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  1.1   INTRODUCTION 

 Multiple emulsions, or emulsions having ternary, quaternary, or more complex 
structures, have been studied since their fi rst description in 1925 (Seifriz,  1925 ). 
The simplest multiple emulsions, sometimes called  “ double emulsions, ”  are in 
fact ternary systems, having either a water - in - oil – in - water or an oil - in - water –
 in - oil structure, whereby the dispersed droplets contain smaller droplets of a 
different phase. Multiple emulsions have a number of potential applications 
in pharmaceutical, cosmetic, food, and separation sciences. The pharmaceutical 
applications of multiple emulsions include use as vaccine adjuvants (Gresham 
et al.,  1971 ), red blood cell substitutes (Zheng et al., 1993), lymphatic drug -
 targeting vehicles (Yoshioka et al.,  1982 ; Omotosho,  1989 ), prolonged drug 
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2  MULTIPLE EMULSION STABILITY

delivery systems (Elston et al., 1970; Fukushima et al.,  1983 ; Oza and Frank, 
 1989 ; Omotosho,  1990 ; Vaziri and Warburton,  1994 ), and sorbent reservoirs in 
drug overdosage treatment (Frankenfeld et al.,  1976 ; Chiang et al.,  1978 ; 
Moriomoto et al., 1979, 1982). 

 As is the case for simple emulsions, multiple emulsions are thermodynami-
cally unstable due to the excess free energy associated with the surface of the 
emulsion droplets. The excess surface free energy arises as a result of the 
cohesive forces between the molecules of an individual liquid being greater 
than the adhesive forces between the liquids (Banker and Rhodes,  1979 ; 
Martin et al.,  1993 ). On dispersion, the interfacial area of the dispersed phase 
liquid increases considerably compared to that of the continuous phase liquid. 
Consider the interfacial free energy (1.1) associated with the interface between 
two immiscible liquids:

    Δ ΔG A= γ ,     (1.1)   

 where  G  is the interfacial free energy,  γ  is the interfacial tension, and  A  is the 
total interfacial area of the dispersed phase. The increase in interfacial area 
results in a thermodynamically unstable system that tends to revert back to the 
original two - phase system to minimize interfacial area. The dispersed droplets 
therefore strive to come together to reduce the surface area, which can result 
in eventual destruction of the emulsion. In order to minimize this effect, a third 
component, a surfactant, is added to the system to improve its stability. 

 Multiple emulsions are complex systems where both water - in - oil (W/O) 
and oil - in - water (O/W) emulsion types exist simultaneously. In the case of 
water - in - oil - in - water multiple emulsions, the oil droplets have smaller water 
droplets within them, and the oil droplets themselves are dispersed in a con-
tinuous water phase. Oil - in - water - in - oil multiple emulsions, on the other hand, 
consist of tiny oil droplets entrapped within larger water droplets, which in 
turn are dispersed in a continuous oil phase. These systems thus differ from 
the familiar water - in - oil or oil - in - water simple two - phase emulsions in that 
they have three distinct phases (Pal,  1996 ). Multiple emulsions typically require 
two or more emulsifi ers, one that is predominately hydrophobic stabilizing the 
primary W/O emulsion and one that is predominately hydrophilic stabilizing 
the secondary O/W emulsion. The hydrophobic and hydrophilic emulsifi ers 
are added to the oil and continuous aqueous phases, respectively. The two 
emulsifi ers may interact at the external water/oil interface and interfere with 
each other ’ s stabilizing performance (Opawale and Burgess,  1998 ). In addition 
the osmotic pressure may affect the stability of W/O/W emulsions that is not 
observed in simple emulsions. If the osmotic pressure is higher in the internal 
aqueous phase, water will pass into this phase, with the internal droplets swell-
ing until they rupture and release their contents onto the external phase. 
Transfer of water from the internal to external aqueous phases can cause 
shrinkage of the internal droplets to occur if a reverse gradient exists; this can 
also exert a destabilizing infl uence (Florence and Whitehill,  1985 ). 



 It has been demonstrated that the Laplace pressure works against the sta-
bility of simple emulsions (Davis,  1981 ). For water - in - oil emulsions, the addi-
tion of a small quantity of electrolyte to the disperse phase was determined 
to have a stabilizing effect as a consequence of counteracting the Laplace 
pressure effect. In W/O/W emulsions, the osmotic pressure generated by the 
presence of electrolytes in the inner dispersed water phase can cause swelling 
and ultimately bursting of the inner dispersed droplets, so the impact on mul-
tiple emulsion stability is negative. In order to balance these two effects, the 
concentration of electrolytes has to be high enough to counteract the Laplace 
pressure but suffi ciently low to avoid osmotic effects. 

 The interfaces are the same in multiple emulsion systems as they are in 
simple emulsions.   For example, one liter of a concentrated emulsion can 
contain up to 5000   m 2  of interface (the equivalent to a football pitch). So the 
interfacial area can be enormous because of the large number of droplets in 
the system. The large interface presents challenges and requires a quick migra-
tion of surfactants in the system to stabilize the dispersed phase(s). The struc-
ture and properties of the interface can therefore affect many aspects of the 
physical properties of emulsion systems. This is the main reason why interfacial 
characteristics are an important area of study in emulsions and especially 
multiple - emulsions systems. It has been shown that the stabilities of both 
multiple and simple emulsions are dependent on emulsifi er interfacial fi lm 
strength, ionic strength, and the presence of various additives. It has been 
experimentally proven that the interfacial fi lm strength can be used as a means 
to predict emulsion stability (Burgess, 1997). 

 In this chapter the effects of pressure balance and interfacial rheological 
properties on the stability of multiple emulsions are discussed.  

  1.2   MULTIPLE EMULSION PRESSURE PROPERTIES 

  1.2.1   Osmotic Pressure 

 For W/O/W multiple emulsions the oil phase can be viewed as a membrane 
separating the inner and outer aqueous phases at the water/oil interface. The 
thickness of the oil membrane varies with changes in the multiple emulsion 
composition. Water can pass through the oily membrane from one aqueous 
phase to the other depending on the osmotic pressure. A higher osmotic pres-
sure in the internal aqueous phase than in the external continuous aqueous 
phase causes water to pass into the inner water phase, resulting in swelling of 
the internal droplets before they eventually burst and release their contents. 
The reserve also applies: if the osmotic pressure is higher in the external 
aqueous phase than in the inner aqueous phase, water will transfer from the 
internal phase to the external aqueous phase, causing shrinkage of the internal 
droplets. If the osmotic difference across the oil layer is extreme, then the 
passage of water becomes so rapid that almost immediate rupture of the oil 
droplets occurs with loss of the internal droplets. When the oil layer ruptures, 
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4  MULTIPLE EMULSION STABILITY

the inner aqueous phase in the multiple oil droplets disappears instantaneously, 
mixing with the external aqueous phase and leaving simple emulsions. 

 The osmotic pressure effect on stability of multiple emulsions has been 
investigated for almost four decades. W/O/W emulsions, when given in vivo, 
break down rapidly at the site of injection, with the consequence that no sig-
nifi cant delay in response to the entrapped drug is obtained compared to 
aqueous solutions of the drug (Collings,  1971 ). It was determined that the 
premature breakdown of the emulsions in vivo is due to unequal osmotic 
pressures between the internal and external aqueous phases. The osmotic pres-
sure in the external environment (body fl uids) is higher than the internal phase 
leading to shrinkage of the internal aqueous droplets and/or rupture of the oil 
layer. Collings ( 1971 ) partially solved the problem by incorporating small 
amounts of sodium chloride in the internal aqueous phase so that this phase 
was isotonic with the fi nal external phase. 

 Materials other than electrolytes (e.g., proteins, sugars, and drugs) in the 
aqueous phase can also exert this effect (Adeyeye and Price,  1990 ). A variety 
of materials entrapped in the inner phase of multiple emulsions are found to 
affect osmotic pressures (Florence and Whitehill,  1982 ; Cuemen and Zatz, 
1988; Garti and Aserin,  1996 ). The middle phase acts as a semipermeable 
membrane, and consequently osmotic effects become signifi cant as they control 
multiple emulsion stability and drug release rates both in vitro and in vivo 
(Collings,  1971 ; Davis and Burbage,  1978 ; Matsumoto and Kohda, 1980  ; 
Florence and Whitehill, 1981). 

 Sodium chloride and other electrolytes added initially in the inner or outer 
aqueous phase of W/O/W multiple emulsions can migrate across the oil layer 
and get into the other aqueous phase through molecular migration (Collins, 
1971; Chilamkurti and Rhodes, 1980).   The migration of the electrolytes induces 
changes in osmotic pressure over time and consequently alters multiple emul-
sion stability. It has been observed that multiple emulsions stabilized by Span 
83 and Tween 80 are more stable with sodium salicylate incorporated in the 
inner aqueous phase than with sodium chloride (Jiao et al.,  2002 ). The differ-
ence in the stability of the multiple emulsions observed can be attributed to 
a faster migration of sodium chloride from the inner aqueous phase to the 
outer aqueous phase and a consequent more signifi cant imbalance in the 
osmotic pressure compared to that with sodium salicylate. 

 The transport mechanism of electrolytes through the oily liquid phase has 
been the subject of many investigations over the past decades. Nevertheless, 
there remains a lack of a clear understanding as to what and how various for-
mulation parameters of multiple emulsions affect the kinetics and extent of 
the migration of electrolytes across the middle phase, and thereby infl uence 
the osmotic pressure. Partition coeffi cient, ionization, charge density, molecu-
lar weight, and molecular mobility of electrolytes can have some impact on 
electrolytes ’  ability to cross the oil phase. The association of electrolytes with 
the surfactant, which may form inverted micelles in the oil phase, has also been 
considered (Chilamkurti and Rhodes, 1980).    



  1.2.2   Laplace Pressure 

 Laplace pressure arises from the interfacial tension of a mixture of two liquids 
at a curved interface when one liquid is dispersed as droplets into another 
liquid. The pressure varies inversely with the radius of curvature and takes the 
following form:

    
ΔP

r r
= +( )γ

1 1

1 2

,
    

(1.2)   

 where  γ  is interfacial tension and  r  is particle radius. For a spherical particle 
such as a droplet,  r  1  =  r  2 , the Laplace equation becomes

    
ΔP

r
=

2γ
.
   

 (1.3)
   

 Hence a spherical droplet having a radius  r  in an emulsion will exert greater 
pressure on the inner concave interface than on the convex side, as expressed 
in equation (1.3), and the larger surface tension constitutes a larger force 
pushing inward into the droplet. Because the relationship of  Δ  P  and  r  is 
inversed, a smaller radius will result in a larger inward force. Therefore this 
relationship has important consequences for any curved surface as  r  becomes 
very small and  γ  relatively signifi cant. When this relationship is applied to the 
context of an emulsion in which two droplets with the same surface tension 
are connected, the smaller droplet can be expected to experience a greater 
pressure, driving its collapse and pushing all of its contents into the larger 
droplet. 

 When droplet deformation occurs, the Laplace pressure of the deformed 
droplet will be a function of the radius along the droplet surface. In the 
extreme cases, as a droplet becomes elongated and cylindrically shaped, the 
Laplace pressure is reduced to a half that of the original spherical droplet. For 
multiple emulsions, the Laplace pressure exists in both the inner and multiple 
droplets. However, because the size of the inner droplets is much smaller, the 
Laplace pressure on the stability of the inner droplets is much greater than 
that on the multiple droplets.   

 The Laplace pressure in the process of emulsifi cation is what causes an 
emulsion to become thermodynamically ineffi cient. For an emulsion to form 
the small, highly curved droplets, extra energy is required to overcome the 
large pressure that exists in the droplets.    

  1.2.3   Balance between Laplace Pressure and Osmotic Pressure 

 Consider a water droplet of radius  r  containing a certain amount of salt in a 
solvent (oil phase) in equilibrium at the water/oil fl at interface. The fi lm 
around this water droplet can be assumed (for simplicity) to be impermeable 
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to water and capable of preventing coalescence. The Laplace pressure 2 γ / r  of 
a droplet containing a salt, dispersed in the solvent, will cause shrinkage of the 
droplet. However, the osmotic pressure will cause swelling of the droplet, 
leading to a counterbalanced water diffusion. In the ideal case the osmotic 
pressure is given by

    
= = ( )∏ mRT m

r
r

RTo
o

osm

3

,
   

 (1.4)
   

 where  m  is the molar concentration of salt and  m  o  refers to the original droplet. 
The difference between the Laplace pressure and the osmotic pressure can be 
defi ned as excess pressure  Δ  P :

    
ΔP

r
m

r
r

RTo
o= − ( )2 3γ

.
    

(1.5)
   

 The condition that must be fulfi lled in order to reach the equilibrium is

    

d P
dr r

m
r
r r

RTo
o( )

.
Δ

= − + ( ) =
2

3
1

0
2

3γ

   
 (1.6)   

 In words, as  r  decreases, the excess pressure  Δ  P  decreases and equilibrium is 
reached. Thus

    2 3γ = mRT .     (1.7)   

 Equation  (1.7)  was proposed by Walstra ( 1996 ). Walstra ’ s equation shows that 
an optimal salt concentration in the internal phase exists between the Laplace 
and osmotic pressures exerted on the inner aqueous droplets. 

 Stability of W/O/W multiple emulsion containing Span 80 and Tween 80 
was evaluated with respect to sodium chloride and sodium salicylate concen-
trations in the inner water phase (Jiao and Burgess, 2002). In this study we 
observed that the multiple emulsion droplets deformed and there was coales-
cence of the inner aqueous droplets as we applied an external force (i.e., a 
microscopic coverslip) to multiple emulsion samples on a microscope slide. 
Under certain conditions (e.g., lipophilic surfactant concentration and internal 
phase osmotic pressure) the destabilized multiple emulsions formed unique 
metastable structures that had a  “ dimpled ”  appearance. The formation of these 
metastable structures correlated with the real time instability of the W/O/W 
multiple emulsions investigated. Our study revealed that emulsions with a 
salt concentrations closer to the optimal value calculated by using (1.7) had 
maximum stability. 

 The treatment above is only good for a simplifi ed emulsion system where 
the osmotic and Laplace pressures are the major forces controlling droplet 
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stability. There are other factors such as viscosity that infl uence the dynamics 
of droplet growth. We take these factors into consideration using the general 
Navier - Stokes equation to mathematically describe droplet expansion:

    
ρ γ η

∂
∂

+ •∇( ) − ∇ + −
v
t

v v p t v v( ) ( ), , div , ,Δ 0
   

 (1.8)  
   

 where  p ( γ ,  t ) is the total pressure at any given point on the droplet surface. 
  The infl uence of any other factors can be entered into the equation by way of 
boundary conditions (Mikhin, Stepanow, and Byakov  2003 ).   

  1.3   INTERFACIAL RHEOLOGY AND STABILITY 

  1.3.1   Interfacial Film and Film Strength 

 Multiple emulsions require surfactants to stabilize both the internal aqueous 
droplets and the external multiple droplets. The added surfactants adsorb at 
the water/oil interfaces, reducing interfacial tension and forming an interfacial 
fi lm that resists droplet coalescence following droplet contact. It has been 
shown that the stronger this fi lm is, the more stable are the emulsions, and that 
the interfacial fi lm plays a more crucial role than the reduction of interfacial 
tension in maintaining long - term emulsion stability to coalescence (Burgess, 
 1993 ). The strength of this fi lm, which can be a monolayer, a multilayer, or a 
collection of small particles adsorbed at the interface, depends on the structure 
and conformation of surfactant or emulsifi er molecules at the interface 
(Swarbrick,  1997 ). The structure and conformation can be affected by formula-
tion variables, including surfactant or emulsifi er type and concentration, other 
additives or levels, storage temperature, ionic strength, and pH. For the fi lm 
to be an effective barrier, it must remain intact when sandwiched between two 
droplets. If broken, the fi lm has the capacity to reform rapidly. So the fi lm must 
possess a certain degree of surface elasticity. It has been shown that interfacial 
elasticity correlates well with interfacial fi lm strength and can be used to 
predict the stability of multiple emulsions (Opawale and Burgess, 1997). 
Knowing the relationship between interfacial properties and emulsion stabil-
ity enables one to rationally approach the research and development of more 
stable multiple emulsion systems.   

 The only way signifi cant amounts of immiscible fl uids can be mixed together 
is if the interfacial layer surrounding the dispersed droplets is occupied by an 
adsorbed layer of molecules that keep the droplets from coalescing. Figure  1.1  
shows the importance of the interfacial layer in emulsion systems for the two 
main classes of surface - active molecules, surfactants and proteins, that stabilize 
them. Low molecular weight surfactants, lipids, and emulsifi ers self - assemble 
at interfaces with the appropriate part of the molecule associating with the 
appropriate hydrophilic or hydrophobic phases. Proteins, on the other hand, 
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are much larger and more complex macromolecules. Proteins will adsorb at 
an interface but then proceed to unfold, exposing their hydrophobic groups 
to the hydrophobic phase.   

 Figure  1.2  shows how these two very different types of molecules stabilize 
emulsion systems. Surfactants rely on rapid diffusion to dissipate any distur-
bances to the interface. This rapid motion will drag fl uid along into the inter-
lamellar space between droplets, keeping them separated. This activity is 
known as the Gibbs - Marangoni mechanism. On the other hand, proteins 

    Figure 1.1     Two classes of surface - active materials in stabilizing emulsions: Surfactant 
and protein. 
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    Figure 1.2     Stability mechanism for surfactants and proteins. 
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unfold, develop strong interactions with neighboring protein molecules, and 
effectively form a gel at the interface. The viscoelastic gel can stretch and 
deform to absorb deformations in the interface, and hence stabilize against 
coalescence. The main difference between interfaces stabilized by proteins and 
surfactants is the viscoelasticity of the interface. Therefore interfacial rheology 
is a useful probe for comparing these two types of interfaces.    

  1.3.2   Interfacial Tension and Rheology 

 The interfacial properties exhibited by emulsifi er systems are interfacial rheol-
ogy, tension, and charge (Burgess and Yoon,  1995 ; Burgess and Sahin,  1997 ). 
Interfacial rheology measures the emulsifi er fi lm viscosity and/or elasticity and 
hence the mechanical barrier to droplet coalescence. Interfacial tension is 
related to emulsion stability through the Gibbs equation (Eq. 1.1).   The inter-
facial charge on emulsion droplets gives a direct measurement of the electro-
static barrier to coalescence. Interfacial rheology, tension, and charge have 
been used as predictors of emulsion stability (Burgess and Yoon,  1995 ; Burgess 
and Sahin,  1997 ). Cumper and Alexander (1950), Srivastava (1964), and 
Burgess (1998) have shown that the interfacial rheology of protein fi lms cor-
relates with O/W emulsion stability. 

  Interfacial Tension     Lowering of interfacial tension is one way in which the 
increased surface free energy associated with the formation of droplets can be 
reduced. Since surfactant molecules continuously adsorb at the interface, 
interfacial tension will decrease as a function of time until equilibrium is 
achieved. Reduction of interfacial tension by the addition of a surfactant can 
serve to preserve the surface area generated during the dispersion process, 
thus preventing phase separation. Low interfacial tension enhances the forma-
tion of smaller emulsion droplets with narrower size distributions and greater 
kinetic stability (Burgess and Yoon,  1995 ). The major requirement of a poten-
tial surfactant or emulsifi er is that it readily form an interfacial fi lm. A rapid 
decrease in interfacial tension indicates high interfacial activity and a tendency 
for fast reformation of the surfactant fi lm after rupture. Rapid reformation of 
a new interfacial fi lm results in increased resistance to droplet coalescence, 
and hence emulsion stability is improved (Myers,  1988 ). 

 The dynamic process of adsorption of emulsifi ers and the equilibrium state 
of the interfacial fi lm can be measured by the change in interfacial tension as 
a function of time. Dynamic interfacial tension techniques exist that measure 
without disturbing the interface. Various such techniques to measure interfa-
cial tension have been reported in the literature (Addison and Hutchinson, 
1949  ; Padday and Russel,  1960 ). The Wilhelmy plate technique is preferred 
over other techniques because the values obtained are more accurate than 
those obtained using other techniques such as the capillary rise or du Nouy 
ring methods (Padday and Russel,  1960 ). In the latter two methods, the long 
equilibration time (3 – 60 hours) and diffi culties in accurately positioning the 
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ring can introduce errors that are not an issue with the Wihelmy plate 
method.  

  Interfacial Rheology     It has been reported that for long - term emulsion sta-
bility to coalescence and phase separation, the strength of the interfacial fi lm 
is more important than reduction in interfacial tension (Myers,  1988 ; Swarbrick, 
1990; Martin,  1993 ). Interfacial rheology is the study of the mechanical and 
fl ow properties of adsorbed layers at fl uid interfaces, and it has been used to 
quantify fi lm strength (Murray and Dickinson,  1996 ; Opawale and Burgess, 
 1998 ). Interfacial fi lm strength characteristics can be described in terms of 
viscous (liquid - like) or elastic (solid - like) properties (Warburton,  1993 ). In an 
emulsion stabilized with surfactant - type emulsifi ers forming monomolecular 
fi lms, coalescence is opposed by the elasticity and cohesiveness of the fi lms 
sandwiched between the two droplets. Multilayers confer high resistance of 
emulsions to coalescence, as arises from the mechanical strength of layering 
(Myers,  1988 ). For fi lms to be effi cient barriers, they must not thin out and 
rupture when sandwiched between the two droplets. The fi lm must therefore 
possess enough elasticity to assist in preserving its integrity (Myers,  1988 ). 

 There are two main methods for measuring the interfacial rheological prop-
erties of adsorbed layers. They can be either dilational or shear methods. 
Figure  1.3  shows the principle underlying each method, without going into too 
much practical detail. Interfacial dilational rheology is determined by measur-
ing the change in interfacial tension due to a specifi c change in interfacial area. 
This is a measure of the resistance to compression and expansion of the 
adsorbed layer. Interfacial shear rheology, on the other hand, can be a direct 
measure of the mechanical strength of the adsorbed layer. Here the interface 
is subject to a shear stress, and the measured strain is recorded.   

 When an element of area covered with soluble material is subject to surface 
contraction, some of the material escapes into the bulk phase and returns 
when the interface is expanded in interfacial dilational rheology (Murray and 

    Figure 1.3     Interfacial dilational ( a ) and interfacial shear ( b ) rheology. 
 

(b)(a)

Compress

Dilate Shear



INTERFACIAL RHEOLOGY AND STABILITY  11

Dickinson,  1996 ).   In such experiments the interpretation of interfacial dila-
tional rheology needs to take into account the dilation processes. However, in 
interfacial shear rheology, a defi ned interfacial area is sheared to a fi rst - order 
approximation and is therefore not altered during the shearing process (Sheriff 
and Warburton,  1975 ). The interfacial pressure remains constant during the 
experiment and the material does not diffuse out of or into the interface as a 
result of rheological measurements. Consequently interfacial shear experi-
ments are less destructive than interfacial dilational experiments, and mea-
surements can provide information on the intramolecular and intermolecular 
forces acting at the interface (Warburton,  1993 ). The kinetics of interfacial fi lm 
formation can also be studied using this technique. Interfacial shear measure-
ments can be performed by several methods: continuous fl ow, creep compli-
ance, stress relaxation, and oscillation (Warburton,  1993 ). It is not possible to 
study fi lm kinetics, and intra -  and intermolecular interactions among interfa-
cial molecules, using interfacial dilational techniques, since the interfacial fi lm 
is continuously destroyed. Using a MK2 surface oscillatory ring rheometer, 
which operates in the interfacial shear mode, Opawale and Burgess ( 1998 ) 
were able to determine the kinetics of interfacial fi lm formation of Spans (20, 
80, 83, and 85) under various conditions (different temperatures, Span con-
centrations, salts, and macromolecules such as bovine serum albumin and 
cholesterol).   

  1.3.3   Multiple Emulsions ’  Stability and Interfacial Properties 

 As shown in Figure  1.2 , emulsions can be stabilized by surfactants or emulsi-
fi ers employing the Gibbs - Marangoni mechanism, which has a very low inter-
facial viscoelastic modulus, or by protein - like molecules, which employ a 
viscoelastic mechanism with a naturally high viscoelastic modulus. Both mech-
anisms result in stable systems individually, but in many commercial emulsions 
there is often a mixture of these two molecule types. 

 Figure  1.4  shows an interface stabilized by a mixture of protein and surfac-
tant type of molecules. The surfactants disrupt the strong interactions devel-
oped between neighboring protein molecules, effectively weakening the 
interface. Because the surfactants rely on rapid surface migration, they are 
constrained by the presence of protein molecules still at the interface. If the 
protein component is still in the form of a two - dimensional network, effec-
tively caging the surfactant molecules, it can seriously hamper their motion. 
The net effect is reduced stabilization of each component, and hence the emul-
sion is reduced in stability.   

 In principle, it should then be possible to predict the stability of an emulsion 
system from the interfacial rheology of the continuous phase. Figure  1.5  
shows the relative stability to coalescence of an emulsion system stabilized by 
a protein (beta - lactoglobulin) with increased concentrations of non - ionic 
surfactant (Tween 20). In this case the presence of surfactants has entirely 
destabilized the protein emulsion.      
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  1.3.4   Determination of Interfacial Properties 

 As was mentioned earlier, there are two basic methods of measuring interfa-
cial rheology: dilational and shear (Murray and Dickinson,  1996 ). The practical 
and theoretical aspects underlying these measuring methods are briefl y dis-
cussed here. 

    Figure 1.4     Mixed protein and surfactant interfaces: Weak protein interactions and 
restricted diffusion of surfactants result in reduced stability and probable fi lm 
rupture. 
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    Figure 1.5     Coalescence stability of protein - stabilized emulsions as a function of sur-
factant (Tween 20) concentration. 
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  Interfacial Dilational Rheology     Dilational rheology, as the name suggests, 
is a method that deals with the expansion and compression of the interface. 
Simply put, it is a mechanical system that is constructed to allow the interface 
to be expanded and contracted, usually in a sinusoidal manner, while the 
interfacial tension is simultaneously monitored. The fi rst such method used a 
standard Langmuir trough, as shown in Figure  1.6 .   Barriers normal to the 
surface are used to gradually compress or expand the interface to control the 
surface concentration of insoluble monolayers. A small modifi cation to this 
method allows the barriers to be oscillated sinusoidally, producing small 
changes in the surface area.   

 Assume that there is no exchange of surfactant occurs between the surface 
and the bulk, the compression/expansion cycle will cause a change in the 
surface tension. As the surface is compressed, the effective surface concentra-
tion increases, and the interfacial tension will go down. Conversely, expanding 
the surface will result in an increase in the surface tension. The relationship 
between surface area and surface tension is shown in Figure  1.7 .     

 The surface dilational modulus (| E |) is given as

    
E A

d
dA

= ⋅
γ

.
    

(1.9)
   

 The surface dilational modulus is then split into the elastic ( E  ′ ) and viscous 
( E  ″ ) components. If the surface is purely elastic, then the phase lag ( θ ) will be 
zero; if it is viscous, then  θ  = 90. In practice, the behavior is usually intermedi-
ate between the two extremes, and the two components can be calculated as 
follows:

    Figure 1.6     Use of a Langmuir trough fi tted with oscillating barriers to change the 
surface area  A  while simultaneously monitoring surface tension. 
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    ′ = ′′ =E E E Ecos sin .θ θ,     (1.10)   

 Care must be taken to ensure that the surface is not overcompressed, or the 
interfacial layer may collapse. Figure  1.8  shows the relationship between  d  γ  
and  dA  in a typical experiment. The experiments should ideally be conducted 

    Figure 1.7     Time - dependent relationship between area and surface tension during a 
typical dilational rheology experiment.   
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    Figure 1.8     Relationship between  d  γ  and  dA , showing how  d  γ  becomes nonlinear as 
 dA  is increased and the surface is stretched beyond its elastic limit. 
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in the linear region, but the length of the linear region does give information 
about the resistance of the surface to compression and collapse, the same as 
the stress dependent data shown in Figure  1.9 .     

 A dilational method that has attracted much attention over recent years is 
the pendant drop method. This method has proved useful for oil/water inter-
facial rheology. The principle is exactly the same as for standard surface dila-
tional rheology. The interfacial tension is calculated by measuring the size and 
shape of a liquid drop suspended from a capillary in a less dense fl uid. The 
interfacial area is changed by increasing or decreasing the size of the drop by 
controlling the liquid fl ow through the capillary. Changes in the interfacial area 
and interfacial dilational modules can be calculated. This technique is useful 
for small sample volumes, for it avoids the hydrodynamic problems encoun-
tered when trying to expand/compress the oil/water interface. 

 A limitation of the dilational method is that it is an indirect method of 
measurement. The rheological information is inferred from interfacial tension 
values. The interfacial tension can change through adsorption and desorption 
effects that are stimulated by the expansion and compression of the interface. 
For example, for a freely soluble surfactant at high concentrations, there will 
be a rapid rate of exchange between the surface and the bulk, so at low dila-
tion frequencies, lower than the exchange rate, no changes in surface tension 
will be detected. At lower concentration, with a much lower exchange rate, 
changes in surface tension will be measured, but these will be dependent on 
the exchange rate of the surfactant, not the surface rheological properties: The 
way to solve this problem is to measure at high frequencies using the surface 
capillary wave technique. Figure  1.10  shows a schematic of the experimental 
setup. Capillary waves on the surface of a solution can be induced by thermal 
or mechanical agitation at high frequencies. The presence of a wave on a 
surface corresponds to an increase in surface area, the shape of the wave is 

    Figure 1.9     Interfacial shear moduli (elastic = solid lines; viscous = dotted lines) for 
protein alone ( P ) and protein + surfactant ( P  +  S ) at the oil/water interface. 
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monitored by laser diffraction, and the amplitude/damping of the wave as it 
propagates along the surface is determined by the elastic and viscous moduli 
of the surface of the solution. The measurement is diffi cult to do, and the errors 
are quite large. Nevertheless, the high - frequency regime required for surfac-
tant systems can in this way be accessed.    

  Interfacial Shear Rheology     In contrast to the dilational technique, the 
surface shear methods are direct determinations of the mechanical properties 
of an interface. The simplest approach is a two - dimensional adaptation 
of standard three - dimensional viscoelastic measurements performed on a 
standard rheometer. The only difference is the sensitivity and the geometry. 
Figure  1.11  shows the geometries commonly used for oil - water interfaces.   

 In interfacial shear rheology, shear stress is applied as a tangential force ( F ) 
acting along the interface. Shear stress can be calculated using the equation 
below,

    Figure 1.10     Schematic setup for capillary wave - type experiment. The wave transducer 
excites surface waves. The laser diffraction and detector measure damping of the 
waves. 
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    Figure 1.11     Typical geometries for measuring interfacial shear rheology: ( a ) Knife 
edge for air/water interface; ( b ) bicone for oil/water interface; ( c ) Du Nouy ring for 
sensitive measurements. 
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    p Gexy xy= ,     (1.11)   

 where  p xy   is the interfacial shear stress. The Du Nouy ring, commonly used for 
measuring interfacial tension, can be specifi cally designed to measure the 
surface shear viscoelasticity through a method developed by Sherriff and 
Warburton. The light construction of this geometry makes it particulary sensi-
tive to interfaces with very low rheological properties. 

 The simplest approach is to apply a standard shear rate, that is, to rotate 
the geometry at constant speed and measure the induced stress. The geometry 
is normally held by a torsion wire of known torsion strength, and the rotation 
between the top and the bottom of the wire allows the stress to be calculated. 
An variation on this approach is to use the canal viscometer approach. An 
interface is held between two concentrically circular, rigid walls, and the fl oor 
of the vessel is rotated to impart motion of the fl uid below the interface. The 
transmission of motion to the interface from the bulk is measured by following 
the motion of small Tefl on particles at the interface. Although this is a time -
 consuming measurement, the rheological properties of the bulk fl uid can easily 
be accounted for. 

 However sensitive the technique, continuous rotation will result in disrup-
tion of structures created at the interface. A better approach is to use an oscil-
latory motion, which, if small enough, should not break down any structures 
formed at the interface. An oscillating stress with known amplitude is applied, 
and the resultant strain is measured. The stress and strain relationships are 
shown in Figure  1.12 .   

 The total viscoelastic modulus  G  *  is given as

    
G* ,=

σ
γ

0

0     
(1.12)

   

    Figure 1.12     Stress – strain relationship for a typical oscillatory surface shear viscoelas-
ticity measurement.  
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 where  σ  and  γ  are the amplitudes of the stress and the strain, respectively ( γ  
should not be confused with the surface tension). The stresses and strains are 
the effective two - dimensional equivalents of the three - dimensional standard 
viscosity measurements. So the stress here is the applied force per unit dis-
tance, and the strain is the distance moved relative to the gap between the 
geometry and the outer vessel. Similar to the dilational method, if the phase 
lag    is 0 and 90 ° , the  G  *  is either totally elastic or viscous, respectively. The 
elastic ( G  ′ ) and viscous ( G  ″ ) moduli can be calculated as follows:

    ′ = ′′ =G G G G* , *cos sinθ θ     (1.13)   

 The Sherriff and Warburton is a little more complex. A schematic diagram of 
the apparatus simplifi es the complex electronics involved. Basically a galva-
nometer is fed with a sinusoidal input voltage to oscillate the ring, imparting 
a known stress to the interface; then a proximity probe is used to measure the 
strain. The electronics exploit mechanical resonance   so that the sensitivity of 
the interface can be maximized. The mechanical or rheological properties of 
the interface affect the resonance of the ring as the electronic feedback system 
keeps the whole system in resonance. The values of the feedback signals are 
used to calculate the viscous and elastic components of the interfacial visco-
elasticity. The light weight nature of this setup allows assessment of very fragile 
interfaces. The frequency is also not just limited to the resonant frequency; the 
feedback loops can be used to shift the measurement frequency over a wide 
range of values. 

 In summary, measurement of interfacial rheology can take one of two 
approaches, either dilational or shear. The choice of approach will depend on 
its suitability to particular applications. The most accurate and reproducible 
results tend to come from methods that utilize small, reversible applied stresses 
and strains, thus minimizing any disruption or damage to the interfacial 
layer.    

  1.4   CONCLUSIONS 

 Numerous applications of multiple emulsions in various fi elds have been 
reported. More applications need to be realized if multiple emulsions stability 
is to be fully understood and approaches to stabilize multiple emulsions fully 
rationalized. The stability of multiple emulsions is infl uenced by numerous 
formulation and process variables. As demonstrated in this chapter, long - term 
multiple emulsion stability is dependent on the osmotic and Laplace pressures 
of the inner droplets as well as on the pressure balance between them described 
by the Walstra equation. Stability also equally, in some cases even more, 
depends on the strength of the interfacial fi lm formed on the interface of 
droplets of multiple emulsions. This property can be characterized by inter-
facial rheology.    
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