
&CHAPTER 1

Quantum Mechanics for Organic
Chemistry

Computational chemistry, as explored in this book, will be restricted to quantum

mechanical descriptions of the molecules of interest. This should not be taken as

a slight upon alternative approaches, principally molecular mechanics. Rather, the

aim of this book is to demonstrate the power of high-level quantum computations

in offering insight towards understanding the nature of organic molecules—their

structures, properties, and reactions—and to show their successes and point out

the potential pitfalls. Furthermore, this book will address applications of traditional

ab initio and density functional theory methods to organic chemistry, with little

mention of semi-empirical methods. Again, this is not to slight the very important

contributions made from the application of Complete Neglect of Differential

Overlap (CNDO) and its progeny. However, with the ever-improving speed of com-

puters and algorithms, ever-larger molecules are amenable to ab initio treatment,

making the semi-empirical and other approximate methods for treating the

quantum mechanics of molecular systems simply less necessary. This book is there-

fore designed to encourage the broader use of the more exact treatments of the

physics of organic molecules by demonstrating the range of molecules and reactions

already successfully treated by quantum chemical computation. We will highlight

some of the most important contributions that this discipline has made to the

broader chemical community towards our understanding of organic chemistry.

We begin with a brief and mathematically light-handed treatment of the funda-

mentals of quantum mechanics necessary to describe organic molecules. This pres-

entation is meant to acquaint those unfamiliar with the field of computational

chemistry with a general understanding of the major methods, concepts, and acro-

nyms. Sufficient depth will be provided so that one can understand why certain

methods work well, but others may fail when applied to various chemical problems,

allowing the casual reader to be able to understand most of any applied compu-

tational chemistry paper in the literature. Those seeking more depth and details,

particularly more derivations and a fuller mathematical treatment, should consult

any of three outstanding texts: Essentials of Computational Chemistry by
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Cramer,1 Introduction to Computational Chemistry by Jensen,2 and Modern

Quantum Chemistry: Introduction to Advanced Electronic Structure Theory by

Szabo and Ostlund.3

Quantum chemistry requires the solution of the time-independent Schrödinger

equation,

ĤC(R1, R2 . . . RN, r1, r2 . . . rn) ¼ EC(R1, R2 . . . RN , r1, r2 . . . rn), (1:1)

where Ĥ is the Hamiltonian operator, C(R1, R2 . . . RN, r1, r2 . . . rn) is the wavefunc-

tion for all of the nuclei and electrons, and E is the energy associated with this

wavefunction. The Hamiltonian contains all operators that describe the kinetic

and potential energy of the molecule at hand. The wavefunction is a function of

the nuclear positions R and the electron positions r. For molecular systems of inter-

est to organic chemists, the Schrödinger equation cannot be solved exactly and so a

number of approximations are required to make the mathematics tractable.

1.1 APPROXIMATIONS TO THE SCHRÖDINGER EQUATION:
THE HARTREE–FOCK METHOD

1.1.1 Nonrelativistic Mechanics

Dirac achieved the combination of quantum mechanics and relativity. Relativistic

corrections are necessary when particles approach the speed of light. Electrons near

heavy nuclei will achieve such velocities, and for these atoms, relativistic quantum

treatments are necessary for accurate description of the electron density. However,

for typical organic molecules, which contain only first- and second-row elements, a

relativistic treatment is unnecessary. Solving the Dirac relativistic equation is much

more difficult than for nonrelativistic computations. A common approximation is to

utilize an effective field for the nuclei associated with heavy atoms, which corrects

for the relativistic effect. This approximation is beyond the scope of this book,

especially as it is unnecessary for the vast majority of organic chemistry.

The complete nonrelativistic Hamiltonian for a molecule consisting of n electrons

and N nuclei is given by
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where the lower case indexes the electrons and the upper case indexes the nuclei, h is

Planck’s constant, me is the electron mass, mI is the mass of nucleus I, and r is a dis-

tance between the objects specified by the subscript. For simplicity, we define

e02 ¼
e2

4p10

: (1:3)
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1.1.2 The Born Oppenheimer Approximation

The total molecular wavefunction C(R, r) depends on both the positions of all of the

nuclei and the positions of all of the electrons. Because electrons are much lighter

than nuclei, and therefore move much more rapidly, electrons can essentially instan-

taneously respond to any changes in the relative positions of the nuclei. This allows

for the separation of the nuclear variables from the electron variables,

C(R1, R2 . . . RN , r1, r2 . . . rn) ¼ F(R1, R2 . . . RN)c(r1, r2 . . . rn): (1:4)

This separation of the total wavefunction into an electronic wavefunction c(r) and a

nuclear wavefunction F(R) means that the positions of the nuclei can be fixed and

then one only has to solve the Schrödinger equation for the electronic part. This

approximation was proposed by Born and Oppenheimer4 and is valid for the vast

majority of organic molecules.

The potential energy surface (PES) is created by determining the electronic

energy of a molecule while varying the positions of its nuclei. It is important to

recognize that the concept of the PES relies upon the validity of the Born–

Oppenheimer approximation, so that we can talk about transition states and local

minima, which are critical points on the PES. Without it, we would have to resort

to discussions of probability densities of the nuclear-electron wavefunction.

The Hamiltonian obtained after applying the Born–Oppenheimer approximation

and neglecting relativity is
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where Vnuc is the nuclear–nuclear repulsion energy. Equation (1.5) is expressed in

atomic units, which is why it appears so uncluttered. It is this Hamiltonian that

is utilized in computational organic chemistry. The next task is to solve the

Schrödinger equation (1.1) with the Hamiltonian expressed in Eq. (1.5).

1.1.3 The One-Electron Wavefunction and the Hartree–Fock Method

The wavefunction c(r) depends on the coordinates of all of the electrons in the mol-

ecule. Hartree proposed the idea, reminiscent of the separation of variables used by

Born and Oppenheimer, that the electronic wavefunction can be separated into a

product of functions that depend only on one electron,

c(r1, r2 . . . rn) ¼ f1(r1)f2(r2) . . .fn(rn): (1:6)

This wavefunction would solve the Schrödinger equation exactly if it were not for

the electron–electron repulsion term of the Hamiltonian in Eq. (1.5). Hartree next

rewrote this term as an expression that describes the repulsion an electron feels
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from the average position of the other electrons. In other words, the exact electron–

electron repulsion is replaced with an effective field Vi
eff produced by the average

positions of the remaining electrons. With this assumption, the separable functions

fi satisfy the Hartree equations
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fi ¼ Eifi: (1:7)

(Note that Eq. (1.7) defines a set of equations, one for each electron.) Solving for the

set of functions fi is nontrivial because Vi
eff itself depends on all of the functions fi.

An iterative scheme is needed to solve the Hartree equations. First, a set of functions

(f1, f2. . .fn) is assumed. These are used to produce the set of effective potential

operators Vi
eff and the Hartree equations are solved to produce a set of improved

functions fi. These new functions produce an updated effective potential, which

in turn yields a new set of functions fi. This process is continued until the functions

fi no longer change, resulting in a self-consistent field (SCF).

Replacing the full electron–electron repulsion term in the Hamiltonian with Veff

is a serious approximation. It neglects entirely the ability of the electrons to rapidly

(essentially instantaneously) respond to the position of other electrons. In a later

section we will address how to account for this instantaneous electron–electron

repulsion.

Fock recognized that the separable wavefunction employed by Hartree (Eq. 1.6)

does not satisfy the Pauli Exclusion Principle. Instead, Fock suggested using the

Slater determinant

c(r1, r2 ::: rn) ¼
1ffiffiffiffi
n!
p

f1(e1) f2(e1) . . . fn(e1)

f1(e2) f2(e2) . . . fn(e2)

f1(en) f2(en) . . . fn(en)

��������

��������
¼ f1;f2 . . .fn

�� ��, (1:8)

which is antisymmetric and satisfies the Pauli Principle. Again, an effective potential

is employed, and an iterative scheme provides the solution to the Hartree–Fock (HF)

equations.

1.1.4 Linear Combination of Atomic Orbitals (LCAO) Approximation

The solutions to the Hartree–Fock model, fi, are known as the molecular orbitals

(MOs). These orbitals generally span the entire molecule, just as the atomic orbitals

(AOs) span the space about an atom. Because organic chemists consider the atomic

properties of atoms (or collection of atoms as functional groups) to still persist to

some extent when embedded within a molecule, it seems reasonable to construct

the MOs as an expansion of the AOs,

fi ¼
Xk

m

cimxm, (1:9)
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where the index m spans all of the atomic orbitals x of every atom in the molecule

(a total of k atomic orbitals), and cim is the expansion coefficient of AO xm in MO fi.

Equation (1.9) thus defines the linear combination of atomic orbitals (LCAO)

approximation.

1.1.5 Hartree–Fock–Roothaan Procedure

Taking the LCAO approximation for the MOs and combining it with the Hartree–

Fock method led Roothaan to develop a procedure to obtain the SCF solutions.5 We

will discuss here only the simplest case where all molecular orbitals are doubly

occupied, with one electron that is spin up and one that is spin down, also known

as a closed-shell wavefunction. The open-shell case is a simple extension of these

ideas. The procedure rests upon transforming the set of equations listed in

Eq. (1.7) into the matrix form

FC ¼ SC1, (1:10)

where S is the overlap matrix, C is the k � k matrix of the coefficients cim, and 1
is the k � k matrix of the orbital energies. Each column of C is the expansion of

fi in terms of the atomic orbitals xm. The Fock matrix F is defined for the mn

element as

Fmn ¼ kn ĥ
���
���mlþ

Xn=2

j

2( jj mn)� ( jn
�� �� jm)

� �
, (1:11)

where ĥ is the core Hamiltonian, corresponding to the kinetic energy of the electron

and the potential energy due to the electron–nuclear attraction, and the last

two terms describe the coulomb and exchange energies, respectively. It is also

useful to define the density matrix (more properly, the first-order reduced density

matrix),

Dmn ¼ 2
Xn=2

i

c�incim: (1:12)

The expression in Eq. (1.12) is for a closed-shell wavefunction, but it can be defined

for a more general wavefunction by analogy.

The matrix approach is advantageous, because a simple algorithm can be estab-

lished for solving Eq. (1.10). First, a matrix X is found that transforms the normal-

ized atomic orbitals xm into the orthonormal set xm
0,

xm
0 ¼

Xk

m

Xxm, (1:13)
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which is mathematically equivalent to

XySX ¼ 1, (1:14)

where X† is the adjoint of the matrix X. The coefficient matrix C can be transformed

into a new matrix C0,

C0 ¼ X�1C: (1:15)

Substituting C ¼ XC0 into Eq. (1.10) and multiplying by X† gives

XyFXC0 ¼ XySXC01 ¼ C01 (1:16)

By defining the transformed Fock matrix

F0 ¼ XyFX, (1:17)

we obtain the simple Roothaan expression

F0C0 ¼ C01: (1:18)

The Hartree–Fock–Roothaan algorithm is implemented by the following steps:

1. Specify the nuclear position, the type of nuclei, and the number of electrons.

2. Choose a basis set. The basis set is the mathematical description of the atomic

orbitals. We will discuss this in more detail in a later section.

3. Calculate all of the integrals necessary to describe the core Hamiltonian, the

coulomb and exchange terms, and the overlap matrix.

4. Diagonalize the overlap matrix S to obtain the transformation matrix X.

5. Make a guess at the coefficient matrix C and obtain the density matrix D.

6. Calculate the Fock matrix and then the transformed Fock matrix F0.

7. Diagonalize F0 to obtain C0 and 1.

8. Obtain the new coefficient matrix with the expression C ¼ XC0 and the corre-

sponding new density matrix.

9. Decide if the procedure has converged. There are typically two criteria for con-

vergence, one based on the energy and the other on the orbital coefficients. The

energy convergence criterion is met when the difference in the energies of the

last two iterations is less than some preset value. Convergence of the coefficients

is obtained when the standard deviation of the density matrix elements in suc-

cessive iterations is also below some preset value. If convergence has not been

met, return to Step 6 and repeat until the convergence criteria are satisfied.

One last point concerns the nature of the molecular orbitals that are produced in

this procedure. These orbitals are such that the energy matrix 1 will be diagonal,

with the diagonal elements being interpreted as the MO energy. These MOs are

6 QUANTUM MECHANICS FOR ORGANIC CHEMISTRY



referred to as the canonical orbitals. One must be aware that all that makes them

unique is that these orbitals will produce the diagonal matrix 1. Any new set of orbi-

tals fi
0 produced from the canonical set by a unitary transformation

fi
0 ¼

X

j

U jifj (1:19)

will satisfy the Hartree–Fock (HF) equations and produce the exact same energy and

electron distribution as that with the canonical set. No one set of orbitals is really any

better or worse than another, as long as the set of MOs satisfies Eq. (1.19).

1.1.6 Restricted Versus Unrestricted Wavefunctions

The preceding development of the Hartree–Fock theory assumed a closed–shell

wavefunction. The wavefunction for an individual electron describes its spatial

extent along with its spin. The electron can be either spin up (a) or spin down

(b). For the closed-shell wavefunction, each pair of electrons shares the same

spatial orbital but each has a unique spin—one is up and the other is down. This

type of wavefunction is also called a (spin) restricted wavefunction, because the

paired electrons are restricted to the same spatial orbital, leading to the restricted

Hartree–Fock (RHF) method. When applied to open-shell systems, this is called

restricted open-shell HF (ROHF).

This restriction is not demanded. It is a simple way to satisfy the exclusion prin-

ciple, but it is not the only means for doing so. In an unrestricted wavefunction the

spin-up electron and its spin-down partner do not have the same spatial description.

The Hartree–Fock–Roothaan procedure is slightly modified to handle this case by

creating a set of equations for the a electrons and another set for the b electrons, and

then an algorithm similar to that described above is implemented.

The downside to the (spin) unrestricted Hartree–Fock (UHF) method is that the

unrestricted wavefunction usually will not be an eigenfunction of the Ŝ2 operator. As

the Hamiltonian and Ŝ2 operators commute, the true wavefunction must be an eigen-

function of both of these operators. The UHF wavefunction is typically contami-

nated with higher spin states. A procedure called spin projection can be used to

remove much of this contamination. However, geometry optimization is difficult

to perform with spin projection. Therefore, great care is needed when an unrestricted

wavefunction is utilized, as it must be when the molecule of interest is inherently

open-shell, like in radicals.

1.1.7 The Variational Principle

The variational principle asserts that any wavefunction constructed as a linear com-

bination of orthonormal functions will have its energy greater than or equal to the

lowest energy (E0) of the system. Thus,

kF Ĥ
���
���Fl

kF Fj jl
� E0 (1:20)
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if

F ¼
X

i

cifi: (1:21)

If the set of functions fi is infinite, then the wavefunction will produce the lowest

energy for that particular Hamiltonian. Unfortunately, expanding a wavefunction

using an infinite set of functions is impractical. The variational principle saves

the day by providing a simple way to judge the quality of various truncated

expansions—the lower the energy, the better the wavefunction! The variational

principle is not an approximation to treatment of the Schrödinger equation;

rather, it provides a means for judging the effect of certain types of approximate

treatments.

1.1.8 Basis Sets

In order to solve for the energy and wavefunction within the Hartree–Fock–

Roothaan procedure, the atomic orbitals must be specified. If the set of atomic orbi-

tals is infinite, then the variational principle tells us that we will obtain the lowest

possible energy within the HF-SCF method. This is called the Hartree–Fock

limit, EHF. This is not the actual energy of the molecule; recall that the HF

method neglects instantaneous electron–electron interactions.

Because an infinite set of atomic orbitals is impractical, a choice must be made on

how to truncate the expansion. This choice of atomic orbitals defines the basis set.

A natural starting point is to use functions from the exact solution of the

Schrödinger equation for the hydrogen atom. These orbitals have the form

x ¼ Nx iy jz ke�z(r�R), (1:22)

where R is the position vector of the nucleus upon which the function is centered and

N is the normalization constant. Functions of this type are called Slater-type orbitals

(STOs). The value of z for every STO for a given element is determined by minimiz-

ing the atomic energy with respect to z. These values are used for every atom of that

element, regardless of the molecular environment.

At this point it is worth shifting nomenclature and discussing the expansion in

terms of basis functions instead of atomic orbitals. The construction of MOs in

terms of some set of functions is entirely a mathematical “trick,” and we choose

to place these functions at nuclei because that is the region of greatest electron

density. We are not using “atomic orbitals” in the sense of a solution to the

atomic Schrödinger equation, but just mathematical functions placed at nuclei for

convenience. To make this more explicit, we will refer to the expansion of basis

functions to form the MOs.

Conceptually, the STO basis is straightforward as it mimics the exact solution for

the single electron atom. The exact orbitals for carbon, for example, are not hydro-

genic orbitals, but are similar to the hydrogenic orbitals. Unfortunately, with STOs
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many of the integrals that need to be evaluated to construct the Fock matrix can only

be solved using an infinite series. Truncation of this infinite series results in errors,

which can be significant.

Following on a suggestion of Boys,6 Pople decided to use a combination of Gaussian

functions to mimic the STO. The advantage of the Gaussian-type orbital (GTO),

x ¼ Nx iy jz ke�a(r�R)2

(1:23)

is that with these functions, the integrals required to build the Fock matrix can be eval-

uated exactly. The trade-off is that GTOs do differ in shape from the STOs, particularly

at the nucleus where the STO has a cusp, but the GTO is continually differentiable

(Fig. 1.1). Therefore, multiple GTOs are necessary to adequately mimic each STO,

increasing the computational size of the calculation. Nonetheless, basis sets comprised

of GTOs are the ones most commonly used.

A number of factors define the basis set for a quantum chemical computation.

First, how many basis functions should be used? The minimum basis set has one

basis function for every formally occupied or partially occupied orbital in the

atom. So, for example, the minimum basis set for carbon, with electron occupation

1s22s22p2, has two s-type functions and px, py, and pz functions, for a total of five

basis functions. This minimum basis set is referred to as a single-zeta (SZ) basis

set. The use of the term zeta here reflects that each basis function mimics a single

STO, which is defined by its exponent, z.

The minimum basis set is usually inadequate, failing to allow the core electrons to

get close enough to the nucleus and the valence electrons to delocalize. An obvious

solution is to double the size of the basis set, creating a double-zeta (DZ) basis. So,

for carbon, the DZ basis set has four s basis functions and two p basis functions

(recognizing that the term “p basis functions” refers here to the full set of px, py,

and pz functions), for a total of ten basis functions. Further improvement can be

had by choosing a triple zeta (TZ) or even larger basis set.

Figure 1.1. Plot of the radial component of a Slater-type orbital (STO) and a Gaussian-type

orbital (GTO).
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As most of chemistry focuses on the action of the valence electrons, Pople devel-

oped the split-valence basis sets,7,8 single zeta in the core and double zeta in the

valence region. A double-zeta split-valence basis set for carbon has three s basis

functions and two p basis functions for a total of nine functions, a triple-zeta split

valence basis set has four s basis functions and three p functions for a total of thirteen

functions, and so on.

For the vast majority of basis sets, including the split-valence sets, the basis

functions are not made up of a single Gaussian function. Rather, a group of Gaus-

sian functions are contracted together to form a single basis function. This is

perhaps most easily understood with an explicit example: the popular split-

valence 6-31G basis. The name specifies the contraction scheme employed in

creating the basis set. The dash separates the core (on the left) from the

valence (on the right). In this case, each core basis function is comprised of

six Gaussian functions. The valence space is split into two basis functions, fre-

quently referred to as the “inner” and “outer” functions. The inner basis function

is composed of three contracted Gaussian functions, and each outer basis function

is a single Gaussian function. Thus, for carbon, the core region is a single s basis

function made up of six s-GTOs. The carbon valence space has two s and two p

basis functions. The inner basis functions are made up of three Gaussians, and the

outer basis functions are each composed of a single Gaussian function. Therefore,

the carbon 6-31G basis set has nine basis functions made up of 22 Gaussian func-

tions (Table 1.1).

Even large, multi-zeta basis sets will not provide sufficient mathematical flexi-

bility to adequately describe the electron distribution. An example of this deficiency

is the inability to describe bent bonds of small rings. Extending the basis set by

including a set of functions that mimic the atomic orbitals with angular momentum

one greater than in the valence space greatly improves the basis flexibility. These

added basis functions are called polarization functions. For carbon, adding polariz-

ation functions means adding a set of d GTOs, but for hydrogen, polarization func-

tions are a set of p functions. The designation of a polarized basis set is varied. One

convention indicates the addition of polarization functions with the label “þP”:

DZþP indicates a double-zeta basis set with one set of polarization functions. For

the split-valence sets, adding a set of polarization functions to all atoms but hydro-

gen is designated by an asterisk, that is, 6-31G�, and adding the set of p functions to

hydrogen as well is indicated by double asterisks, that is, 6-31G��. As adding mul-

tiple sets of polarization functions has become broadly implemented, the use of

asterisks has been abandoned in favor of explicit indication of the number of polar-

ization functions within parentheses, that is, 6-311G(2df,2p) means that two sets of d

functions and a set of f functions are added to nonhydrogen atoms and two sets of p

functions are added to the hydrogen atoms.

For anions or molecules with many adjacent lone pairs, the basis set must be aug-

mented with diffuse functions to allow the electron density to expand into a larger

volume. For split-valence basis sets, this is designated by “þ ,” as in 6-31þG(d).

The diffuse functions added are a full set of additional functions of the same type

as are present in the valence space. So, for carbon, the diffuse functions would be
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an added s basis function and a set of p basis functions. The composition of the

6-31þG(d) carbon basis set is detailed in Table 1.1.

The split-valence basis sets developed by Pople are widely used. The

correlation-consistent basis sets developed by Dunning are popular alterna-

tives.9 – 11 The split-valence basis sets were constructed by minimizing the

energy of the atom at the HF level with respect to the contraction coefficients

and exponents. The correlation-consistent basis sets were constructed to extract

the maximum electron correlation energy for each atom. We will define the elec-

tron correlation energy in the next section. The correlation-consistent basis sets are

designated as “cc-pVNZ,” to be read as correlation-consistent polarized split-

valence N-zeta, where N designates the degree to which the valence space is

split. As N increases, the number of polarization functions also increases. So, for

example, the cc-pVDZ basis set for carbon is double-zeta in the valence space

and includes a single set of d functions, and the cc-pVTZ basis set is triple-zeta

in the valence space and has two sets of d functions and a set of f functions.

The addition of diffuse functions to the correlation-consistent basis sets is desig-

nated with the prefix aug-, as in aug-cc-pVDZ.

TABLE 1.1. Composition of the Carbon 6-31G and 6-311G(d) Basis Sets.

6-31G 6-31þG(d)

Basis Functions GTOs Basis Functions GTOs

Core s 6 s 6

Valence s (inner) 3 s (inner) 3

s (outer) 1 s (outer) 1

px (inner) 3 px (inner) 3

px (outer) 1 px (outer) 1

py (inner) 3 py (inner) 3

py (outer) 1 py (outer) 1

pz (inner) 3 pz (inner) 3

pz (outer) 1 pz (outer) 1

Diffuse s (diffuse) 1

py (diffuse) 1

pz (diffuse) 1

pz (diffuse) 1

Polarization dxx 1

dyy 1

dzz 1

dxy 1

dxz 1

dyz 1

Total 9 22 19 32
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Basis sets are built into the common computational chemistry programs. A valu-

able web-enabled database for retrieval of basis sets is available from the Molecular

Science Computing Facility, Environmental and Molecular Sciences Laboratory

“EMSL Gaussian Basis Set Order Form” (http://www.emsl.pnl.gov/forms/
basisform.html).12

Because, in practice, basis sets must be of some limited size far short of the HF

limit, their incompleteness can lead to a spurious result known as basis set superposi-

tion error (BSSE). This is readily grasped in the context of the binding of two mol-

ecules, A and B, to form the complex AB. The binding energy is evaluated as

Ebinding ¼ Eab
AB � Ea

A þ Eb
B

� �
, (1:24)

where a refers to the basis set on molecule A, b refers to the basis set on molecule B,

and ab indicates the union of these two basis sets. Now, in the complex AB, the basis

set a will be used to (1) describe the electrons on A, (2) describe, in part, the elec-

trons involved in the binding of the two molecules, and (3) aid in describing the elec-

trons of B. The same is true for the basis set b. The result is that the complex AB, by

having a larger basis set than available to describe either A or B individually, is

treated more completely, and its energy will consequently be lowered, relative to

the energy of A or B. The binding energy will therefore be larger (more negative)

due to this superposition error.

The counterpoise method proposed by Boys and Bernardi attempts to remove

some of the effect of BSSE. The counterpoise correction is defined as

ECP ¼ Eab
A� þ Eab

B� � Ea
A� þ Eb

B�

� �
: (1:25)

The first term on the right-hand side is the energy of molecule A in its geometry of

the complex (designated with the asterisk) computed with the basis set a and the

basis functions of B placed at the position of the nuclei of B, but absent the

nuclei and electrons of B. These basis functions are called ghost orbitals. The

second term is the energy of B in its geometry of the complex computed with its

basis functions and the ghost orbitals of A. The last two terms correct for the geo-

metric distortion of A and B from their isolated structure to the complex. The coun-

terpoise corrected binding energy is then

ECP
binding ¼ Ebinding � ECP: (1:26)

1.2 ELECTRON CORRELATION: POST-HARTREE–FOCK METHODS

The HF method ignores instantaneous electron–electron repulsion, also known as

electron correlation. The electron correlation energy is defined as the difference

between the exact energy and the energy at the HF limit:

Ecorr ¼ Eexact � EHF: (1:27)
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How can we include electron correlation? Suppose the total electron wavefunction is

composed of a linear combination of functions that depend on all n electrons

C ¼
X

i

cici: (1:28)

We can then solve the Schrödinger equation with the full Hamiltonian (Eq. 1.5) by

varying the coefficients ci so as to minimize the energy. If the summation is over an

infinite set of these N-electron functions, ci, we will obtain the exact energy. If, as is

more practical, some finite set of functions is used, the variational principle tells us

that the energy so computed will be above the exact energy.

The HF wavefunction is an N-electron function (itself composed of 1-electron

functions—the molecular orbitals). It seems reasonable to generate a set of functions

from the HF wavefunction cHF, sometimes called the reference configuration.

The HF wavefunction defines a single configuration of the N electrons. By

removing electrons from the occupied MOs and placing them into the virtual (unoc-

cupied) MOs, we can create new configurations, new N-electron functions. These

new configurations can be indexed by how many electrons are relocated. Configur-

ations produced by moving one electron from an occupied orbital to a virtual orbital

are singly excited relative to the HF configuration and are called singles; those where

two electrons are moved are called doubles, and so on. A simple designation for

these excited configurations is to list the occupied MO(s) where the electrons are

removed as a subscript and the virtual orbitals where the electrons are placed as

the superscript. Thus, the generic designation of a singles configuration is ci
a or cS,

a doubles configuration is cij
ab or cD, and so on. Figure 1.2 shows a MO diagram

for a representative HF configuration and examples of some singles, doubles, and

triples configurations. These configurations are composed of spin-adapted Slater

Figure 1.2. MO diagram indicating the electron occupancies of the HF configuration and

representative examples of singles, doubles, and triples configurations.
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determinants, each of which is constructed from the arrangements of the electrons in

the various, appropriate molecular orbitals.

1.2.1 Configuration Interaction (CI)

Using the definition of configurations, we can rewrite Eq. (1.28) as

CCI ¼ c0cHF þ
Xocc

i

Xvir

a

ca
i c

a
i þ

Xocc

i, j

Xvir

a, b

cab
ij c

ab
ij

þ
Xocc

i, j, k

Xvir

a, b, c

c abc
ijk c abc

ijk þ
Xocc

i, j, k, l

Xvir

a, b, c, d

c abcd
ijkl c abcd

ijkl þ � � � : (1:29)

In order to solve the Schrödinger equation, we need to construct the Hamiltonian

matrix using the wavefunction of Eq. (1.29). Each Hamiltonian matrix element is

the integral

Hxy ¼ kcx Hj jcyl, (1:30)

where H is the full Hamiltonian operator (Eq. 1.5) and cx and cy define some specific

configuration. Diagonalization of this Hamiltonian then produces the solution: the

set of coefficients that defines the configuration interaction (CI) wavefunction.13

This is a rather daunting problem as the number of configurations is infinite in the

exact solution, but still quite large for any truncated configuration set.

Fortunately, many of the matrix elements of the CI Hamiltonian are zero.

Brillouin’s Theorem14 states that the matrix element between the HF configuration

and any singly excited configuration ci
a is zero. The Condon–Slater rules provide

the algorithm for computing any generic Hamiltonian matrix elements. One of

these rules states that configurations that differ by three or more electron occu-

pancies will be zero. In other words, suppose we have two configurations cA

and cB defined as the Slater determinants cA ¼ f1f2 � � �fn�3fifjfk

�� �� and cB ¼

f1

�� f2 � � �fn�3frfsftj, then

kcA Hj jcBl ¼ 0: (1:31)

Therefore, the Hamiltonian matrix tends to be rather sparse, especially as the number

of configurations included in the wavefunction increases.

As the Hamiltonian is both spin- and symmetry-independent, the CI expansion

need only contain configurations that are of the spin and symmetry of interest.

Even taking advantage of the spin, symmetry, and sparseness of the Hamiltonian

matrix, we may nonetheless be left with a matrix of size well beyond our

computational resources.

Two approaches towards truncating the CI expansion to some manageable

length are utilized. The first is to delete some subset of virtual MOs from being
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potentially occupied. Any configuration where any of the very highest energy

MOs are occupied will be of very high energy and will likely contribute very

little towards the description of the ground state. Similarly, we can freeze some

MOs (usually those describing the core electrons) to be doubly occupied in all

configurations of the CI expansion. Those configurations where the core electrons

are promoted into a virtual orbital are likely to be very high in energy and

unimportant.

The second approach is to truncate the expansion at some level of excitation. By

Brillouin’s Theorem, the single excited configurations will not mix with the HF

reference. By the Condon–Slater rules, this leaves the doubles configurations as

the most important for including in the CI expansion. Thus, the smallest reasonable

truncated CI wavefunction includes the reference and all doubles configurations

(CID):

CCID ¼ c0cHF þ
Xocc

i, j

Xvir

a, b

cab
ij c

ab
ij : (1:32)

The most widely employed CI method includes both the singles and doubles

configurations (CISD):

CCISD ¼ c0cHF þ
Xocc

i

Xvir

a

ca
i c

a
i þ

Xocc

i, j

Xvir

a, b

cab
ij c

ab
ij , (1:33)

where the singles configurations enter by their nonzero matrix elements with

the doubles configurations. Higher-order configurations can be incorporated, if

desired.

1.2.2 Size Consistency

Suppose one was interested in the energy of two molecules separated far from

each other. (This is not as silly as it might sound—it is the description of the

reactants in the reaction Aþ B! C.) This energy could be computed by calcu-

lating the energy of the two molecules at some large separation, say 100 Å. An

alternative approach is to calculate the energy of each molecule separately and

then add their energies together. These two approaches should give the same

energy. If the energies are identical, we call the computational method “size

consistent.”

Although the HF method and the complete CI method (infinite basis set and all

possible configurations) are size-consistent, a truncated CI is not size-consistent!

A simple way to understand this is to examine the CID case for the H2 dimer,

with the two molecules far apart. The CID wavefunction for the H2 molecule

includes the double excitation configuration. So, taking twice the energy of this

monomer effectively includes the configuration where all four electrons have

been excited. However, in the CID computation of the dimer, this configuration is

not allowed; only doubles configurations are included, not this quadruple
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configuration. The Davidson correction15 approximates the energy of the missing

quadruple configurations as

EQ ¼ (1� c0)(ECISD � EHF): (1:34)

1.2.3 Perturbation Theory

An alternative approach towards including electron correlation is provided by per-

turbation theory. Suppose we have an operator Ô that can be decomposed into

two component operators

Ô ¼ Ô(0) þ Ô0, (1:35)

where the eigenvectors and eigenvalues of Ô(0) are known. The operator Ô 0 defines a

perturbation upon this known system to give the true operator. If the perturbation is

small, then Rayleigh–Schrödinger perturbation theory provides an algorithm for

finding the eigenvectors of the full operator as an expansion of the eigenvectors

of Ô(0). The solutions derive from a Taylor series, which can be truncated to what-

ever order is desired.

Møller and Plesset developed the means for applying perturbation theory to a

molecular system.16 They divided the full Hamiltonian (Eq. 1.5) into essentially

the HF Hamiltonian, where the solution is known and a set of eigenvectors can be

created (the configurations discussed above), and a perturbation component that is

essentially the instantaneous electron–electron correlation. The HF wavefunction

is correct through first-order Møller–Plesset (MP1) perturbation theory. The

second-order correction (MP2) involves doubles configurations, as does MP3. The

fourth-order correction (MP4) involves triples and quadruples. The terms involving

the triples configuration are especially time-consuming. MP4SDQ is fourth-order

perturbation theory neglecting the triple contributions, an approximation that is

appropriate when the HOMO–LUMO (highest occupied molecular orbital/lowest

unoccupied molecular orbital) gap is large.

The major benefit of perturbation theory is that it is computationally more

efficient than CI. MP theory, however, is not variational. This means that, at any

particular order, the energy may be above or below the actual energy. Furthermore,

because the perturbation is really not particularly small, including higher-order

corrections is not guaranteed to converge the energy, and extrapolation from the

energy determined at a small number of orders may be impossible. On the positive

side, MP theory is size-consistent at any order.

1.2.4 Coupled-Cluster Theory

Coupled-cluster theory, developed by Cizek,17 describes the wavefunction as

C ¼ eT̂cHF: (1:36)

The operator T̂ is an expansion of operators

T̂ ¼ T̂1 þ T̂2 þ � � � þ T̂n, (1:37)
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where the T̂i operator generates all of the configurations with i electron excitations.

Because Brillouin’s Theorem states that singly-excited configurations do not mix

directly with the HF configuration, the T̂2 operator

T̂2 ¼
Xocc

i, j

Xvir

a, b

tab
ij c

ab
ij (1:38)

is the most important contributor to T̂. If we approximate T̂ ¼ T̂2, we have the

CCD (coupled-cluster doubles) method, which can be written as the Taylor

expansion:

CCCD ¼ eT̂2cHF ¼ 1þ T̂2 þ
T̂2

2

2!
þ

T̂3
2

3!
þ � � �

 !
cHF: (1:39)

Because of the incorporation of the third and higher terms of Eq. (1.36), the CCD

method is size consistent. Inclusion of the T̂1 operator is only slightly more compu-

tationally expensive than the CCD calculation and so the CCSD (coupled-cluster

singles and doubles) method is the typical coupled-cluster computation. Inclusion

of the T̂3 operator is quite computationally demanding. An approximate treatment,

where the effect of the triples contribution is incorporated in a perturbative treat-

ment, is the CCSD(T) method,18 which has become the “gold standard” of compu-

tational chemistry—the method of providing the most accurate evaluation of the

energy. CCSD(T) requires substantial computational resources and is therefore

limited to relatively small molecules. Another downside to the CC methods is that

they are not variational.

There are a few minor variations on the CC methods. The quadratic configuration

interaction including singles and doubles (QCISD)19 method is nearly equivalent to

CCSD. Another variation on CCSD is to use the Brueckner orbitals. Brueckner orbi-

tals are a set of MOs produced as a linear combination of the HF MOs such that all of

the amplitudes of the singles configurations (ti
a) are zero. This method is called BD

and differs from the CCSD method only in fifth order.20 Inclusion of triples configur-

ations in a perturbative way, BD(T), is frequently more stable (convergence of the

wavefunction is often smoother) than in the CCSD(T) treatment.

1.2.5 Multiconfiguration SCF (MCSCF) Theory and Complete
Active Space SCF (CASSCF) Theory

To motivate a discussion of a different sort of correlation problem, we examine how

to compute the energy and properties of cyclobutadiene. A RHF calculation of rec-

tangular D2h cyclobutadiene 1 reveals four p MOs, as shown in Figure 1.3. The HF

configuration for this molecule is

cHF ¼ � � �p
2
1p

2
2

�� ��: (1:40)
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As long as the HOMO–LUMO energy gap (the difference in energy of p2 and p3) is

large, then this single configuration wavefunction is reasonable. However, as we

distort cyclobutadiene more and more towards a D4h geometry, the HOMO–

LUMO gap grows smaller and smaller, until we reach the square planar structure

where the gap is nil. Clearly, the wavefunction of Eq. (1.40) is inappropriate for

D4h cyclobutadiene, and also for geometries close to it, because it does not

contain any contribution from the degenerate configuration � � �p 2
1 p

2
3

�� ��. Rather, a

more suitable wavefunction for cyclobutadiene might be

c ¼ c1 � � �p
2
1p

2
2

�� ��þ c2 � � �p
2
1p

2
3

�� ��: (1:41)

This wavefunction appears to be a CI wavefunction with two configurations. Adding

even more configurations, like spin-paired, � � �p 2
1p

1
2p

1
3

�� ��, would capture more of the

dynamic electron correlation. The underlying assumption to the CI expansion is that

the single-configuration reference, the HF wavefunction, is a reasonable description

of the molecule. For cyclobutadiene, especially as it nears the D4h geometry, the HF

wavefunction does not capture the inherent multiconfigurational nature of the

electron distribution. The MOs used to describe the first configuration of Eq.

(1.41) are not the best for describing the second configuration. To capture this non-

dynamic correlation, we must determine the set of MOs that best describe each of the

configurations of Eq. (1.41), giving us the wavefunction

cMCSCF ¼ c1 � � �s
2
11p

2
1p

2
2

�� ��þ c2 � � �s
0 2
11p
0 2
1 p0 23

�� ��; (1:42)

where the primed orbitals are different from the unprimed set. We have explicitly

indicated the highest s-orbital in the primed and unprimed set to emphasize that

all of the MOs are optimized within each configuration. In the multiconfiguration

SCF (MCSCF)21 method, the coefficient ci of each configuration, along with the

LCAO expansion of the MOs of each configuration, are solved for in an iterative,

self-consistent way.

The question arises as to how to select the configurations for the MCSCF

wavefunction. In the example of cyclobutadiene, one might wonder about also

Figure 1.3. p MO diagram of cyclobutadiene (1). Only one configuration is shown for the

D4h form.
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including the configurations where p2 and p3 are each singly occupied with net spin

of zero,

cMCSCF ¼ c1 � � �s
2
11p

2
1 p

2
2

�� ��þ c2 � � �s
0 2
11p
0 2
1 p0 23

�� ��

þ c3 � � �s
00
11p

002
1 p 0012 (a)p 0013 (b)

�� ��: (1:43)

Perhaps a more appropriate selection might also include configurations where the

electrons from p1 are excited into the higher-lying p-orbitals. A goal of ab initio

theory is to make as few approximations and as few arbitrary decisions as possible.

In order to remove the possibility that an arbitrary selection of configurations might

distort the result, the Complete Active Space SCF (CASSCF)22 procedure dictates

that all configurations involving a set of MOs (the active space) and a given

number of electrons comprise the set of configurations to be used in the MCSCF pro-

cedure. This set of configurations is indicated as CASSCF(n,m), where n is the

number of electrons and m is the number of MOs of the active space (both occupied

and virtual). So, an appropriate calculation for cyclobutadiene is CASSCF(4,4),

where all four p-electrons are distributed in all possible arrangements among the

four p MOs.

As MCSCF attempts to account for the nondynamic correlation, really to correct

for the inherent multiconfiguration nature of the electron distribution, how can one

then also capture the dynamic correlation? The application of perturbation theory

using the MCSCF wavefunction as the reference requires some choice as to the non-

perturbed Hamiltonian reference. This had led to a number of variants of multirefer-

ence perturbation theory. The most widely utilized is CASPT2N,23 which is

frequently referred to as CASPT2, although this designation ignores other flavors

developed by the same authors. Along with CCSD(T), CASPT2N is considered to

be one of the more robust methods for obtaining the highest quality treatments of

molecular quantum mechanics.

1.2.6 Composite Energy Methods

Although rigorous quantum chemical methods are available, the best of them are

exceptionally demanding in terms of computer performance (CPU time, memory,

and hard disk needs). For all but the smallest molecules, these best methods are

impractical.

How then to capture the effects of large basis sets and extensive accounting of

electron correlation? The answer depends in part on what question one is seeking

to answer. Are we looking for accurate energies or structures or properties? As all

of these are affected by the choice of basis set and treatment of electron correlation,

oftentimes to different degrees, just what methods are used depends on what infor-

mation we seek. As we will demonstrate in the following chapters, prediction of geo-

metries is usually less demanding than obtaining accurate energies. We may then get

by with relatively small basis sets and low-orders of electron correlation treatment.

Accurate energies are, however, quite sensitive to the computational method.
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The composite methods were developed to provide an algorithm for obtaining

accurate energies. They take the approach that the effect of larger basis sets, includ-

ing the role of diffuse and polarization functions, and the effect of higher-order treat-

ment of electron correlation can be approximated as additive corrections to a lower

level computation. One can thereby reproduce a huge computation, say a CCSD(T)

calculation with the 6-311þG(3df,2p) basis set, by summing together the results of a

series of much smaller calculations.

This first model chemistry, called G1,24 was proposed by Pople and Curtiss in the

late 1980s, but was soon replaced by the more accurate G225 model chemistry. The

baseline calculation is to compute the energy at MP4 with the 6-311G(d,p) basis set

using the geometry optimized at MP2 with the 6-31G(d) basis set. Corrections are

made to this baseline energy. The steps for carrying out the G2 calculation are as

follows:

1. Optimize the geometry at HF/6-31G(d) and compute the zero-point

vibrational energy (ZPVE).

2. Optimize the geometry at MP2/6-31G(d) and use this geometry in all sub-

sequent calculations.

3. Compute the baseline energy: E[MP4/6-311G(d,p)].

4. Correct for diffuse functions: E[MP4/6-311þG(d,p)] 2 E[MP4/6-311G

(d,p)].

5. Correct for addition of more polarization functions: E[MP4/6-311G(2df,p)]

2 E[MP4/6-311G(d,p)].

6. Correct for better treatment of electron correlation: E[QCISD(T)/
6-311G(d)] 2 E[MP4/6-311G(d,p)].

7. Correct for third set of polarization functions alongside the diffuse functions.

In order to save computational effort, compute this correction at MP2:

E[MP2/6-311þG(3df,2p)] 2 E[MP2/6-311G(2df,p)] 2 E[MP2/6-311þG(d,

p)]þ E[MP2/6-311G(d,p)].

8. Apply an empirical correction to minimize the difference between the com-

puted and experimental values of the atomization energies of 55 molecules:

20.00481 * (number of valence electron pairs) 20.00019 * (number of

unpaired valence electrons).

9. Compute the G2 energy as E[G2] ¼ 0.8929 * ZPVE(1)þ (3)þ (4)þ (5)þ

(6)þ (7)þ (8).

Subsequently, the G2(MP2)26 model was produced, with the major advantage of

avoiding the MP4 computations in favor of MP2. The G3 model,27 which utilizes a

very large basis set in Step 7 and the MP4/6-31G(d) energy as the baseline, is some-

what more accurate than G2. There are also two other series of composite methods,

the CBS-n models of Petersson28,29 and the Wn models of Martin.30 All of these

composite methods are conceptually similar, just varying in which methods are

used for the baseline and the corrections, and what sets of compounds, and what
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properties will be used in the ultimate fitting procedure.31 Because of the fitting of

the calculated energy to some experimental energy (often atomization energies),

these composite methods have an element of semi-empirical nature to them. The

focal-point scheme developed by Allen and Schaefer32 combines (1) the effect of

basis set by extrapolating the energies from calculations with large basis sets (up

to cc-pV6Z), (2) the effect of higher-order correlation by extrapolation of energies

from higher-order MP (up to MP5) or CC (up to CCSDT), and (3) corrections for

the assumed additivity of basis set and correlation effects. It produces extraordinary

accuracy without resorting to any empirical corrections, but the size of the compu-

tations involved restricts application to molecules of less than 10 atoms.

An alternative composite method divides the system of interest into different dis-

tinct regions or layers. Each layer is then treated with an appropriate computational

method. Typically, some small geometric layer is evaluated using a high-level

quantum mechanical method and the larger geometric layer is evaluated using a

more modest computational method, perhaps even molecular mechanics. This

type of procedure is called “QM/MM.” In its simplest application, the total

energy is evaluated as

Ecomplete ¼ E
large
MM þ (E small

QM � E small
MM ): (1:44)

The QM/MM procedure is particularly appropriate for very large molecules such as

enzymes, where the active site is evaluated with a high-level quantum computation,

and the protein backbone is treated with molecular mechanics.

A number of different QM/MM algorithms have been developed.33,34 A great

deal of effort has been directed towards properly treating the interfacial regions

between the layers, particularly when chemical bonds cross the boundary. A

popular method is the ONIOM (“our own n-layered integrated molecular orbital

molecular mechanics”) scheme,35 which divides the system into three layers: a

small layer where the important chemistry occurs and is treated with a very accurate

QM method, a medium layer usually treated with a semi-empirical MO method, and

a large layer typically treated with molecular mechanics.

1.3 DENSITY FUNCTIONAL THEORY (DFT)

The electronic wavefunction is dependent on 3n variables: the x, y, and z coordinates

of each electron. As such, it is quite complicated and difficult to readily interpret.

The total electron density r(r) is dependent on just three variables: the x, y, and z

positions in space. Because r(r) is simpler than the wavefunction and is also obser-

vable, perhaps it might offer a more direct way to obtain the molecular energy?

The Hohenberg–Kohn36 existence theorem proves just that. There exists a

unique functional such that

E½r(r)� ¼ Eelec, (1:45)
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where Eelec is the exact electronic energy. Furthermore, they demonstrated that the

electron density obeys the variational theorem. This means that, given a specific

electron density, its energy will be greater than or equal to the exact energy.

These two theorems constitute the basis of density functional theory (DFT). The

hope is that evaluation of Eq. (1.45) might be easier than traditional ab initio

methods because of the simpler variable dependence.

Before proceeding with an explanation of how this translates into the ability to

compute properties of a molecule, we need to define the term functional. A math-

ematical function is one that relates a scalar quantity to another scalar quantity,

that is, y ¼ f(x). A mathematical functional relates a function to a scalar quantity

and is denoted with brackets, that is, y ¼ F[ f(x)]. In Eq. (1.45), the function r(r)

depends on the spatial coordinates, and the energy depends on the values (is a func-

tional) of r(r).

In order to solve for the energy via the DFT method, Kohn and Sham37 proposed

that the functional has the form

E½r(r)� ¼ Te0 ½r(r)� þ Vne½r(r)� þ Vee½r(r)� þ Exc½r(r)� (1:46)

where Vne, the nuclear–electron attraction term, is

Vne½r(r)� ¼
Xnuclei

j

ð
Zj

r� rkj j
r(r)dr, (1:47)

and Vee, the classical electron–electron repulsion term, is

Vee½r(r)� ¼
1

2

ð ð
r(r1)r(r2)

r1 � r2j j
dr1dr2: (1:48)

The real key, however, is the definition of the first term of Eq. (1.46). Kohn and

Sham defined it as the kinetic energy of noninteracting electrons whose density is

the same as the density of the real electrons, the true interacting electrons. The

last term is called the exchange-correlation functional, and is a catch-all term to

account for all other aspects of the true system.

The Kohn–Sham procedure is then to solve for the orbitals that minimize the

energy, which reduces to the set of pseudoeigenvalue equations

ĥKS
i xi ¼ 1ixi: (1:49)

This is closely analogous to the Hartree equations (Eq. 1.7). The Kohn–Sham

orbitals are separable by definition (the electrons they describe are noninteracting),

analogous to the HF MOs. Equation (1.49) can, therefore, be solved using a similar

set of steps as was used in the Hartree–Fock–Roothaan method.

So, for a similar computational cost as the HF method, DFT produces the energy

of a molecule that includes the electron correlation! This is the distinct advantage of
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DFT over the traditional ab initio methods discussed previously—it is much more

computationally efficient in providing the correlation energy.

DFT is not without its own problems, however. Although the Hohenberg–Kohn

Theorem proves the existence of a functional that relates the electron density to the

energy, it offers no guidance as to the form of that functional. The real problem is the

exchange-correlation term of Eq. (1.44). There is no way of deriving this term, and

so a series of different functionals have been proposed, leading to lots of different

DFT methods. A related problem with DFT is that if the chosen functional fails,

there is no way to systematically correct its performance. Unlike with CI, where

one can systematically improve the result by increasing the number and type of con-

figurations employed in the wavefunction expansion, or with MP theory, where one

can move to arbitrarily higher order corrections, if a given functional does not

provide a suitable result, one must go back to square one and select a new functional.

Paraphrasing Cramer’s1 description of the contrast between HF and DFT, HF and

the various post-HF electron correlation methods provide an exact solution to an

approximate theory, but DFT provides an exact theory with an approximate

solution.

1.3.1 The Exchange-Correlation Functionals

The exchange-correlation functional is generally written as a sum of two com-

ponents, an exchange part and a correlation part. This is an assumption, an assump-

tion that we have no way of knowing is true or not. These component functionals are

usually written in terms of an energy density 1,

Exc½r(r)� ¼ Ex½r(r)� þ Ec½r(r)� ¼

ð
r(r)1x½r(r)�drþ

ð
r(r)1c½ r(r)�dr: (1:50)

The local density approximation (LDA) assumes that the value of 1x could be

determined from just the value of the density. A simple example of the LDA is

Dirac’s treatment of a uniform electron gas, which gives

1LDA
x ¼ �Cxr

1=3: (1:51)

This can be extended to the local spin density approximation (LSDA) for those cases

where the a and b densities are not equal. Slater’s Xa method is a scaled form of

Eq. (1.51), and often the terms “LSDA” and “Slater” are used interchangeably.

Local correlation functionals were developed by Vosko, Wilk, and Nusair, which

involve a number of terms and empirical scaling factors.38 The most popular ver-

sions are called VWN and VWN5. The combination of a local exchange and a

local correlation energy density is the SVWN method.

In order to make improvements over the LSDA, one has to assume that the

density is not uniform. The approach that has been taken is to develop functionals

that are dependent on not just the electron density but also derivatives of the
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density. This constitutes the generalized gradient approximation (GGA). It is at this

point that the form of the functionals begins to cause the eyes to glaze over and the

acronyms to appear to be random samplings from an alphabet soup. For full math-

ematical details, the interested reader is referred to the books by Cramer1 or Jensen2

or the monograph by Koch and Holhausen, A Chemist’s Guide to Density Functional

Theory.39

We will present here just a few of the more widely utilized functionals. The

DFT method is denoted with an acronym that defines the exchange functional

and the correlation functional, in that order. For the exchange component, the

most widely used is one proposed by Becke.40 It introduces a correction term to

LSDA that involves the density derivative. The letter “B” signifies its use as the

exchange term. Of the many correlation functionals, the two most widely used

are due to Lee, Yang, and Parr41 (referred to as “LYP”) and Perdew and

Wang42 (referred to as “PW91”). Although the PW91 functional depends on the

derivative of the density, the LYP functional depends on r2r. So the BPW91 des-

ignation indicates use of the Becke exchange functional with the Perdew–Wang

(19)91 correlation functional.

Last are the hybrid methods that combine the exchange-correlation functionals

with some admixture of the HF exchange term. The most widely used DFT

method is the hybrid B3LYP functional,43,44 which includes Becke’s exchange

functional along with the LYP correlation functional:

EB3LYP
xc ¼ (1� a)ELSDA

x þ aEHF
x þ bDEB

x þ (1� c)ELSDA
c þ cELYP

c : (1:52)

The three variables (a, b, and c) are the origin of the “3” in the acronym. As these

variables are fit to reproduce experimental data, B3LYP (and all other hybrid

methods) contain some degree of “semi-empirical” nature. Recently, hybrid meta

functionals45 – 47 have been developed, which include a kinetic energy density.

These new functionals have shown excellent performance47 in situations that have

been notoriously problematic for other DFT methods, such as noncovalent inter-

actions, including p–p stacking, and transition metal–transition metal bonds.

1.4 GEOMETRY OPTIMIZATION

The first step in performing a quantum chemical calculation is to select an appropri-

ate method from the ones discussed above. We will discuss the relative merits and

demerits of the methods in the remaining chapters of the book. For now, we assume

that we can choose a method that will be suitable for the task at hand.

The nomenclature for designating the method is “quantum mechanical treatment/
basis set,” such as MP2/6-31þG(d), which means that the energy is computed

using the MP2 theory with the 6-31þG(d) basis set.

Next, we need to choose the geometry of the molecule. It is antithetical to the idea

of ab initio methods to arbitrarily choose a geometry; rather, it is more consistent to
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find the best geometry predicted by the quantum mechanics itself. In other words, we

should optimize the geometry of the molecule such that a minimum energy structure

is found.

There are many, many methods for optimizing the value of a function, and

detailed discussion of these techniques is inappropriate here.48 The general pro-

cedure is to start with a guess of the molecular geometry and then systematically

change the positions of the atoms in such a way as the energy decreases, continuing

to vary the positions until the minimum energy is achieved. So how does one decide

how to alter the atomic positions; that is, should a particular bond be lengthened or

shortened? If the derivative of the energy with respect to that bond distance is posi-

tive, that means that the energy will increase with an increase in the bond separation.

Computation of all of the energy gradients with respect to the positions of the nuclei

will offer guidance then in which directions to move the atoms. But how far should

the atoms be moved; that is, how much should the bond distance be decreased? The

second derivatives of the energy with respect to the atomic coordinates provides the

curvature of the surface, which can be used to determine just how far each coordi-

nate needs to be adjusted. The collection of these second derivatives is called the

Hessian matrix, where each element Hij is defined as

Hij ¼
@2E

@q1@q2

, (1:53)

where qi is an atomic coordinate (say for example the y-coordinate of the seventh

atom).

Efficient geometry optimization, therefore, typically requires the first and second

derivatives of the energies with respect to the atomic coordinates. Computation of

these derivatives is always more time consuming than the evaluation of the

energy itself. Further, analytical expression of the first and second energy derivatives

is not available for some methods. The lack of these derivatives may be a deciding

factor in which method might be appropriate for geometry optimization. An econ-

omical procedure is to evaluate the first derivatives and then make an educated

guess at the second derivatives, which can be updated numerically as each new geo-

metry is evaluated.

The optimization procedure followed in many computational chemistry programs

is as follows:

1. Make an initial guess of the geometry of the molecule.

2. Compute the energy and gradients of this structure. Obtain the Hessian matrix

as a guess or by computation.

3. Decide if the geometry meets the optimization criteria. If so, we are done.

4. If the optimization criteria are not met, use the gradients and Hessian matrix to

suggest a new molecular geometry. Repeat Step 2, with the added option of

obtaining the new Hessian matrix by numerical updating of the old one.
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What are the criteria for determining if a structure has been optimized? A local

energy minimum will have all of its gradients equal to zero. Driving a real-world

quantum chemical computation all the way until every gradient vanishes will

involve a huge number of iterations with very little energy change in many of the

last steps. Typical practice is to set a small but nonzero value as the maximum accep-

table gradient.

Testing of the gradient alone is not sufficient for defining a local energy

minimum. Structures where the gradient vanishes are known as critical points,

some of which may be local minima. The diagonal elements of the Hessian

matrix, called its eigenvalues, identify the nature of the critical point. Six of these

eigenvalues will have values near zero and correspond to the three translational

and rotational degrees of freedom. If all of the remaining eigenvalues are positive,

the structure is a local minimum. A transition state is characterized by having

one and only one negative eigenvalue of the diagonal Hessian matrix. Computing

the full and accurate Hessian matrix can therefore confirm the nature of the

critical point, be it a local minimum, transition state, or some other higher-order

saddle point.

At the transition state, the negative eigenvalue of the Hessian matrix corresponds

with the eigenvector that is downhill in energy. This is commonly referred to as the

reaction coordinate. Tracing out the steepest descent from the transition state, with

the initial direction given by the eigenvector with the negative eigenvalue, gives the

minimum energy path (MEP). If this is performed using mass-weighted coordinates,

the path is called the intrinsic reaction coordinate (IRC).49

The Hessian matrix is useful in others ways, too. The square root of the element

of the diagonal mass-weighted Hessian is proportional to the vibrational frequency

vi. Within the harmonic oscillator approximation, the zero-point vibrational energy

(ZPVE) is obtained as

ZPVE ¼
Xvibrations

i

hvi

2
: (1:54)

The eigenvector associated with the diagonal mass-weighted Hessian defines the

atomic motion associated with that particular frequency. The vibrational frequencies

can also be used to compute the entropy of the molecule and ultimately the Gibbs

free energy.

The molecular geometry is less sensitive to computational method than is its

energy. As geometry optimization can be computationally time-consuming, often

a molecular structure is optimized using a smaller, lower-level method, and then

the energy is computed with a more accurate higher-level method. For example,

one might optimize the geometry at the HF/6-31G(d) level and then compute

the energy of that geometry using the CCSD(T)/6-311þG(d,p) method. This

computation is designated “CCSD(T)/6-311þG(d,p)//HF/6-31G(d)” with the

double slashes separating the method used for the single-point energy calculation

(on the left-hand side) from the method used to optimize the geometry (on the right-

hand side).
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1.5 POPULATION ANALYSIS

We next take on the task of analyzing the wavefunction and electron density. All of

the wavefunctions described in this chapter are represented as very long lists of

coefficients. Making sense of these coefficients is nigh impossible, not just

because there are so many coefficients, and not just because these coefficients mul-

tiply Gaussian functions that have distinct spatial distributions, but fundamentally

because the wavefunction itself has no physical interpretation. Rather, the square of

the wavefunction at a point is the probability of locating an electron at that position.

It is therefore more sensible to examine the electron density r(r). Plots of the elec-

tron density reveal a rather featureless distribution; molecular electron density

looks very much like a sum of spherical densities corresponding to the atoms in

the molecule. The classical notions of organic chemistry, like a build-up of

density associated with a chemical bond, or a lone pair, or a p-cloud are not

readily apparent—as seen in isoelectronic surfaces of ammonia 2 and benzene 3

in Figure 1.4.

The notion of transferable atoms and functional groups pervades organic

chemistry—a methyl group has some inherent, common characteristics whether

the methyl group is in hexane, toluene, or methyl acetate. One of these character-

istics is, perhaps, the charge carried by an atom (or a group of atoms) within a

molecule. If we can determine the number of electrons associated with an atom in

a molecule, which we call the gross atomic population N(k), then the charge

carried by the atom (qk) is its atomic number Zk less its population

qk ¼ Zk � N(k): (1:55)

As there is no operator that produces the “atomic population,” it is not an observable

and so the procedure for computing N(k) is arbitrary. There are two classes of

methods for computing the atomic population: those based on the orbital population

and those based on a spatial distribution.50

Figure 1.4. Isoelectronic surface of the total electron density of ammonia (2) and benzene

(3). Note the lack of lone pairs or a p-cloud.
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1.5.1 Orbital-Based Population Methods

Of the orbital-based methods, the earliest remains the most widely used method: that

developed by Mulliken and called the Mulliken Population.51 The total number of

electrons in a molecule N must equal the integral of r(r) over all space. For simpli-

city we will examine the case of the HF wavefunction. This integral can then be

expressed as

N ¼

ð
cHFcHFdr ¼

XMOs

i

N(i)
XAOs

r

c2
ir þ 2

XMOs

i

N(i)
XAOs

r.s

circisSrs, (1:56)

where N(i) is the number of electrons in MO fi, and Srs is the overlap integral of

atomic orbitals xr and xs. Mulliken then collected all terms of Eq. (1.56) for a

given atom k, to define the net atom population n(k)

n(k) ¼
XMOs

i

N(i)
X

rk

c2
irk

(1:57)

and the overlap population N(k, l )

N(k, l) ¼
XMOs

i

N(i)
X

rk , sl

cirk
cisl

Srksl
: (1:58)

The net atomic population neglects the electrons associated with the overlap

between two atoms. Mulliken arbitrarily divided the overlap population equally

between the two atoms, producing the gross atomic population

N(k) ¼
XMOs

i

N(i)
X

rk

cirk
cirk
þ
X

sl=k

cisl
Srksl

 !
: (1:59)

The Mulliken population is easy to compute and understand. All electrons that

occupy an orbital centered on atom k “belong” to that atom. However, Mulliken

populations suffer from many problems. If a basis set is not balanced, the popu-

lation will reflect this imbalance. Orbital populations can be negative or greater

than zero. This deficiency can be removed52 by using orthogonal basis functions

(the Löwdin orbitals53). But perhaps most serious is that the Mulliken procedure

totally neglects the spatial aspect of the atomic orbitals (basis functions). Some

basis functions can be quite diffuse, and electrons in these orbitals might in

fact be closer to a neighboring atom than to the nuclei upon which the function

is centered. Nonetheless, the Mulliken procedure assigns these electrons back to

the atom upon which the AO is centered. The Natural Population Analysis

(NPA) of Weinhold54 creates a new set of atomic orbitals that have maximal
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occupancy, effectively trying to create the set of local atomic orbitals. NPA

charges, although somewhat more expensive to compute, suffer fewer of the pro-

blems that plague the Mulliken analysis.

1.5.2 Topological Electron Density Analysis

The alternative approach is to count the number of electrons in an atom’s “space.”

The question is how to define the volume an individual atom occupies within a

molecule. The topological electron density analysis (sometimes referred to as

atoms-in-molecules or AIM) developed by Bader55 uses the electron density itself

to partition molecular space into atomic volumes.

The molecular electron density is composed of overlapping, radially-decreasing,

distorted spheres of density. One can think of each nucleus as being the location of

the “mountain peak” in the electron density. Between two neighboring atoms, there

will then be a “valley” separating the two “mountains.” The “pass” through the

valley defines the boundary between the “mountains.”

To do this in a more rigorous way, the local maxima and minima of the electron

density are defined as critical points, the positions where

rr(r) ¼
@

@x
þ
@

@y
þ
@

@z

� 	
r(r) ¼ 0: (1:60)

The type of electron density critical point is defined by diagonalized matrix L,

Lij ¼
@2r(r)

@ri@rj

, (1:61)

where ri is the x, y, or z coordinate. Each critical point is then classified by the rank,

the number of nonzero eigenvalues of L, and the signature, the number of positive

eigenvalues less the number of negative eigenvalues. The nuclei are (3, 23) critical

points, where the density is at a local maximum in all three directions. The bond

critical point (3, 21) is a minimum along the path between two bonded atoms,

and a maximum in the directions perpendicular to the path.

A gradient path follows the increasing electron density towards a local maximum.

The collection of all such paths that terminate at the bond critical point forms a

curtain, a surface that separates the two neighboring atoms from each other. If we

locate all of these surfaces (known as zero-flux surfaces) about a given atom, it

defines the atomic basin Vk, a unique volume that contains a single nucleus. All gra-

dient paths that originate within this basin terminate at the atomic nucleus. We can

integrate the electron density within the atomic basin to obtain the electron popu-

lation of the atom

N(k) ¼

ð

Vk

r(r)dr: (1:62)
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The bond critical point is the origin of two special gradient paths. Each

one traces the ridge of maximum electron density from the bond critical point

to one of the two neighboring nuclei. The union of these two gradient paths is

the bond path, which usually connects atoms that are joined by a chemical bond.

The inherent value of the topological method is that these atomic basins are

defined by the electron density distribution of the molecule. No arbitrary assump-

tions are required. The atomic basins are quantum mechanically well-defined

spaces, individually satisfying the virial theorem. Properties of an atom defined

by its atomic basin can be obtained by integration of the appropriate operator

within the atomic basin. The molecular property is then simply the sum of the

atomic properties.

1.6 COMPUTED SPECTRAL PROPERTIES

Once the wavefunction is in hand, all observable properties can, at least in prin-

ciple, be computed. This can include spectral properties, among the most import-

ant means for identifying and characterizing compounds. The full theoretical and

computational means for computing spectral properties are quite mathematically

involved and beyond the scope of this chapter. The remainder of the book is a

series of case studies of the applicability of computational methods towards under-

standing organic chemistry, particularly aiming at resolving issues of structure,

energetics, and mechanism. Questions of suitability and reliability of compu-

tational methods are taken up in these later chapters. However, in this section

we will discuss the question of how the various computational methods perform

in terms of predicting infrared (IR), nuclear magnetic resonance (NMR), and

optical rotatory dispersion (ORD) spectra.

1.6.1 IR Spectroscopy

Vibrational frequencies, used to predict IR spectra, are computed from the Hessian

matrix, assuming a harmonic oscillator approximation. Errors in the predicted

frequencies can be attributed then to (1) the use of an incomplete basis set, (2)

incomplete treatment of electron correlation, and (3) the anharmonicity of the poten-

tial energy surface. The first two can be assessed by examining a series of compu-

tations with different basis sets and treatments of electron correlation, looking for an

asymptotic trend. In terms of treating the anharmonicity, recently developed tech-

niques demonstrate how one can directly compute the anharmonic vibrational

frequencies.56

Due to the harmonic approximation, most methods will overestimate the

vibrational frequencies. Listed in Table 1.2 are the mean absolute deviations of

the vibrational frequencies for a set of 32 simple molecules with different compu-

tational methods. A clear trend is that as the method improves in accounting for
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electron correlation, the predicted vibrational frequencies are in better accord with

experiment.

Another view of the dependence of the vibrational frequencies upon compu-

tational method is given in Table 1.3, where the computed vibrational frequencies

of formaldehyde and ethyne are compared with experimental values. Again, as

the basis set is improved and as the accounting for electron correlation becomes

more complete, the computed vibrational frequencies become more in accord

with experiment.

Although the computed vibrational frequencies are in error, they appear to be

systematically in error. Pople61 proposed scaling the values of the vibrational fre-

quencies to improve their overall agreement with experiment. The problem with

scaling the frequencies is that a unique scaling factor must be determined for

every different computational level, meaning a scaling factor has to be determined

for every combination of computational method and basis set. Radom62 has estab-

lished the scaling factors for a number of computational levels, including HF,

MP2, and DFT with various basis sets by fitting the frequencies from 122 mol-

ecules. Scaling factors for additional methods have been suggested by Schlegel63

and others.64 It is also important to recognize that the vibrational frequencies enter

into the calculation of the ZPVE, and a different scaling factor is required to

produce the appropriately scaled ZPVEs. Careful readers may have noted a

scaling factor of 0.8929 applied to the ZPVE in Step 9 of the G2 composite

method (Section 1.2.6).

A common use of computed vibrational frequencies is to ascertain the identity

of an unknown structure by comparison with experimental IR spectra. Two

recent examples of the positive identification of transient intermediates will

suffice here. In the attempt to prepare benzocyclobutenylidene (4), an unknown

was detected. By comparing the experimental IR spectrum with the computed

IR spectra of a number of different proposed intermediates 5–8, the cycloalkyne

6 was verified as the first intermediate detected. 6 then rearranges to 7 under

TABLE 1.2. Mean Absolute Deviation

(MAD) of the Vibrational Frequencies (cm21) for 32

Molecules.a

Method MAD

HF 144

MP2 99

CCSD(T) 31

BPW 69

BLYP 59

B3LYP 31

mPW1PW 39

aComputed using the 6-311G(d,p) basis set.57
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further photolysis, and the structure of 7 was confirmed by comparison of its

computed and experimental IR spectra.65 In the second example, the carbene 9
and the strained allene 10, which can be interconverted by irradiation at

302 nm, were identified by the comparison of their experimental and computed

IR spectra.66 The computed IR spectra were particularly helpful in identifying

the stereochemistry of 9.

TABLE 1.3. Vibrational Frequencies (cm21) and Mean Absolute Deviation (MAD)

from Experiment.a

Method v1(a1) v2(a1) v3(a1) v4(b1) v5(b2) v6(b2) MAD

Formaldehyde

HF/6-311G(d,p) 3081 1999 1648 1337 3147 1364 134

HF/6-311þþG(d,p) 3097 1996 1650 1337 3169 1363 140

HF/cc-pVDZ 3109 2013 1637 1325 3183 1360 142

HF/cc-pVTZ 3084 1999 1652 1337 3153 1370 137

HF/aug-cc-pVTZ 3087 1992 1648 1335 3155 1367 135

MP2/6-311G(d,p) 2964 1777 1567 1211 3030 1291 19

MP2/aug-cc-pVTZ 2973 1753 1540 1198 3048 1267 22

CISD/6-311G(d,p) 3007 1879 1595 1243 3071 1316 56

CISD/aug-cc-pVTZ 3021 1875 1580 1245 3090 1305 57

QCISD/6-311G(d,p) 2945 1913 1566 1207 3003 1290 39

QCISD/aug-cc-pVTZ 2955 1803 1545 1204 3021 1275 21

CCSD/aug-cc-pVTZ 2961 1817 1549 1206 3030 1279 24

CCSD(T)/aug-cc-pVTZ 2932 1765 1530 1181 3000 1262 18

Exptb 2978 1778 1529 1191 2997 1299

Method v1(sg) v2(sg) v3(su) v4(pg) v5(pu) MAD

Ethyne

HF/6-311G(d, p) 3676 2215 3562 815 875 171

HF/6-311þþG(d,p) 3675 2206 3561 817 872 168

HF/cc-pVDZ 3689 2224 3577 784 866 170

HF/cc-pVTZ 3674 2213 3556 807 868 166

HF/aug-cc-pVTZ 3674 2210 3554 810 869 166

MP2/6-311G(d,p) 3550 1970 3460 562 770 45

MP2/aug-cc-pVTZ 3534 1968 3432 601 754 25

CISD/6-311G(d,p) 3587 2088 3484 642 804 63

CISD/aug-cc-pVTZ 3583 2099 3467 682 798 68

QCISD/6-311G(d,p) 3536 2023 3438 577 774 31

QCISD/aug-cc-pVTZ 3527 2035 3416 630 768 17

CCSD/aug-cc-pVTZ 3529 2044 3417 634 770 21

CCSD(T)/aug-cc-pVTZ 3503 1995 3394 593 748 15

Exptc 3495 2008 3415 624 747

aRef. 58; bref. 59; cref. 60.
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1.6.2 Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) spectroscopy involves the energy required to

flip a nuclear spin in the presence of a magnetic field. Computation of this effect

requires, among other terms, derivatives of the kinetic energy of the electrons.

This necessitates a definition of the origin of the coordinate system, called the

“gauge origin.” The magnetic properties are independent of the gauge origin, but

this is only true when an exact wavefunction is utilized. Because this is not a prac-

tical option, a choice of gauge origin is necessary. The two commonly used methods

are the individual gauge for localized orbitals (IGLO)67 and gauge-including atomic

orbitals (GIAO).68,69 Although there are differences in these two methods,

implementations of these methods in current computer programs are particularly

robust and both methods can provide good results.

To assess the performance of computed NMR properties, particularly chemical

shifts, we will focus on three recent studies. Rablen70 examined the proton NMR

shifts of 80 organic molecules using three different DFT functionals and three differ-

ent basis sets. Although the correlation between the experimental and computed
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chemical shifts was quite reasonable with all the methods, there were systematic

differences. In analogy with the scaling of vibrational frequencies, Rablen suggested

two computational models that involve linear scaling of the computed chemical

shifts: a high-level model based on the computed shift at GIAO/B3LYP/
6-311þþG(2df,p)//B3LYP/6-31þG(d) and a more economical model based on

the computed shift at GIAO/B3LYP/6-311þþG(d,p)//B3LYP/6-31þG(d). The

root mean square error (RMSE) is less than 0.15 ppm for both models.

Suggesting that the relatively high error found in Rablen’s study comes from the

broad range of chemical structures used in the test sample, Pulay examined two sep-

arate sets of closely related molecules: a set of 14 aromatic molecules71 and a set of

eight cyclic amide72 molecules. Again using a linear scaling procedure, the pre-

dicted B3LYP/6-311þG(d,p) proton chemical shifts have an RMSE of only

0.04 ppm for the aromatic test suite. This same computational level did well for

the amides (RMSE ¼ 0.10 ppm), but the best agreement with the experimental

values in D2O is with the HF/6-311G(d,p) values (RMSE ¼ 0.08 ppm).

The magnetic effect of the electron distribution can be evaluated at any point, not

just at nuclei, where this effect is the chemical shift. The chemical shift, evaluated at

some arbitrary non-nuclear point, is called “nucleus-independent chemical shift”

(NICS).73 Its major application is in the area of aromaticity, where Schleyer has

advocated its evaluation near the center of a ring as a measure of relative aromati-

city. NICS will be discussed more fully in Section 2.4.

1.6.3 Optical Rotation and Optical Rotatory Dispersion

Optical rotation and ORD provide spectral information unique to enantiomers,

allowing for the determination of absolute configuration. Recent theoretical devel-

opments in DFT provide the means for computing both optical rotation and

ORD.74,75 Although HF fails to adequately predict optical rotation, a study of

eight related alkenes and ketones at the B3LYP/6-31G� level demonstrated excel-

lent agreement between the calculated and experimental optical rotation (reported

as [a]D, with units understood throughout this discussion as deg . [dm . g/cm3]21,

see Table 1.4) and the ORD spectra.76 A subsequent, more comprehensive study

on a set of 65 molecules (including alkanes, alkenes, ketones, cyclic ethers, and

amines) was carried out by Frisch.77 Overall, the agreement between the experimen-

tal [a]D values and those computed at B3LYP/aug-cc-pVDZ//B3LYP/6-31G� is

reasonable; the RMS deviation for the entire set is 28.9. An RMS error this large,

however, implies that molecules with small rotations might actually be computed

with the wrong sign, the key feature needed to discriminate the absolute configuration

of enantiomers. In fact, Frisch identified eight molecules in his test set where the com-

puted [a]D is of the wrong sign (Table 1.5). Frisch concludes, contrary to the authors of

the earlier study, that determination of absolute configuration is not always “simple and

reliable.” Kongsted also warns that vibrational contributions to the optical rotation can

be very important, especially for molecules that have conformational flexibility.78

In this case, he advocates using the “effective geometry,” the geometry that minimizes

the electronic plus zero-point vibrational energy.
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TABLE 1.5. Compounds for Which Calculated Optical Rotationa

Disagrees in Sign with the Experimental Value.b

[a]D (expt) [a]D (comp) [a]D (expt) [a]D (comp)

215.9 3.6 278.4 13.1

6.6 211.3 39.9 211.0

23.1 226.1 14.4 29.2

29.8 210.1 259.9 20.0

a[a]D in deg . [dm . g/cm3]21; bcomputed at B3LYP/aug-cc-pVDZ//B3LYP/6-31G� (ref. 77).

TABLE 1.4. Comparison of Experimental and Calculated Optical Rotationa

for Ketones and Alkenes.b

[a]D (expt) [a]D (comp) [a]D (expt) [a]D (comp)

2180 2251 240 2121

244 285 268 299

þ59 þ23 236 250

þ7 þ13 215 þ27

a[a]D in deg . [dm . g/cm3]21; bcomputed at B3LYP/6-31G� (ref. 76).
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We finish this section with a case study where computed spectra79 enabled com-

plete characterization of the product of the Bayer–Villiger oxidation of 11, which

can, in principle, produce four products (12–15) (Scheme 1.1). A single product

was isolated and, based on proton NMR, it was initially identified as 12. Its

optical rotation is positive: [a]546(expt) ¼ 16.5. However, the computed (B3LYP/
aug-cc-pVDZ//B3LYP/6-31G�) optical rotation of 12 is negative: [a]546(comp)

¼ 252.6. Because 13 might have been the expected product based on the migratory

propensity of the tertiary carbon over a secondary carbon, a computational reinves-

tigation of the reaction might resolve the confusion.

The strongest IR frequencies, both experimental and computational, for the four

potential products are listed in Table 1.6. The best match with the experimental spec-

trum is that of 12. In particular, the most intense absorption at 1170 cm21 and the

two strong absorptions at 1080 and 1068 cm21 are well reproduced by the computed

spectrum for 12. All of the major spectral features of the experimental vibrational

circular dichroism spectrum are extremely well reproduced by the computed spec-

trum for 12, with substantial disagreements with the other isomers. These results

firmly establish the product of the Bayer–Villiger oxidation of 11 is 12, and

provide a warning concerning the reliability of computed optical activity.

Scheme 1.1.

TABLE 1.6. Experimental and Computed Vibrational Frequencies (cm21)

and Dipole Strengths of 12–15.a

Expt. 12 13 14 15

1407 (79.0) 1445 (48.4) 1428 (98.8)

1305 (153.7) 1332 (171.8) 1354 (79.2)

1285 (91.2) 1313 (55.4) 1274 (127.1)

1259 (191.7) 1263 (170.7)

1197 (216.9) 1253 (145.2)

1170 (452.6) 1189 (409.1) 1154 (446.6) 1190 (365.2) 1194 (174.5)

1090 (14.3) 1103 (181.0) 114 (153.3) 1176 (171.4) 1176 (207.7)

1080 (139.7) 1093 (21.3) 1099 (116.1) 1107 (167.2)

1068 (303.0) 1090 (122.5) 1063 (168.8) 1068 (105.7) 1067 (162.3)

984 (85.3) 999 (92.1) 852 (72.5)

aComputed at B3PW91/TZ2P, frequencies are unscaled, and dipole strengths (in parentheses) in units of

10240 esu2 cm2 (ref. 79).
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