Chapter 1

Using Physics to Understand Your World

In This Chapter

- ▶ Recognizing the physics in your world
- ▶ Understanding motion
- ▶ Handling the force and energy around you
- Getting hot under the collar with thermodynamics

Physics is the study of the world and universe around you. Luckily, the behavior of the matter and energy — the stuff of this universe — is not completely unruly. Instead, it strictly obeys laws, which physicists are gradually revealing through the careful application of the *scientific method*, which relies on experimental evidence and sound rigorous reasoning. In this way, physicists have been uncovering more and more of the beauty that lies at the heart of the workings of the universe, from the infinitely small to the mindbogglingly large.

Physics is an all-encompassing science. You can study various aspects of the natural world (in fact, the word *physics* is derived from the Greek word *physika*, which means "natural things"), and accordingly, you can study different fields in physics: the physics of objects in motion, of energy, of forces, of gases, of heat and temperature, and so on. You enjoy the study of all these topics and many more in this book. In this chapter, I give an overview of physics — what it is, what it deals with, and why mathematical calculations are important to it — to get you started.

What Physics Is All About

Many people are a little on edge when they think about physics. For them, the subject seems like some highbrow topic that pulls numbers and rules out of thin air. But the truth is that physics exists to help you make sense of the world. Physics is a human adventure, undertaken on behalf of everyone, into the way the world works.

At its root, physics is all about becoming aware of your world and using mental and mathematical models to explain it. The gist of physics is this: You start by making an observation, you create a model to simulate that situation, and then you add some math to fill it out — and voilà! You have the power to predict what will happen in the real world. All this math exists to help you see what happens and why.

In this section, I explain how real-world observations fit in with the math. The later sections take you on a brief tour of the key topics that comprise basic physics.

Observing the world

You can observe plenty going on around you in your complex world. Leaves are waving, the sun is shining, light bulbs are glowing, cars are moving, computer printers are printing, people are walking and riding bikes, streams are flowing, and so on. When you stop to examine these actions, your natural curiosity gives rise to endless questions such as these:

- ✓ Why do I slip when I try to climb that snow bank?
- ✓ How distant are other stars, and how long would it take to get there?
- ✓ How does an airplane wing work?
- ▶ How can a thermos flask keep hot things warm *and* keep cold things cool?
- ✓ Why does an enormous cruise ship float when a paper clip sinks?
- ✓ Why does water roll around when it boils?

Any law of physics comes from very close observation of the world, and any theory that a physicist comes up with has to stand up to experimental measurements. Physics goes beyond qualitative statements about physical things — "If I push the child on the swing harder, then she swings higher," for example. With the laws of physics, you can predict precisely how high the child will swing.

Making predictions

Physics is simply about modeling the world (although an alternative viewpoint claims that physics actually uncovers the truth about the workings of the world; it doesn't just model it). You can use these mental models to describe how the world works: how blocks slide down ramps, how stars form and shine, how black holes trap light so it can't escape, what happens when cars collide, and so on.

When these models are first created, they sometimes have little to do with numbers; they just cover the gist of the situation. For example, a star is made up of this layer and then that layer, and as a result, this reaction takes place, followed by that one. And pow! — you have a star. As time goes on, those models become more numeric, which is where physics students sometimes start having problems. Physics class would be a cinch if you could simply say, "That cart is going to roll down that hill, and as it gets toward the bottom, it's going to roll faster and faster." But the story is more involved than that — not only can you say that the cart is going to go faster, but in exerting your mastery over the physical world, you can also say how much faster it'll go.

There's a delicate interplay between theory, formulated with math, and experimental measurements. Often experimental measurements not only verify theories but also suggest ideas for new theories, which in turn suggest new experiments. Both feed off each other and lead to further discovery.

Many people approaching this subject may think of math as something tedious and overly abstract. However, in the context of physics, math comes to life. A quadratic equation may seem a little dry, but when you're using it to work out the correct angle to fire a rocket at for the perfect trajectory, you may find it more palatable! Chapter 2 explains all the math you need to know to perform basic physics calculations.

Reaping the rewards

So what are you going to get out of physics? If you want to pursue a career in physics or in an allied field such as engineering, the answer is clear: You'll need this knowledge on an everyday basis. But even if you're not planning to embark on a physics-related career, you can get a lot out of studying the subject. You can apply much of what you discover in an introductory physics course to real life:

- In a sense, all other sciences are based upon physics. For example, the structure and electrical properties of atoms determine chemical reactions; therefore, all of chemistry is governed by the laws of physics. In fact, you could argue that everything ultimately boils down to the laws of physics!
- ✓ Physics does deal with some pretty cool phenomena. Many videos of physical phenomena have gone viral on YouTube; take a look for yourself. Do a search for "non-Newtonian fluid," and you can watch the creeping, oozing dance of a cornstarch/water mixture on a speaker cone.

More important than the applications of physics are the problem-solving skills it arms you with for approaching any kind of problem. Physics problems train you to stand back, consider your options for attacking the issue, select your method, and then solve the problem in the easiest way possible.

Observing Objects in Motion

Some of the most fundamental questions you may have about the world deal with objects in motion. Will that boulder rolling toward you slow down? How fast do you have to move to get out of its way? (Hang on just a moment while I get out my calculator...) Motion was one of the earliest explorations of physics.

When you take a look around, you see that the motion of objects changes all the time. You see a motorcycle coming to a halt at a stop sign. You see a leaf falling and then stopping when it hits the ground, only to be picked up again by the wind. You see a pool ball hitting other balls in just the wrong way so that they all move without going where they should. Part I of this book handles objects in motion — from balls to railroad cars and most objects in between. In this section, I introduce motion in a straight line, rotational motion, and the cyclical motion of springs and pendulums.

Measuring speed, direction, velocity, and acceleration

Speeds are big with physicists — how fast is an object going? Thirty-five miles per hour not enough? How about 3,500? No problem when you're dealing with physics. Besides speed, the direction an object is going is important if you want to describe its motion. If the home team is carrying a football down the field, you want to make sure they're going in the right direction.

When you put speed and direction together, you get a vector — the velocity vector. Vectors are a very useful kind of quantity. Anything that has both size and direction is best described with a *vector*. Vectors are often represented as arrows, where the length of the arrow tells you the magnitude (size), and the direction of the arrow tells you the direction. For a velocity vector, the length corresponds to the speed of the object, and the arrow points in the direction the object is moving. (To find out how to use vectors, head to Chapter 4.)

Everything has a velocity, so velocity is great for describing the world around you. Even if an object is at rest with respect to the ground, it's still on the Earth, which itself has a velocity. (And if everything has a velocity, it's no wonder physicists keep getting grant money — somebody has to measure all that motion.)

If you've ever ridden in a car, you know that velocity isn't the end of the story. Cars don't start off at 60 miles per hour; they have to accelerate until they get to that speed. Like velocity, acceleration has not only a magnitude but also a direction, so acceleration is a vector in physics as well. I cover speed, velocity, and acceleration in Chapter 3.

Round and round: Rotational motion

Plenty of things go round and round in the everyday world — CDs, DVDs, tires, pitchers' arms, clothes in a dryer, roller coasters doing the loop, or just little kids spinning from joy in their first snowstorm. That being the case, physicists want to get in on the action with measurements. Just as you can have a car moving and accelerating in a straight line, its tires can rotate and accelerate in a circle.

Going from the linear world to the rotational world turns out to be easy, because there's a handy physics *analog* (which is a fancy word for "equivalent") for everything linear in the rotational world. For example, distance traveled becomes angle turned. Speed in meters per second becomes angular speed in angle turned per second. Even linear acceleration becomes rotational acceleration.

So when you know linear motion, rotational motion just falls in your lap. You use the same equations for both linear and angular motion — just different symbols with slightly different meanings (angle replaces distance, for example). You'll be looping the loop in no time. Chapter 7 has the details.

Springs and pendulums: Simple harmonic motion

Have you ever watched something bouncing up and down on a spring? That kind of motion puzzled physicists for a long time, but then they got down to work. They discovered that when you stretch a spring, the force isn't constant. The spring pulls back, and the more you pull the spring, the stronger it pulls back. So how does the force compare to the distance you pull a spring? The force is directly proportional to the amount you stretch the spring: Double the amount you stretch the spring, and you double the amount of force with which the spring pulls back.

Physicists were overjoyed — this was the kind of math they understood. Force proportional to distance? Great — you can put that relationship into an equation, and you can use that equation to describe the motion of the object tied to the spring. Physicists got results telling them just how objects tied to springs would move — another triumph of physics.

This particular triumph is called *simple harmonic motion*. It's *simple* because force is directly proportional to distance, and so the result is simple. It's *harmonic* because it repeats over and over again as the object on the spring bounces up and down. Physicists were able to derive simple equations that could tell you exactly where the object would be at any given time.

But that's not all. Simple harmonic motion applies to many objects in the real world, not just things on springs. For example, pendulums also move in simple harmonic motion. Say you have a stone that's swinging back and forth on a string. As long as the arc it swings through isn't too high, the stone on a string is a pendulum; therefore, it follows simple harmonic motion. If you know how long the string is and how big of an angle the swing covers, you can predict where the stone will be at any time. I discuss simple harmonic motion in Chapter 13.

When Push Comes to Shove: Forces

Forces are a particular favorite in physics. You need forces to get motionless things moving — literally. Consider a stone on the ground. Many physicists (except, perhaps, geophysicists) would regard it suspiciously. It's just sitting there. What fun is that? What can you measure about that? After physicists had measured its size and mass, they'd lose interest.

But kick the stone — that is, apply a force — and watch the physicists come running over. Now something is happening — the stone started at rest, but now it's moving. You can find all kinds of numbers associated with this motion. For instance, you can connect the force you apply to something to its mass and get its acceleration. And physicists love numbers, because numbers help describe what's happening in the physical world.

Physicists are experts in applying forces to objects and predicting the results. Got a refrigerator to push up a ramp and want to know if it'll go? Ask a physicist. Have a rocket to launch? Same thing.

Absorbing the energy around you

You don't have to look far to find your next piece of physics. (You never do.) As you exit your house in the morning, for example, you may hear a crash up the street. Two cars have collided at a high speed, and locked together, they're sliding your way. Thanks to physics (and more specifically, Part III of this book), you can make the necessary measurements and predictions to know exactly how far you have to move to get out of the way.

Having mastered the ideas of energy and momentum helps at such a time. You use these ideas to describe the motion of objects with mass. The energy of motion is called *kinetic energy*, and when you accelerate a car from 0 to 60 miles per hour in 10 seconds, the car ends up with plenty of kinetic energy.

Where does the kinetic energy come from? It comes from *work*, which is what happens when a force moves an object through a distance. The energy can also come from *potential energy*, the energy stored in the object, which comes from the work done by a particular kind of force, such as gravity or electrical forces. Using gasoline, for example, an engine does work on the car to get it up to speed. But you need a force to accelerate something, and the way the engine does work on the car, surprisingly, is to use the force of friction with the road. Without friction, the wheels would simply spin, but because of a frictional force, the tires impart a force on the road. For every force between two objects, there is a reactive force of equal size but in the opposite direction. So the road also exerts a force on the car, which causes it to accelerate.

Or say that you're moving a piano up the stairs of your new place. After you move up the stairs, your piano has potential energy, simply because you put in a lot of work against gravity to get the piano up those six floors. Unfortunately, your roommate hates pianos and drops yours out the window. What happens next? The potential energy of the piano due to its height in a gravitational field is converted into kinetic energy, the energy of motion. You decide to calculate the final speed of the piano as it hits the street. (Next, you calculate the bill for the piano, hand it to your roommate, and go back downstairs to get your drum set.)

That's heavy: Pressures in fluids

Ever notice that when you're 5,000 feet down in the ocean, the pressure is different from at the surface? Never been 5,000 feet beneath the ocean waves? Then you may have noticed the difference in pressure when you dive into a swimming pool. The deeper you go, the higher the pressure is because of the weight of the water above you exerting a force downward. *Pressure* is just force per area.

Got a swimming pool? Any physicists worth their salt can tell you the approximate pressure at the bottom if you tell them how deep the pool is. When working with fluids, you have all kinds of other quantities to measure, such as the velocity of fluids through small holes, a fluid's density, and so on. Once again, physics responds with grace under pressure. You can read about forces in fluids in Chapter 8.

Feeling Hot but Not Bothered: Thermodynamics

Heat and cold are parts of your everyday life. Ever take a look at the beads of condensation on a cold glass of water in a warm room? Water vapor in the air is being cooled when it touches the glass, and it condenses into liquid water. The condensing water vapor passes thermal energy to the glass, which passes thermal energy to the cold drink, which ends up getting warmer as a result.

Thermodynamics can tell you how much heat you're radiating away on a cold day, how many bags of ice you need to cool a lava pit, and anything else that deals with heat energy. You can also take the study of thermodynamics beyond planet Earth. Why is space cold? In a normal environment, you radiate heat to everything around you, and everything around you radiates heat back to you. But in space, your heat just radiates away, so you can freeze.

Radiating heat is just one of the three ways heat can be transferred. You can discover plenty more about heat, whether created by a heat source like the sun or by friction, through the topics in Part IV.