I. ADDITIVES

Title: Controlled Radical Acrylic Copolymer Thickeners

Assignee: Arkema, Inc. (Philadelphia, PA)

SIGNIFICANCE

Di- and triblock polymers have been prepared by nitric oxide mediated polymerization using t-butyl 1-diethylphosphono-2,2-dimethylpropyl nitroxide. Materials prepared from this process are useful as paint thickeners and viscosity index improvers in paint.

REACTION

\[
\text{OCH}_3 \quad \text{OCH}_3 \quad \text{OCH}_3
\]

Note 1

EXPERIMENTAL

Preparation of Poly(Methacrylate-b-(Dodecyl Methacrylate-co-Methacrylate))

A steel resin kettle was charged with t-butyl 1-diethylphosphono-2,2-dimethylpropyl nitroxide (30.0 mmol) and methyl acrylate (6.97 mol) and then heated to 110°C for 3 hours, at which point the reaction had reached 50% conversion. The reaction mixture was cooled to ambient temperature and the M_w determined to be 12,600 daltons. In a...
glass reactor dodecyl methacrylate (159.4 mmol) was heated to 100°C and treated with the previously prepared polymer mixture (25.3 g) and methyl acrylate (25.3 mmol). This mixture was then treated with polymethacrylate (12.65 g) and methyl acrylate (4.83 g) and heated to 100°C to 105°C for several hours. The resultant viscous liquid was diluted with an equal volume of THF and precipitated into cold stirring methanol; the product was isolated having a M_w of 56,500 daltons and M_n of 39,600 daltons.

DERIVATIVES

TABLE 1. Selected di- and triblock polymers prepared by controlled free radical polymerization using t-butyl 1-diethylphosphono-2,2-dimethylpropyl nitroxide.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Polymer*<sup>1</sup></th>
<th>M<sub>n</sub></th>
<th>PDI</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1C</td>
<td>PDDMA-b-PS</td>
<td>28,000</td>
<td>1.6</td>
<td>PS = 16%</td>
</tr>
<tr>
<td>1D</td>
<td>PDDMA-b-PS-b-PDDMA</td>
<td>31,600</td>
<td>1.7</td>
<td>PS = 35%</td>
</tr>
<tr>
<td>1E</td>
<td>(PDDMA-co-PS)-b-PS-b-(PS-co-PDDMA)</td>
<td>31,600</td>
<td>1.7</td>
<td>PS = 48%</td>
</tr>
<tr>
<td>1F</td>
<td>PDDMA-b-PMA-b-PDDMA</td>
<td>23,000</td>
<td>1.5</td>
<td>PMA = 48%</td>
</tr>
<tr>
<td>1I</td>
<td>PDDMA-b-PMA-b-PDDMA</td>
<td>76,000</td>
<td>2.0</td>
<td>PMA = 60%</td>
</tr>
</tbody>
</table>

Note: All materials were used as viscosity index improvers in paint.

*¹PDDMA = Polydodecyl methacrylate
PMA = Polymethacrylate

NOTES

1. The nitric oxide mediated polymerization agent t-butyl 1-diethylphosphono-2,2-dimethylpropyl nitroxide, (I), was prepared according to the method of Gillet [1] as illustrated below:

\[
\text{t-C_4H_9}^+\xrightarrow{i} \text{t-C_4H_9}^+\text{N}\text{P(O(OC_2H_5))_2} \xrightarrow{ii} \text{t-C_4H_9}^+\text{N}\text{P(O(OC_2H_5))_2}
\]

 (I)

 i: t-Butylamine, diethyl phosphate
 ii: 3-Chloroperbenzoic acid

2. Random copolymers effective as paint viscosity index improvers were prepared by Shoaf as provided in Table 2.
TABLE 2. Random copolymers used as viscosity index improvers and thickeners in paints.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Polymer<sup>*</sup>¹</th>
<th>Monomer Ratio<sup>*</sup>² (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PS-co-PEHA-co-PAAEM-co-PMAA</td>
<td>51.8/22.7/8.0/2.5</td>
</tr>
<tr>
<td>5</td>
<td>PS-co-PEHA-co-PAAEM-co-PMAA-co-PAA</td>
<td>45.9/21.1/8.0/1.25/3.75</td>
</tr>
<tr>
<td>7</td>
<td>PS-co-PEHA-co-PMAA</td>
<td>63.7/18.9/2.5</td>
</tr>
</tbody>
</table>

[*]¹AA = Acrylic acid
AAEM = Acetoacetoxy ethyl methacrylate
EHA = 2-Hydroxyethyl acrylate
MMA = Methylmethacrylate
[*]²The remainder of the composition consisted of alkyd.

3. Blankenship [3] prepared polyethylene glycol carbamate, (II), as paint thickeners containing poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) and either 1,6-hexamethylene diisocyanate or 4,4⁻methylene bis-(isocyanato-clohexane). Polycarbamates were also prepared by Bauer [4] using a block polymer initiated by stearyl alcohol and consisting of poly(ethylene oxide-b-propylene oxide-b-butylene oxide-b-dodecene oxide-b-tetradecene oxide) coupled with the diisocyanate, Desmodur N[®].

![Diagram](II)

4. Polycarbamates, (III), prepared by Martin [5] consisting of toluene diisocyanate, methoxypolyethylene glycol, polypropylene glycol, and dihydroxy-methyl propanoic acid were also effective as paint thickeners and viscosity index modifiers.

![Diagram](III)
References

5. E. Martin et al., US Patent 7,144,945 (December 5, 2006)
Title: Polymer-Filler Coupling Additives

Author: A. Fukushima et al., US Patent 7,186,845 (March 6, 2007)
Assignee: Bridgestone Corporation (Tokyo, JP)

SIGNIFICANCE

A method for preparing and covalently bonding either 4-(2-oxazolyl)-phenyl- or methyl-N-phenylnitroline to natural rubber in automotive tires is described. The effect has been a 40% overall reduction in tire hysteresis and superior performance over existing polyamine formulations.

REACTION

\[\text{Model reaction product} \]

i: 2-Aminoethanol, CCl\textsubscript{3}H
ii: Sulfuric acid, sodium hydroxide, CCl\textsubscript{3}H
iii: N-Phenyl-hydroxyamine, ethanol
iv: Cyclododecene
EXPERIMENTAL

1. Preparation of 4-Formyl-N-(2-Hydroxyethyl)-Benzamide
A solution of 4-formyl-benzoylchloride (1 eq) in 300 ml of CCl$_3$H was added dropwise at –10°C to a solution of 2-aminoethanol (2 eq), dissolved in 200 ml of CCl$_3$H, and then stirred at 25°C for 2 hours. The mixture was filtered, dried, and concentrated, and 17.4 g of product were isolated as a yellow liquid.

2. Preparation of 4-(2-Oxazolyl)-Benzaldehyde
The Step 1 product (17.4 g) was treated dropwise with 50 ml of 18 M H$_2$SO$_4$ and then heated to 100°C for 60 minutes. The mixture was added dropwise with stirring to 500 ml 20% sodium hydroxide and 500 ml of CCl$_3$H while the solution temperature was kept below 15°C. The organic phase was separated and dried, and 6.3 g of product were isolated.

3. Preparation of 4-(2-Oxazolyl)-Phenyl-N-Phenylnitrone
A mixture of the Step 2 product (1 eq) and N-phenyl-hydroxyamine (1 eq) was refluxed in 100 ml of ethanol for 30 minutes and then concentrated to 50 ml. The concentrate was treated with 50 ml of water and cooled in a refrigerator to 5°C overnight. White crystals were obtained; these were isolated by filtration, dried, and 6.7 g of product were isolated.

4. Model Reaction: Reactivity of 4-(2-Oxazolyl)-Phenyl-N-Phenylnitrone with Cyclododecene
In selected amounts the Step 3 product was mixed with 1 ml cyclododecene and then heated to 171°C. The amount of recoverable Step 3 compound at various time periods during the reaction with cyclododecene was an indication of the reactivity of this product with unsaturated carbon–carbon bonds. Scoping results are provided in Table 1.

DERIVATIVES

4-(2-Oxazolyl)-phenyl-N-methylnitrone, (I), was also prepared:
1. Reactivities

Reactivities of the Step 3 product and 4-(2-oxazolyl)-phenyl-\(N\)-methyl nitrone, (I), with cyclododecene at 170°C are provided in Table 1.

![Chemical structure]

TABLE 1. Percent incorporation of the Step 3 product and derivative into cyclododecene at 170°C.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Heating Time @ 170°C (min)</th>
<th>Nitrone Amount (mg)</th>
<th>Amount of Incorporated Experimental Nitrone (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Phenyl</td>
<td>5</td>
<td>5.52</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>Phenyl</td>
<td>15</td>
<td>5.65</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>Phenyl</td>
<td>30</td>
<td>5.60</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>Methyl</td>
<td>5</td>
<td>4.09</td>
<td>39</td>
</tr>
<tr>
<td>9</td>
<td>Methyl</td>
<td>15</td>
<td>3.83</td>
<td>78</td>
</tr>
<tr>
<td>10</td>
<td>Methyl</td>
<td>30</td>
<td>4.05</td>
<td>98</td>
</tr>
</tbody>
</table>

Note: No characterization data for either experimental agents or cyclododecene addition products were provided by author.

2. Tan \(\delta\)

The effect of the experimental agents on natural rubber hysteresis was determined by measuring tan \(\delta\) at 5% strain using an ARES-A Rheometer at 50°C and 15 Hz. Testing results are provided in Table 2.
NOTES

1. In a subsequent investigation by the author [1] styrene butadiene rubber functionalized with the Step 3 product was prepared and was effective in lowering tire hysteresis.

2. Bis-[2-2-thiazolyl-phenyl]disulfide, (I), derivatives were also prepared by the author [2] in a subsequent investigation and were effective in reducing tire hysteresis.

TABLE 2. Effect of experimental additives on tan δ of natural rubber at various treatment levels.

<table>
<thead>
<tr>
<th>R</th>
<th>Nitrone Dosage (mmol)</th>
<th>Tan δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadditized</td>
<td>—</td>
<td>0.21</td>
</tr>
<tr>
<td>Reference</td>
<td>0.16</td>
<td>0.20</td>
</tr>
<tr>
<td>Phenyl</td>
<td>0.2</td>
<td>0.18</td>
</tr>
<tr>
<td>Phenyl</td>
<td>0.4</td>
<td>0.16</td>
</tr>
<tr>
<td>Phenyl</td>
<td>0.8</td>
<td>0.14</td>
</tr>
<tr>
<td>Phenyl</td>
<td>1.6</td>
<td>0.13</td>
</tr>
<tr>
<td>Methyl</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Methyl</td>
<td>0.4</td>
<td>0.19</td>
</tr>
<tr>
<td>Methyl</td>
<td>0.8</td>
<td>0.16</td>
</tr>
<tr>
<td>Methyl</td>
<td>1.6</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Note: Lower tan δ values are preferred.

*1Sumifine® 1162 = (N,N-di(2-nitro-2-methyl-propyl)-hexamethylenediamine
3. Polymer nanostrings consisting of block terpolymers of butadiene, styrene, and divinyl-benzene having a M_n of 46,744 daltons were prepared Wang [3] and used as additives in natural and synthetic automotive tires. The nano strings were then postmodified to enhance tire surface and bulk performance.

4. Parker [4] end-group functionalized poly(1,3-butadiene) polymers with isopropyl hydroxyl-amines to improve the affinity and interaction with carbon black and silica fillers to extend tire lifetime.

References

3. X. Wang et al., US Patent 7,179,864 (February 20, 2007)