounced on smooth than on rough roads, as rough roads can provide
better drainage.

When a pneumatic tire is braked over a flooded surface, the motion of the
tire creates hydrodynamic pressure in the fluid. The hydrodynamic pressure
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Fig. 1.48 Effect of tread design on the sliding value of road adhesion coefficient µs

over wet surfaces. (Reproduced with permission from Mechanics of Pneumatic Tires,
edited by S.K. Clark, Monograph 122, National Bureau of Standards, 1971.)

acting on the tire builds up as the square of speed of the tire, and tends to
separate the tire from the ground. At low speeds, the front part of the tire
rides on a wedge or a film of fluid. This fluid film extends backward into
the contact area as the speed of the tire increases. At a particular speed,
the hydrodynamic lift developed under the tire equals the vertical load, the
tire rides completely on the fluid, and all contact with the ground is lost.
This phenomena is usually referred to as “hydroplaning” and is illustrated in
Fig. 1.49 [1.32].

For smooth or close-patterned tires that do not provide escape paths for
water and for patterned tires on flooded surfaces with a fluid depth exceeding
the groove depth in the tread, the speed at which hydroplaning occurs may
be determined based on the theory of hydrodynamics. It can be assumed
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Fig. 1.49 Hydroplaning of a tire on flooded surfaces. (Reproduced with permission
from Mechanics of Pneumatic Tires, edited by S.K. Clark, Monograph 122, National
Bureau of Standards, 1971.)

that the lift component of the hydrodynamic force Fh is proportional to the
tire–ground contact area A, fluid density ρ

f
, and the square of the vehicle

speed V [1.33, 1.34]:

Fh ∝ ρ
f
AV 2 (1.88)

When hydroplaning occurs, the lift component of the hydrodynamic force
is equal to the vertical load acting on the tire. The speed at which hydroplan-
ing begins, therefore, is proportional to the square root of the nominal ground
contact pressure W/A, which is proportional to the inflation pressure of the
tire pi . Based on this reasoning and on experimental data shown in Fig. 1.50
[1.34], the following formula was proposed by Horne and Joyner for predict-
ing the hydroplaning speed Vp:

Vp = 10.35
√

pimph (1.89)

or

Vp = 6.34
√

pikm/h (1.90)

where pi is the inflation pressure of the tire in psi for Eq. 1.89 and in kPa
for Eq. 1.90.
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Fig. 1.50 Variation of hydroplaning speed with inflation pressure of tires. (Repro-
duced with permission of the Society of Automotive Engineers from reference 1.34.)

For passenger car tires, the inflation pressure is usually in the range 193–
248 kPa (28–36 psi). According to Eq. 1.90, the hydroplaning speed Vp for a
tire at an inflation pressure of 193 kPa (28 psi) is approximately 88 km/h (54.7
mph), which is well within the normal operating range for passenger cars.
For heavy trucks, the inflation pressure is usually in the range 620–827 kPa
(90–120 psi). From Eq. 1.90, the hydroplaning speed Vp for a tire at an
inflation pressure of 620 kPa (90 psi) is approximately 158 km/h (98 mph),
which is beyond the normal range of operating speed for heavy trucks. This
would suggest that hydroplaning may not be possible for heavy truck tires
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under normal circumstances. However, the tractive performance of truck tires
is still significantly influenced by the presence of fluid on wet pavements.

For patterned tires on wet surfaces where the fluid depth is less than the
groove depth of the tread, the prediction of the hydroplaning speed is more
complex, and a generally accepted theory has yet to be evolved. The parame-
ters found to be of significance to hydroplaning are pavement surface texture,
pavement fluid depth, fluid viscosity, fluid density, tire inflation pressure, tire
normal load, tire tread pattern, and tire tread depth.

The most important effect of hydroplaning is the reduction in the coefficient
of road adhesion between the tire and the ground. This affects braking, steering
control, and directional stability. Figure 1.51 shows the degradation of the

Fig. 1.51 Effect of tread design and surface conditions on the degradation of corner-
ing capability of tires on wet surfaces. (Reproduced with permission of the Society of
Automotive Engineers from reference 1.34.)
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cornering force of passenger car tires on two different wet surfaces at various
speeds [1.33].

Because of the difference in design priorities, a noticeable difference in
traction on wet pavements between truck and passenger car tires is observed.
Figure 1.52 shows a comparison of the peak value µp and sliding value
µs of the coefficient of road adhesion on wet pavements of a sample of
three radial-ply truck tires and a corresponding sample of radial-ply passenger
car tires with different tread depths [1.8]. It can be seen that the tractive
performance of the truck tires tested is substantially poorer than that of the
passenger car tires.

In the design of heavy truck tires, greater emphasis is placed on tread
life. As a result, tread patterns and tread compounds for truck tires are dif-
ferent from those for passenger car tires. For instance, natural rubber as the
base polymer for the tread is widely used for truck tires, whereas synthetic
rubber-based compounds are universally adopted for passenger car tires. As
mentioned previously, while natural rubber compounds offer higher abrasion
resistance and lower hysteresis losses, synthetic rubber compounds provide
a fundamentally higher value of coefficient of road adhesion, particularly on
wet pavements. The substantial difference in tractive performance between
car and truck tires results in a significant difference in stopping distance. For
instance, it has been reported that on a wet, slippery road, the stopping dis-
tance for a heavy truck with tires ranging from the best available to the worst,
but of a fairly typical type could be 1.65–2.65 times longer than that of a
passenger car with normal high-grip tires [1.1].

1.6 RIDE PROPERTIES OF TIRES

Supporting the weight of the vehicle and cushioning it over surface irregu-
larities are two of the basic functions of a pneumatic tire. When a normal
load is applied to an inflated tire, the tire progressively deflects as the load
increases. Figure 1.53 shows the static load–deflection relationship for a 5.60
× 13 bias-ply tire at various inflation pressures [1.35]. The type of diagram
shown in Fig. 1.53 is usually referred to as a lattice plot, in which the origin
of each load–deflection curve is displaced along the deflection axis by an
amount proportional to the inflation pressure. The relationship between the
load and the inflation pressure for constant deflection can also be shown in
the lattice plot. Figure 1.54 shows the interrelationship among the static load,
inflation pressure, and deflections for a 165 × 13 radial-ply passenger car tire.
The lattice plots of the load–deflection data at various inflation pressures for
tractor tires 11-36 and 7.50-16 are shown in Figs. 1.55 and 1.56, respectively
[1.36]. The load–deflection curves at various inflation pressures for a terra tire
26 × 12.00-12 are shown in Fig. 1.57. The vertical load–deflection curves
are useful in estimating the static vertical stiffness of tires.

In vehicle vibration analysis and ride simulation, the cushioning charac-
teristics of a pneumatic tire may be represented by various mathematical
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Fig. 1.52 Comparison of (a) the peak value of road adhesion coefficient µp and
(b) the sliding value of road adhesion coefficient µs of car and truck tires on wet
surfaces. (Reproduced with permission from reference 1.8.)
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Fig. 1.53 Static load–deflection relationship of a bias-ply car tire. (Reproduced with
permission of the Council of the Institution of Mechanical Engineers from reference
1.35.)

models. The most widely used and simplest model representing the funda-
mental mode of vibration of the pneumatic tire consists of a mass element
and a linear spring in parallel with a viscous damping element, as shown in
Fig. 1.58. Other models, such as the so-called “viscoelastic” model shown in
Fig. 1.58, have also been proposed.

Depending upon the test conditions, three distinct types of tire vertical stiff-
ness may be defined: static, nonrolling dynamic, and rolling dynamic stiffness.

Static Stiffness The static vertical stiffness of a tire is determined by
the slope of the static load–deflection curves, such as those shown in Figs.
1.53–1.57. For a given inflation pressure, the load–deflection characteristics
for both radial- and bias-ply tires are more or less linear, except at relatively
low values of load. Consequently, it can be assumed that the tire vertical stiff-
ness is independent of load in the range of practical interest. Figure 1.59 shows
the variation of the stiffness with inflation pressure for the 165 × 13 radial-ply
tire. The values of stiffness shown are derived from the load–deflection curves
shown in Fig. 1.54 [1.35]. The values of the static vertical stiffness of the
tractor tires 11-36 and 7.5-16, and those of the terra tire 26 × 12.00-12 at
various inflation pressures are given in Table 1.9.



72 MECHANICS OF PNEUMATIC TIRES

Fig. 1.54 Static load–deflection relationship of a radial-ply car tire. (Reproduced
with permission of the Council of the Institution of Mechanical Engineers from
reference 1.35.)

Fig. 1.55 Static load–deflection relationship of a tractor tire 11-36. (Reproduced with
permission of the Journal of Agricultural Engineering Research from reference 1.36.)
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Fig. 1.56 Static load–deflection relationship of a tractor tire 7.50-16. (Reproduced
with permission of the Journal of Agricultural Engineering Research from reference
1.36.)

Fig. 1.57 Static load–deflection relationship of a terra tire 26 × 12.00-12 for
all-terrain vehicles.
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Fig. 1.58 (a) A linear model and (b) a viscoelastic model for tire vibration analysis.

Fig. 1.59 Variation of static stiffness with inflation pressure for a radial-ply car tire.
(Reproduced with permission of the Council of the Institution of Mechanical Engineers
from reference 1.35.)

Nonrolling Dynamic Stiffness The dynamic stiffness of a nonrolling tire
may be obtaining using various methods. One of the simplest is the so-called
drop test. In this test, the tire with a certain load is allowed to fall freely
from a height at which the tire is just in contact with the ground. Conse-
quently, the tire remains in contact with the ground throughout the test. The
transient response of the tire is recorded. A typical amplitude decay trace
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Fig. 1.60 An amplitude decay record of a nonrolling tire obtained from a drop test.

is shown in Fig. 1.60. The values of the equivalent viscous damping coef-
ficient ceq and the dynamic stiffness kz of the tire can then be determined
from the decay trace using the well-established theory of free vibration for a
single-degree-of-freedom system:

ceq =
√
4m2ω2

dδ
2/(δ2 + 4π2)

1 − [δ2/(δ2 + 4π2)]
(1.91)

and

kz = mω2
d

1 − δ2/(δ2 + 4π2)
(1.92)

ωd is the damped natural frequency of the tire with mass m, and can be
identified from the amplitude decay trace shown in Fig. 1.60:

ωd = 2π/τ (1.93)

where τ is the period of damped oscillation shown in Fig. 1.60.
δ is the logarithmic decrement, which is defined as the natural logarithm

of the ratio of any two successive amplitudes, such as x1 and x2, shown in
Fig. 1.60:

δ = ln(x1/x2) (1.94)

The drop test may also be performed utilizing a tire endurance testing
machine consisting of a beam pivoted at one end, which carries the test tire
loaded against a drum. To initiate the test, the beam is displaced and the
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TABLE 1.10 Damping Coefficient of Car Tires

Tire Inflation pressure Damping coefficient

Bias-ply 103.4 kPa (15 psi) 4.59 kN·s/m (315 lb·s/ft)
5.60 × 13 137.9 kPa (20 psi) 4.89 kN·s/m (335 lb·s/ft)

172.4 kPa (25 psi) 4.52 kN·s/m (310 lb·s/ft)
206.9 kPa (30 psi) 4.09 kN·s/m (280 lb·s/ft)
241.3 kPa (35 psi) 4.09 kN·s/m (280 lb·s/ft)

Radial-ply 103.4 kPa (15 psi) 4.45 kN·s/m (305 lb·s/ft)
165 × 13 137.9 kPa (20 psi) 3.68 kN·s/m (252 lb·s/ft)

172.4 kPa (25 psi) 3.44 kN·s/m (236 lb·s/ft)
206.9 kPa (30 psi) 3.43 kN·s/m (235 lb·s/ft)
241.3 kPa (35 psi) 2.86 kN·s/m (196 lb·s/ft)

Source: Reference 1.35.

system is set in angular oscillation about the pivot of the beam. A decay trace
for the amplitude of angular displacement is recorded. A set of equations
for this torsional system, similar to that for a single-degree-of-freedom linear
system described above, can be derived for determining the equivalent damp-
ing coefficient and nonrolling dynamic stiffness for the tire from the decay
trace.

Table 1.9 shows the values of the nonrolling dynamic stiffness and the damp-
ing coefficient for the tractor tires 11-36 and 7.5-16 [1.36], and the damping
coefficient for the terra tire 26 × 12.00-12. The values of the damping coeffi-
cient for the 5.60 × 13 bias-ply and the 165 × 13 radial-ply car tires are given
in Table 1.10 [1.35].

Rolling Dynamic Stiffness The rolling dynamic stiffness is usually deter-
mined by measuring the response of a rolling tire to a known harmonic
excitation. The response is normally measured at the hub, and the excita-
tion is given at the tread. By examining the ratio of output to input and the
phase angle, it is possible to determine the dynamic stiffness and the damping
coefficient of a rolling tire.

An alternative method for determining the dynamic stiffness of a tire is to
measure its resonant frequencywhen rolling on a drumor belt. Figure 1.61 shows
the values of the dynamic stiffness for various types of car tire obtained using
this method [1.6]. It is shown that the dynamic stiffness of car tires decreases
sharply as soon as the tire is rolling. However, beyond a speed of approximately
20 km/h (12 mph), the influence of speed becomes less important.

Table 1.11 shows the values of vertical stiffness of a sample of truck tires
at rated loads and inflation pressures [1.19]. They were obtained when the
tires were rolling at a relatively low speed. Values of the vertical stiffness for
the truck tires tested range from 764 to 1024 kN/m (4363 to 5850 lb/in.), and
that the vertical stiffness of radial-ply truck tires is generally lower than that
of bias-ply tires of similar size.
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Fig. 1.61 Effect of speed on rolling dynamic stiffness of car tires. (Reproduced with
permission from Mechanics of Pneumatic Tires , edited by S.K. Clark, Monograph 122,
National Bureau of Standards, 1971.)

Figure 1.62 shows the variation of the dynamic stiffness of a 13.6 × 38
radial tractor tire with speed [1.37]. The static load on the tire was 18.25 kN
(4092 lb), and the inflation pressure was 138 kPa (20 psi). The dynamic stiff-
ness of the tractor tire decreases sharply as soon as the tire begins rolling,
similar to that for passenger car tires shown in Fig. 1.61. The effects of
inflation pressure on the dynamic stiffness of the same tire are shown in
Fig. 1.63. The variation of the damping coefficient with speed for the trac-
tor tire is shown in Fig. 1.64. It can be seen that beyond a speed of 1 km/h
(0.6 mph), the damping coefficient drops rapidly until a speed of 5 km/h
(3.1 mph) is reached, and then approaches an asymptote. The effects of infla-
tion pressure on the damping coefficient are shown in Fig. 1.65.
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TABLE 1.11 Vertical Stiffness of Truck Tires at Rated Loads and Inflation
Pressures

Vertical stiffnessTire
Tire type construction kN/m lb/in.

Unspecified 11.00-22/G Bias-ply 1024 5850
Unspecified 11.00-22/F Bias-ply 977 5578
Unspecified 15.00 × 22.5/H Bias-ply 949 5420
Unspecified 11.00-20/F Bias-ply 881 5032
Michelin Radial 11R22.5 XZA (1/3 tread) Radial-ply 874 4992
Michelin Radial 11R22.5 XZA (1/2 tread) Radial-ply 864 4935
Michelin Radial 11R22.5 XZA Radial-ply 831 4744
Unspecified 10.00-20/F Bias-ply 823 4700
Michelin Radial 11R22.5 XZA Radial-ply 809 4622
Michelin Pilote 11/80R22.5 XZA Radial-ply 808 4614
Unspecified 10.00-20/F Bias-ply 788 4500
Michelin Pilote 11/80R22.5 XZA Radial-ply 774 4418
Unspecified 10.00-20/G Bias-ply 764 4363

Source: UMTRI, reference 1.19.

Fig. 1.62 Effect of speed on rolling dynamic stiffness of a radial-ply tractor tire 13.6
× 38. (Reproduced with permission from reference 1.37.)
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Fig. 1.63 Effect of inflation pressure on rolling dynamic stiffness at various speeds of
a radial-ply tractor tire 13.6 × 38. (Reproduced with permission from reference 1.37.)

Fig. 1.64 Effect of speed on damping coefficient of a radial-ply tractor tire 13.6 ×
38. (Reproduced with permission from reference 1.37.)
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Fig. 1.65 Effect of inflation pressure on damping coefficient at various speeds of a
radial-ply tractor tire 13.6 × 38. (Reproduced with permission from reference 1.37.)

Attempts to determine the relationship between the static and dynamic stiff-
ness of tires have been made, but no general conclusions have been reached.
Some reports indicate that for passenger car tires, the rolling dynamic stiff-
ness may be 10–15% less than the stiffness derived from static load–deflection
curves, whereas for heavy truck tires, the dynamic stiffness is approximately
5% less than the static value. For tractor tires, it has been reported that the
dynamic stiffness may be 26% lower than the static value. In simulation
studies of vehicle ride, the use of the rolling dynamic stiffness is preferred.

Among various operation parameters, inflation pressure, speed, normal
load, and wear have a noticeable influence on tire stiffness. Tire design param-
eters, such as the crown angle of the cords, tread width, tread depth, number
of plies, and tire material, also affect the stiffness.

The damping of a pneumatic tire is mainly due to the hysteresis of tire
materials. Generally speaking, it is neither Coulomb-type nor viscous-type
damping, and it appears to be a combination of both. However, an equivalent
viscous damping coefficient can usually be derived from the dynamic tests
mentioned previously. Its value is subject to variation, depending on the design
and construction of the tire, as well as operating conditions. The damping of
pneumatic tires made of synthetic rubber compounds is considerably less than
that provided by a shock absorber.
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Fig. 1.66 Vibration characteristics of a bias-ply and a radial-ply car tire subject to
sinusoidal excitation. (Reproduced with permission of the Council of the Institution of
Mechanical Engineers from reference 1.38.)

To evaluate the overall vibrational characteristics of tires, tests may be
carried out on a variable-speed rotating drum. The profile of the drum may
be random, sinusoidal, square, or triangular. Experience has shown that the
use of a periodic type of excitation enables rapid assessments to be made.
Figure 1.66 shows the wheel hub acceleration as a function of frequency for a
radial-ply and a bias-ply tire over a sinusoidal profile with 133mm (5.25 in.)
pitch and 6mm (0.25 in.) peak-to-peak amplitude [1.38]. The transmissibility
ratios in the vertical direction over a wide frequency range of a radial-ply
and a bias-ply tire are shown in Fig. 1.67 [1.38]. This set of results has been
obtained using a vibration exciter. The vibration input is imparted to the tread
of a nonrolling tire through a platform mounted on the vibration exciter.

It can be seen from Figs. 1.66 and 1.67 that the transmissibility ratio for
vertical excitation of the radial-ply tire is noticeably higher than that of the
bias-ply tire in the frequency range of 60–100Hz. Vibrations in this fre-
quency range contribute to the passenger’s sensation of “harshness.” On the
other hand, the bias-ply tire is significantly worse than the radial-ply tire in the
frequency range of approximately 150–200Hz. In this frequency range, vibra-
tions contribute to induced tire noise, commonly known as “road roar” [1.1].

Tire noise is generated by the following major mechanisms [1.23]:

1. Air pumping effect As the tire rolls, air is trapped and compressed in the
voids between the tread and the pavement. Noise is generated when the
compressed air is released at high speed to the atmosphere at the exit of
the contact patch.

2. Tread element vibrations Tread elements impact the pavement as the tire
rolls. When the elements leave the contact patch, they are released from
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Fig. 1.67 Transmissibility ratio of a bias-ply and a radial-ply car tire. (Reproduced
with permission of the Council of the Institution of Mechanical Engineers from refer-
ence 1.38.)

a highly stressed state. These induce vibrations of the tread, which form
a major source of tire noise. Carcass vibrations and the grooves and lug
voids in the tread acting like resonating pipes also contribute to noise
radiation from the tire.

Since the air pumping effect, the vibrations of tread elements and carcass,
etc., are related to speed, the noise level generated by a tire is a function of
operating speed. Figure 1.68 shows the variations of noise level with speed
for various types of truck tire on a smooth pavement [1.23]. The results were
obtained following the SAE J57 test procedure. The effect of pavement texture
on the noise level generated by a bias-ply, ribbed truck tire at 80 km/h (50
mph) is shown in Table 1.12 [1.23].

TABLE 1.12 Effect of Pavement Texture on Noise Level Generated by a
Bias-ply Truck Tire

Road surface Noise level dB (A)

Moderately smooth concrete 70
Smooth asphalt 72
Worn concrete (exposed aggregate) 72
Brushed concrete 78

Source: Reference 1.23.
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Fig. 1.68 Effect of speed on noise generated by bias-ply and radial-ply truck tires.
(Reproduced with permission of the Society of Automotive Engineers from reference
1.23.)
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PROBLEMS

1.1 Compare the power required to overcome the rolling resistance of a
passenger car weighing 15.57 kN (3500 lb) and having radial-ply tires
with that of the same vehicle, but having bias-ply tires in the speed
range 40–100 km/h (25–62 mph). The variations of the coefficient of
rolling resistance of the radial-ply and bias-ply passenger car tire with
speed are described by Eqs. 1.1 and 1.2, respectively.

1.2 A truck tire with vertical load of 24.78 kN (5570 lb) travels on a dry
concrete pavement with a peak value of coefficient of road adhesion µp

= 0.80. The longitudinal stiffness of the tire during braking Cs is 224.64
kN/unit skid (55,000 lb/unit skid). Using the simplified theory described
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in Section 1.3, plot the relationship between the braking force and the
skid of the tire up to skid is = 20%.

1.3 Using the simplified theory described in Section 1.4.4, determine the
relationship between the cornering force and the slip angle in the range
0–16◦ of the truck tire described in Problem 1.2. The cornering stiffness
of the tire Cα is 132.53 kN/rad (520 lb/deg). Assume that there is no
braking torque applied to the tire.

1.4 Determine the available cornering force of the truck tire described in
Problems 1.2 and 1.3 as a function of longitudinal skid at a slip angle
of 4◦, using the simplified theory described in Section 1.4.4. Plot the
cornering force of the tire at a slip angle of 4◦ versus skid in the range
0–40%. The coefficient of road adhesion is 0.8.

1.5 A passenger car travels over a flooded pavement. The inflation pres-
sure of the tires is 179.27 kPa (26 psi). If the initial speed of the car is
100 km/h (62 mph) and brakes are then applied, determine whether or
not the vehicle will be hydroplaning.

1.6 An all-terrain vehicle weighs 3.56 kN (800 lb) and has four terra tires,
each of which has a vertical stiffness of 52.54 kN/m (300 lb/in.) at an
inflation pressure of 27.6 kPa (4 psi), and a stiffness of 96.32 kN/m
(550 lb/in.) at a pressure of 68.9 kPa (10 psi). Estimate the fundamental
natural frequencies of the vehicle in the vertical direction at the two
inflation pressures. The vehicle has no spring suspension.

1.7 Using the Magic Formula described in Section 1.4.4, estimate the cor-
nering force of a car tire at a normal load of 6 kN (1349 lb) with a
slip angle of 5◦. The values of the empirical coefficients in the Magic
Formula for the tire are given in Table 1.6.


		2017-05-24T10:20:56-0400
	Certified PDF 2 Signature




