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1.1 INTRODUCTION

Quantitative treatment of the mechanical behavior of ceramics (or any solid)
requires the mathematical description of stress and strain. Each of these
quantities is a second-rank tensor. The full three-dimensional treatment of
stress and strain will be presented, but it is convenient to begin with a simple
two-dimensional treatment and discuss types of mechanical behavior in terms
of these. This approach permits qualitative ideas about the mechanical
behavior of ceramics to be explained without obscuring them within the
complexity of a full three-dimensional treatment. The scheme followed here
is to introduce stress and strain in terms of an easily visualized picture of
deforming a bar.

Consider a rectangular bar [as shown in Figure 1.1(a)] of length L, height 4,
and width w with a force F acting parallel to the length on each end (i.e.,
uniaxial loading). (The force is denoted by an arrow; however, it is distributed
uniformly over the surface to which it is applied.) The bar will deform under the
action of the forces. Accordingly, the bar is taken to deform by an amount 5L
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FIGURE 1.1 Bars subjected to tensile force.

in the direction of the force F and to deform an amount 6/ in the direction of
the height # and dw in the direction of the width w, as shown in Figure 1.1(b).
For a tensile force F as shown, the deformation dL is an extension, but the
deformation at right angles to F is usually a contraction; dw and &4 are
generally negative for an applied tensile force. For certain directions in certain
single crystals, the deformation dw or 6/ can actually be positive for an applied
tensile stress. These are exceptional and rather rare cases.

Consider the two identical bars shown in Figure 1.1(c) subjected to the same
force F. These bars are connected side by side in such a way that the load is
shared equally between them. Each bar therefore supports only F/2 so that the
deformations will be smaller in magnitude: that is, L' <dL, |8/'|<|dh|, and
|ow'| <[dw|. Absolute values are used for 64 and ow since they are usually
negative. For a linear elastic material (Chapter 3) these deformations will be
exactly one-half of those for the single bar because the force supported by each
bar is halved. However, if the force applied to the composite bars is 2F, as
shown in Figure 1.1(d), it is intuitively obvious that the deformations of each
bar will be the same as the single bar in Figure 1.1(b).

Comparing the deformations in Figure 1.1(b)—(d) shows that the applied
force is not a particularly useful way of quantifying the driving force for the
deformation: for a fixed applied force the resulting deformation changes if the
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cross-sectional area of the bar is changed. However, we see that doubling
the cross-sectional area while at the same time doubling the force does result in
the same deformation. This suggests that the variable controlling the deforma-
tion behavior is not total load but load per unit area. Accordingly, the tensile
stress or normal stress ¢ is defined as the force F divided by the cross-sectional
area A, so that

F
o= = (1.1)
This is the definition of engineering stress, in contrast to the quantity termed
true stress, which will be discussed in a later section. However, ceramics usually
will fail at small strain when the difference between engineering stress and true
stress is not significant. Unless otherwise stated, the term ““stress’ will refer to
engineering stress in this book.

Comparing now the deformation of two bars connected end to end [Figure
1.1(e)] with the deformation of a single bar, the force F produces twice the
extension of the latter case. The deformation inside the material is accommo-
dated by stretching and bending of the interatomic bonds; comparing
Figures 1.1(b) and (e) suggests that the deformation at the atomic level is the
same in both cases. Doubling the length of the specimen results in double the
extension. The deformation is therefore specified by the strain, which is defined
as the ratio of the extension to the original length:

_oL

T

(1.2)
This is the definition of engineering strain, in contrast to the quantity termed
true strain, which will be discussed in a later section. Unless otherwise stated,
the term “‘strain” will refer to engineering strain in this book.

By using stress and strain instead of force and deformation, for the bar of
Figure 1.1 we find that for a given applied stress the strain will always be the
same, irrespective of the length or cross-sectional area of the bar.

In addition to forces normal to the end faces of the bar, surface tractions or
shear forces might also be applied. Figure 1.2 shows an initially rectangular
body subjected to tractions T applied to its upper and lower surfaces. The
tractions tend to cause the body to deform into a parallelepiped whose adjacent
sides have rotated by an angle ¢ with respect to each other. The shear forces
give rise to a shear stress t, which is defined in an analogous fashion to the
tensile stress; that is, the stress is the force divided by the area over which the
force is applied:

= (1.3)

but in this case the force is applied parallel to the area. Similarly to tensile
strain, the shear strain v is defined as the ratio of the deformation to the original
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FIGURE 1.2 Rectangular body subjected to surface shear tractions.

dimension, which in this case is

y=—-=tand~ ¢ (1.4)

ole?]

It will be seen later that there are two different definitions of shear strain.
Equation (1.4) defines the engineering shear strain. Note that this use of the
term engineering strain is different from the context of using “engineering
strain” to distinguish from “‘true strain’’; see Section 1.7 for a discussion this
topic. The engineering shear strain is related to the relative rotation angle ¢ and
in the case of small strain (which is normally the case for deformation of
ceramics) equals the angle in radians. Additional shear forces 7° must be
applied to the left and right sides of the body in Figure 1.2 in order to maintain
rotational stability. They result in a shear stress t that is equal and opposite to
the shear stress on the top and bottom faces. The shear strain vy is the result of
both shear stresses.

The example of Figure 1.1 is particularly simple because only one force is
applied. Tensile forces could also be applied perpendicular to the length of the
bar leading to additional tensile stress and strain components. Additionally,
shear forces can be applied to the faces of the bar, leading to shear stresses and
strains. For a complete three-dimensional description of stress and strain, cach
must be represented by second-rank tensors, that is, 3 x 3 matrices with some
special tensor properties.

The example of Figure 1.1 is also simple because the stress and strain are
uniform throughout the bar. In more complex problems the stress and
strain vary with position inside a body and the definitions need to be modified.
For example, if the stress is nonuniform, it is inappropriate to define the strain
as the change in overall length divided by the original overall length. This
introduces the concept of stress at a point and strain at a point. However, the
definitions of stress and strain at a point are essentially the same except that the
definitions involve forces and deformations in an infinitesimally small element
instead of the overall body.
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1.2 TENSOR NOTATION FOR STRESS

Figure 1.3 shows a small element of material inside a body. Each face of the
element is acted upon by forces from the surrounding material. The total vector
force F on the face of constant x can be resolved into three mutually orthogonal
components: a force F, perpendicular to the face and two surface tractions
(shear forces) parallel to the face acting in the y and z directions, T, and T,
respectively. Surface area is a vector quantity of magnitude equal to the area
and direction normal to the area acting out of the body. For the x face under
consideration the vector area is 4, acting in the positive x direction, as shown
in the figure. The force components on this face therefore represent three
components of stress, a tensile stress and two shear stresses, all acting at mutual
right angles.
The components of stress are generally written (Sines, 1969)

force in y direction acting on x plane
Oon x plane in y direction = Oxy =

(1.5)

area of plane perpendicular to x

Here “x plane” means ‘“‘plane perpendicular to the x axis” or “plane of
constant x.” In terms of indices denoting xyz by x;, x», X3, the above stress

component is written
Gon ; plane in x; direction = Ojj (1 6)

There are thus nine possible stress components in three dimensions. How-
ever, it will be shown that o; = o;; for i#/, so that there are only six
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FIGURE 1.3 Forces acting on the face of a small element of material.
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independent components. The components with i=; are termed normal
stresses or tensile stresses (with a compressive stress considered a negative
tensile stress). For normal stresses the force acts in a direction perpendicular
(normal) to the area to which it is applied (parallel to the area vector). The
components with i#j are termed shear stresses for which the force acts in a
direction parallel to the area over which it is applied (perpendicular to the area
vector). The shear stresses are sometimes written t; instead of 6;; to emphasize
their nature as shear stresses.
Written as a matrix the components of stress in three dimensions are

G11 O12 O13 Gxx Oxy Oxz
6= | 0u O»n oOn or 6= | Oy Oy Oy (1.7)
031 O3 033 O:x Oz Oz
with
G2 = O] G23 = O3 031 =013 (1.8)

The double underlines for ¢ signify that it is a second-rank tensor. It is easier to
visualize matters in two dimensions and attention will be restricted accordingly
in the next few pages. For two dimensions there are a total of four stress
components of which only three are independent. Written as the matrix, the
stresses in two dimensions are

G111 On2 Oxx Oxy
6= or 6= (1.9)
= 21 Ox» = Opx  Oyp

O12 = O21 (1.10)

with

The stress components in two dimensions are shown in Figure 1.4, which shows
an infinitesimal square element acted upon by forces both normal and parallel
to each surface. The arrows for the stresses show the direction of action of the
forces represented by the stresses—the stresses themselves act in both directions
simultaneously. The forces normal to the faces produce normal stresses. The
force F, on the right face (the ~+x face) is balanced by an equal and opposite
force —F, on the left face (the —x face) to maintain stability. Similar results
hold for the upper and lower faces. The forces parallel to the faces produce
shear stresses; again each force on one face is balanced by an equal and
opposite force on the opposite face. For the element to be under no net torque,

the shear forces must balance such that 6, = o,,.
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FIGURE 1.4 Components of stress in two dimensions.

The sign convention for stress can be defined in terms of the directions of the
force vectors and area vectors. If both the force and area vectors act in the
positive direction or in the negative direction, the stress is positive; if the force
acts in the negative direction and the area in the positive direction or vice versa,
the stress is negative. For example, in Figure 1.4 the component of normal
stress on the right-hand side of the element, o, represents a force acting in the
positive x direction and the area normal is also in the positive x direction,
giving a positive stress. The component on the left, c_,_,, is a force acting in
the negative x direction with an area normal acting in the negative x direction
and so is again positive and therefore equals o,.. This sign convention
coincides with that stated earlier, that tensile stresses (i.e., stresses tending to
cause extensions) are positive while compressive stresses (tending to cause
contractions) are negative. Consider now that the shear stress o, as drawn in
Figure 1.4 is positive since it is a force acting in the positive y direction is acting
on an area whose normal is in the positive x direction. The reader should verify
that o), as drawn in Figure 1.4 is also acting in the positive sense. Using this
sign convention, ¢, and G,, tend to cause rotations in the opposite sense, but
since ©, = G,,, there is no net rotational moment.

The dimensions of stress are force divided by area and so the unit is newtons
per square meter or the preferred unit the pascal (Pa). Other units that might be
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TABLE 1.1 Units of Stress

IN/m> = 1Pa

1kg/m?> = 9.81Pa

1 dyn/ecm? = 0.1 Pa

1 psi (pound per square inch) = 6.89476 kPa
1 bar = 0.1 MPa

latm = 0.101325 MPa

encountered are listed in Table 1.1 together with their conversion factors to
pascals. Stresses encountered while working with ceramics range roughly from
1 to 1000 MPa (1 GPa)—most ceramics survive a normal stress of 10 MPa while
few can withstand a stress of a few gigapascals.

1.3 STRESS IN ROTATED COORDINATE SYSTEM

We now examine how a stress tensor is expressed in a rotated coordinate
system. Considering the bar of Figure 1.1 and taking the x axis along the long
axis of the bar, the stress caused by a load in this direction acting on the cross-
sectional area A, of the bar is

Fy
G = T = Oy plane, x| direction = O11 = Oxx (1.11)
x

For this bar and this load the other stress components are zero so that the stress
tensor anywhere in the bar is given by

(1.12)

lna

Il
o o q
o o o
o o o

For this simple state of stress, known as uniaxial tension, it is obvious that the
frame of reference for the stress tensor should be chosen with one axis parallel
to the axis of the bar. However, while this is a convenient choice, the stress
could be referred to any other system of axes. The question now arises, if one
knows the components of stress referred to some set of axes xyz, what are the
components of stress referred to some other set of axes x'y’z’ which are rotated
with respect to the xyz axes? We will first consider the two-dimensional case in
which the stress components to be determined are referenced to axes x'y’” which
are rotated at an angle 6 with respect to the xy axes.

Figure 1.5(a) defines the relationship between the xy and X'y’ axes
and defines the sense of the rotation angle 0, which is the angle measured
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FIGURE 1.5 Stress in a rotated coordinate system: (a) axes; (b) stresses; (c) areas;
(d) forces.

counterclockwise from the x axis to the x" axis. We consider the stability of a
small element of the solid shown in the lower left portion of Figure 1.5, which
has a triangular section whose three faces are perpendicular to the x, y, and x’
axes. The stresses experienced by each face of the element do not depend on
which set of axes are chosen to describe them and so we may choose any
convenient axes provided we use the same set of axes consistently for each face.
We therefore refer the two orthogonal faces to the xy axes and the hypotenuse
to the x'y" axes. Figure 1.5(b) shows the components of stress acting on each
face using this choice of axes. The arrows point in the direction of the forces
represented by the stress components. We use the notation here that compo-
nents of stress referred to the x’y" axes, 6,7, may be rewritten as Gj-j for clarity.
The reader should verify that each component of stress points in the positive
direction using the sign convention for stresses.

The area of each face is proportional to the length of the side of the
triangular section and the three areas are defined in Figure 1.5(c). The forces
applied to each face, shown in Figure 1.5(d), are calculated by multiplying each
component of stress by the area of the face to which it is applied. The triangular
element is stable (i.e., not accelerating) so the net force applied to it must equal
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zero. Equating the components of all the forces resolved in the x’ direction gives

ol A\, = 0 A, cos0 + Gy Asin0 + 6y,4,8in 0 + 5,4, cos O (1.13)

The areas of the sides are related by
Ay = A cosb and Ay, = A’ sin6 (1.14)
Substitution into Eq. (1.13) and using &, = o, give

o\, =0 cos’ 0+ o), sin® 0 + 26, sin 0 cos O (1.15)

X.

The shear stress in the x’y" coordinate system is found by resolving components
of force in the )’ direction:

0\, A\ =~y Ay Sin0 + 6, A, cos0 + 6,4, 0050 — 5y 4, sin®  (1.16)

which gives

o', = () — Oxy)sinOcos O + Oy (cos? O — sin” 0) (1.17)

It may be shown that Eqs. (1.15) and (1.16) also ensure rotational stability,
namely that there is no net torque acting on the element. Similar considerations
applied to a triangular element whose hypotenuse is perpendicular to the )’
direction provides the final stress component G’y‘,,:

), = Oxx sin’ 0 4 G,, cos> 0 — 20, sin O cos 0 (1.18)

Using the well-known trigonometric identities
cos 20 = cos’ 0 — sin® 0 and sin 20 = 2sin 6 cos 0 (1.19)

the three components of stress can be expressed in terms of 26:

Oy = 5(Oxx + 0,) + 3(0xx — Oyy) 0520 + G, 5in 20
o, = Hoxx + 04y) — HOx — ©yy) €08 20 — G, 5in 26 (1.20)
o', = 3(6yy — Oxy) 5in 20 + G, cos 20

Turning now to the three-dimensional case, a general expression for the
stresses on a plane of any orientation in three dimensions can be written in
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FIGURE 1.6 Plane with normal r and direction s in the plane.

terms of the direction cosines of the normal to the plane and the direction of
action of the stress (Sines, 1969). Consider the plane in Figure 1.6 having a
normal r with direction cosines «;, to the axes xyz = xx,x3. The stress normal
to this plane is

o, =Y > aird;oy (1.21)
7

i

The shear stress acting on this plane in the s direction with direction cosines a;, is

ol =3 > apa;oy (1.22)
i

1.4 PRINCIPAL STRESS

Examination of Egs. (1.20) shows that at a particular value of 0 defined by

2G

tan 20 = (1.23)

Oyxx — Oy

o', is zero. This means that for any general stress tensor in two dimensions a set
of axes can be found for which the shear stresses vanish. These axes are called
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the principal axes and the directions of the principal axes are principal
directions. Planes containing pairs of principal axes are principal planes. The
normal stresses referred to the principal axes are the principal stresses. Referred
to the principal axes, Egs. (1.20) become

/

O = %(Gxx + ny) + R
)y = How + o) R .
csfw -0
where
R= \/ % Oxx — G\) }2"‘ Giy (125)

The principal stresses o, and G;,y may be renamed o; and o, where, by
convention, G| >G».

Inverting Eqs. (1.24) using (1.23) permits calculation of the components of
stress referenced to axes inclined at an angle 0 to the principal axes in terms of
the principal stresses:

1 (e / o 2 I in2
Oxx = 3(0%, +0),) +3(0), — 7,,) c0s20 = o' cos” 0 + &, sin” O

o)y = 3ol + o},) — (0], — 0},) 020 = &/ sin’ O + o, cos” O (1.26)
Oy = Oy = 3(0, — ©},)sin 20 = (¢, — &) sinBcos O

The Mohr circle construction (Sines, 1969; Courtney, 1990) is a graphical
method for obtaining the principal stresses that gives useful insight into the
properties of the stress tensor. In this construction the abscissa is normal stress
o and the ordinate is shear stress, usually written as t for the Mohr circle. A
different sign convention applies to shear stresses in the Mohr circle construc-
tion: Shear stresses causing a clockwise rotation are taken as positive and those
causing a counterclockwise rotation are taken as negative (Sines, 1969). In our
case with the z axis out of the paper in Figure 1.5, ,, is a positive rotation so
T,y = Oy, and G, is a negative rotation giving 1, = —o,,,. For a given pair of
principal stresses ¢, and o, the locus of Egs. (1.26) as 0 varies is a circle on a
shear stress/normal stress plot, as shown in Figure 1.7. One can consider this
circle in two ways: (1) for a situation in which the principal stresses and
directions are known and (2) when the stress tensor is known and the principal
stresses and directions are to be determined.
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FIGURE 1.7 Mohr circle for biaxial tension.

In the first situation the initial axes are principal axes, ¢, = oy, G;.y = oy,
and wa = G;,x = 0. The center of the circle is on the ¢ axis at % (o1 + 03). The
radius of the circle is %(Gl — 03). The circle intersects the ¢ axis at o, and o>.
To obtain the stress in a system of coordinates rotated by an angle 0, a diameter
of the circle is drawn rotated through an angle 20 to the ¢ axis. This diameter
intersects the circle at two points. The intersection point adjacent to the 20
angle has abscissa o, and ordinate t,, = o,,. The intersection of the circle
with the opposite end of the diameter has abscissa ©,, and ordinate
Tyy = —GCpy = —Cyy

In the second situation the initial axes are not principal since the shear stress
is not zero. Two points on the Mohr circle are constructed with coordinates
(Oxx, Oy and (o), —0,,). Alternatively and equivalently, the Mohr conven-
tion for the sign of shear stress (clockwise rotation corresponds to positive
shear) may be used and the two points are (G, Ty,) and (G,,, T,.). The center
of the Mohr circle is on the o axis at %(G_x_x + o,,) and the radius is given by

G2 1/2
Radius = R = [(%) —l—ci}} (1.27)

The principal stresses are the intersection of the circle with the o axis, and the
orientation of the principal axes is given by the angle 6:

6—Ltan~! <72"*~" ) (128)

Gxx — Oy
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Examination of the Mohr circle illustrates two important results. For a given
pair of principal stresses ; and G,, the maximum normal stress that can be
observed in any rotated coordinate system is on the extreme right-hand side of
the circle; that is, the maximum normal stress is the bigger principal stress
Omax = O1. Similarly, the minimum normal stress (most negative stress) is at the
extreme left of the circle and equals the smaller principal stress o, = O».
Further, the maximum shear stress occurs at the top and bottom of the Mohr
circle, 20 = +90°, 6 = +45°, and is given by

Tmax = 3(01 — 02) (1.29)

These results show the importance of principal stress analysis in understanding
the mechanical behavior of ceramics. Most ceramics fail by brittle fracture
in tension: Failure is controlled by the biggest tensile stress ;. Ceramics
at high temperature (as well as most metals and polymers) can deform in
shear: This deformation is controlled by the maximum shear stress, which is
itself related to the principal stresses. Principal stress analysis is therefore
necessary in understanding the response of any material to a complex state of
stress.

It is interesting to examine the stresses given by the Mohr circle construction
(or equivalently by direct calculation from the above equations) for special
situations. Consider the case of a bar under simple uniaxial tension & such as in
Figure 1.1. No other stresses are applied and in particular no shear stresses are
applied, so the axis of the bar is principal and an axis perpendicular to the bar is
also principal. The principal stresses are therefore 6; = ¢ and o, = 0. The
Mohr circle for this case is shown in Figure 1.8(a). The center of the circle is at
1o and the radius is also 1c. The shear stresses are a maximum at 26 = +90°
with magnitude %0. At this orientation the two normal stresses are both %G.
This example illustrates how a ductile material can fail in shear even though
only a tensile stress is applied.

As a further example consider the application of two equal stresses o; =
o, = o, that is, equi-biaxial tension. The center of the Mohr circle is at o and
the radius is zero. The Mohr circle is just a point, as shown in Figure 1.8(b).
As the coordinate system rotates, the values of &, and ), remain equal to
and the shear stresses remain equal to zero for all values of 6.

A final example, equi-opposite biaxial tension, is shown in Figure 1.8(c), in
which a tensile stress of magnitude o is applied in one direction and a
compressive stress of equal magnitude, —c, is applied in a perpendicular
direction. Since no other stresses are applied, these stresses are principal so
o, = ¢ and o, = —c. The Mohr circle in this case is centered on the origin. At
0 = +45° the normal stresses are zero and the shear stress is the maximum,
Tmax = O, SO in this case axes can be found for which the stress tensor is purely
shear.
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FIGURE 1.8 Mohr circle for (a) uniaxial tension, (b) equibiaxial tension, and (c) equi-
opposite biaxial tension.

1.4.1 Principal Stresses in Three Dimensions

The principal stresses in three dimensions are found by solving the eigenequa-
tion for the stress tensor:

Gl — O o112 Gi3
‘g—cl’ =0 or ‘g—cl’ =det| 02 Gy — O G23 =0 (1.30)
O3 G32 633 — O

where 1 is the identity matrix and o is a scalar. The eigenequation represents a
cubic equation in ¢ (Courtney, 1990):

o' —JicP—Jho—J3=0 (1.31)

where the coefficients J, J,, and J3 are the stress invariants (see below). This
equation is solved to find the three eigenvalues 1, 6,5, and o3. The eigenvectors
point in the principal directions and so coincide with the principal axes. Unlike
the two-dimensional case, there are no conveniently simple equations for the
principal stresses in three dimensions, nor is there a simple geometric solution
equivalent to the Mohr circle. However, eigenanalysis is readily performed
using a wide variety of computational tools. By convention the eigenvalues are
chosen so that o;>0,>03; o) is therefore the largest normal stress in any
direction and o3 is the smallest (most negative). Analogous to the two-
dimensional case, the shear stress has maximum values on planes inclined at
+45° to the principal planes. The largest shear stress acting on any plane is
therefore

Tmax = 3(01 — 03) (1.32)

with locally maximum values of {(c| — ) and i(o, — o3).
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Since we exist in a three-dimensional world, it is clear in retrospect that the
two-dimensional analysis presented earlier contains the implicit assumption
that the z plane is principal. In many practical situations one of the principal
planes is known and the two-dimensional treatment is appropriate. For
example, a traction-free surface is principal. Most mechanical testing techni-
ques (Chapter 6) apply a simple stress tensor to samples and at least one
principal plane is readily identifiable.

1.5 STRESS INVARIANTS
When stresses are transformed from one coordinate system to a rotated system,

there are three properties of the stress tensor that remain constant. These three
stress invariants are

J1 =04+ 0y, +0.. =0 +0+ 03

2 2 2
Jy = — 0Oy — 0)30.; — G;0 + Oy, +0,.+ 0z,
= — 0103 — G,03 — G30] (1.33)
J3 = 01,00z + 201,0,:02x — OxyO-. — OO — 520>
3 = Oxx0OyyOzz xyOyzOzx xxOyz yOzy 229y

= 0107203

The existence of these quantities that are invariant under rotations means that
the stress tensor is indeed a tensor and not simply a matrix. The hydrostatic
stress is the mean normal stress:

oy = %(Gxx + Gyy + G:z) = %Jl (134)

and is clearly invariant, as is the hydrostatic pressure, which, taking a
compressive stress as a positive pressure, is minus the hydrostatic stress:

p=—05=—%Ji (1.35)

1.6 STRESS DEVIATOR

It is well known that the effect of multiple forces can be combined by vector
addition in which corresponding components of forces are added. It is a general
property of vectors such as force and area. A similar result holds for the stress
tensor since the components of stress represent components of forces and areas.
If multiple stresses are applied to a body, the stress tensors for each stress can
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be added together element by element to obtain the overall stress tensor. This is
known as the principal of superposition—different stress tensors are super-
imposed by simple tensor addition. This result is useful in a wide variety of
situations. Conversely, a total stress tensor can be decomposed into two or
more tensors.

It is useful to separate the stress into the components causing dilation
without change of shape (pressure) and components causing distortion without
change in volume. For example, to a first approximation hydrostatic pressure
alone causes transformation in transformation-toughened zirconia. Plastic
deformation is not caused by hydrostatic pressure so that it is sometimes useful
to subtract the hydrostatic stress and consider only the remaining stresses. The
stress deviator ¢* is defined by

U |
G = Oj 3J1

=0c;+p i=j (1.36)
G;} =0y i #j
or explicitly
o t+p G2 C13 —-p 0 0
c=¢"—pl= Gy On+tp On +]1 0 —p 0 (1.37)
031 O3 o33+ p 0 0 —p

1.7 STRAIN

When forces are applied to a body, it deforms. Every point in the body is
displaced from its original position by an amount that can be represented by a
vector. This results in the concept of the vector displacement field—at every
point in the body the deformation is represented by a vector v. The three
components of v in the x, y, and z directions are u, v, and w or, equivalently, u;,
uy, and u3. The components of v are all functions of position:

(1.38)

X:

{ (u’ V, M)) = (u(x7y7 Z)? v(’x:)y’ Z)? }V(“‘C7y7 Z))

(ur,up,u3) = (ur (X1, X2, X3), ua (X1, X2, X3), u3(x1, X2, X3))

The strains within the body can be expressed in terms of this vector displace-
ment field. Considering first the two-dimensional case for simplicity, Figure 1.9
shows a small rectangular element ABCD with sides dx and dy which is
displaced to A'B'C’'D" when forces are applied. The element is deformed by the
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y
1 u(x,y+dy)
> ;
: A
A
¢
dy
B’ 053
B ©odx C
— - — -
u(x,y) u(x+dx,y)

FIGURE 1.9 Definition of strain.

forces so that the sides AB and BC are rotated by angles ¢; and ¢, respectively,
from their original orientation. The coordinates of the vertex B are (x, y) so that
the displacement BB’ in the x direction is u(x, y) and the displacement CC’ is
u(x + dx, y). The change in length of the side BC measured in the x direction is
therefore u(x + dx, y) — u(x, y). The normal strain measured in the x direction
in the side BC as it deforms to B'C’ [from Eq. (1.2)] is

Exy = U(X + dxay) B M(X,y) _ % (139)
dx Ox

Similar considerations can be used to obtain the results for the three-dimen-
sional case, giving

ov _Ow

5 = (1.40)

€ Yy —

By changing the coordinate notation to (xy, x», x3), we find the general form for
the three components of normal strain:

8u,-

¥ = o
1

i=1,2,3 (1.41)

The vertex AA’ is displaced by a distance u(x, y + dy) in the x direction so that
the distance B'A’ measured in the x direction is u(x, y + dy) —u(x, y). In the
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limit of small strain the angle ¢; is given by

u(x,y +dy) —u(x,y) _Ou

d)l Ztand)l = dy —a—y (142)
Similarly the angle ¢, is given by
v
= — 1.4
¢ =5 (1.43)

The sides AB and BC are rotated relative to each other by a total angle
¢ = ¢ + ¢». Using the definition for engineering shear strain, Eq. (1.4), the
shear strain vy, is

ou Ov

=+ — 1.44
T = gy tox (1.44)
In general, for three dimensions we have
8u,< 6u, .. . .
Yij ox, o i,j=12, i #] (1.45)

Examination of (1.45) shows that vy; = vy; so that while there are six
components of shear strain there are only three independent components. If i
is set equal to j in (1.45), the result differs from the definition for normal strain
[Eq. (1.41)] by a factor of 2. Therefore the definitions of normal strain and
engineering shear strain are incompatible so that they cannot be grouped
together into a tensor and manipulated as a whole. This difficulty is overcome if
we define the simple shear strain ¢; to be one-half of the engineering shear
strain. The general form

1 8u,~ 614] A
sl;,-—§<8—xj+axf) i,j=1,2,3 (1.46)

is applicable to both normal and shear strains so that they can be grouped
together to form the strain tensor:

€11 €n €13 Exx  Exy Exz
e=| €1 &xn &3 or e=| &x &y &: (1.47)
€31 €3 €33 v & &

The stress and strain tensors are both symmetric matrices, which means that
many of the properties of the strain tensor are analogous to those of the stress



20 STRESS AND STRAIN

tensor. In particular, it was noted earlier that for any set of stress compo-
nents there are three orthogonal directions, the principal directions for stress,
for which the shear stresses are all zero. An analogous result holds for strain.
For any set of strain components there are three orthogonal directions, called
the principal directions for strain, for which the shear strains are zero;
the corresponding normal strains are called the principal strains. For an
elastically isotropic body the principal directions for stress and the principal
directions for strain coincide. For an elastically anisotropic body this is not
necessarily so.

The methods described earlier for determining principal stresses can all be
used for determining principal strains; in all equations components of stress are
replaced by the equivalent components of strain. In particular, the Mohr circle
construction can be used for two-dimensional cases (i.e., where the third
direction is known to be principal). Another set of results for stress that can
be adopted for strain is the stress invariants and the definition of deviatoric
stress. The corresponding strain invariants, hydrostatic strain and strain
deviator are given by substituting strain for stress in Eqgs. (1.33) and (1.36).
A parameter of interest is the volumetric strain €;, which is the fractional
change in volume caused by the deformation. It equals the first strain invariant
obtained from Eq. (1.33):

JI =&y + Eypy +e:=¢etete3=¢gp = 38/1 (148)

1.8 TRUE STRESS AND TRUE STRAIN

The stress defined in Eq. (1.1) and the strain defined in Eq. (1.2) both contain
factors which involve the size of the specimen, namely the cross-sectional area
A and the length L. However, both of these parameters are changing as
deformation takes place. We define now two types of stress and strain:
engineering stress and engineering strain, where the cross-sectional area and
length have the original values before the start of the deformation, and true
stress and true strain, where the instantaneous cross-sectional area and length
are used (Table 1.2). They are equivalent for small stresses and strains.

TABLE 1.2 Engineering and True Stress and Strain

Engineering True
o P _F  ___F ¥
Aoriginal AO Ainsmnluncous A
3L 3L LotolL gy, Lo+3L
Y N0
original 0 Lo L L()
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Engineering stress and strain are convenient to use because in performing a test
with uniaxial stress the original length and cross-sectional area are easily
measured but it is not as convenient to continually measure their instantaneous
values.

1.8.1 True Strain

To consider why we call stresses and strains “‘true’ stresses and strains, we
consider strains using the illustration of Figure 1.1. It should be true for a self-
consistent definition of strain that, if the rectangular parallelepiped is strained
in two steps by extending it first from L, to L; = Ly + 6L, and then extending
again from L; to L, = L; + 8L,, the two strains should add to the total strain if
the deformation were performed all at once, that is, from a length L, to a length
L. That is, the final strain should not depend on how the strain is formed.
Consider first the engineering strain:

Ly —Ly 3L

TP (1.49)

Increment 1 : €0_1 =

Ly—Ly oL,
Ly - Lo+ 3L,

Increment 2 : €0 = (1.50)

If the deformation is performed in one step,

Ly~ Ly 3L +3L;

Total strain : £0_
02 Lo Lo

# €1+ €12 (1.51)

Clearly this is not equal to the sum of the partial strains so engineering strain is
not additive and does not give a self-consistent measure of strain. However, if
we use the instantaneous length to define an infinitesimal increment in true
strain,

dL
f=— 1.52
de 17 (1.52)

then the total true strain associated with a change in length from L;,jia to

Lﬁnal is
Linal dL Lf‘ 1 SL
e = — =In{—= > =ln(1+ ) 1.53
/Liniliu] L (Linitial Linitial ( )
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Consider now the two-step deformation discussed above. The associated
components of true strain are

L

Increment 1 : gy, =In <l> (1.54)
Ly
L

Increment 2 : g_,=1In <L—2> (1.55)
1

If the deformation is performed in one step,

L Ly L

Total strain : €, =In (L_o) =In (L_l L_(1)> =¢g)_,+¢&_, (1.56)

showing that true strain is additive and so independent of how the deformation
is performed. A series expansion of the logarithm in Eq. (1.53) shows that for
small strain the engineering and true strains have nearly the same value but at
large strains they differ significantly. As an example, if a specimen were strained
to twice its length or one-half its length, the engineering strain would be &€ = 1
and € = —% respectively, but the true strains would be €' = 0.69 and &’ = —0.69,
respectively.

1.8.2 True Stress

The need for true stress is clear. If a body is subjected to large strains, the cross
section can be considerably reduced and the engineering stress badly under-
estimates the local stress. This is particularly true for some ductile materials
which can strain nonuniformly under a tensile load forming local ‘“‘necks”
where the cross section is considerably smaller than the original or the average
cross section. In such a case the engineering stress is uniform along the length,
but the true stress reaches a high value in the neck region and is a superior
representation of stress.

For a uniaxial tension or compression test it is possible to convert
engineering strain to true strain and to determine the true stress at a given
strain provided the relationship between volume of the sample and the axial
strain is known. The analysis is simplified if, as is usually the case, it is assumed
that the volume of the sample does not change during plastic deformation. The
volume ¥ can be related to the initial (Lo and A() and instantaneous (L; and 4;)
length and cross-sectional area:

V = AgLy = A;L; (1.57)

Thus

Zi_ 2 (1.58)
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The engineering strain is given by

Li—Ly L L;
=——1 —=1 1.59
Io Ty or + & (1.59)

™~
S

while the true strain is

g =In (%) =In(1 +¢) (1.60)

0

To determine the true stress at a give strain,

FL;
= =ol+s) (1.61)

ol =

Al

True stress and true strain are only used where relatively large plastic strains
are observed since elastic strains are usually so low that engineering and true
stresses and strains are the same. For ceramics only elastic deformation is
observed except under high temperatures, and so generally engineering stresses
and strains are sufficient.

PROBLEMS

1. An elastic ceramic body is placed under a hydrostatic compression of
200 MPa. Additional stresses of 5, = 400 MPa, c,,, = 100 MPa, and 5., =
G, = 50 MPa are then superimposed. No other stresses are applied. What
is the total stress tensor? What are the principal stresses and what angles do
the principal axes make to the x axis? What is the maximum shear stress
anywhere in the body and what is its orientation?

2. The stress tensor at a point P(x,y,z) is

300 100 100
c= 1100 0 200 MPa
100 200 O

Determine the principal stresses and unit vectors in the principal directions.
Determine the magnitude and directions of the maximum shear stress at P.

3. A tensile force of 50 N is applied uniformly over the end faces (measuring
10 mm by 100 um) of a thin ceramic sheet. The sheet contains a small crack
whose plane is inclined at 60° to the direction of the force. Find the tensile
stress acting normal to the crack and the shear stress acting in the plane of
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4.

6.

STRESS AND STRAIN

the crack.

- / —>
< A 60° >

Prove by differentiating Eqs. (1.20) with respect to 6 that (i) the maximum
and minimum normal stresses are the principal stresses and that (ii) the
maximum shear stress is one-half of the difference between the principal
stresses and acts on planes inclined at +45° to the principal axes.

The strains (and hence stresses) in the surface of a solid can be measured
using strain gauges. A strain gauge is a thin layer of resistive metal printed in
a zigzag pattern on a thin polymer substrate. When the metal pattern is
subjected to strain, its resistance changes; the zigzag pattern is chosen so that
the resistance change is proportional to the normal strain in only one
direction. The substrate is glued to the surface of interest to sense changes in
the strain. Strain gauges are not sensitive to shear strains, but the shear
strain can be calculated from the three normal strains measured by three
gauges arranged in what is called a “strain gauge rosette.” The schematic
below shows such a rosette with three gauges with their sensitive directions
shown by the arrows. Gauges A and C are perpendicular and B lies at 45°
between them.

A strain gauge rosette like the one in the sketch is glued to the surface of a
specimen while the specimen is under zero stress. When stresses are applied
to the specimen, it is determined that the principal strains in the surface are
inclined at an angle to the gauges 6 = 20°, as shown in the sketch. If the
principal strains are €, = 0.03% and ¢, = 0.01%, what strains will the
three gauges measure?

Strain gauges attached to the surface of a ceramic body record the following
strain  components: &, = 2.00 x 1074, gy, = 1.50 x 1074, and Exp =
—1.00 x 10~*. Find the principal strains ;, &, and their inclination to the
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x axis. Also find the maximum shear strain g,,,, and its angles of inclination
to the x axis.

. The components of a displacement field are given by (units are meters)
ue = (x* 4+20) x 1073 u, =2yz x 1072 u. = (22 —xy) x 1072

Find the displacements at the point (2,5,7) and the point (3.8,9). Find the
change in the distance between these two points. Determine expressions for
the total, hydrostatic, and deviatoric strain tensors. Calculate the strain
tensor explicitly at the point (2,—1,3). What are the principal strains at this
point?

. Prove that the two-dimensional invariant o, + o,, is independent of the
rotation angle 0. Furthermore, prove that in three-dimensions the invariant
Gy T 0,, + 0. is independent of the direction cosines. The following
relationships may be needed for the proof:

2 2 2 2 2 2 2 2 2 _
ay, + day, + ay, = 1 ay, +dy, +ay. = 1 a, +a;, +az. = 1
Uxxlyx + Axylyy + Ay = 0
Aypxlzy + Ayylzy + ay-a-- = 0

Uzxlxx + Azplyy + Az20x: = 0






