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1.1 INTRODUCTION

Quantitative treatment of the mechanical behavior of ceramics (or any solid)
requires the mathematical description of stress and strain. Each of these
quantities is a second-rank tensor. The full three-dimensional treatment of
stress and strain will be presented, but it is convenient to begin with a simple
two-dimensional treatment and discuss types of mechanical behavior in terms
of these. This approach permits qualitative ideas about the mechanical
behavior of ceramics to be explained without obscuring them within the
complexity of a full three-dimensional treatment. The scheme followed here
is to introduce stress and strain in terms of an easily visualized picture of
deforming a bar.

Consider a rectangular bar [as shown in Figure 1.1(a)] of length L, height h,
and width w with a force F acting parallel to the length on each end (i.e.,
uniaxial loading). (The force is denoted by an arrow; however, it is distributed
uniformly over the surface to which it is applied.) The bar will deform under the
action of the forces. Accordingly, the bar is taken to deform by an amount dL
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in the direction of the force F and to deform an amount dh in the direction of
the height h and dw in the direction of the width w, as shown in Figure 1.1(b).
For a tensile force F as shown, the deformation dL is an extension, but the
deformation at right angles to F is usually a contraction; dw and dh are
generally negative for an applied tensile force. For certain directions in certain
single crystals, the deformation dw or dh can actually be positive for an applied
tensile stress. These are exceptional and rather rare cases.

Consider the two identical bars shown in Figure 1.1(c) subjected to the same
force F. These bars are connected side by side in such a way that the load is
shared equally between them. Each bar therefore supports only F/2 so that the
deformations will be smaller in magnitude: that is, dLuodL, |dhu|o|dh|, and
|dwu|o|dw|. Absolute values are used for dh and dw since they are usually
negative. For a linear elastic material (Chapter 3) these deformations will be
exactly one-half of those for the single bar because the force supported by each
bar is halved. However, if the force applied to the composite bars is 2F, as
shown in Figure 1.1(d), it is intuitively obvious that the deformations of each
bar will be the same as the single bar in Figure 1.1(b).

Comparing the deformations in Figure 1.1(b)–(d) shows that the applied
force is not a particularly useful way of quantifying the driving force for the
deformation: for a fixed applied force the resulting deformation changes if the
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FIGURE 1.1 Bars subjected to tensile force.
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cross-sectional area of the bar is changed. However, we see that doubling
the cross-sectional area while at the same time doubling the force does result in
the same deformation. This suggests that the variable controlling the deforma-
tion behavior is not total load but load per unit area. Accordingly, the tensile

stress or normal stress s is defined as the force F divided by the cross-sectional
area A, so that

s ¼ F

A
¼ F

wh
(1:1)

This is the definition of engineering stress, in contrast to the quantity termed
true stress, which will be discussed in a later section. However, ceramics usually
will fail at small strain when the difference between engineering stress and true
stress is not significant. Unless otherwise stated, the term ‘‘stress’’ will refer to
engineering stress in this book.

Comparing now the deformation of two bars connected end to end [Figure
1.1(e)] with the deformation of a single bar, the force F produces twice the
extension of the latter case. The deformation inside the material is accommo-
dated by stretching and bending of the interatomic bonds; comparing
Figures 1.1(b) and (e) suggests that the deformation at the atomic level is the
same in both cases. Doubling the length of the specimen results in double the
extension. The deformation is therefore specified by the strain, which is defined
as the ratio of the extension to the original length:

e ¼ dL
L

(1:2)

This is the definition of engineering strain, in contrast to the quantity termed
true strain, which will be discussed in a later section. Unless otherwise stated,
the term ‘‘strain’’ will refer to engineering strain in this book.

By using stress and strain instead of force and deformation, for the bar of
Figure 1.1 we find that for a given applied stress the strain will always be the
same, irrespective of the length or cross-sectional area of the bar.

In addition to forces normal to the end faces of the bar, surface tractions or
shear forces might also be applied. Figure 1.2 shows an initially rectangular
body subjected to tractions T applied to its upper and lower surfaces. The
tractions tend to cause the body to deform into a parallelepiped whose adjacent
sides have rotated by an angle f with respect to each other. The shear forces
give rise to a shear stress t, which is defined in an analogous fashion to the
tensile stress; that is, the stress is the force divided by the area over which the
force is applied:

t ¼ T

A
¼ T

wL
(1:3)

but in this case the force is applied parallel to the area. Similarly to tensile
strain, the shear strain g is defined as the ratio of the deformation to the original
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dimension, which in this case is

g ¼ d
h
¼ tanf � f (1:4)

It will be seen later that there are two different definitions of shear strain.
Equation (1.4) defines the engineering shear strain. Note that this use of the
term engineering strain is different from the context of using ‘‘engineering
strain’’ to distinguish from ‘‘true strain’’; see Section 1.7 for a discussion this
topic. The engineering shear strain is related to the relative rotation angle f and
in the case of small strain (which is normally the case for deformation of
ceramics) equals the angle in radians. Additional shear forces T u must be
applied to the left and right sides of the body in Figure 1.2 in order to maintain
rotational stability. They result in a shear stress t that is equal and opposite to
the shear stress on the top and bottom faces. The shear strain g is the result of
both shear stresses.

The example of Figure 1.1 is particularly simple because only one force is
applied. Tensile forces could also be applied perpendicular to the length of the
bar leading to additional tensile stress and strain components. Additionally,
shear forces can be applied to the faces of the bar, leading to shear stresses and
strains. For a complete three-dimensional description of stress and strain, each
must be represented by second-rank tensors, that is, 3� 3 matrices with some
special tensor properties.

The example of Figure 1.1 is also simple because the stress and strain are
uniform throughout the bar. In more complex problems the stress and
strain vary with position inside a body and the definitions need to be modified.
For example, if the stress is nonuniform, it is inappropriate to define the strain
as the change in overall length divided by the original overall length. This
introduces the concept of stress at a point and strain at a point. However, the
definitions of stress and strain at a point are essentially the same except that the
definitions involve forces and deformations in an infinitesimally small element
instead of the overall body.

T

T

L

T ′
T ′

δ

φ
h

w

FIGURE 1.2 Rectangular body subjected to surface shear tractions.
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1.2 TENSOR NOTATION FOR STRESS

Figure 1.3 shows a small element of material inside a body. Each face of the
element is acted upon by forces from the surrounding material. The total vector
force F on the face of constant x can be resolved into three mutually orthogonal
components: a force Fx perpendicular to the face and two surface tractions
(shear forces) parallel to the face acting in the y and z directions, Ty and Tz,
respectively. Surface area is a vector quantity of magnitude equal to the area
and direction normal to the area acting out of the body. For the x face under
consideration the vector area is Ax acting in the positive x direction, as shown
in the figure. The force components on this face therefore represent three
components of stress, a tensile stress and two shear stresses, all acting at mutual
right angles.

The components of stress are generally written (Sines, 1969)

son x plane in y direction ¼ sxy ¼
force in y direction acting on x plane

area of plane perpendicular to x
(1:5)

Here ‘‘x plane’’ means ‘‘plane perpendicular to the x axis’’ or ‘‘plane of
constant x.’’ In terms of indices denoting xyz by x1, x2, x3, the above stress
component is written

son xi plane in xj direction ¼ sij (1:6)

There are thus nine possible stress components in three dimensions. How-
ever, it will be shown that sij=sji for i 6¼ j, so that there are only six

y

Ty

Tz

Z

Fx Ax

x

F

FIGURE 1.3 Forces acting on the face of a small element of material.
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independent components. The components with i= j are termed normal

stresses or tensile stresses (with a compressive stress considered a negative
tensile stress). For normal stresses the force acts in a direction perpendicular
(normal) to the area to which it is applied (parallel to the area vector). The
components with i 6¼ j are termed shear stresses for which the force acts in a
direction parallel to the area over which it is applied (perpendicular to the area
vector). The shear stresses are sometimes written tij instead of sij to emphasize
their nature as shear stresses.

Written as a matrix the components of stress in three dimensions are

r ¼
s11 s12 s13

s21 s22 s23

s31 s32 s33

0
B@

1
CA or r ¼

sxx sxy sxz

syx syy syz

szx szy szz

0
B@

1
CA (1:7)

with

s12 ¼ s21 s23 ¼ s32 s31 ¼ s13 (1:8)

The double underlines for r signify that it is a second-rank tensor. It is easier to
visualize matters in two dimensions and attention will be restricted accordingly
in the next few pages. For two dimensions there are a total of four stress
components of which only three are independent. Written as the matrix, the
stresses in two dimensions are

r ¼
s11 s12

s21 s22

 !
or r ¼

sxx sxy

syx syy

 !
(1:9)

with

s12 ¼ s21 (1:10)

The stress components in two dimensions are shown in Figure 1.4, which shows
an infinitesimal square element acted upon by forces both normal and parallel
to each surface. The arrows for the stresses show the direction of action of the
forces represented by the stresses—the stresses themselves act in both directions
simultaneously. The forces normal to the faces produce normal stresses. The
force Fx on the right face (the +x face) is balanced by an equal and opposite
force �Fx on the left face (the �x face) to maintain stability. Similar results
hold for the upper and lower faces. The forces parallel to the faces produce
shear stresses; again each force on one face is balanced by an equal and
opposite force on the opposite face. For the element to be under no net torque,
the shear forces must balance such that sxy=syx.
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The sign convention for stress can be defined in terms of the directions of the
force vectors and area vectors. If both the force and area vectors act in the
positive direction or in the negative direction, the stress is positive; if the force
acts in the negative direction and the area in the positive direction or vice versa,
the stress is negative. For example, in Figure 1.4 the component of normal
stress on the right-hand side of the element, sxx, represents a force acting in the
positive x direction and the area normal is also in the positive x direction,
giving a positive stress. The component on the left, s�x�x, is a force acting in
the negative x direction with an area normal acting in the negative x direction
and so is again positive and therefore equals sxx. This sign convention
coincides with that stated earlier, that tensile stresses (i.e., stresses tending to
cause extensions) are positive while compressive stresses (tending to cause
contractions) are negative. Consider now that the shear stress sxy as drawn in
Figure 1.4 is positive since it is a force acting in the positive y direction is acting
on an area whose normal is in the positive x direction. The reader should verify
that syx as drawn in Figure 1.4 is also acting in the positive sense. Using this
sign convention, sxy and syx tend to cause rotations in the opposite sense, but
since sxy=syx, there is no net rotational moment.

The dimensions of stress are force divided by area and so the unit is newtons
per square meter or the preferred unit the pascal (Pa). Other units that might be

+Fy

+y plane

−y plane

+x plane−x plane

+Tx

−Tx

+Ty−Ty

−Fy

+Fx−Fx

x

y

σyx

σyy

σxy

σxx

σ−y−x = σyx

σ−x−y = σxy

σ−x−x = σxx

σ−y−y = σyy

 ←tensile forces 
tensile stresses→  

 ←shear forces 
shear stresses→ 

FIGURE 1.4 Components of stress in two dimensions.
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encountered are listed in Table 1.1 together with their conversion factors to
pascals. Stresses encountered while working with ceramics range roughly from
1 to 1000MPa (1GPa)—most ceramics survive a normal stress of 10MPa while
few can withstand a stress of a few gigapascals.

1.3 STRESS IN ROTATED COORDINATE SYSTEM

We now examine how a stress tensor is expressed in a rotated coordinate
system. Considering the bar of Figure 1.1 and taking the x axis along the long
axis of the bar, the stress caused by a load in this direction acting on the cross-
sectional area Ax of the bar is

s ¼ Fx

Ax
¼ sx1 plane; x1 direction ¼ s11 ¼ sxx (1:11)

For this bar and this load the other stress components are zero so that the stress
tensor anywhere in the bar is given by

r ¼
s 0 0

0 0 0

0 0 0

0
B@

1
CA (1:12)

For this simple state of stress, known as uniaxial tension, it is obvious that the
frame of reference for the stress tensor should be chosen with one axis parallel
to the axis of the bar. However, while this is a convenient choice, the stress
could be referred to any other system of axes. The question now arises, if one
knows the components of stress referred to some set of axes xyz, what are the
components of stress referred to some other set of axes xuyuzu which are rotated
with respect to the xyz axes? We will first consider the two-dimensional case in
which the stress components to be determined are referenced to axes xuyu which
are rotated at an angle y with respect to the xy axes.

Figure 1.5(a) defines the relationship between the xy and xuyu axes
and defines the sense of the rotation angle y, which is the angle measured

TABLE 1.1 Units of Stress

1N/m2=1Pa

1 kg/m2=9.81 Pa

1 dyn/cm2=0.1 Pa

1 psi (pound per square inch)=6.89476 kPa

1 bar=0.1MPa

1 atm=0.101325MPa
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counterclockwise from the x axis to the xu axis. We consider the stability of a
small element of the solid shown in the lower left portion of Figure 1.5, which
has a triangular section whose three faces are perpendicular to the x, y, and xu
axes. The stresses experienced by each face of the element do not depend on
which set of axes are chosen to describe them and so we may choose any
convenient axes provided we use the same set of axes consistently for each face.
We therefore refer the two orthogonal faces to the xy axes and the hypotenuse
to the xuyu axes. Figure 1.5(b) shows the components of stress acting on each
face using this choice of axes. The arrows point in the direction of the forces
represented by the stress components. We use the notation here that compo-
nents of stress referred to the xuyu axes, siuju, may be rewritten as s0ij for clarity.
The reader should verify that each component of stress points in the positive
direction using the sign convention for stresses.

The area of each face is proportional to the length of the side of the
triangular section and the three areas are defined in Figure 1.5(c). The forces
applied to each face, shown in Figure 1.5(d), are calculated by multiplying each
component of stress by the area of the face to which it is applied. The triangular
element is stable (i.e., not accelerating) so the net force applied to it must equal

y

x

y′

x′

(b) (c) (d)

σxxAx

σxxAx
′ ′σxx

σxx

σxy

′

σxy′
σxyAx

σxyAx

σyy

σyx

σyyAy

σyxAy

′ ′

Ax
Ax

Ay

′

(a)

θ

θθθ

FIGURE 1.5 Stress in a rotated coordinate system: (a) axes; (b) stresses; (c) areas;

(d) forces.
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zero. Equating the components of all the forces resolved in the xu direction gives

s0xxA
0
x ¼ sxxAx cos yþ sxyAx sin yþ syyAy sin yþ syxAy cos y (1:13)

The areas of the sides are related by

Ax ¼ A0x cos y and Ay ¼ A0x sin y (1:14)

Substitution into Eq. (1.13) and using sxy=syx give

s0xx ¼ sxx cos
2 yþ syy sin

2 yþ 2sxy sin y cos y (1:15)

The shear stress in the xuyu coordinate system is found by resolving components
of force in the yu direction:

s0xyA
0
x ¼ �sxxAx sin yþ sxyAx cos yþ syyAy cos y� syxAy sin y (1:16)

which gives

s0xy ¼ ðsyy � sxxÞ sin y cos yþ sxyðcos2 y� sin2 yÞ (1:17)

It may be shown that Eqs. (1.15) and (1.16) also ensure rotational stability,
namely that there is no net torque acting on the element. Similar considerations
applied to a triangular element whose hypotenuse is perpendicular to the yu
direction provides the final stress component s0yy:

s0yy ¼ sxx sin
2 yþ syy cos

2 y� 2sxy sin y cos y (1:18)

Using the well-known trigonometric identities

cos 2y ¼ cos2 y� sin2 y and sin 2y ¼ 2 sin y cos y (1:19)

the three components of stress can be expressed in terms of 2y:

s0xx ¼ 1
2
ðsxx þ syyÞ þ 1

2
ðsxx � syyÞ cos 2yþ sxy sin 2y

s0yy ¼ 1
2
ðsxx þ syyÞ � 1

2
ðsxx � syyÞ cos 2y� sxy sin 2y

s0xy ¼ 1
2
ðsyy � sxxÞ sin 2yþ sxy cos 2y

(1:20)

Turning now to the three-dimensional case, a general expression for the
stresses on a plane of any orientation in three dimensions can be written in
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terms of the direction cosines of the normal to the plane and the direction of
action of the stress (Sines, 1969). Consider the plane in Figure 1.6 having a
normal r with direction cosines air to the axes xyz= x1x2x3. The stress normal
to this plane is

s0rr ¼
X
i

X
j

air ajr sij (1:21)

The shear stress acting on this plane in the s direction with direction cosines ajs is

s0rs ¼
X
i

X
j

air ajs sij (1:22)

1.4 PRINCIPAL STRESS

Examination of Eqs. (1.20) shows that at a particular value of y defined by

tan 2y ¼ 2sxy

sxx � syy
(1:23)

s0xy is zero. This means that for any general stress tensor in two dimensions a set

of axes can be found for which the shear stresses vanish. These axes are called

x

y

z

r

s

FIGURE 1.6 Plane with normal r and direction s in the plane.
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the principal axes and the directions of the principal axes are principal

directions. Planes containing pairs of principal axes are principal planes. The
normal stresses referred to the principal axes are the principal stresses. Referred
to the principal axes, Eqs. (1.20) become

s0xx ¼ 1
2
ðsxx þ syyÞ þ R

s0yy ¼ 1
2
ðsxx þ syyÞ � R

s0xy ¼ 0

(1:24)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðsxx � syyÞ
� �2þs2

xy

q
(1:25)

The principal stresses s0xx and s0yy may be renamed s1 and s2 where, by
convention, s1Zs2.

Inverting Eqs. (1.24) using (1.23) permits calculation of the components of
stress referenced to axes inclined at an angle y to the principal axes in terms of
the principal stresses:

sxx ¼ 1
2ðs

0
xx þ s0yyÞ þ 1

2ðs
0
xx � s0yyÞ cos 2y ¼ s0xx cos

2 yþ s0yy sin
2 y

syy ¼ 1
2ðs

0
xx þ s0yyÞ � 1

2ðs
0
xx � s0yyÞ cos 2y ¼ s0xx sin

2 yþ s0yy cos
2 y

sxy ¼ syx ¼ 1
2
ðs0xx � s0yyÞ sin 2y ¼ ðs0xx � s0yyÞ sin y cos y

(1:26)

The Mohr circle construction (Sines, 1969; Courtney, 1990) is a graphical
method for obtaining the principal stresses that gives useful insight into the
properties of the stress tensor. In this construction the abscissa is normal stress
s and the ordinate is shear stress, usually written as t for the Mohr circle. A
different sign convention applies to shear stresses in the Mohr circle construc-
tion: Shear stresses causing a clockwise rotation are taken as positive and those
causing a counterclockwise rotation are taken as negative (Sines, 1969). In our
case with the z axis out of the paper in Figure 1.5, sxy is a positive rotation so
txy=sxy and syx is a negative rotation giving tyx=�syx. For a given pair of
principal stresses s1 and s2 the locus of Eqs. (1.26) as y varies is a circle on a
shear stress/normal stress plot, as shown in Figure 1.7. One can consider this
circle in two ways: (1) for a situation in which the principal stresses and
directions are known and (2) when the stress tensor is known and the principal
stresses and directions are to be determined.

12 STRESS AND STRAIN



In the first situation the initial axes are principal axes, s0xx ¼ s1, s0yy ¼ s2,

and s0xy ¼ s0yx ¼ 0. The center of the circle is on the s axis at 1
2
ðs1 þ s2Þ. The

radius of the circle is 1
2
ðs1 � s2Þ. The circle intersects the s axis at s1 and s2.

To obtain the stress in a system of coordinates rotated by an angle y, a diameter
of the circle is drawn rotated through an angle 2y to the s axis. This diameter
intersects the circle at two points. The intersection point adjacent to the 2y
angle has abscissa sxx and ordinate txy=sxy. The intersection of the circle
with the opposite end of the diameter has abscissa syy and ordinate
tyx=�syx=�sxy.

In the second situation the initial axes are not principal since the shear stress
is not zero. Two points on the Mohr circle are constructed with coordinates
(sxx, sxy) and (syy, �sxy). Alternatively and equivalently, the Mohr conven-
tion for the sign of shear stress (clockwise rotation corresponds to positive
shear) may be used and the two points are (sxx, txy) and (syy, tyx). The center
of the Mohr circle is on the s axis at 1

2
ðsxx þ syyÞ and the radius is given by

Radius ¼ R ¼ sxx � syy

2

� �2
þs2

xy

� �1=2
(1:27)

The principal stresses are the intersection of the circle with the s axis, and the
orientation of the principal axes is given by the angle y:

y ¼ 1
2
tan�1

2sxy

sxx � syy

� 	
(1:28)

1
2

(σxx,τxy)

τ

τyx=−σxy

τmax

(σyy,τyx)

σyy 2θ

Radius, R

(σ1+σ2) σ1σ2

σσxx

FIGURE 1.7 Mohr circle for biaxial tension.
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Examination of the Mohr circle illustrates two important results. For a given
pair of principal stresses s1 and s2, the maximum normal stress that can be
observed in any rotated coordinate system is on the extreme right-hand side of
the circle; that is, the maximum normal stress is the bigger principal stress
smax=s1. Similarly, the minimum normal stress (most negative stress) is at the
extreme left of the circle and equals the smaller principal stress smin=s2.
Further, the maximum shear stress occurs at the top and bottom of the Mohr
circle, 2y=7901, y=7451, and is given by

tmax ¼ 1
2
ðs1 � s2Þ (1:29)

These results show the importance of principal stress analysis in understanding
the mechanical behavior of ceramics. Most ceramics fail by brittle fracture
in tension: Failure is controlled by the biggest tensile stress s1. Ceramics
at high temperature (as well as most metals and polymers) can deform in
shear: This deformation is controlled by the maximum shear stress, which is
itself related to the principal stresses. Principal stress analysis is therefore
necessary in understanding the response of any material to a complex state of
stress.

It is interesting to examine the stresses given by the Mohr circle construction
(or equivalently by direct calculation from the above equations) for special
situations. Consider the case of a bar under simple uniaxial tension s such as in
Figure 1.1. No other stresses are applied and in particular no shear stresses are
applied, so the axis of the bar is principal and an axis perpendicular to the bar is
also principal. The principal stresses are therefore s1=s and s2=0. The
Mohr circle for this case is shown in Figure 1.8(a). The center of the circle is at
1
2
s and the radius is also 1

2
s. The shear stresses are a maximum at 2y=7901

with magnitude 1
2
s. At this orientation the two normal stresses are both 1

2
s.

This example illustrates how a ductile material can fail in shear even though
only a tensile stress is applied.

As a further example consider the application of two equal stresses s1=
s2=s, that is, equi-biaxial tension. The center of the Mohr circle is at s and
the radius is zero. The Mohr circle is just a point, as shown in Figure 1.8(b).
As the coordinate system rotates, the values of sxx and syy remain equal to s
and the shear stresses remain equal to zero for all values of y.

A final example, equi-opposite biaxial tension, is shown in Figure 1.8(c), in
which a tensile stress of magnitude s is applied in one direction and a
compressive stress of equal magnitude, �s, is applied in a perpendicular
direction. Since no other stresses are applied, these stresses are principal so
s1=s and s2=�s. The Mohr circle in this case is centered on the origin. At
y=7451 the normal stresses are zero and the shear stress is the maximum,
tmax=s, so in this case axes can be found for which the stress tensor is purely
shear.
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1.4.1 Principal Stresses in Three Dimensions

The principal stresses in three dimensions are found by solving the eigenequa-
tion for the stress tensor:

r�s I








 ¼ 0 or r�s I








 ¼ det

s11 � s s12 s13

s21 s22 � s s23

s31 s32 s33 � s


















¼ 0 (1:30)

where I is the identity matrix and s is a scalar. The eigenequation represents a
cubic equation in s (Courtney, 1990):

s3 � J1s2 � J2s� J3 ¼ 0 (1:31)

where the coefficients J1, J2, and J3 are the stress invariants (see below). This
equation is solved to find the three eigenvalues s1, s2, and s3. The eigenvectors
point in the principal directions and so coincide with the principal axes. Unlike
the two-dimensional case, there are no conveniently simple equations for the
principal stresses in three dimensions, nor is there a simple geometric solution
equivalent to the Mohr circle. However, eigenanalysis is readily performed
using a wide variety of computational tools. By convention the eigenvalues are
chosen so that s1Zs2Zs3; s1 is therefore the largest normal stress in any
direction and s3 is the smallest (most negative). Analogous to the two-
dimensional case, the shear stress has maximum values on planes inclined at
7451 to the principal planes. The largest shear stress acting on any plane is
therefore

tmax ¼ 1
2ðs1 � s3Þ (1:32)

with locally maximum values of 1
2
ðs1 � s2Þ and 1

2
ðs2 � s3Þ.

τ τ τ

σ/2

σ σ σ

σ

σσ

−σ

−σσ

−σ/2

2θ

(a) (b) (c)

FIGURE 1.8 Mohr circle for (a) uniaxial tension, (b) equibiaxial tension, and (c) equi-

opposite biaxial tension.
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Since we exist in a three-dimensional world, it is clear in retrospect that the
two-dimensional analysis presented earlier contains the implicit assumption
that the z plane is principal. In many practical situations one of the principal
planes is known and the two-dimensional treatment is appropriate. For
example, a traction-free surface is principal. Most mechanical testing techni-
ques (Chapter 6) apply a simple stress tensor to samples and at least one
principal plane is readily identifiable.

1.5 STRESS INVARIANTS

When stresses are transformed from one coordinate system to a rotated system,
there are three properties of the stress tensor that remain constant. These three
stress invariants are

J1 ¼ sxx þ syy þ szz ¼ s1 þ s2 þ s3

J2 ¼ � sxxsyy � syyszz � szzsxx þ s2
xy þ s2

yz þ s2
zx

¼ � s1s2 � s2s3 � s3s1

J3 ¼ sxxsyyszz þ 2sxysyzszx � sxxs2
yz � syys2

zx � szzs2
xy

¼ s1s2s3

(1:33)

The existence of these quantities that are invariant under rotations means that
the stress tensor is indeed a tensor and not simply a matrix. The hydrostatic

stress is the mean normal stress:

sh ¼ 1
3
ðsxx þ syy þ szzÞ ¼ 1

3
J1 (1:34)

and is clearly invariant, as is the hydrostatic pressure, which, taking a
compressive stress as a positive pressure, is minus the hydrostatic stress:

p ¼ �sh ¼ �1
3
J1 (1:35)

1.6 STRESS DEVIATOR

It is well known that the effect of multiple forces can be combined by vector
addition in which corresponding components of forces are added. It is a general
property of vectors such as force and area. A similar result holds for the stress
tensor since the components of stress represent components of forces and areas.
If multiple stresses are applied to a body, the stress tensors for each stress can
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be added together element by element to obtain the overall stress tensor. This is
known as the principal of superposition—different stress tensors are super-
imposed by simple tensor addition. This result is useful in a wide variety of
situations. Conversely, a total stress tensor can be decomposed into two or
more tensors.

It is useful to separate the stress into the components causing dilation
without change of shape (pressure) and components causing distortion without
change in volume. For example, to a first approximation hydrostatic pressure
alone causes transformation in transformation-toughened zirconia. Plastic
deformation is not caused by hydrostatic pressure so that it is sometimes useful
to subtract the hydrostatic stress and consider only the remaining stresses. The
stress deviator r� is defined by

s�ij ¼ sij � 1
3 J1

¼ sij þ p i ¼ j

s�ij ¼ sij i 6¼ j

(1:36)

or explicitly

r ¼ r� �p I ¼
s11 þ p s12 s13

s21 s22 þ p s23

s31 s32 s33 þ p

0
B@

1
CAþ

�p 0 0

0 �p 0

0 0 �p

0
B@

1
CA (1:37)

1.7 STRAIN

When forces are applied to a body, it deforms. Every point in the body is
displaced from its original position by an amount that can be represented by a
vector. This results in the concept of the vector displacement field—at every
point in the body the deformation is represented by a vector v. The three
components of v in the x, y, and z directions are u, v, and w or, equivalently, u1,
u2, and u3. The components of v are all functions of position:

v ¼
ðu; v;wÞ ¼ uðx; y; zÞ; vðx; y; zÞ;wðx; y; zÞð Þ
ðu1; u2; u3Þ ¼ u1ðx1; x2; x3Þ; u2ðx1; x2; x3Þ; u3ðx1; x2; x3Þð Þ

(
(1:38)

The strains within the body can be expressed in terms of this vector displace-
ment field. Considering first the two-dimensional case for simplicity, Figure 1.9
shows a small rectangular element ABCD with sides dx and dy which is
displaced to AuBuCuDu when forces are applied. The element is deformed by the
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forces so that the sides AB and BC are rotated by angles f1 and f2, respectively,
from their original orientation. The coordinates of the vertex B are (x, y) so that
the displacement BBu in the x direction is u(x, y) and the displacement CCu is
u(x+ dx, y). The change in length of the side BC measured in the x direction is
therefore u(x+ dx, y)� u(x, y). The normal strain measured in the x direction
in the side BC as it deforms to BuCu [from Eq. (1.2)] is

exx ¼
uðxþ dx; yÞ � uðx; yÞ

dx
¼ @u

@x
(1:39)

Similar considerations can be used to obtain the results for the three-dimen-
sional case, giving

eyy ¼
@v

@y
ezz ¼

@w

@z
(1:40)

By changing the coordinate notation to (x1, x2, x3), we find the general form for
the three components of normal strain:

eii ¼
@ui
@xi

i ¼ 1; 2; 3 (1:41)

The vertex AAu is displaced by a distance u(x, y+ dy) in the x direction so that
the distance BuAu measured in the x direction is u(x, y+ dy)� u(x, y). In the

x

y

A

B C

D

A′

B′

C′

D′

u(x,y) u(x+dx,y)

u(x,y+dy)

dy

dx

φ2

φ1

FIGURE 1.9 Definition of strain.
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limit of small strain the angle f1 is given by

f1 ’ tanf1 ¼
uðx; yþ dyÞ � uðx; yÞ

dy
¼ @u
@y

(1:42)

Similarly the angle f2 is given by

f2 ¼
@v

@x
(1:43)

The sides AB and BC are rotated relative to each other by a total angle
f=f1+f2. Using the definition for engineering shear strain, Eq. (1.4), the
shear strain gxy is

gxy ¼
@u

@y
þ @v
@x

(1:44)

In general, for three dimensions we have

gij ¼
@ui
@xj
þ @uj
@xi

i; j ¼ 1; 2; 3 i 6¼ j (1:45)

Examination of (1.45) shows that gij= gji so that while there are six
components of shear strain there are only three independent components. If i
is set equal to j in (1.45), the result differs from the definition for normal strain
[Eq. (1.41)] by a factor of 2. Therefore the definitions of normal strain and
engineering shear strain are incompatible so that they cannot be grouped
together into a tensor and manipulated as a whole. This difficulty is overcome if
we define the simple shear strain eij to be one-half of the engineering shear
strain. The general form

eij ¼
1

2

@ui
@xj
þ @uj
@xi

� 	
i; j ¼ 1; 2; 3 (1:46)

is applicable to both normal and shear strains so that they can be grouped
together to form the strain tensor:

e ¼
e11 e12 e13
e21 e22 e23
e31 e32 e33

0
B@

1
CA or e ¼

exx exy exz
eyx eyy eyz
ezx ezy ezz

0
B@

1
CA (1:47)

The stress and strain tensors are both symmetric matrices, which means that
many of the properties of the strain tensor are analogous to those of the stress
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tensor. In particular, it was noted earlier that for any set of stress compo-
nents there are three orthogonal directions, the principal directions for stress,
for which the shear stresses are all zero. An analogous result holds for strain.
For any set of strain components there are three orthogonal directions, called
the principal directions for strain, for which the shear strains are zero;
the corresponding normal strains are called the principal strains. For an
elastically isotropic body the principal directions for stress and the principal
directions for strain coincide. For an elastically anisotropic body this is not
necessarily so.

The methods described earlier for determining principal stresses can all be
used for determining principal strains; in all equations components of stress are
replaced by the equivalent components of strain. In particular, the Mohr circle
construction can be used for two-dimensional cases (i.e., where the third
direction is known to be principal). Another set of results for stress that can
be adopted for strain is the stress invariants and the definition of deviatoric
stress. The corresponding strain invariants, hydrostatic strain and strain
deviator are given by substituting strain for stress in Eqs. (1.33) and (1.36).
A parameter of interest is the volumetric strain eV, which is the fractional
change in volume caused by the deformation. It equals the first strain invariant
obtained from Eq. (1.33):

J1 ¼ exx þ eyy þ ezz ¼ e1 þ e2 þ e3 ¼ eV ¼ 3eh (1:48)

1.8 TRUE STRESS AND TRUE STRAIN

The stress defined in Eq. (1.1) and the strain defined in Eq. (1.2) both contain
factors which involve the size of the specimen, namely the cross-sectional area
A and the length L. However, both of these parameters are changing as
deformation takes place. We define now two types of stress and strain:
engineering stress and engineering strain, where the cross-sectional area and
length have the original values before the start of the deformation, and true

stress and true strain, where the instantaneous cross-sectional area and length
are used (Table 1.2). They are equivalent for small stresses and strains.

TABLE 1.2 Engineering and True Stress and Strain

Engineering True

s ¼ F

Aoriginal
¼ F

A0
st ¼ F

Ainstantaneous
¼ F

A

e ¼ dL
Loriginal

¼ dL
L0

et ¼
Z L0þdL

L0

dL

L
¼ ln

L0 þ dL
L0

� 	
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Engineering stress and strain are convenient to use because in performing a test
with uniaxial stress the original length and cross-sectional area are easily
measured but it is not as convenient to continually measure their instantaneous
values.

1.8.1 True Strain

To consider why we call stresses and strains ‘‘true’’ stresses and strains, we
consider strains using the illustration of Figure 1.1. It should be true for a self-
consistent definition of strain that, if the rectangular parallelepiped is strained
in two steps by extending it first from L0 to L1=L0+ dL1 and then extending
again from L1 to L2=L1+ dL2, the two strains should add to the total strain if
the deformation were performed all at once, that is, from a length L0 to a length
L2. That is, the final strain should not depend on how the strain is formed.
Consider first the engineering strain:

Increment 1 : e0�1 ¼
L1 � L0

L0
¼ dL1

L0
(1:49)

Increment 2 : e1�2 ¼
L2 � L1

L1
¼ dL2

L0 þ dL1
(1:50)

If the deformation is performed in one step,

Total strain : e0�2 ¼
L2 � L0

L0
¼ dL1 þ dL2

L0
6¼ e0�1 þ e1�2 (1:51)

Clearly this is not equal to the sum of the partial strains so engineering strain is
not additive and does not give a self-consistent measure of strain. However, if
we use the instantaneous length to define an infinitesimal increment in true
strain,

det ¼ dL

L
(1:52)

then the total true strain associated with a change in length from Linitial to
Lfinal is

et ¼
Z Lfinal

Linitial

dL

L
¼ ln

Lfinal

Linitial

� 	
¼ ln 1þ dL

Linitial

� 	
(1:53)
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Consider now the two-step deformation discussed above. The associated
components of true strain are

Increment 1 : et0�1 ¼ ln
L1

L0

� 	
(1:54)

Increment 2 : et1�2 ¼ ln
L2

L1

� 	
(1:55)

If the deformation is performed in one step,

Total strain : et0�2 ¼ ln
L2

L0

� 	
¼ ln

L2

L1

L1

L0

� 	
¼ et0�1 þ et1�2 (1:56)

showing that true strain is additive and so independent of how the deformation
is performed. A series expansion of the logarithm in Eq. (1.53) shows that for
small strain the engineering and true strains have nearly the same value but at
large strains they differ significantly. As an example, if a specimen were strained
to twice its length or one-half its length, the engineering strain would be e=1
and e ¼ �1

2
respectively, but the true strains would be et=0.69 and et=�0.69,

respectively.

1.8.2 True Stress

The need for true stress is clear. If a body is subjected to large strains, the cross
section can be considerably reduced and the engineering stress badly under-
estimates the local stress. This is particularly true for some ductile materials
which can strain nonuniformly under a tensile load forming local ‘‘necks’’
where the cross section is considerably smaller than the original or the average
cross section. In such a case the engineering stress is uniform along the length,
but the true stress reaches a high value in the neck region and is a superior
representation of stress.

For a uniaxial tension or compression test it is possible to convert
engineering strain to true strain and to determine the true stress at a given
strain provided the relationship between volume of the sample and the axial
strain is known. The analysis is simplified if, as is usually the case, it is assumed
that the volume of the sample does not change during plastic deformation. The
volume V can be related to the initial (L0 and A0) and instantaneous (Li and Ai)
length and cross-sectional area:

V ¼ A0L0 ¼ AiLi (1:57)

Thus

Li

L0
¼ A0

Ai
(1:58)
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The engineering strain is given by

e ¼ Li � L0

L0
¼ Li

L0
� 1 or

Li

L0
¼ 1þ e (1:59)

while the true strain is

et ¼ ln
Li

L0

� 	
¼ ln 1þ eð Þ (1:60)

To determine the true stress at a give strain,

st ¼ F

Ai
¼ FLi

A0L0
¼ sð1þ eÞ (1:61)

True stress and true strain are only used where relatively large plastic strains
are observed since elastic strains are usually so low that engineering and true
stresses and strains are the same. For ceramics only elastic deformation is
observed except under high temperatures, and so generally engineering stresses
and strains are sufficient.

PROBLEMS

1. An elastic ceramic body is placed under a hydrostatic compression of
200MPa. Additional stresses of sxx=400MPa, syy=100MPa, and sxy=
syx=50MPa are then superimposed. No other stresses are applied. What
is the total stress tensor? What are the principal stresses and what angles do
the principal axes make to the x axis? What is the maximum shear stress
anywhere in the body and what is its orientation?

2. The stress tensor at a point P(x,y,z) is

s ¼
300 100 100

100 0 200

100 200 0

0
B@

1
CA MPa

Determine the principal stresses and unit vectors in the principal directions.
Determine the magnitude and directions of the maximum shear stress at P.

3. A tensile force of 50N is applied uniformly over the end faces (measuring
10mm by 100 mm) of a thin ceramic sheet. The sheet contains a small crack
whose plane is inclined at 601 to the direction of the force. Find the tensile
stress acting normal to the crack and the shear stress acting in the plane of
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the crack.

60°

4. Prove by differentiating Eqs. (1.20) with respect to y that (i) the maximum
and minimum normal stresses are the principal stresses and that (ii) the
maximum shear stress is one-half of the difference between the principal
stresses and acts on planes inclined at 7451 to the principal axes.

5. The strains (and hence stresses) in the surface of a solid can be measured
using strain gauges. A strain gauge is a thin layer of resistive metal printed in
a zigzag pattern on a thin polymer substrate. When the metal pattern is
subjected to strain, its resistance changes; the zigzag pattern is chosen so that
the resistance change is proportional to the normal strain in only one
direction. The substrate is glued to the surface of interest to sense changes in
the strain. Strain gauges are not sensitive to shear strains, but the shear
strain can be calculated from the three normal strains measured by three
gauges arranged in what is called a ‘‘strain gauge rosette.’’ The schematic
below shows such a rosette with three gauges with their sensitive directions
shown by the arrows. Gauges A and C are perpendicular and B lies at 451
between them.

A strain gauge rosette like the one in the sketch is glued to the surface of a
specimen while the specimen is under zero stress. When stresses are applied
to the specimen, it is determined that the principal strains in the surface are
inclined at an angle to the gauges y=201, as shown in the sketch. If the
principal strains are exx=0.03% and eyy=0.01%, what strains will the
three gauges measure?

A

B

C

x

θ

y

6. Strain gauges attached to the surface of a ceramic body record the following
strain components: exx=2.00� 10�4, eyy=1.50� 10�4, and exy=
�1.00� 10�4. Find the principal strains e1, e2 and their inclination to the
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x axis. Also find the maximum shear strain emax and its angles of inclination
to the x axis.

7. The components of a displacement field are given by (units are meters)

ux ¼ ðx2 þ 20Þ � 10�3 uy ¼ 2yz� 10�3 uz ¼ ðz2 � xyÞ � 10�3

Find the displacements at the point (2,5,7) and the point (3,8,9). Find the
change in the distance between these two points. Determine expressions for
the total, hydrostatic, and deviatoric strain tensors. Calculate the strain
tensor explicitly at the point (2,�1,3). What are the principal strains at this
point?

8. Prove that the two-dimensional invariant sxx+syy is independent of the
rotation angle y. Furthermore, prove that in three-dimensions the invariant
sxx+syy+szz is independent of the direction cosines. The following
relationships may be needed for the proof:

a2xx þ a2xy þ a2xz ¼ 1 a2yx þ a2yy þ a2yz ¼ 1 a2zx þ a2zy þ a2zz ¼ 1

axxayx þ axyayy þ axzayz ¼ 0

ayxazx þ ayyazy þ ayzazz ¼ 0

azxaxx þ azyaxy þ azzaxz ¼ 0
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