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1.1 INTRODUCTION

In this chapter we recall the most important characterization techniques used in
the design of microwave filters [1.1]. These consist of the scattering parameters,
which are often based on electromagnetic analysis of the microwave structures,
and the ABCD parameters, which are useful to make the link with two-port
systems and have been studied exhaustively over the years. Several examples
are presented to better understand the relations between the two formalisms. The
bisection (or Bartlett) theorem is also reviewed and proves to be very useful in
the case of symmetrical networks.
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4 SCATTERING PARAMETERS AND ABCD MATRICES

1.2 SCATTERING MATRIX OF A TWO-PORT SYSTEM

1.2.1 Definitions

The scattering matrix [1.2] of a two-port system provides relations between the
input and output reflected waves b1 and b2 and the input and output incident
waves a1 and a2 when the structure is to be connected to a source resistance RG

and a load resistance RL, as depicted in Figure 1.1. The notion of waves rather
than voltages and currents is better suited for microwave structures.

For a two-port system, the equations relating the incident and reflected waves
and the S parameters are given by

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2

These equations can be summarized in the matrix form (b) = (S)(a), where

(
b1

b2

)
=

(
S11 S12

S21 S22

)(
a1

a2

)

The parameter S11, called the input reflection coefficient , can be computed by
setting the output incident wave a2 to zero and taking the ratio of the input
reflected wave over the input incident wave:

S11 = b1

a1

∣∣∣∣
a2=0

The output incident wave a2 is set to zero by connecting the output of the system
to the reference resistor RL. The parameter S11 provides a measure of how much
of the input incident wave does not reach the output of the system and is reflected
back at the input. For microwave filters, ideally, S11 should be equal to zero in
the passband of the filter.

The parameter S21, called the forward transmission coefficient , can be com-
puted by setting the output incident wave a2 to zero and taking the ratio of the
output reflected wave over the input incident wave:

S21 = b2

a1

∣∣∣∣
a2=0

I2I1

S11 S12

S21 S22

RG

RL

a1

b1

V2V1
a2

b2
VG

Figure 1.1 Notation used in defining the scattering matrix of a two-port system.
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The output incident wave a2 is set to zero by connecting the output to the
reference resistor RL. The parameter S21 provides a measure of how much of
the input incident wave reaches the output of the system. For microwave filters,
ideally, S21 should be equal to 1 in the passband of the filter.

The parameter S22, called the reflection coefficient at the output of the system ,
can be computed by setting the input incident wave a1 to zero and taking the
ratio of the output reflected wave over the output incident wave:

S22 = b2

a2

∣∣∣∣
a1=0

The input incident wave a1 is set to zero by connecting the input of the system
to the reference resistor RG. As in the case of S11, it is desirable that S22 be kept
close to zero in the passband of the filter. S11 and S22 provide a measure of how
well the system impedances are matched to the reference terminations.

The parameter S12, called the reverse transmission coefficient , can be com-
puted by setting the input incident wave a1 to zero and taking the ratio of the
input reflected wave over the output incident wave:

S12 = b1

a2

∣∣∣∣
a1=0

The input incident wave a1 is set to zero by connecting the input of the system
to the reference resistor RG. The parameter S12 provides a measure of how much
of an incident wave set at the output of the system would reach the input. Due to
symmetries in the system, S21 and S12 can have similar values. Since there are
no generators at the output of the system, an output incident wave could appear
due to a poor S22.

The scattering parameters can be illustrated using a graph, as shown in
Figure 1.2. The graph shows that part of the incident wave a1 results in a reflected
wave b1 through the parameter S11, and in a transmitted wave b1 through the
parameter S21. Similar descriptions can be given for a2 and the parameters S22

and S12. It is always important to remember that the S-parameter values are asso-
ciated with a given set of termination values. Changing the termination values
will change the S-parameter values.

a1

b1

S
21

S12

S22S11

b2

a2

Figure 1.2 Graph of a two-port scattering matrix.
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1.2.2 Computing the S Parameters

A common example of a scattering matrix in microwave is that of a waveguide
of length l0 and characteristic impedance Z0, as shown in Figure 1.3. When
the structure is to be connected to a source and load resistance equal to the
characteristic impedance of the waveguide, the scattering matrix is given by

(S) =
(

0 e−jβl0

e−jβl0 0

)

where jβ is the propagation function of a given mode above the cutoff frequency
of the waveguide. This matrix tells us that the structure will be perfectly matched
to the terminations since S11 and S22 are equal to zero. It also tells us that b1

the wave transmitted, will simply be a delayed version of a1, the incident wave,
since the forward transmission coefficient, S21, has a magnitude of 1 and a linear
phase of −βl0, and the longer the length, the longer the delay. Since we cannot
differentiate one end of a waveguide from the other, we would have similar results
if connecting the source to the output and the load to the input (e.g., S12 = S21).

As will be seen, microwave structures will at times have discontinuities that
result in the apparition of “scattered” and unwanted electromagnetic fields. For
these cases, matching the electromagnetic fields on each side of the discontinuity
will provide relations that can be used for defining the scattering parameters of
the discontinuity. In that case, the scattering parameters will be defined directly
from electromagnetic wave equations. It should be noted, however, that scattering
parameters are not limited to microwave structures and electromagnetic field
equations.

The incident and reflected waves can be expressed in terms of voltages and
currents, as shown in Figure 1.1.

a1 = V1 + RGI1

2
√

RG

a2 = V2 + RLI2

2
√

RL

b1 = V1 − RGI1

2
√

RG

b2 = V2 − RLI2

2
√

RL

Z0
Z0

Z0
Z0

l0

Figure 1.3 Waveguide of length l0 and characteristic impedance Z0.
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R1

RG R2 RL

R1

Figure 1.4 Defining the scattering parameters of a resistive two-port system.

For example, the scattering parameters of the resistive two-port system in
Figure 1.4 can be defined from these voltages and currents.

The input reflection coefficient S11 is defined from the input incident
and reflected waves when the system is connected to the reference resistor RL,
as shown in Figure 1.5. Also shown in the figure, the system connected to resis-
tor RL can be modeled as Zin, an input impedance of the system. In this case,
V1 = ZinI1 and S11 is given by

S11 = V1 − RGI1

V1 + RGI1
= ZinI1 − RGI1

ZinI1 + RGI1
= Zin − RG

Zin + RG

This gives Zin = R1 + R2||(R1 + RL) for the input impedance of the system. For
S11 to be equal to zero, the input impedance Zin should be equal to the source
resistor RG.

The forward transmission coefficient S21 is defined from the input incident
wave and output reflected wave when the system is connected to the reference
resistor RL, as shown in Figure 1.6. Replacing the incident and reflected waves
by their voltage and current expressions, S21 is given by

S21 =
√

RG

RL

V2 − RLI2

V1 + RGI1

Also from the computations of S11, V1 = ZinI1 when the system is connected
to RL. From Figure 1.6 it is also seen that V2 = −RLI2. Therefore, S21 will be

R2

R1 R1I1

V1 RL

I1

V1 Zin

Figure 1.5 Defining the input reflection coefficient S11.
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R2

R1 R1I1 I2A

RL V2V1

Figure 1.6 Defining the forward transmission coefficient S21.

given by

S21 =
√

RG

RL

V2 − (−V2)

V1 + (RG/Zin)V1
= 2

√
RG

RL

1

1 + RG/Zin

V2

V1

Note that in the case where Zin = RG (input impedance matching) and RG = RL

(similar source and load terminations), the forward coefficient reduces to

S21 = V2

V1

In Figure 1.6,

V2 = RL

RL + R1
VA and VA = R

R + R1
V1

where R = R2||(R1 + RL), so that

V2 = RL

RL + R1

R

R + R1
V1

and a general expression for S21 is given by

S21 = 2

√
RG

RL

1

1 + RG/Zin

RL

RL + R1

R

R + R1

The S22 and S12 parameters can be defined using a similar process, where the
input is now connected to the reference resistor RG. In the resistive example
above, the S parameters are independent of frequency since the impedances of
the resistors are independent of frequency. However, the results can be used to
define the S parameters of a more general case, as shown in Figure 1.7. The
input reflection coefficient S11 will now be a function of the impedances of the
system and therefore depend on the frequency of application through the Laplace
variable s:

S11(s) = Zin(s) − RG

Zin(s) + RG
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A
Z1(s)Z1(s)I1(s) I2(s)

Z2(s)V1(s) RL V2(s)

Figure 1.7 Defining the scattering parameters of a general two-port system.

where the input impedance Zin(s) is given by Zin(s) = Z1(s) + Z2(s)||[Z1(s)+
RL].

The forward transmission coefficient S21 will also depend on the frequency of
operation and is given by

S21(s) = 2

√
RG

RL

1

1 + RG/Zin(s)

RL

RL + Z1(s)

Z(s)

Z(s) + Z1(s)

where the impedance Z(s) = Z2(s)||[Z1(s) + RL]. This means that the S param-
eters will generally have different values depending on the frequency at which
they are being evaluated. In the case of a microwave filter, ideally, S21(f ) should
be equal to 1 at the frequencies of the passband of the filter and be equal to
zero at the frequencies of the stopband of the filter. Similarly, S11(f ) should
be equal to zero at the frequencies of the passband of the filter and be equal
to 1 at the frequencies of the stopband of the filter. Figure 1.8 shows the for-
ward transmission coefficient S21 and the input reflection coefficient S11 versus
frequency for a fifth-order Chebyshev filter with passband edges at 10
and 11 GHz and specified a −20-dB return loss.
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Figure 1.8 Frequency dependence of the scattering parameters.
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1.2.3 S-Parameter Properties

Depending on the properties of the S parameters, the structures can be classified
into the following categories:

• Reciprocity . A two-port system is said to be reciprocal if the S matrix is
equal to its transpose:

(S) =
(

S11 S12

S21 S22

)
= (S)T =

(
S11 S21

S12 S22

)

In other words, the forward transmission coefficient and the reverse trans-
mission coefficient are equal (e.g., S21 = S12).

• Symmetry . A two-port system is said to be symmetrical if in addition to the
reciprocity, the input and output reflection coefficients
are identical (e.g., S11 = S22), and antisymmetrical if they are opposite in
sign (e.g., S11 = −S22).

• Lossless . A two-port system is said to be lossless if power is conserved.
In this case the complex conjugate of the S matrix is equal to its transpose:

(S)∗ =
(

S∗
11 S∗

12

S∗
21 S∗

22

)
= (S)T =

(
S11 S21

S12 S22

)

In the case of lossless structures, additional relations exist between the trans-
mission and reflection coefficients:

|S11|2 + |S12|2 = 1

|S21|2 + |S22|2 = 1

S11S
∗
21 + S∗

22S12 = 0

In the case of a lossless and reciprocal two-port system, the input reflection
coefficient and the forward transmission coefficient are such that |S11|2 = 1 −
|S21|2. An example of this is shown in Figure 1.8. Additional results concerning
lossless systems are given in Appendix 1.

1.3 ABCD MATRIX OF A TWO-PORT SYSTEM

There are several benefits of using the ABCD matrix representation when design-
ing microwave filters [1.3,1.4]. They allow simulating entire structures made of
a cascade of lumped elements, such as capacitors, inductors, and transformers.
Lumped ladder structures are available in the literature for providing specified
filtering responses. In addition, S parameters can be converted to ABCD parame-
ters, and vice versa. When analyzing a microwave structure element, it is easier to
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+

−

+

−

V1 V2

I2I1
A

C D

B

Figure 1.9 Notation used in defining the ABCD matrix of a two-port system.

model the element as a combination of lumped elements rather than interpreting
the S parameters directly.

The ABCD matrix of a two-port is defined using voltages and currents as
shown in Figure 1.9. The ACBD matrix is defined by

V1 = AV2 + B(−I2)

I1 = CV2 + D(−I2)

In matrix form this provides the relation

(
V1

I1

)
=

(
A B

C D

)(
V2

(−I2)

)

The ABCD matrices of some of the most basic elements found in microwave
structures are described next.

1.3.1 ABCD Matrix of Basic Elements

A common element found in many microwave filter design problems consists of
a single impedance Z placed in series, as shown in Figure 1.10. The equations
and the ABCD matrix of a series impedance are

I1 = (−I2)

V1= V2 + Z(−I2)
or

(
V1

I1

)
=

(
1 Z

0 1

)(
V2

(−I2)

)

Another common element consists of an admittance Y placed in parallel, as
shown in Figure 1.11. The equations and ABCD matrix of a parallel admittance
are

+
I2I1

−

V1

−

V2

Z +

Figure 1.10 ABCD matrix of a series impedance.
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+
I2I1

−

V1

−

V2Y

+

Figure 1.11 ABCD matrix of a parallel admittance.

+

−

+

−

V1 V2

I2I1 1 n

Figure 1.12 ABCD matrix of an ideal transformer.

V1 = V2

YV2 = I1 + I2
or

(
V1

I1

)
=

(
1 0
Y 1

) (
V2

(−I2)

)

Another common element encountered in microwave systems is the ideal trans-
former shown in Figure 1.12. The equations and ABCD matrix of the ideal
transformer are

V2 = nV1

(−I2) = I1

n

or

(
V1

I1

)
=


1

n
0

0 n


(

V2

(−I2)

)

1.3.2 Cascade and Multiplication Property

One of the main advantages of the ABCD representation is that the ABCD matrix
of a system made of the cascade of two systems, as shown in Figure 1.13, is
equal to the multiplication of the individual ABCD matrices. The equations of
this system are given by

V1 = A1V2 + B1(−I2)

I1 = C1V2 + D1(−I2)
and

V ′
1= A2V

′
2 + B2(−I ′

2)

I ′
1= C2V

′
2 + D2(−I ′

2)

but since V2 = V ′
1 and (−I2) = I ′

1 we have




V1= A1(A2V
′

2 + B2(−I ′
2)) + B1(C2V

′
2 + D2(−I ′

2))

= (A1A2 + B1C2)V
′

2 + (A1B2 + B1D2)(−I ′
2)

I1 = C1(A2V
′

2 + B2(−I ′
2)) + D1(C2V

′
2 + D2(−I ′

2))

= (C1A2 + D1C2)V
′

2 + (C1B2 + D1D2)(−I ′
2)
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+

−

V1

I1
+

−

V2

I2 I′1

V′1

I′2

V′2

A1 B1

C1 D1

A2 B2

C2 D2

Figure 1.13 Cascade of two ABCD systems.

On the other side, if we multiply the ABCD matrices, we find that

(
A1 B1

C1 D1

)(
A2 B2

C2 D2

)
=

(
A1A2 + B1C2 A1B2 + B1D2

C1A2 + D1C2 C1B2 + D1D2

)

Since both techniques provide the same answers, in the future the ABCD matrix
of the cascade of two systems will be given by multiplication of their ABCD
matrices. This is very powerful since it will be easier to define individual ABCD
matrices of a microwave structure and then multiply these matrices for simulating
the entire structure.

Application to a T Network A T network is often described as three impedances
forming a structure that looks like a T, as shown in Figure 1.14. In this case the
ABCD matrix is given by the multiplication of three ABCD matrices (impedance
Z1, admittance 1/Z2, and impedance Z3):

(
A B

C D

)
=

(
1 Z1

0 1

)
 1 0

1

Z2
1




(
1 Z3

0 1

)
=




1 + Z1

Z2
Z1 + Z3 + Z1Z3

Z2
1

Z2
1 + Z3

Z2




Application to a � Network A � network is often described as three admit-
tances forming a structure that looks like a �, as shown in Figure 1.15. In this
case, the ABCD matrix is given by the multiplication of three ABCD matrices

Z3

Z2

Z1+
I1

−

V1

+
I2

−

V2

Figure 1.14 T network.
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Y2

Y1 Y3

+
I2

V2

−

+

V1

I1

−

Figure 1.15 � network.

(admittance Y1, impedance 1/Y2, and admittance Y3):

(
A B

C D

)
=

(
1 0
Y1 1

)
1

1

Y2
0 1




(
1 0
Y3 1

)
=




1 + Y3

Y2

1

Y2

Y1 + Y3 + Y1Y3

Y2
1 + Y1

Y2




1.3.3 Input Impedence of a Loaded Two-Port

When a two-port is connected to a load ZL(s) as shown in Figure 1.16, the output
voltage V2 and current I2 will be such that V2 = ZL(−I2). The ABCD equations
then become

V1 = AV2 + B(−I2) = AZL(−I2) + B(−I2)

I1 = CV2 + D(−I2) = CZL(−I2) + D(−I2)

from which it is straightforward to extract the input impedance of the two-port
network:

Zin = V1

I1

∣∣∣∣
ZL

= AZL + B

CZL + D

1.3.4 Impedance and Admittance Inverters

An impedance inverter is a two-port network that can provide an input impedance
that is the inverse of the load impedance. This property is illustrated in

V1

I2I1
A

C

V2 ZL(s)

B

D

Figure 1.16 Two-port terminated on a load impedance ZL(s).
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V1

I2I1

V2 ZL(s)

K 2
Zin =

ZL

K 
impedance 

inverter

Figure 1.17 Impedance inverter principles.

Figure 1.17. An ideal impedance inverter will have an ABCD matrix of the
form (

V1

I1

)
=

(
0 jK
j

K
0

)(
V2

(−I2)

)

The input impedance of the two-port network when connected to a load impe-
dance ZL(s) will be given by

Zin = V1

I1

∣∣∣∣
ZL

= AZL + B

CZL + D
= 0ZL + jK

(j/K)ZL + 0
= K2

ZL

An admittance inverter is a two-port network that can provide an input admit-
tance that is the inverse of the load admittance. This property is illustrated in
Figure 1.18. An ideal admittance inverter will have an ABCD matrix of the form

(
V1

I1

)
=


 0

j

J

jJ 0


(

V2

(−I2)

)

The input admittance of the two-port network when connected to a load admit-
tance YL(s) will be given by

Yin = I1

V1

∣∣∣∣
YL

= CV2 + DYLV2

AV2 + BYLV2
= C + DYL

A + BYL

= jJ + 0YL

0 + (j/J )YL

= J 2

YL

V1

I2I1

V2 YL(s)

J2
Yin =

YL

J 
admittance 

inverter

Figure 1.18 Admittance inverter principles.
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K

Z1 =  jK Z3 = jK

Z2 = −jK 

Figure 1.19 Realization of an ideal impedance inverter.

An ideal impedance inverter can be realized as a T network, as shown in
Figure 1.19. This is shown by checking that the ABCD matrix of the T network,
when Z1 = Z3 = jK and Z2 = −jK is that of an impedance inverter:

(
A B

C D

)
=




1 + Z1

Z2
Z1 + Z3 + Z1Z3

Z2
1

Z2
1 + Z3

Z2




=




1 + jK

−jK
jK + jK + (jK)(jK)

−jK

1

−jK
1 + jK

−JK


 =

(
0 jK
j

K
0

)

An ideal admittance inverter can be constructed using the � network of
Figure 1.20. This is shown by checking that the ABCD matrix of a � network
when Y1 = Y3 = jJ and Y2 = −jJ is that of an admittance inverter:

(
A B

C D

)
=




1 + Y3

Y2

1

Y2

Y1 + Y3 + Y1Y3

Y2
1 + Y1

Y2




=




1 + jJ

−jJ

1

−jJ

jJ + jJ + (jJ )(jJ )

−jJ
1 + jJ

−jJ


 =


 0

j

J

jJ 0




An impedance inverter can be approximated using two identical inductors and
a capacitor as shown in Figure 1.21. The ABCD matrix of this T network is
given by (

A B

C D

)
=

(
1 − LCω2 jLω(2 − LCω2)

jCω 1 − LCω2

)

At the frequency ω0 where LCω2
0 = 1, this T network behaves as an ideal

impedance inverter K = Lω0.
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JY1 = jJ Y3 = jJ

Y2 = −jJ

Figure 1.20 Realization of an ideal admittance inverter.

L L

C

Figure 1.21 Approximate realization of an impedance inverter.

(
A B

C D

) ∣∣∣∣
ω=ω0

=

 0 jLω0

j

Lω0
0


 =

(
0 jK
j

K
0

)

As will be seen in the filter design chapters, one will often represent a
microwave structure as an equivalent circuit based on impedance or admittance
inverters. In some cases it will be possible to greatly reduce or even remove the
frequency dependence of the inverter. For other cases, the ideal inverter behav-
ior can only be assumed around the center frequency of the filter (narrowband
designs).

1.3.5 ABCD-Parameter Properties

Depending on the properties of the ABCD matrix, the structures can be classified
into the following categories:

• Reciprocal . In this case, the determinant of the ABCD matrix is equal to
unity:

AD − BC = 1

• Symmetrical . In this case, the parameters A and D are equal:

A = D
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1.4 CONVERSION FROM FORMULATION S TO ABCD
AND ABCD TO S

The ABCD matrix can be defined from the S parameters and termination condi-
tions using the following conversion equations:
(

A B
C D

)

=




√
RG

RL

(1 + S11)(1 − S22) + S21S12

2S21

√
RGRL

(1 + S11)(1 + S22) − S21S12

2S21

1√
RGRL

(1 − S11)(1 − S22) − S21S12

2S21

√
RL

RG

(1 − S11)(1 + S22) + S21S12

2S21




The S matrix can be defined from the ABCD parameters and termination condi-
tions using the following conversion equations:

(
S11 S12

S21 S22

)

=




ARL + B − CRGRL − DRG

ARL + B + CRGRL + DRG

2
√

RGRL(AD − BC)

ARL + B + CRGRL + DRG

2
√

RGRL

ARL + B + CRGRL + DRG

−ARL + B − CRGRL + DRG

ARL + B + CRGRL + DRG




From these definitions it is possible to check the effects of adding redundant
elements such as impedance inverters at the input and output of a system on the
scattering parameters. This is done in Appendix 2.

1.5 BISECTION THEOREM FOR SYMMETRICAL NETWORKS

When a network is symmetrical, it can be modeled as the cascade of a half
network and a reverse half network, as shown in Figure 1.22. In this case, the
ABCD matrix of the symmetrical network is given by the product of the half
network matrices:(

A B

C D

)
=

(
A1 B1

C1 D1

)(
D1 B1

C1 A1

)
=

(
A1D1 + B1C1 2A1B1

2C1D1 A1D1 + B1C1

)

This matrix corresponds to a symmetrical network since A = D. Furthermore,
the symmetrical network is reciprocal [e.g., AD − BC = (A1D1 − B1C1)

2 = 1]
when the half network is reciprocal [e.g., A1D1 − B1C1 = 1].

If we define the even-mode input impedance of the half network Ze as

Ze = V1

I1

∣∣∣∣
half-circuit open

= A1 × ∞ + B1

C1 × ∞ + D1
= A1

C1
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+

−

V1

I1 +

−

A1 B1

C1 D1

D1 B1

C1 A1

V2

I2

open circuit 
(even mode)

short circuit 
(odd mode)

Figure 1.22 Decomposition of a symmetrical network.

and the odd-mode input impedance of the half network Zo as

Zo = V1

I1

∣∣∣∣
half-circuit shorted

= A1 × 0 + B1

C1 × 0 + D1
= B1

D1

then for a reciprocal network (e.g., A1D1 − B1C1 = 1), the matrix of a symmet-
rical network can be expressed as

(
A B

C D

)
= 1

Ze − Zo

(
Ze + Zo 2ZeZo

2 Ze + Zo

)

Using the conversion formulas from ABCD to S parameters, the S matrix of a
symmetrical and a reciprocal network can be represented as

(
S11 S12

S21 S22

)

=




2(ZeZo − RGRL)
−(Ze + Zo)(RG − RL)

2(Ze + RG)(Zo + RL)
+(Ze − Zo)(RG − RL)

2
√

RGRL(Ze − Zo)

2(Ze + RG)(Zo + RL)
+(Ze − Zo)(RG − RL)

2
√

RGRL(Ze − Zo)

2(Ze + RG)(Zo + RL)
+(Ze − Zo)(RG − RL)

2(ZeZo − RGRL)
+(Ze + Zo)(RG − RL)

2(Ze + RG)(Zo + RL)
+(Ze − Zo)(RG − RL)




When the terminations are equal, RG = RL = R0, and using the normalized even
and odd input impedances ze = Ze/R0 and zo = Zo/R0, the S matrix reduces to

(
S11 S12

S21 S22

)
=




zezo − 1

(ze + 1)(zo + 1)

ze − zo

(ze + 1)(zo + 1)

ze − zo

(ze + 1)(zo + 1)

zezo − 1

(ze + 1)(zo + 1)






20 SCATTERING PARAMETERS AND ABCD MATRICES

In addition, if we note that

S21 = S12 = 1

2

ze − 1

ze + 1
− 1

2

zo − 1

zo + 1
= 1

2
(S11e − S11o)

S22 = S11 = 1

2

ze − 1

ze + 1
+ 1

2

zo − 1

zo + 1
= 1

2
(S11e + S11o)

the S parameters of a symmetrical network can be expressed in terms of the input
reflection coefficient of the half network under open or shorted conditions:

(
S11 S12

S21 S22

)
= 1

2

(
S11e + S11o S11e − S11o

S11e − S11o S11e + S11o

)

Similar formulations can be found using normalized even and odd input admit-
tances ye = 1/ze and yo = 1/zo.

The bisection theorem will be used in the case of symmetrical networks. Often,
these networks will be composed of impedance or admittance inverters. The half
network and even- and odd-mode impedances of an impedance inverter are given
below.

In the case of an ideal impedance inverter K, the ABCD matrix can be
written as (

A B

C D

)
=

(
0 jK
j

K
0

)
= 1

2

(
1 jK
j

K
1

)2

The half network of an impedance inverter K and its reverse half network can
then be given by

(
A1 B1

C1 D1

)
= 1√

2

(
1 jK
j

K
1

)
and

(
D1 B1

C1 A1

)
= 1√

2

(
1 jK
j

K
1

)

We can check that the product of ABCD matrices of the half networks provides
the ABCD matrix of the ideal inverter:

(
A1 B1

C1 D1

) (
D1 B1

C1 A1

)
= 1

2

(
1 jK
j

K
1

) (
1 jK
j

K
1

)

= 1

2




(1)(1) + (jK)

(
j

K

)
(1)(jK) + (jK)(1)

(
j

K

)
(1) + (1)

(
j

K

) (
j

K

)
(jK) + (1)(1)




=
(

0 jK
j

K
0

)



REFERENCES 21

Ze = −jK

even mode odd mode

Zo = jK 
= Ze*

Figure 1.23 Even- and odd-mode models of an impedance inverter K .

The even-mode input impedance of the half network is given by Ze = A1/C1 =
−jK , and the odd-mode input impedance of the half network is given by Zo =
B1/D1 = +jK . The even- and odd-mode models of an impedance inverter are
shown in Figure 1.23. For an admittance inverter J it can be shown that the
even-mode input admittance of the half network is given by Ye = 1/Ze = jJ

and the odd-mode input admittance is given by Yo = Y ∗
e = −jJ .

1.6 CONCLUSIONS

In this chapter we recalled some of the fundamental relations for scattering
and ABCD characterizations of two-port systems. We have also introduced the
notion of impedance and admittance inverters, which are not easily realized using
lumped elements but will be key in designing microwave filters. The bisection
theorem has introduced the concept of even and odd modes that can be used to
reduce the complexity of microwave filter design [1.5].
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