
008

Digital design is now fully assimilated into design practice, and we are moving 
rapidly from an era of being aspiring expert users to one of being adept 
digital toolmakers. This primer looks at this transition and acts as a first 
resource for all those curious about developing a higher-order engagement 
with the computer, but with an eye to critical enquiry rather than geekdom. 
Scripting Cultures considers the implications of lower-level computer 
programming (scripting) as it becomes more widely taken up and more 
confidently embedded into the ‘design process’. 

Scripting is a rather loose term by any definition and in this primer can be 
taken to mean computer programming at several levels. For the novice 
dabbling at the more accessible end of the user spectrum, scripting is the 
capability offered by almost all design software packages that allows the user 
to adapt, customise or completely reconfigure software around their own 
predilections and modes of working. At its most demanding for the emerging 
connoisseur, scripting can refer to higher-level computer programming 
where, in the ‘open-source’ environment, ‘libraries’ of functions can be 
combined with preconfigured routines (algorithms) as a means to produce 
manufacturer-independent digital design capability.1 At its simplest, therefore, 
scripting affords a significantly deeper engagement between the computer 
and user by automating routine aspects and repetitive activities, thus 
facilitating a far greater range of potential outcomes for the same investment 
in time. Along with extending design experimentation, scripting can also be 

 1
Scripting 

 cultures

CO
PYRIG

HTED
 M

ATERIA
L



2 Mark Burry Chapter 1 Scripting cultures009

the antidote to standardisation forced by an ambition to lower production 
costs, rather than any more sophisticated motivation: the previously elusive 
opportunities for multiple versioning and bespoke production can now be 
considered more seriously through the use of scripting. This new territory 
combines with emerging affordable digital fabrication technologies taking 
advantage of the improving file-to-factory protocols. This has the potential 
to free up the designer to spend more time on design thinking. Authoritative 
customisation of the ‘black box’ affords the designer opportunities to escape 
the strictures inherent in any software – by definition in ways not thought of 
by the makers, otherwise it would be an existing capability. 

Strictly speaking, to script is to write a screenplay or dialogue from which a play 
might be performed. Setting down the language from which others perform 
is presumably why the word ‘scripting’ has entered the lexicon of software 
users, and in computing, ‘scripting language’ is often synonymous with 
‘programming language’: it is the means by which the user gives highly specific 
instructions to the computer with which they are interacting.2 At a semantic 
level it is possible that the designer is less likely to flinch at the term scripting 
than they might at the term programming, for it is quite clear that most of the 
designers who use computers as a core part of their digital practice do not 
automatically turn to programming to form part of their repertoire. By not 
doing so users at once place their entire trust in the software engineers in the 
expectation that those anonymous collaborators have thought through all that 
might be wanted by the designers, just as they are conceding that what seems 
on occasion endless manual repetition is an acceptable use of their time when 
they could otherwise have been seeking some degree of automation. Software 
modified by the designer through scripting, however, provides a range of 
possibilities for creative speculation that is simply not possible using the 
software only as the manufacturers intended it to be used. Because scripting is 
effectively a computing program overlay, the tool user (designer) becomes the 
new toolmaker (software engineer).

Motivation to contribute to the scripting Zeitgeist

Why write a book on scripting in terms of culture when it may only be a 
passing ‘style’?

Scripting is not new to design and was originally considered the task of 
a specialist; being taught to program computers in any way was not part 



010

of a design education. It is only recently that there has been a sufficient 
groundswell of interest to prompt change. Many designers are now aware of 
the potential of scripting, but it is still seen as a difficult arena to enter. This 
book joins the growing list of titles that have emerged over the last few years 
offering routes for designers into the world of scripting. This primer could 
treat scripting as a technical challenge requiring clear description, guidance 
and training, but instead leaves that task to others and focuses on motivation. 
Crucially, Scripting Cultures offers some answers to why the designer would 
script in the first place, and considers some of the cultural and theoretical 
implications along the way. Scripted code readily changes hands and, in terms 
of potential risks, it could become a cloning tool for less talented operators 
to mimic their masters. In contrast and in terms of opportunities scripting 
ought to be the opposite: a liberating design force unleashed by the Internet 
combining with the innate human desire to share knowledge; the live hive in 
which the collective critical mass is far greater than the sum of the individuals. 

This book offers three important differences to other titles and seeks to 
provide complementary material rather than dig away at essential points of 
difference. Firstly, the predominant theme is ‘cultural’ rather than ‘practical’, 
‘computational’, ‘artistic’ or ‘generative’. It enquires into the cultural 
implications of scripting and asks what are the cultures of scripting as, 
emerging in myriad ways, they more conspicuously influence the designer’s 
toolkit. Secondly, on an associated website hosted by Wiley, this book 
directs readers to substantial worked examples of code adopted in some 
of the most widely used modelling software for some of the project work 
described. In these samples, every parcel of code is provided for the reader 
with basic explanations as to what it does, and why it appears where it does 
in the script. Thirdly, for the designer who does not want to work on top 
of manufacturers’ software packages, a worked example will be laid out as 
proof of concept using freely available open-source software, offering the 
experienced designer complete freedom in the way that they operate.

The book is organised in three sections. It commences by considering the 
fundamentals of computing and design as a means of capturing some of 
the spirit at the time in which I am writing. More critically still, the primer 
moves on to distil the thoughts of many of the current generation of 
key scripters into an action plan as first steps to deducting some kind of 
collective ‘quo vadis?’. As essential background for the aspiring novice, this 
is followed by a succinct consideration of what others have written on the 
subject and the principal choices of approach available to the scripter but 



0112 Mark Burry Chapter 1 Scripting cultures

not discussed in detail in this primer. The final section is a series of five 
commentaries around two decades of my own endeavours in the field. This 
is preceded by an account of a set of design preoccupations as the context 
for this personal line of enquiry. I hasten to add that I am not an expert 
scripter myself, but the longevity of my involvement has led to a series of 
insights shared here, to serve at least as provocations if not as an actual 
modus operandi for general adoption. The introduction to the five projects, 
‘Dimensions’, covers my motivation to start scripting and commences the 
general theme around the primacy of first idea, then ideation, conceptual 
development and, ultimately, logical exposition. Technique, which could 
so easily have been foregrounded, has instead taken a back seat. Rapid 
changes in software and emerging alternative computational design 
approaches enforce this ‘knowhow’ reticence, not least to avoid the primer 
becoming obsolete soon after publication. The intellectual challenges 
of ideation and the logic of digital design discovery alone are sufficient 
motivation for an exposé of this kind, transcending any need for a 
developed discussion on the relative ease or difficulty of particular software 
or open-source opportunities in our current era. 

Necessarily, I bring my own baggage to this account, but in conducting 
my research for the primer it became clear that my situation, that of an 
autodidact, is not the exception that I had perhaps assumed. This is one 
of two reasons why it is titled Scripting Cultures and not simply Scripting 
Culture; this is to say, innovative scripting designers do not want to be 
locked into a single defining culture. The other motivation to pluralise 
‘culture’ is to reinforce the message that the book is not about identifying 
and tuning into the latest swarm phenomenon, and placing an umbrella 
over a ‘new’ design movement or style. Scripting, as an approach to 
computational design, offers access to whole new ways of exploring design, 
but design remains always at the core. It is clear to me that so long as 
coders follow their own leads, there will be many scripting cultures. Scripting 
is especially prominent now because of the difference between digital 
design pre scripting and digital design now, as scripting steps temporarily 
into the limelight as a burgeoning new creative force, as agents of change 
often are. Its assumed novelty will pass, no doubt, but we are still at the 
stage of largely uncritical engagement. This primer will play its part, I hope, 
in encouraging digital designers to take up scripting while still continuing to 
think for themselves as designers first, as they always have done.



012

References

1 At the highest level still 
(short of designing one’s own 
computer) there is ‘machine 
code’, the actual machine 
operating language of a 
computer with which the user-

engaged operating language 
negotiates. We will not be 
going anywhere near there.
2 Some software includes 
opportunities to engage 
through scripting at several 

levels of sophistication, from 
macro writing, scripting, 
and programming via a SDK 
(software development kit).


