Introduction to adaptive filters

This chapter introduces the fundamental principles of adaptive filtering and commonly
used adaptive filter structures and algorithms. Basic concepts of applying adaptive filters
in practical applications are also highlighted. The problems and difficulties encountered
in time-domain adaptive filters are addressed. Subband adaptive filtering is introduced
to solve these problems. Some adaptive filters are implemented using MATLAB for
different applications. These ready-to-run programs can be modified to speed up research
and development in adaptive signal processing.

1.1 Adaptive filtering

A filter is designed and used to extract or enhance the desired information contained in a
signal. An adaptive filter is a filter with an associated adaptive algorithm for updating filter
coefficients so that the filter can be operated in an unknown and changing environment.
The adaptive algorithm determines filter characteristics by adjusting filter coefficients
(or tap weights) according to the signal conditions and performance criteria (or quality
assessment). A typical performance criterion is based on an error signal, which is the
difference between the filter output signal and a given reference (or desired) signal.

As shown in Figure 1.1, an adaptive filter is a digital filter with coefficients that
are determined and updated by an adaptive algorithm. Therefore, the adaptive algorithm
behaves like a human operator that has the ability to adapt in a changing environment.
For example, a human operator can avoid a collision by examining the visual information
(input signal) based on his/her past experience (desired or reference signal) and by using
visual guidance (performance feedback signal) to direct the vehicle to a safe position
(output signal).

Adaptive filtering finds practical applications in many diverse fields such as commu-
nications, radar, sonar, control, navigation, seismology, biomedical engineering and even
in financial engineering [1-7]. In Section 1.6, we will introduce some typical applications
using adaptive filtering.

This chapter also briefly introduces subband adaptive filters that are more computa-
tionally efficient for applications that need a longer filter length, and are more effective if
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Figure 1.1 Basic functional blocks of an adaptive filter

the input signal is highly correlated. For example, high-order adaptive filters are required
to cancel the acoustic echo in hands-free telephones [2]. The high-order filter together with
a highly correlated input signal degrades the performances of most time-domain adaptive
filters. Adaptive algorithms that are effective in dealing with ill-conditioning problems
are available; however, such algorithms are usually computationally demanding, thereby
limiting their use in many real-world applications.

In the following sections we introduce fundamental adaptive filtering concepts with
an emphasis on widely used adaptive filter structures and algorithms. Several important
properties on convergence rate and characteristics of input signals are also summarized.
These problems motivated the development of subband adaptive filtering techniques in
the forthcoming chapters. In-depth discussion on general adaptive signal processing can
be found in many reference textbooks [1-3, 5-9].

1.2 Adaptive transversal filters

An adaptive filter is a self-designing and time-varying system that uses a recursive algo-
rithm continuously to adjust its tap weights for operation in an unknown environment [6].
Figure 1.2 shows a typical structure of the adaptive filter, which consists of two basic
functional blocks: (i) a digital filter to perform the desired filtering and (ii) an adaptive
algorithm to adjust the tap weights of the filter. The digital filter computes the output
y(n) in response to the input signal u(n), and generates an error signal e(n) by comparing
y(n) with the desired response d(n), which is also called the reference signal, as shown
in Figure 1.1. The performance feedback signal e(n) (also called the error signal) is used
by the adaptive algorithm to adjust the tap weights of the digital filter.

The digital filter shown in Figure 1.2 can be realized using many different struc-
tures. The commonly used transversal or finite impulse response (FIR) filter is shown in
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Figure 1.3 An M-tap adaptive transversal filter

Figure 1.3. The adjustable tap weights, w,,(n), m =0, 1, ..., M — 1, indicated by circles
with arrows through them, are the filter tap weights at time instance n and M is the filter
length. These time-varying tap weights form an M x 1 weight vector expressed as

T (1.1)

w(n) = [wg(n), wi(n), ..., wM,l(n)]

where the superscript 7 denotes the transpose operation of the matrix. Similarly, the
input signal samples, u(n —m),m =0,1,..., M — 1, form an M x 1 input vector

u(n) = [um),u(n—1),...,un—M+ D]’ . (1.2)

With these vectors, the output signal y(n) of the adaptive FIR filter can be computed as
the inner product of w(n) and u(n), expressed as

M—1

) = Y wa(mutn —m) = w' mun). (1:3)

m=0
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1.3 Performance surfaces

The error signal e(n) shown in Figure 1.2 is the difference between the desired response
d(n) and the filter response y(n), expressed as

e(n) =dn) —w! (nu®). (1.4)

The weight vector w(n) is updated iteratively such that the error signal e(n) is minimized.
A commonly used performance criterion (or cost function) is the minimization of the
mean-square error (MSE), which is defined as the expectation of the squared error as

J=E{lm)}. (1.5)

For a given weight vector w = [wg, w1, ..., wy—_1]7 with stationary input signal u(n)
and desired response d(n), the MSE can be calculated from Equations (1.4) and (1.5) as

J =E{d*(n)} —2p"w + w'Rw, (1.6)

where R = E{u(n)u’ (n)} is the input autocorrelation matrix and p = E{d(n)u(n)} is
the cross-correlation vector between the desired response and the input vector. The time
index n has been dropped in Equation (1.6) from the vector w(n) because the MSE is
treated as a stationary function.

Equation (1.6) shows that the MSE is a quadratic function of the tap weights
{wo, wy, ..., wy—1} since they appear in first and second degrees only. A typical
performance (or error) surface for a two-tap transversal filter is shown in Figure 1.4.
The corresponding MATLAB script for computing this performance surface is given in
Example 1.1. For M > 2, the error surface is a hyperboloid. The quadratic performance
surface guarantees that it has a single global minimum MSE corresponding to the
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Figure 1.4 A typical performance surface for a two-tap adaptive FIR filter
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optimum vector w,. The optimum solution can be obtained by taking the first derivative
of Equation (1.6) with respect to w and setting the derivative to zero. This results in the
Wiener—Hopf equation

Rw, = p. (1.7)
Assuming that R has an inverse matrix, the optimum weight vector is
w, = R !p. (1.8)

Substituting Equation (1.8) into (1.6), the minimum MSE corresponding to the optimum
weight vector can be obtained as

Jin = E {d*(n)} — p W, (1.9)

Example 1.1 (a complete listing is given in the M-file Example_1P1.m)

Consider a two-tap case for the FIR filter, as shown in Figure 1.3. Assuming
that the input signal and desired response are stationary with the second-order
statistics

11 05] T 05272 o
R= [0.5 1.1] P = [—0.4458} il Bl = 2

The performance surface (depicted in Figure 1.4) is defined by Equation (1.6) and
can be constructed by computing the MSE at different values of wy and wy, as
demonstrated by the following partial listing:

R =[1.10.5; 0.5 1.11; % Input autocorrelation matrix

p = [0.5272; -0.4458]; % Cross-correlation vector

dn_var = 3; % Variance of desired response d(n)
w0 = 0:0.1:4; % Range of first tap weight values
wl = -4:0.1:0; % Range of second tap weight values

J = zeros(length(w0),length(wl)) ;
% Clear MSE values at all (w0, wl)
for m = 1:1length(w0)
for n = 1:1length(wl)

w = [w0(m) wl(n)]';
J(m,n) = dn_var-2*p'*w + w'*R*w;
% Compute MSE values at all (w0, wl)
end % points, store in J matrix
end
figure; meshc(w0,wl,J"); % Plot combination of mesh and contour
view([-130 22]); % Set the angle to view 3-D plot

hold on; w_opt = inv(R) *p;
plot (w_opt (1) ,w_opt(2),'0o");
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plot (w0, w_opt (2) *ones (length(w0) ,1)) ;
plot (w_opt (1) *ones (length(wl),1),wl);
xlabel ('w_0"); ylabel('w_1");

plot (w0, -4*ones (length(w0),1)); plot(4*ones(length(wl),1),wl);

1.4 Adaptive algorithms

An adaptive algorithm is a set of recursive equations used to adjust the weight vector
w(n) automatically to minimize the error signal e(n) such that the weight vector
converges iteratively to the optimum solution w, that corresponds to the bottom of
the performance surface, i.e. the minimum MSE Jp;,. The least-mean-square (LMS)
algorithm is the most widely used among various adaptive algorithms because of its
simplicity and robustness. The LMS algorithm based on the steepest-descent method
using the negative gradient of the instantaneous squared error, i.e. J & e?(n), was
devised by Widrow and Stearns [6] to study the pattern-recognition machine. The LMS
algorithm updates the weight vector as follows:

wn+1) =whn) + pu(n)e(n), (1.10)

where v is the step size (or convergence factor) that determines the stability and the
convergence rate of the algorithm. The function M-files of implementing the LMS algo-
rithm are tmsinit.m and LMSadapt.m, and the script M-file that calls these MATLAB
functions for demonstration of the LMS algorithm is rMsdemo.m. Partial listing of these
files is shown below. The complete function M-files of the adaptive LMS algorithm
and other adaptive algorithms discussed in this chapter are available in the compan-
ion CD.

The LMS algorithm

There are two MATLAB functions used to implement the adaptive FIR filter with
the LMS algorithm. The first function LMsinit performs the initialization of the
LMS algorithm, where the adaptive weight vector w0 is normally clear to a zero
vector at the start of simulation. The step size mu and the leaky factor 1eak can be
determined by the user at run time (see the complete rMsdemo.m for details). The
second function LMsadapt performs the actual computation of the LMS algorithm
given in Equation (1.10), where un and an are the input and desired signal vectors,
respectively. s is the initial state of the LMS algorithm, which is obtained from the
output argument of the first function. The output arguments of the second function
consist of the adaptive filter output sequence yn, the error sequence en and the final
filter state s.

S = LMSinit(zeros(M,1),mu) ; % Initialization
S.unknownsys = b;
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[yn,en,S] = LMSadapt (un,dn,S); % Perform LMS algorithm

function S = LMSinit (w0,mu, leak)

oe

Assign structure fields

S.coeffs = w0 (:); % Weight (column) vector of filter
S.step = mu; % Step size of LMS algorithm
S.leakage = leak; % Leaky factor for leaky LMS
S.iter = 0; % Iteration count
S.AdaptStart = length(w0) ; % Running effect of adaptive
% filter, minimum M
function [yn,en,S] = LMSadapt (un,dn,S)
M = length(S.coeffs); % Length of FIR filter
mu = S.step; % Step size of LMS algorithm
leak = S.leakage; % Leaky factor
AdaptStart = S.AdaptStart;
w = S.coeffs; % Weight vector of FIR filter
u = zeros(M,1); % Input signal vector
%
ITER = length(un) ; % Length of input sequence
yn = zeros(l,ITER); % Initialize output vector to zero
en = zeros(1l,ITER); % Initialize error vector to zero
%
for n = 1:ITER
u = [un(n); u(l:end-1)1]; % Input signal vector contains
% [u(n),u(n-1),...,u(n-M+1)1"
yn(n) = w'*u; % Output signal
en(n) = dn(n) - yn(n); % Estimation error
if ComputeEML == 1;
eml (n) = norm(b-w) /norm_b;
% System error norm (normalized)
end
if n >= AdaptStart
w = (l-mu*leak)*w + (mu*en(n))*u; % Tap-weight adaptation
S.iter = S.iter + 1;
end

end

As shown in Equation (1.10), the LMS algorithm uses an iterative approach to adapt
the tap weights to the optimum Wiener—Hopf solution given in Equation (1.8). To guar-
antee the stability of the algorithm, the step size is chosen in the range

2
O<pu<——oy, (1.11)
)\max

where Anax is the largest eigenvalue of the input autocorrelation matrix R. However,
the eigenvalues of R are usually not known in practice so the sum of the eigenvalues
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(or the trace of R) is used to replace Ap.x. Therefore, the step size is in the range of
0 < u < 2/trace(R). Since trace(R) = MP,, is related to the average power P, of the
input signal u(n), a commonly used step size bound is obtained as

0<pu< (1.12)

MP,’

It has been shown that the stability of the algorithm requires a more stringent condition
on the upper bound of © when convergence of the weight variance is imposed [3]. For
Gaussian signals, convergence of the MSE requires 0 < u < 2/3MP,,.

The upper bound on p provides an important guide in the selection of a suitable step
size for the LMS algorithm. As shown in (1.12), a smaller step size w is used to prevent
instability for a larger filter length M. Also, the step size is inversely proportional to the
input signal power P,. Therefore, a stronger signal must use a smaller step size, while
a weaker signal can use a larger step size. This relationship can be incorporated into the
LMS algorithm by normalizing the step size with respect to the input signal power. This
normalization of step size (or input signal) leads to a useful variant of the LMS algorithm
known as the normalized LMS (NLMS) algorithm.

The NLMS algorithm [3] includes an additional normalization term u” (n)u(n), as
shown in the following equation:

W+ 1) =w(n)+u%e(n), (1.13)

where the step size is now bounded in the range 0 < u < 2. It makes the convergence
rate independent of signal power by normalizing the input vector u(n) with the energy
u’ (nu@n) = Z;/ZI:_O] u?(n — m) of the input signal in the adaptive filter. There is no signif-
icant difference between the convergence performance of the LMS and NLMS algorithms
for stationary signals when the step size p of the LMS algorithm is properly chosen. The
advantage of the NLMS algorithm only becomes apparent for nonstationary signals like
speech, where significantly faster convergence can be achieved for the same level of MSE
in the steady state after the algorithm has converged. The function M-files for the NLMS
algorithm are NLMSadapt .m and NLMSadapt .m. The script M-file that calls these MATLAB
functions for demonstration is NLMSdemo.m. Partial listing of these files is shown below.

The NLMS algorithm

Most parameters of the NLMS algorithm are the same as the LMS algorithm, except
that the step size mu is now bounded between 0 and 2. The normalization term, u' *u
+ alpha, makes the convergence rate independent of signal power. An additional
constant alpha is used to avoid division by zero in normalization operations.

S = NLMSinit (zeros (M,1),mu); % Initialization
S.unknownsys = b;
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[yn,en,S] = NLMSadapt (un,dn,S); % Perform NLMS algorithm
function [yn,en,S] = NLMSadapt (un,dn,S)

M = length(S.coeffs); % Length of FIR filter

mu = S.step; % Step size (between 0 and 2)
leak = S.leakage; % Leaky factor

alpha = S.alpha; % A small constant

AdaptStart = S.AdaptStart;

w = S.coeffs; % Weight vector of FIR filter
u = zeros(M,1); % Input signal vector

o°

o0

ITER = length(un);
yn = zeros(1l,ITER); % Initialize output vector to zero

Length of input sequence
en = zeros(l,ITER); % Initialize error vector to zero

for n = 1:ITER
u = [un(n); u(l:end-1)1]; % Input signal vector

yn(n) = w'*u; Output signal

0P of

en(n) = dn(n) - yn(n); Estimation error
if ComputeEML == 1;
eml (n) = norm(b-w)/norm_b;
end % System error norm (normalized)
if n >= AdaptStart
w = (l-mu*leak)*w + (mu*en(n)/(u'*u + alpha)) *u;

% Tap-weight adaptation
S.iter = S.iter + 1;
end

end

Assuming that all the signals and tap weights are real valued, the FIR filter requires
M multiplications to produce the output y(n) and the update equation (1.10) requires
(M + 1) multiplications. Therefore, a total of (2M + 1) multiplications per iteration are
required for the adaptive FIR filter with the LMS algorithm. On the other hand, the NLMS
algorithm requires additional (M + 1) multiplications for the normalization term, giving
a total of (3M + 2) multiplications per iteration. Since M is generally large for most
practical applications, the computational complexity of the LMS and NLMS algorithms
is proportional to M, denoted as O(M). Note that the normalization term u’ (n)u(n) in
Equation (1.13) can be approximated from the average power P,, which can be recursively
estimated at time n by a simple running average as

Py(n) = (1 = B)Pu(n — 1) + Bu*(n), (1.14)

where 0 < 8 < 1 is the smoothing (or forgetting) parameter.

The affine projection (AP) algorithm [3] is a generalized version of the NLMS algo-
rithm. Instead of minimizing the current error signal given in Equation (1.4), the AP
algorithm increases the convergence rate of the NLMS algorithm by using a set of P
constraints d(n — k) = w! (n + Du(n — k) for k =0,1,..., P — 1. Note that P is less
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than the length M used in the adaptive FIR filter and results in an underdetermined
case. Therefore, a pseudo-inversion of the input signal matrix is used to derive the AP
algorithm as follows:

win + 1) = w(n) + nA” (1) [AmAT ()] em), (1.15)
e(n) =dn) — An)wn), (1.16)
where the input signal matrix A7 (n) = [u(n), u(n — 1),...,u(n — P + 1)] consists of

P columns of input vectors of length M, e(n) = [e(n),e(n — 1),...,e(n — P+ 1)]" is
the error signal vector and d(n) = [d(n),d(n — 1), ...,d(n — P + 1)]7 is the desired
signal vector. The computation of error signals given in Equation (1.16) is based on
P constraints (or order) of the AP algorithm. More constraints (i.e. larger P) results
in faster convergence but at the cost of higher complexity. When P reduces to one
(i.e. a single column), the updating equation in (1.15) becomes a special case of the
NLMS algorithm as shown in Equation (1.13). The computational complexity of the
AP algorithm is O (P?>M). The function M-files of the AP algorithm are apinit.m and
APadapt.m, and the script M-file to demonstrate the AP algorithm is Apdemo.m. The
partial listing of these files is shown below.

The AP algorithm

The AP algorithm is a generalized version of the NLMS algorithm with p
constraints and u taps of adaptive filter. In the MATLAB program, p = 10 and
M = 256 are used in simulation. The normalization term, A*inv (A'*A + alpha), IS
the pseudo-inversion of the data matrix a. The identity matrix alpha consists of
a small constant of 10~* along its diagonal elements to avoid division by zero in
the matrix-inversion operations.

P = 10; M = 256;

S = APinit(zeros(M,1),mu,P); % Initialization
S.unknownsys = b;

[yn,en,S] = APadapt (un,dn,S) ; % Perform AP algorithm

function S = APinit (w0, mu,P)

oe

Assign structure fields

S.coeffs = w0(:); % Weight (column) vector of filter
S.step = mu; % Step size
S.iter = 0¢ % Iteration count
S.alpha = eye(P,P)*le-4;% A small constant
S.AdaptStart = length(w0)+P-1;% Running effect of adaptive

% filter and projection matrix
S.order = P; % Projection order

function [yn,en,S] = APadapt (un,dn,S)
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M = length(S.coeffs);

o0

Length of FIR filter

mu = S.step; % Step size (between 0 and 2)
P = S.order; % Projection order
alpha = S.alpha; % Small constant
AdaptStart = S.AdaptStart;
w = S.coeffs; % Weight vector of FIR filter
u = zeros(M,1); % Tapped-input vector
A = zeros(M,P); % Projection matrix
d = zeros(P,1); % Desired response vector
%
ITER = length(un) ; % Length of input sequence
yn = zeros(1l,ITER); % Initialize output vector to zero
en = zeros(l,ITER) ; % Initialize error vector to zero
for n = 1:ITER
u = [un(n); u(l:end-1)1; % Input signal vector contains
% [u(n),u(n-1),...,u(n-M+1)]"
A = [u A(:,1l:end-1)]; % Data matrix
d = [dn(n); d(l:end-1)]; % Desired response vector contains
% [d(n),d(n-1),...,d(n-P+1)]1"
yn(n) = u'*w; % Output signal
e =d - A'*w; % Error estimation
en(n) = e(l); % Take the first element of e
if ComputeEML == 1;
eml (n) = norm(b-w) /norm_b;
% System error norm (normalized)
end

if n >= AdaptStart
w = w + mu*A*inv (A'*A + alpha) *e;
% Tap-weight adaptation
end
end

Unlike the NLMS algorithm that is derived from the minimization of the expectation
of squared error, the recursive least-square (RLS) [3] algorithm is derived from the
minimization of the sum of weighted least-square errors as

Jus(n) =Y A", (1.17)

i=1

where X is the forgetting factor and has a value less than and close to 1. The forgetting
factor weights the current error heavier than the past error values to support filter operation
in nonstationary environments. Therefore, in the least-square method, the weight vector
w(n) is optimized based on the observation starting from the first iteration (i = 1) to
the current time (i = n). The least-square approach can also be expressed in the form
similar to the Wiener—Hopf equation defined in Equation (1.7), where the autocorrelation
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matrix and cross-correlation vector are expressed as R~ R(n) = Z;‘;l A ha(Hua’ ()
and p ~ p(n) = Y '_, A" 7'd(i)u(i), respectively.

Following the derivation given in Reference [3] using the matrix inversion lemma,
the RLS algorithm can be written as

wn + 1) =wn) + gn)e(n), (1.18)

where the updating gain vector is defined as

B r(n)
gn) = T al (e (1.19)
and
r(n) = A7'P(n — Du®). (1.20)

The inverse correlation matrix of input data, P(n) = R™!(n), can be computed recur-
sively as

P(n) = 2 'P(n — 1) — gm)r” (n). (1.21)

Note that the AP algorithm approaches the RLS algorithm when P increases to M
and A = 1. Since both the NLMS and RLS algorithms converge to the same optimum
weight vector, there is a strong link between them. Montazeri and Duhamel [10] linked
the set of adaptive algorithms including the NLMS, AP and RLS algorithms.

The computational complexity of the RLS algorithm is in the order of O (M?). There
are several efficient versions of the RLS algorithm, such as the fast transversal filter
with the reduced complexity to O (M) [3]. Compared to the NLMS and AP algorithms,
the RLS algorithm is more expensive to implement. The AP algorithm has a complexity
that lies between the NLMS (for P = 1) and RLS (for P = M) algorithms. The function
M-files of the RLS algorithm are rRusinit.m and RuSadapt.m, and the script M-file
to demonstrate the RLS algorithm is rRusdemo.m. Partial listing of these files is shown
below.

The RLS algorithm

The RLS algorithm whitens the input signal using the inverse of the input
autocorrelation matrix. Its convergence speed is faster than the LMS, NLMS
and AP algorithms under colored input signals. This MATLAB simulation uses
the forgetting factor lamda = 1 and the initial inverse input correlation matrix
PO = eye(length(w0))*0.01. The RLS algorithm updates the filter coefficients
according to Equations (1.18) to (1.21).

S = RLSinit(zeros(M,1),lamda); % Initialization
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end
end

]

function S

w = S.coeffs;
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S.unknownsys = b;

RLSadapt (un,dn,S); % Perform RLS algorithm

RLSinit (w0, lamda)

Assign structure fields

S.coeffs = w0 (:); % Weight (column) vector of filter

S.lamda = lamda; % Exponential weighting factor

S.iter = 0; % Iteration count

S.PO = eye(length(w0))*0.01; % Initialize inverse input
% autocorrelation matrix

S.AdaptStart = length (wO0) ; % Running effect

function [yn,en,S] = APadapt (un,dn,S)

M = length(S.coeffs); % Length of FIR filter

lamda = S.lamda; % Exponential factor

invlamda 1/lamda;

AdaptStart S.AdaptStart;

Weight vector of FIR filter

o oP

P = S.PO; Inverse correlation matrix
u = zeros(M,1); % Input signal vector
for n = 1:ITER
u = [un(n); u(l:end-1)1; % Input signal vector contains
% [u(n),u(n-1),...,u(n-M+1)1]1"';
yn(n) = w'*u; % Output of adaptive filter
en(n)=dn(n)-yn(n) ; % Estimated error
if n >= AdaptStart
r = invlamda*P*u; % See equ. (1.20)
g = r/(l+u'*r); % See equ. (1.19)
W =W + g.*en(n) ; % Updated tap weights for the
% next cycle, (1.18)
P = invlamda* (P-g*u'*P) ;% Inverse correlation matrix
% update, see(l1.20) and (1.21)
end
if ComputeEML == 1;
eml (n) = norm(b-w) /norm_b;

[

% System error norm (normalized)

13

1.5 Spectral dynamic range and misadjustment

The convergence behavior of the LMS algorithm is related to the eigenvalue spread
of the autocorrelation matrix R that is determined by the characteristics of the input
signal u(n). The eigenvalue spread is measured by the condition number defined as
K (R) = Amax/Amin, Where Apax and Api, are the maximum and minimum eigenvalues,
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respectively. Furthermore, the condition number depends on the spectral distribution of
the input signal [1, p. 97] and is bounded by the dynamic range of the spectrum ', (e/“)
as follows:

max I, (e/%)

R S 1.22
k(R) < min Ty (69) (1.22)

where max I, (e/“) and minT,, (e/®) are the maximum and minimum of the input
w w

spectrum, respectively. The ideal condition x (R) = 1 occurs for white input signals. The
convergence speed of the LMS algorithm decreases as the ratio of the spectral dynamic
range increases. When the input signal is highly correlated with a large spectral dynamic
range, the autocorrelation matrix R is ill-conditioned due to the large eigenvalue spread
and the LMS algorithm suffers from slow convergence. The deficiency of LMS and
NLMS algorithms has been analyzed in the literature [1, 3, 5, 6, 9]. Subband adaptive
filtering will be introduced in Section 1.7.2 to improve the convergence rate when the
input signal is highly correlated.

The theoretical convergence curve of the LMS algorithm decays according to the
factors r, =1 — uA,, where X, is the mth eigenvalue of R [6]. Therefore, a time
constant that defines the convergence rate of the MSE is obtained as

,m=0,1,..., M — 1. (1.23)

Tm = 2/vL A
Consequently, the slowest convergence is determined by the smallest eigenvalue Ap;y.
Even though a large step size can result in faster convergence, it must be limited by the
upper bound given in Equation (1.11), which is inversely proportional to the maximum
eigenvalue Apax.

In practice, the weight vector w(n) deviates from the optimum weight vector w, in
the steady state due to the use of the instantaneous squared error by the LMS algorithm.
Therefore, the MSE in the steady state after the algorithm has converged is greater
than the minimum MSE, Jyi,. The difference between the steady-state MSE J(co) and
Jmin 18 defined as the excess MSE expressed as Jex = J(00) — Jin. In addition, the
misadjustment is defined as

J
M= _Euyp,. (1.24)

Ji min

This equation shows that the misadjustment is proportional to the step size, thus
resulting in a tradeoff between the misadjustment and the convergence rate given in
Equation (1.23). A small step size results in a slow convergence, but has the advantage of
smaller misadjustment, and vice versa. If all the eigenvalues are equal, Equations (1.23)
and (1.24) are related by the following simple equation:

M= _ M (1.25)

4 x 1, settling time’

where the settling time is defined as four times the convergence rate t,,. Therefore, a long
filter requires a long settling time in order to achieve a small value of misadjustment,
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which is normally expressed as a percentage and has a typical value of 10 % for most
applications.

1.6 Applications of adaptive filters

Adaptive filters are used in many applications because of their ability to operate in
unknown and changing environments. Adaptive filtering applications can be classified
in four categories: adaptive system identification, adaptive inverse modeling, adaptive
prediction and adaptive array processing.

In this section, we introduce several applications of adaptive filtering. These
applications are implemented in MATLAB code for computer simulation. MATLAB
examples include acoustic echo cancellation, adaptive interference cancellation, adaptive
line enhancer, active noise control, adaptive channel equalizer, acoustic feedback
reduction for hearing aids and adaptive array processing. These applications provide a
useful platform to evaluate the performance of different adaptive algorithms. Several
plots include an ensemble or time-averaged square error, and the norm of weight error,
echo return loss, spectrogram of error signal and magnitude-squared coherence, etc., are
used to evaluate the performance of these algorithms. The complete MATLAB programs
for these adaptive filtering applications are available in the companion CD.

1.6.1 Adaptive system identification

A structure of adaptive system identification (or modeling) is shown in Figure 1.5, where
the adaptive filter is placed in parallel with an unknown system (or plant) to be identified.
The adaptive filter provides a linear model that is the best approximation of the unknown
system. The excitation signal u(n) serves as the input to both the unknown system and
the adaptive filter, while 7 (n) represents the disturbance (or plant noise) occurring within
the unknown system. The objective of the adaptive filter is to model the unknown system
such that the adaptive filter output y(n) closely matches the unknown system output
d(n). This can be achieved by minimizing the error signal e(n), which is the difference
between the physical response d(n) and the model response y(n). If the excitation signal

7(n)

u(#7)  Unknown S

Unknown S
system +

R ()

Adaptlve Aoy - AN el

" filter 4’ T‘
/

Figure 1.5 Block diagram of adaptive system identification
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u(n) is rich in frequency content, such as a white noise, and the plant noise n(n) is
small and uncorrelated with u(n), the adaptive filter identifies the unknown system from
the input—output viewpoint. The script M-file for the adaptive system identification is
sysIp.m and its partial listing is shown below.

Adaptive system identification

The application of adaptive system identification is illustrated in the MATLAB
program, where the plant to be modeled is a 32-tap lowpass FIR filter with a cutoff
frequency of 0.3 radians per sample. The adaptive weight vector wo containing 32
coefficients and the white Gaussian noise are used as input un to both the plant
and the adaptive filter. The desired signal an is the plant’s output. The following
listing uses only the LMS algorithm to update the adaptive filter. Other algorithms
can also be used in order to compare their convergence performance with the LMS
algorithm.

% SYSID.m System Identification as Shown in Fig.1l.5
iter = 1024;

un = 0.l*randn(l,iter); % Input signal u(n)

b = firl1(31,0.3)"'; % Unknown FIR system

dn = filter(b,1,un); % Desired signal d(n)

w0 = zeros(32,1); % Initialize filter coefficients to 0

% LMS algorithm
mulms = 0.5; % Step size

Slms = LMSinit (w0, mulms) ; % Initialization
Slms.unknownsys = b;
[ylms, enlms, Slms] = LMSadapt (un,dn, Slms) ;

% Perform LMS algorithm

The adaptive system identification has been widely applied in echo cancellation [2],
active noise control [4], digital control [7], geophysics [6] and communications [5]. In
fact, many problems can be formulated from the adaptive system identification point
of view. A typical example is the acoustic echo cancellation (AEC), which finds many
applications in hands-free telephones, audio (or video) conferencing systems, hearing
aids, voice-control systems and much more. This book uses the adaptive identification
of unknown systems with a long impulse response in later chapters to illustrate the
performance of subband adaptive filters.

1.6.1.1 Acoustic echo cancellation

The acoustic echo in hands-free telephones arises when the microphone picks up the
sound radiated by the loudspeaker and its reflections in a room [2, 11]. Figure 1.6 shows a
general AEC configuration for hands-free telephony systems. Speech originating from the
far-end talker is amplified and reproduced by a loudspeaker. The output of the loudspeaker
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Figure 1.6 Block diagram of an acoustic echo canceller
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will be picked up by the microphone via the acoustic echo path in the room. This signal
is transmitted back to the far-end user where it is perceived as acoustic echo. The far-end
user is annoyed by listening to his/her own speech delayed by the round-trip traveling

time of the system.

The acoustic echo can be canceled electronically using an adaptive filter, as illustrated
in Figure 1.6. The adaptive filter models the acoustic echo path between the loudspeaker
and microphone. The estimated transfer function is used to filter the far-end speech signal
u(n) to generate an echo replica y(n), which is then used to cancel the acoustic echo
components in the microphone signal d(n), resulting in the echo-free signal e(n). The
script M-file of the acoustic echo cancellation application is aec.m and its partial listing

is shown below.

this script M-file.

% AEC.m

o°

Acoustic echo cancellation

Acoustic echo cancellation is an example of the adaptive system identification. The
far-end speech signal un is used as input to both the room transfer function ho and
the 1024-tap adaptive filter wo. No near-end speech signal is used in this simulation;
instead, a room noise vn is added to the output of the room transfer function out to
form the desired signal dn. An extension to this simulation adds near-end speech
and investigates methods to handle double-talk conditions. In the partial listing,
only the LMS algorithm is shown to update the adaptive filter. Other algorithms
can also be used to compare their convergence performance and the system error
norm with the LMS algorithm. Echo return loss enhancement is also computed in

Application Program to Test Acoustics Echo Cancellation

as Shown in Fig.l1l.6

% Input far-end signal

[far_end, fsf,nbitf] = wavread('far.wav'
%

far_end = far_end(l:end);

un = far_end'; %

)8
Speech signal from far end

Input signal
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vn =

out

dn =

% Input near-end signal (room noise)

near_end = vn';

% Load impulse response of room transfer function (300 ms)

load('hl.dat'); ho = hl1(1:1024);

= filter(ho,1,far_end');

% Perform adaptive filtering using LMS algorithm

mulms = 0.01; % Step size mu
Slms = LMSinit (w0, mulms) ; % Initialization
Slms.unknownsys = ho;

[ylms, enlms, Slms] = LMSadapt (un,dn, Slms) ;

0.01.*randn (1, length(far_end)); % Additive room noise
% (variance ~ 0.0172)

o°

No near-end speech
(Single-talk)

o

o

Truncate impulse response

o°

to 1024 samples

o°

Filtering of far-end signal

o

with room impulse response
out+near_end';

% Perform LMS algorithm

The following three factors make the AEC a very difficult task:

®

(ii)

(iii)

The acoustic echo path usually has long impulse response. The characteristics of
the acoustic path depend on the physical conditions of the room. For a typical
office, the duration of the impulse response (i.e. the reverberation time) is about
300 ms. At 8 kHz sampling frequency, an adaptive FIR filter of 2400 taps
is required to model the acoustic echo path. As discussed in Section 1.4, a
long adaptive FIR filter incurs a heavy computational load and results in slower
convergence because of small step sizes, as indicated in (1.12).

The characteristics of the acoustic echo path are time varying and may change
rapidly due to the movement of people, doors opening or closing, temperature
changes in the room, etc. Therefore, an adaptive algorithm has to converge
quickly to track any changes by continuously updating the adaptive filter.

The excitation speech signal is highly correlated and nonstationary. For a short
speech segment, the spectral density may differ by more than 40 dB at different
frequencies. This also results in slow convergence, as shown in Equation (1.22).

Many techniques have been proposed to overcome these problems [2, 3, 8, 11]. In this
book, we will focus on using subband adaptive filters to tackle these problems.

1.6.1.2

Active noise control

A single-channel active noise control (ANC) for suppressing acoustic noise in an air duct
is shown in Figure 1.7 [4]. The input signal u(n) is acquired by a reference microphone
placed near the noise source. The primary noise travels to the error microphone via
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Figure 1.7 An example of single-channel active noise control viewed as an adaptive
system identification problem

an unknown plant. At the same time, the canceling loudspeaker generates a secondary
canceling noise that propagates to the error microphone via the secondary path. This
secondary noise has the same amplitude with opposite phase to cancel the primary noise
based on the principle of acoustic superposition. The residual noise picked up by the
error microphone is used as the error signal e(n) to update the adaptive filter. The ANC
system operates in the electrical domain, while the unknown plant and secondary path
are located in the electroacoustic domain. ANC is a challenging application since there
are many considerations such as secondary path modeling and compensation, fast chang-
ing environment and noise characteristics, interactions between acoustic and electrical
domains, placement of microphones and loudspeakers, and undesired acoustic feedback
from the canceling loudspeaker to the reference microphone. The script M-file of the
ANC application is anc.m and its partial listing is shown below.

Active noise control

The application of active noise control is illustrated in MATLAB, where the engine
wave file engine 2.wav is used as the source noise. The primary path is modeled
as a rational transfer function with denominator pri_den and numerator pri_num.
Similarly, the secondary path is modeled by denominator sec_den and numerator
sec_num. A primary difference between the active noise control and other adap-
tive noise cancellation techniques is that the active noise control system does not
generate an error signal electrically; instead, the error signal en is measured by
the error microphone. Due to the presence of the secondary path, the filtered-x
LMS (FXLMS) algorithm is used to adapt the coefficients of the adaptive fil-
ter. This FXLMS algorithm is implemented by function M-files FxrMsinit.m and
FXLMSadapt .m.

% ANC.m Application Program to Test Active Noise Control
% as Shown in Fig.1l.7
[

Q

noise, fs] = wavread('engine_2.wav') ;% Engine noise
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pri_num = load('p_z.asc'); % Primary path, numerator
pri_den = load('p_p.asc'); % Primary path, denominator
sec_num = load('s_z.asc'); % Secondary path, numerator
sec_den = load('s_p.asc'); % Secondary path, denominator
ir_sec = impz (sec_num, sec_den) ; % Actual secondary path
est_sec = ir_sec(1:150)'; % Estimated secondary path

dn = filter (pri_num,pri_den,noise)'; % Desired signal

un = noise'; % Input signal

M = 32; % Filter length

w0 = zeros(M,1); % Initialize coefs to 0

% Perform adaptive filtering using FXLMS algorithm
mulms = 0.05; % Step size

Sfxlms = FXLMSinit (w0,mulms,est_sec, sec_num, sec_den) ;
% Initialization
[ylms, enlms, SfxIlms] = FXLMSadapt (un,dn, Sfxlms) ;

% Perform FXLMS algorithm

1.6.1.3 Adaptive noise cancellation

Adaptive noise (or interference) cancellation, illustrated in Figure 1.8, can be classified
as an adaptive system identification problem [6]. The system response d(n) consists of
the desired signal s(n) corrupted by noise v'(n), i.e. d(n) = s(n) + v'(n). Since there
is spectra overlap between the desired signal and noise, conventional fixed filters may
not be an effective solution in attenuating this noise. As shown in Figure 1.8, the input
signal u(n) consists of a noise v(n) that is correlated to v’(n), but must be uncorrelated
with s(n). The adaptive filter produces an output signal y(n) that estimates v’ (). Thus
the error signal approximates the signal s(n). If the signal s(n) is considered as the
disturbance n(n) shown in Figure 1.5 and the noise path is treated as the unknown
system, adaptive noise cancellation can be considered as a system identification problem.

d{n)  s(m)—v(m

Noise d(n)
path
; /
v um)=v{m) | Adaptive . .
filter Y(u) = v(m) d‘/ e(n) > 5(n)

Figure 1.8 Block diagram of the adaptive noise canceller
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When the signal s(n) is absent during silent periods, the error signal approaches zero
and an accurate system identification of the noise path can be obtained. The script M-file
of the adaptive interference cancellation system is a1c.m and its partial listing is shown
below.

Adaptive interference canceller

In MATLAB implementation of the adaptive interference canceller, the speech
signal timit.wav is corrupted with white Gaussian noise. The input signal un is
the source noise and the signal dn is the corrupted speech signal. The error signal
enlms consists of a cleaner version of the speech signal after the output ynims of
the adaptive LMS filter has converged to the broadband noise.

% AIC.m Application Program to Test Adaptive Noise

% (Interference) Canceller as Shown in Fig.1.8

[v,fs] = wavread('timit.wav') ; % Extract normalized wave file
noise=0.l*randn (size(y)); % Noisy signal

b = firl(16,0.25); Filter to simulate the noise
path

Filtered version of noise

o° P

o°

filt_noise = filter(b,1,noise);
signal

o0 oP

dn = (y+filt_noise)'; Speech corrupted with

o°

filtered noise
un = noise'; Input signal to adaptive
filter

Filter length

Initialize coefs to 0

o° oP

M = 32;
w0 = zeros(M,1);

o°

o0

% Perform adaptive filtering using LMS algorithm

mulms = 0.05; % Step size
Slms = LMSinit (w0, mulms) ; % Initialization
[ylms, enlms, Slms] = LMSadapt (un,dn, Slms) ;

% Perform LMS algorithm

1.6.1.4 Acoustic feedback cancellation in hearing aids

A hearing aid modifies and amplifies incoming sound to make it audible for people with
hearing loss [2]. Hearing aids are normally small in size to fit into the ear canal or
worn behind the ear. Due to the close proximity between the sound emitting transducer
(or receiver) and the microphone, acoustic feedback can occur in hearing aids or other
hearing devices such as Bluetooth headsets. Figure 1.9 shows the model of hearing aids
and the application of the adaptive filter to remove the acoustic feedback (leakage) from
the receiver to the microphone. The forward path is the processing unit of the hearing
aids and its output u(n) is fed into the adaptive filter and the receiver. The reference
signal d(n) picked up by the microphone is the summation of incoming sound and the
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Figure 1.9 Block diagram of the hearing aids with acoustic feedback cancellation

feedback signal. The error signal e(n) is derived by subtracting the adaptive filter output
from the reference signal.

Due to the high correlation between the reference signal d(n) and the input signal
u(n), the adaptive filter cannot model the feedback path accurately. A delay is used in the
cancellation path to decorrelate the reference signal and the input signal. This acoustic
feedback cancellation is also classified as the adaptive system identification problem that
uses the adaptive filter to model the feedback path. The script M-file of the hearing aids
application is #Ha.m and its partial listing is shown below.

Acoustic feedback reduction in hearing aids

In MATLAB implementation of acoustic feedback reduction, a speech signal
timit.wav at the receiver is corrupted with white Gaussian noise noise to form
the desired signal dan. The feedback path loaded from the data file fb.dat is used
to simulate the feedback of the speech signal from the receiver to the microphone.
A delay unit is used as the feedforward path £f for the simulation. The input
signal un consists of the received speech signal when no acoustic feedback exists.

% HA.m Application Program to Test Acoustic Feedback
% Reduction for Hearing Aids as Shown in Fig.1.9
load fb.dat; Load the feedback path
norm_fb = norm(fb) ; Norm-2 of feedback path
delay = 10; Delay in feedforward path
ff= [zeros(l,delay+1l) 4]; Simple feedforward path

[un, fs] = wavread('timit.wav'); Extract normalized wave file

o° o° o° o°

o

noise=0.0l*randn(size(un)) ;

o0

Noisy signal
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dn = (un+noise)'; % Speech corrupted with noise
num = conv (ff, fb); % Numerator

den = [1; -num(2:end)]; % Denominator

y = filter (num,den,dn) ;

M = 64; % Filter length

w0 = zeros(M,1); % Initialize filter coefs to 0

% Perform adaptive filtering using LMS algorithm
mulms = 0.005; % Step size

Slms = HALMSinit (w0,mulms, fb, £ff,delay) ;
% Initialization
[ylms, enlms, fblms, SIms] = HALMSadapt (un, Slms) ;
% Perform LMS algorithm

1.6.2 Adaptive prediction

Adaptive prediction is illustrated in Figure 1.10, where the desired signal d(n) is assumed
to have predictable signal components [3]. This signal is delayed by A samples to form
the input signal u(n) = d(n — A) for the adaptive filter to minimize the error signal
e(n). The adaptive filter predicts the current value of the desired signal based on the
past samples. A major application of adaptive prediction is the waveform coding of
speech, such as the adaptive differential pulse code modulation [1]. In this application,
the adaptive filter exploits the correlation between adjacent samples of speech such that
the prediction error is much smaller than the original signal on average. This prediction
error is then quantized using fewer bits for transmission, resulting in a lower bit rate. Other
applications of adaptive prediction include spectrum estimation and signal whitening.
Adaptive prediction is also used to separate the signal from noise based on differ-
ences between the signal and noise correlation. Depending on whether y(n) or e(n) is
the desired output, the adaptive predictor enhances the narrowband signal corrupted by
broadband noise or removes the narrowband interference from the corrupted broadband
signal. With reference to Figure 1.10, the input of the adaptive line enhancement consists

d(n)

Z /
u(m)—d(n-4) Adaptive
iy filter

Figure 1.10 Block diagram of the adaptive predictor
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of desired narrowband (or tonal) components ¢(n) corrupted by broadband noise v(n),
i.e. d(n) = t(n) + v(n). The delay A must be sufficiently large to decorrelate the broad-
band noise components, but the narrowband components still correlate in d(n) and u(n).
The adaptive filter compensates for the delay (or phase shift) in order to cancel the nar-
rowband components in d(n). Therefore, the filter output y(n) estimates the narrowband
components ¢ (n) only, while the error signal e(n) approximates the wideband noise v(n).
This structure enhances the narrowband signal at the adaptive filter output y(n) and is
called the adaptive line enhancer. Usually, A = 1 is adequate for white noise and A > 1
is used for color noise. The script M-file of the adaptive line enhancer is aALE.m and allows
the user to select different modes of operations.

Adaptive line enhancer

The adaptive line enhancer can be used either to enhance the tonal signal or enhance
the broadband (such as speech) signal corrupted by tonal noise. As shown in
Figure 1.10, the input signal un to the adaptive filter is the delayed version of
the mixed input of desired signal and noise. The delay unit is used to decorrelate
the broadband noise component so that the adaptive filter output yims converges
to the narrowband component of the mixed signal. The desired signal an is the
delayless version of the mixed signal and is subtracted from the output signal to
obtain the error signal enlms, which consists of the enhanced broadband signal such
as speech. Therefore, the adaptive line enhancer can be programmed to extract the
narrowband or broadband component depending on the given application.

ALE.m Application Program to Test Adaptive Line Enhancer

o0 oP

as Shown in Fig.1.10

select = input ('Select (1) separate noise from tone, (2) separate
speech from tone:',6 's’);
if select == '1"

f = 400; fs = 4000;

oe

Tonal signal at 400 Hz and

o°

sampling at 4000 Hz
iter = 8000; n = 0:1:iter-1;
sn = sin(2*pi*f*n/fs);

oe

Length of signal and time index

o

Generate sinewave

noise=randn(size(sn)) ; % Generate random noise
dn = sn+0.2*noise; % Mixing sinewave with white noise
delay = 1; % Delay by 1
un = [zeros(l,delay) dn(l,1l:length(dn)-delay)];
% Generate delayed version of d(n)
else
[y,fs] = wavread('timit.wav') ;% Extract normalized wave file
f = 1000; % Tone fregquency 1000 Hz
iter = length(y); % Length of signal
n = 0:1:iter-1; % Time index
sn = sin(2*pi*f*n/fs); % Generate sinewave
dn = sn+y'; % Mixing sinewave with wave file
delay = 5; % Delay by 5

un = [zeros(l,delay) dn(l,1l:length(dn)-delay)];
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% Generate delayed version of d(n)

end
M = 64; % Filter length
w0 = zeros(M,1); % Initialize filter coefs to 0

Q

% Perform adaptive filtering using LMS algorithm

mulms = 0.01; % Step size
Slms = LMSinit (w0,mulms) ; % Initialization
[vlms, enlms, Slms] = LMSadapt (un,dn, Slms) ;

% Perform LMS algorithm

One practical application is to enhance the tonal signal in the dual-tone multi-
frequency [12] signals found in touchtone phones. Alternatively, this structure can be
used as an adaptive notch filter where the error signal e(n) is the system output. One
possible application of the adaptive notch filter is to remove any tonal noise (e.g. power
hum) from the wideband signal, such as a biomedical measurement signal.

1.6.3 Adaptive inverse modeling

Adaptive filters can be applied for adaptive inverse modeling (or channel equalization)
applications [7], where an unknown system is cascaded with an adaptive filter, as illus-
trated in Figure 1.11. The desired signal d(n) is derived by delaying L samples of the
input signal s(n) using a delay unit z=% to compensate for the overall propagation delay
through the unknown system and the adaptive filter. The proper delay allows the adaptive
filter to converge to a causal filter that is the inverse of the unknown system. Thus the
adaptive filter equalizes the unknown system to recover the delayed version of signal
s(n — L) at the output y(n). The combined transfer function of the unknown system and
the adaptive filter approaches z. In some applications, such as the adaptive channel
equalizer in data modems, the desired signal is derived from the predefined data sequence
during the training stage.

dimy=sn 1)

/

Adaptive
filter —

/ e(n)

s(n) N Unknown
system

Figure 1.11 Inverse channel modeling using an adaptive filter
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Similar to the system modeling shown in Figure 1.5, if s(n) has a flat spectrum and
the plant noise is small and uncorrelated with s(n), the adaptive filter can adapt to an
accurate inverse model of the unknown system. It is interesting to note that the adaptive
line enhancer (or adaptive predictor) described in Figure 1.10 can be considered as inverse
modeling by treating the delay z™2 as the unknown channel, and the adaptive filter
converges to z XA If L = 0 (as in the case of an adaptive predictor), the adaptive filter
converges to a noncausal system of z*. Therefore, the adaptive filter predicts the input
at A samples ahead. The script M-file of the adaptive inverse modeling is INVSYSID.m
and its partial listing is shown below.

Inverse system identification

The application of adaptive inverse system identification is illustrated in the MAT-
LAB program 1nvsysip. Here, a binary random signal is generated and transmitted
to a channel modeled by a three-tap FIR filter h_1. The parameter w controls the
amount of amplitude distortion produced by the channel. The output of the channel
out becomes the input un to the adaptive filter. The length of the adaptive filter
eq length is 11 and the coefficients of adaptive filter are all initialized to zero.
The desired signal an is the delayed version of the binary signal. By selecting the
delay to match the midpoint of the combined length of channel and adaptive filter
impulse responses, the adaptive LMS filter is able to approximate the inverse of
the channel response.

% INVSYSID.m Inverse System Identification as Shown in Fig. 1.11

[

= 2*(rand(1l,iter) > 0.5) - 1; % Generate binary input signal

n

oe

Impulse response of channel 1

W= [2.9 3.1 3.3 3.5]; % Parameters affect the
% eigenvalue spread (evs)
h 1 = 0.5*(1l+cos((2*pi/W(1))*((1:3) - 2)));
% Channel 1 impulse response (evs = 6.0782)
% Select channel 1
h="h1;

ch_delay = fix(length(h)/2);
eq length = 11;

Channel delay = 2

Length of adaptive equalizer
eq delay = fix(eqg length/2); % Delay of channel equalizer
total_delay = ch_delay + eqg delay; % Total delay

out = filter(h,1,s); % Channel output signal

un = out + sgrt(0.001).*randn(l,iter) ;% Input to adaptive filter

dn = [zeros(l,total_delay) s(l,1l:length(un)-total_delay)];
% Desired signal
w0 = zeros(eqg length,l); % Initialize filter coefs to 0

% LMS algorithm

©




INTRODUCTION TO ADAPTIVE FILTERS 27

mulms = 0.075; % Step size
Slms = LMSinit (w0, mulms) ; % Initialization
[ylms, enlms, Slms] = LMSadapt (un,dn, Slms) ;

% Perform LMS algorithm

The above description of an adaptive channel equalizer assumes that the additive
noise 7n(n) shown in Figure 1.11 can be ignored. When significant noise is present, the
adaptive filter cannot converge to the exact inverse of the channel as effort is also needed
to minimize the additive noise. In addition, due to the channel inversion function, the
adaptive filter may amplify the noise at frequency bands where the unknown system
has small magnitude responses. Therefore, special considerations are needed to prevent
excessive equalization at the expense of noise enhancement.

Inverse modeling is widely used in adaptive control, deconvolution and channel equal-
ization. For example, the adaptive equalizer is used to compensate the distortion caused
by transmission over telephone and radio channels [5]. In adaptive channel equalization,
s(n) is the original data at the transmitter that is transmitted to the receiver through the
unknown communication channel. At the receiver, the received data u(n) is distorted
because each data symbol transmitted over a time-dispersive channel extends beyond the
time interval used to represent that symbol, thus causing an overlay of received symbols.
Since most channels are time varying and unknown in advance, the adaptive filter is
required to converge to the inverse of the unknown and time-varying channel so that
y(n) approximates the delayed version of s(n).

After a short training period using pseudo-random numbers known to both the trans-
mitter and receiver in modems, the transmitter begins to transmit the modulated data
signal s(n). To track the possible changes in the channel during data transmission, the
adaptive equalizer must be adapted continuously while receiving the data sequence. How-
ever, the desired signal is no longer available to the adaptive equalizer in the receiver
located at the other end of the channel. This problem can be solved by treating the
output of the decision device at the receiver as correct and using it as the desired signal
d(n) to compute the error signal, as shown in Figure 1.12. This technique is called the
decision-feedback equalizer, which works well when decision errors occur infrequently.
The script M-file of the adaptive channel equalizer is cH_E0.m and its partial listing is
shown below.

Adaptive channel equalization

The channel equalization is commonly used to illustrate the principle behind inverse
system identification. As illustrated in Figure 1.12, there are two modes of channel
equalization: training and decision-directed modes. The main difference between
these modes lies in the generation of the desired signal. In the training mode,
the desired signal is obtained from the delayed version of the binary random sig-
nal, as described in the previous inverse system identification example. In the
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decision-directed mode, the desired signal is derived from the decision device at
the receiver end. Therefore, a different MATLAB function LMSadapt_dec is used
for the decision-directed mode.

% CH_EQ.m Channel Equalizer as Shown in Fig.1.12.

% Select channel 1

h =h_1;
ch_delay = fix(length(h)/2);
eq _length = 11;

Channel delay, 2

o0 oP

Length of adaptive equalizer

o°

eq delay = fix(eqg_length/2); Delay of channel equalizer
total_delay = ch_delay + eq _delay;
out = filter(h,1,s);

un = out(l:iter_train) + sgrt(0.001).*randn(l,iter_train);

o°

Channel output signal

% Input to adaptive filter
un_dec = out(iter_train+l:iter_total) +
sqgrt (0.001) .*randn (1, iter_dec) ; % Input to adaptive filter

% 1in decision directed mode
dn = [zeros(l,total_delay) s(l,l:iter_train-total_delay)];

% Desired signal in

% training mode
w0 = zeros(eqg length,l); % Initialize filter coefs to 0

[

% Adaptive filtering using LMS algorithm

mulms = 0.075; % Step size mu
Slms = LMSinit (w0,mulms) ; % Training mode
[yvlms, enlms, Slms] = LMSadapt (un,dn, Slms) ;

$ Initialization
Slms_dec = LMSinit (Slms.coeffs, mulms/10); % Decision-directed mode
[ylms_dec,enlms_dec, Slms_dec] = LMSadapt_dec (un_dec, Slms_dec) ;

% Perform LMS algorithm

1.6.4 Adaptive array processing

So far, we have introduced adaptive filtering applications that combine weighted input
signal samples at different time instants to produce an output signal that is related to the
desired signal. This type of filtering is classified as temporal filtering. In this section, we
discuss an alternate adaptive filtering application that acquires input signals at different
positions to form a spatial filtering approach. The term adaptive array processing is
commonly used to describe multiple adaptive filters that perform spatial filtering. An
example of adaptive array processing [5] is shown in Figure 1.13, where the array of
multiple sensors (spaced / units apart) with steering delays are used to pick up signals
and interference arriving from different directions. The main objective of adaptive array
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Figure 1.13 An example of adaptive array processing with three sensors

processing is to form a beam that produces a peak array gain in the desired look direction
and adaptively to cancel interference outside the desired beam.

Each array element is connected to an adaptive filter that produces an output that is
subsequently combined with the outputs of other adaptive filters to form an array pattern
in the desired look direction. In order to pick up the desired signal in the look direction,
a pilot signal that consists of the desired spectral and directional characteristics is used
as the desired signal d(n). The error signal e(n) is used to adjust the adaptive filters to
form a beam pattern in the look direction, and at the same time eliminate interference
coming from other directions.

The sensor array in the adaptive array processing system is analogous to the tapped-
delay line of the adaptive FIR filter shown in Figure 1.3. At any particular instant of
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time, spatial signals captured in the sensor array are individually filtered by its respective
adaptive filter and combined to capture the target signal with the maximum signal-to-noise
ratio. Similarly, the adaptive filter adaptively combines the input samples to form an
output signal that approximates the desired (target) signal.

1.6.5 Summary of adaptive filtering applications

A summary of adaptive filtering applications is listed in Table 1.1 to highlight the main
differences among different applications. It is noted that the desired (or reference) sig-
nal is not always available for a given application. The reference signal d(n) may be
derived from the input signal u(n). For example, in the adaptive channel equalization
operating in the decision-directed mode (Figure 1.12), the desired signal is derived from
a nonlinear decision device. Alternatively, the error signal e(n) may be derived without
the reference signal. For example, a constant modulus adaptive algorithm [5] is applied
to a constant-envelope signal in communications. Based on a priori information that the
amplitude of signal is constant, we can compare the adaptive filter output to this constant
value and derive an error signal without the desired signal. Another example is the active
noise control shown in Figure 1.7, where the noise cancellation (acoustic superposition) is
performed in the acoustic domain. Therefore, a microphone is used to sense the residual
noise as the error signal e(n) for filter adaptation.

1.7 Transform-domain and subband adaptive filters

As explained in Sections 1.2 and 1.3, the most widely used adaptive structure is the
transversal (or FIR) filter shown in Figure 1.3. This structure operates in the time domain
and can be implemented in either the sample or block processing mode [13]. However,
the time-domain LMS-type adaptive algorithms associated with the FIR filter suffer from
high computational cost if applications (such as acoustic echo cancellation) demand a
high-order filter and slow convergence if the input signal is highly correlated.

This section describes the transform-domain and subband adaptive filters [1, 3] that
have advantages of low computational cost and fast convergence. The differences between
subband and transform-domain adaptive filters are highlighted. Some insights into the
relation between these structures are briefly introduced. This section also provides a
brief introduction to subband adaptive filtering, which is suitable for adaptive filtering
applications that need a long filter length, such as acoustics echo cancellation.

1.7.1 Transform-domain adaptive filters

This subsection highlights two classes of transform-domain adaptive filters including
frequency-domain adaptive filters and self-orthogonalizing adaptive filters.

1.7.1.1 Frequency-domain adaptive filters

The frequency-domain adaptive filter transforms the desired signal d(n) and the
input signal u(n) using the FFT and performs frequency-domain filtering and adap-
tation based on these transformed signals. As discussed in Sections 1.2 and 1.3,
the time-domain adaptive filter performs linear convolution (filtering) and linear
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Figure 1.14 Block diagram of the frequency-domain fast LMS algorithms

correlation (weight updating) iteratively based on the arrival of new data samples. The
frequency-domain adaptive filter shown in Figure 1.14 performs frequency transforms
and processing over a block of input and desired signals, thus achieving substantial
computational savings by using an FFT, especially for applications that use high-order
filters. Unfortunately, the frequency-domain operations result in circular convolution
and circular correlation. Thus a more complicated overlap-add or overlap-save method
[13] is required to overcome the error introduced in these circular operations.

Figure 1.14 shows the block diagram of the frequency-domain adaptive filter using
the fast LMS algorithm [3, 4]. This algorithm employs the overlap-save method with
50 % overlap and requires five 2M-point FFT/IFFT operations.

In order to achieve the correct linear convolution and correlation results in frequency-
domain filtering, extended data vectors are required. This type of processing is known as
block processing, with the following definitions:

Input vector:

u(n)oy =[u(n —2M + 1), ...,u(n — M), u(n —M+1),...,u(n — 1), u(n)]”

FFT of input vector:

U(n) = FFT [u(m)] = [Usy—1(0). ... Uy (n), Uy—1(n), ..., U (), Uo(m)]"
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Error vector:
ey = [e(n),en—1),...,en — M+ D7
FFT of error vector:
E(n) = FFT [0ye(n)y] = [Eo(n), E\(n), ..., EzM—l(n)]T

Note that the subscripts 2M and M denotes the length of the vectors u(n),y, and e(n)y,
respectively. The input vector u(n),y concatenates the previous M data samples with
the present M data samples, and a 2M-point FFT operates on this input vector to form
the frequency-domain vector U(n). Note that U(n) is a 2M-point complex vector.

The output signal vector from the adaptive filter can be computed by taking the
element-by-element multiplication between the input vector and the 2M-point weight
vector as

Y(n) = W(n).Un), (1.26)

where the operator ‘. is the corresponding element-by-element multiplication for the fre-
quency index k =0, 1,...,2M — 1 and W(n) = [Wy(n), Wi(n), ..., Wap—1(m)]7 is the
complex-valued weight vector at time 7. In order to obtain the correct result using circular
convolution, the frequency-domain output vector, Y(n) = [Yo(n), Y1 (n), ..., Yoy —1(n)]7,
is transformed back to the time domain using the inverse FFT (IFFT) and the first M
points of the 2M-point IFFT outputs are discarded to obtain the output vector y(n)y =
[y(n), y(n — 1),...,y(n — M + 1)]”. The output vector is subtracted from the desired
vector d(n) = [d(n),d(n —1),...,d(n — M + 1)]” to produce the error signal vector
e(n)y. The error vector e(n) is then augmented with M zeros and transformed to the
frequency-domain vector E(n) using the FFT, as shown in Figure 1.14. The adaptation
of the filter coefficients can be expressed as

Wi(n + M) = Wi (n) + pUF () Ex(n), k=0,1,...,2M —1, (1.27)

where U}'(n) is the complex conjugate of the frequency-domain signal Uy(n). This
weight-updating equation is known as the block complex LMS algorithm [3]. Note that
the weight vector is not updated sample by sample as the time-domain LMS algorithm;
it is updated once for a block of M samples. Also, the weight variables are complex
valued due to the FFT.

As shown in the gradient constraint box in Figure 1.14, the weight-updating terms
[uU*(n).E(n)] are inverse transformed, and the last M points are set to zeros before
taking the 2M-point FFT for weight updating. An alternate algorithm, called the uncon-
strained frequency-domain adaptive filter [14], removes the gradient constraint block,
thus producing a simpler implementation that involves only three transform operations.
Unfortunately, this simplified algorithm no longer produces a linear correlation between
the transformed error and input vectors, thus resulting in poorer performance com-
pared to the frequency-domain adaptive filters with gradient constraints. Nevertheless,
frequency-domain adaptive filters with fast convolution and correlation schemes are
able to achieve lower computational cost as compared to high-order time-domain adap-
tive filters. The function M-files of the frequency-domain adaptive filter algorithm are
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FDAFinit.m and FDAFadapt.m, and the script M-file that calls these MATLAB functions
is FDAFdemo.m. Partial listing of these files is shown below.

The frequency-domain adaptive filter (FDAF) algorithm

The function rparinit performs the initialization of the FDAF algorithm, where
the weight vector wo is normally set to a zero vector at the start of the simulation.
The function FpAFadapt performs the actual computation of the FDAF algorithm
given in Equation (1.27). Note that both constrained and unconstrained versions of
the FDAF algorithm are implemented in the program, and users have the option to
select one. The step sizes mu and mu_unconst are used in the FDAF algorithm with
gradient constraint and gradient unconstraint, respectively. Note that the function
FDAFadapt calls another MATLAB function fdaf to perform a frequency-domain
adaptive filter algorithm, which is modified from John Forte, BWV Technologies
Inc. Version v1.0.

M = 256;

mu = 0.5; % Step size for constrained FDAF
mu_unconst = 0.001; % Step size for unconstrained FDAF

S = FDAFinit (zeros(M,1),mu,mu_unconst,iter) ;

% Initialization
S.unknownsys = b;
[en,S] = FDAFadapt(un,dn,S); % Perform FDAF algorithm

function S = FDAFinit (w0,mu,mu_unconst,iter)

.coeffs = w0; % Coefficients of FIR filter
.length = M; % Length of adaptive filter

.step = mu; % Step size of constrained FDAF
.step_unconst = mu_unconst; % Step size of unconstrained FDAF

0 N n v n © O -

.iter = 0; % Iteration count
.AdaptStart = length(w0); % Running effect of adaptive filter
.weight = WEIGHT; % FFT of zero-padded weight vector
.palpha = 0.5¢ % Constant to update power in
% each frequency bin
S.ref = un_blocks; % 2M-sample block of input signal
function [en,S] = FDAFadapt (un,dn,S)

for n = 1:ITER
u_new = [u_new(2:end); un(n)];
% Start input signal blocks
d); dn(n)];
% Start desired signal block

If iteration == block length

dn_block = [dn_block(2:en

if mod(n,M)==0
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un_blocks = [u_old; u_new];
u_old = u_new;
b = S.unknownsys;
if n >= AdaptStart % Frequency-domain adaptive filtering
[error, WEIGHT, power,misalign] =
fdaf (M, mu, mu_unconst,power_alpha, WEIGHT,dn_block,un_blocks, power, b

,select) ;
en = [en; error];%$ Update error block
eml = [eml; misalign];
% Update misalignment at each block
end
end
end

1.7.1.2 Self-orthogonalizing adaptive filters

As explained in Section 1.5, the eigenvalue spread plays an important role in determining
the convergence speed of the time-domain adaptive filters. When the input signal is
highly correlated, the convergence of the LMS algorithm is very slow. Many methods
were developed to solve this problem. One method is to use the RLS algorithm
(see Section 1.4), which extracts past information to decorrelate the present input
signal [3]. This approach suffers from high computational cost, poor robustness, low
numerical stability and slow tracking ability in nonstationary environments. The other
method is to decorrelate the input signal using a transformation such as the discrete
Fourier transform (DFT) or discrete cosine transform (DCT) [1]. This method is known
as the self-orthogonalizing adaptive filter. Compared with the RLS approach, the
self-orthogonalizing adaptive filter saves computational cost and is independent of the
characteristics of the input signal.

Figure 1.15 shows the self-orthogonalizing adaptive filter. It has a similar structure
to the M-tap adaptive transversal filter shown in Figure 1.3, but with preprocessing
(transform and normalization) on the input signal using the DFT or DCT. The transform
is carried out for every new input signal sample. The transformed signals U (n) are
normalized by the square root of its respective power in the transform domain as

U Ui (n)
(1) = ———, k=0,1,...,. M — 1, (1.28)

VP ) +6’

where ¢ is a small constant to prevent division by zero and Py (n) is the power that can
be estimated recursively as

P(n) = (1 — B)Pe(n — 1) 4+ BUE(n). (1.29)

Note that the power Py (n) is updated iteratively for every new sample arriving at the
tapped-delay line and g is a forgetting factor that is usually chosen as 1/M. The resulting
transform-domain signals with similar power are processed by the adaptive linear
combiner whose tap weights are updated by the LMS algorithm given in Equation (1.10).
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Figure 1.15 Block diagram of the self-orthogonalizing algorithm

Therefore, the extra computational cost over the conventional LMS algorithm is the
additional transform power estimator given in Equation (1.29) and the normalization
described in Equation (1.28).

The normalization defined in Equation (1.28) can be absorbed into the LMS algorithm
to become the normalized LMS algorithm given in Equation (1.13). It is also noted that
when DFT is used to transform the input signal, the DFT outputs are complex variables
and the complex LMS algorithm must be used to update the weight vector as

Wi(n + 1) = Wi(n) + iU (n)e(n), k=0,1,...,M —1, (1.30)

where uy = u/+/ Pr(n) + & is the normalized step size. In this case, the output of the
algorithm is still real valued if the desired signal is real valued because the com-
plex error signal e(n) has a negligible imaginary part. The function M-files of the
self-orthogonalizing adaptive filter algorithm are SoAFinit.m and SoaFadapt.m, and the
script M-file soaFdemo.m calls these MATLAB functions. Partial listing of these M-files
is shown below.

The self-orthogonalizing adaptive filter algorithm

The self-orthogonalizing adaptive filter requires a transformed input vector. In this
MATLAB example, we use a DCT-transform matrix s.t to transform the input
data vector u. The transformed input u is applied to a set of parallel coefficients
w and updates similar to the normalized LMS algorithm. The normalized step size
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at each channel is based on the individual signal power power_vec at that fre-
quency bin.

S = SOAFinit (zeros(M,1l),mu,iter); % Initialization
S.unknownsys = b;
[yn,en,S] = SOAFadapt (un,dn,S) ; % Perform algorithm

function S = SOAFinit (w0,mu, leak)

% Assign structure fields

S.coeffs = w0 (:); % Coefficients of FIR filter
S.step = mu; % Step size
S.leakage = leak; % Leaky factor
S.iter = 0p % Iteration count
S.AdaptStart = length(wO0) ; % Running effects
M = length (w0) ; % Length of filter
S.beta = 1/M; % Forgetting factor
%
for j=1:M, % DCT-transform matrix

S.T(1,j)=1/sart (M) ;

for i=2:M,

S.T(i,3j)=sgrt(2/M)*cos (pi* (i-1)*(2*j-1)/2/M);

end
end
function [yn,en,S] = SOAFadapt (un,dn,S)

for n = 1:ITER

u = [un(n); u(l:end-1)1; % Input signal vector contains
% [u(n),u(n-1),...,u(n-M+1)1]1"

U = T*u; % Transformed input vector

yn(n) = w'*U; % Output signal

power_vec= (1-S.beta) *power_vec+S.beta* (U.*U) ;

% Estimated power
inv_sqgrt_power = 1./ (sgrt(power_vec+(0.00001.*ones(M,1))));

en(n) = dn(n) - yn(n); % Estimation error
if ComputeEML == 1;
eml (n) = norm(T*b-w) /norm_Tb;

% System error norm (normalized)
end
if n >= AdaptStart
w = w + (mu*en(n)*inv_sqgrt_power) .*U;
% Tap-weight adaptation
S.iter = S.iter + 1;
end
end

The following section briefly introduces a different structure known as the subband
adaptive filter, which closely resembles the self-orthogonalizing filter.
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1.7.2 Subband adaptive filters

As stated in Section 1.6.1, the acoustic echo canceller in a typical room requires a high-
order adaptive FIR filter to cover long echo tails. This is a disadvantage of using FIR fil-
ters for adaptive filtering because of the high computational load and slower convergence.
Subband filtering structures have been proposed to overcome these problems [1, 3].

Figure 1.16 shows the block diagram of a general subband adaptive filter (SAF)
that partitions the fullband input and desired signals into N subbands and decimates
the subband signals from the original sampling rate f; to the lower rate of f;/N. The
long M-tap filter (shown in Figure 1.3) is now replaced by N shorter Mg-tap FIR filters
(where Ms < M) operating in parallel at a lower rate. The analysis filter bank consists
of N parallel bandpass filters that are designed to partition the fullband signal into N
overlapped frequency bands. The details of designing the analysis filter bank will be
discussed in Chapters 2 and 5.

Also shown in Figure 1.16, a synthesis filter bank is used to combine the N subband
output signals, y;p(n),i =0,1,..., N — 1, into a fullband signal y(n). The synthesis
filter bank consists of a bank of interpolators that upsample the subband signals before
filtering and adds these subband signals. Again, the details of designing synthesis filter
banks will be discussed in Chapters 2 and 5. A synthesis filter bank is only required
when fullband signals, such as the output signal y(n) or error signal e(n), are required.
A detailed description of subband adaptive filters and their important properties will be
given in Chapters 4, 5, 6 and 7.

A problem with subband adaptive filters is the introduction of substantial delay in
the signal path caused by analysis and synthesis filter banks. Several modifications to
the subband structures, known as delayless subband adaptive filters, are introduced in
Chapter 4. A new multiband-structured SAF that has several useful properties as compared
to conventional subband adaptive filters will be discussed in Chapter 6. Chapter 7 deals
with the stability and performance analysis of SAF. Chapter 8 reports new research
directions and recent works in the area of subband adaptive filtering.

Synthesis filter bank  [—» y{n)

k F 3 k

= |

==
* “==| 2| & <

= BN -
5 Hon (k}_ Adaptive = T d, (k) =
5 filter # T 5
. E & (k) ™ E
B | 5
o5 5 )_ Adaptive -~ 4,k 25
B g Tl fiter# T gF

w(n) —» E E..g‘"; & k) & E l— d(n)

@ — 23
:;\-8 [ =, [l %g
[1:] = ] Y ) f1] E
£ x ' T ) <3
8 oM Agapive - o dy ) §
= T filter #y-1 T =
z - e,k z

Figure 1.16 Block diagram of the subband adaptive filter
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There are some similarities and differences between the SAF and the self-
orthogonalizing adaptive filter shown in Figure 1.15. Both structures are designed to
improve convergence over the FIR filter with the LMS algorithm by partitioning the
fullband input signal u(n) into a bank of parallel bandpass filters. The differences
include: (i) the SAF involves the decimation operation to reduce the sampling rate for
adaptive filtering, while there is no decimation in the self-orthogonalizing adaptive
filter, (ii) N subband error signals are produced to update respective subband adaptive
filters, but only a single error signal is used to update all the tap weights in the
self-orthogonalizing adaptive filter, (iii) if the DFT is used in the self-orthogonalizing
adaptive filter, the tap weights are complex numbers, while the SAF has real-valued
tap weights, which leads to a simpler computational architecture, and (iv) the subband
adaptive filter needs the synthesis filter bank to reconstruct the fullband output and error
signals, which is not required in the self-orthogonalizing adaptive filter. These attributes
of the subband adaptive filters and the comparison with other adaptive filters will be
further explored in subsequent chapters.

1.8 Summary

This chapter introduced fundamental concepts of adaptive filtering. The basic block dia-
grams of filter structures, adaptive algorithms and applications were briefly discussed.
Adaptive algorithms discussed were limited to the class that is based on minimizing the
mean-square error, e.g. the LMS-type algorithms. A brief mention of another class of
algorithms that is based on the deterministic framework of finding the least-square error
over a period of past error samples was also given. In addition, important features of
the transform-domain and subband adaptive filters were presented to illustrate how they
differ from each other and the time-domain approaches. A more detailed description and
analysis of these time-domain and transform-domain adaptive algorithms can be found
in References [1] and [3].
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