
1

Backtesting
and Automated
Execution

C H A P T E R 1

While the focus of this book is on specifi c categories of strategies and
not on general techniques of backtesting, there are a number of im-

portant considerations and common pitfalls to all strategies that need to
be addressed fi rst. If one blithely goes ahead and backtests a strategy with-
out taking care to avoid these pitfalls, the backtesting will be useless. Or
worse—it will be misleading and may cause signifi cant fi nancial losses.

Since backtesting typically involves the computation of an expected re-
turn and other statistical measures of the performance of a strategy, it is
reasonable to question the statistical signifi cance of these numbers. We will
discuss various ways of estimating statistical signifi cance using the method-
ologies of hypothesis testing and Monte Carlo simulations. In general, the
more round trip trades there are in the backtest, the higher will be the sta-
tistical signifi cance. But even if a backtest is done correctly without pitfalls
and with high statistical signifi cance, it doesn’t necessarily mean that it is
predictive of future returns. Regime shifts can spoil everything, and a few
important historical examples will be highlighted.

The choice of a software platform for backtesting is also an important
consideration and needs to be tackled early on. A good choice not only will
vastly increase your productivity, it will also allow you to backtest the broad-
est possible spectrum of strategies in the broadest variety of asset classes.

c01.indd 1c01.indd 1 4/18/13 6:49 PM4/18/13 6:49 PM

CO
PYRIG

HTED
 M

ATERIA
L

2

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

And it will reduce or eliminate the chances of committing the aforemen-
tioned pitfalls. We will also explain why the choice of a good backtesting
platform is often tied to the choice of a good automated execution platform:
often, the best platform combines both functions.

 ■ The Importance of Backtesting

Backtesting is the process of feeding historical data to your trading strategy
to see how it would have performed. The hope is that its historical perfor-
mance tells us what to expect for its future performance. The importance of
this process is obvious if you have developed a strategy from scratch, since
you would certainly want to know how it has performed. But even if you
read about a strategy from a publication, and you trust that the author did
not lie about its stated performance, it is still imperative that you indepen-
dently backtest the strategy. There are several reasons for this.

Often, the profi tability of a strategy depends sensitively on the details
of implementation. For example, are the stock orders supposed to be sent
as market-on-open orders or as market orders just after the open? Are we
supposed to send in an order for the E-mini Standard & Poor’s (S&P) 500
future just before the 4:00 p.m. stock market closing time, or just before
the 4:15 p.m. futures market closing time? Are we supposed to use the bid
or ask price to trigger a trade, or are we supposed to use the last price? All
these details tend to be glossed over in a published article, often justifi ably
so lest they distract from the main idea, but they can aff ect the profi tabil-
ity of a live-traded strategy signifi cantly. The only way to pin down these
details exactly, so as to implement them in our own automated execution
system, is to backtest the strategy ourselves. In fact, ideally, our backtest-
ing program can be transformed into an automated execution program by
the push of a button to ensure the exact implementation of details.

Once we have implemented every detail of a strategy as a backtest pro-
gram, we can then put them under the microscope and look for pitfalls in
the backtesting process or in the strategy itself. For example, in backtesting
a stock portfolio strategy with both long and short positions, have we taken
into account the fact that some stocks were hard to borrow and cannot easily
be shorted at any reasonable size? In backtesting an intermarket pair-trading
strategy in futures, have we made sure that the closing prices of the two
markets occur at the same time? The full list of pitfalls is long and tedious,
but I will highlight a few common ones in the section “Common Pitfalls of

c01.indd 2c01.indd 2 4/18/13 6:49 PM4/18/13 6:49 PM

3

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

Backtesting.” Often, each market and each strategy presents its own very
specifi c set of pitfalls. Usually, a pitfall tends to infl ate the backtest perfor-
mance of a strategy relative to its actual performance in the past, which is
particularly dangerous.

Even if we have satisfi ed ourselves that we have understood and imple-
mented every detail of a strategy in a backtesting program, and that there is
no pitfall that we can discover, backtesting a published strategy can still yield
important benefi ts.

Backtesting a published strategy allows you to conduct true out-of-sample
testing in the period following publication. If that out-of-sample performance
proves poor, then one has to be concerned that the strategy may have worked
only on a limited data set. This is actually a more important point than people
realize. Many authors will claim in their articles that the backtest results were
“verifi ed with out-of-sample data.” But, actually, if the out-of-sample testing
results were poor, the authors could have just changed some parameters, or
they could have tweaked the model substantially so that the results look good
with the “out-of-sample” data. Hence, true out-of-sample testing cannot re-
ally begin until a strategy is published and cast in stone.

Finally, by backtesting a strategy ourselves, we often can fi nd ways to
refi ne and improve the strategy to make it more profi table or less risky.
The backtesting process in trading should follow the “scientifi c method.” We
should start with a hypothesis about an arbitrage opportunity, maybe based
on our own intuition about the market or from some published research.
We then confi rm or refute this hypothesis by a backtest. If the results of the
backtest aren’t good enough, we can modify our hypothesis and repeat the
process.

As I emphasized earlier, performance of a strategy is often very sensitive
to details, and small changes in these details can bring about substantial im-
provements. These changes can be as simple as changing the look-back time
period for determining the moving average, or entering orders at the open
rather than at the close. Backtesting a strategy allows us to experiment with
every detail.

 ■ Common Pitfalls of Backtesting

Although almost every strategy allows for unique opportunities in commit-
ting errors in backtesting, there are a number of common themes, some
generally applicable to all markets, others pertain to specifi c ones.

c01.indd 3c01.indd 3 4/18/13 6:49 PM4/18/13 6:49 PM

4

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

Look-ahead Bias
As its name implies, look-ahead bias means that your backtest program is us-
ing tomorrow’s prices to determine today’s trading signals. Or, more gener-
ally, it is using future information to make a “prediction” at the current time.
A common example of look-ahead bias is to use a day’s high or low price to
determine the entry signal during the same day during backtesting. (Before
the close of a trading day, we can’t know what the high and low price of the
day are.) Look-ahead bias is essentially a programming error and can infect
only a backtest program but not a live trading program because there is no
way a live trading program can obtain future information. This diff erence
between backtesting and a live trading program also points to an obvious
way to avoid look-ahead bias. If your backtesting and live trading programs
are one and the same, and the only diff erence between backtesting versus
live trading is what kind of data you are feeding into the program (historical
data in the former, and live market data in the latter), then there can be no
look-ahead bias in the program. Later on in this chapter, we will see which
platforms allow the same source code to be used for both backtest and live
execution.

Data-Snooping Bias and the Beauty of Linearity
Data-snooping bias is caused by having too many free parameters that are
fi tted to random ethereal market patterns in the past to make historical per-
formance look good. These random market patterns are unlikely to recur
in the future, so a model fi tted to these patterns is unlikely to have much
predictive power.

The way to detect data-snooping bias is well known: We should test the
model on out-of-sample data and reject a model that doesn’t pass the out-of-
sample test. But this is easier said than done. Are we really willing to give up
on possibly weeks of work and toss out the model completely? Few of us are
blessed with such decisiveness. Many of us will instead tweak the model this
way or that so that it fi nally performs reasonably well on both the in-sample
and the out-of-sample result. But voilà! By doing this we have just turned
the out-of-sample data into in-sample data.

If you are unwilling to toss out a model because of its performance on
a fi xed out-of-sample data set (after all, poor performance on this out-of-
sample data may just be due to bad luck), or if you have a small data set
to start with and really need to tweak the model using most of this data,
you should consider the idea of cross-validation. That is, you should select a

c01.indd 4c01.indd 4 4/18/13 6:49 PM4/18/13 6:49 PM

5

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

number of diff erent subsets of the data for training and tweaking your model
and, more important, making sure that the model performs well on these
diff erent subsets. One reason why we prefer models with a high Sharpe ratio
and short maximum drawdown duration is that this almost automatically
ensures that the model will pass the cross-validation test: the only subsets
where the model will fail the test are those rare drawdown periods.

There is a general approach to trading strategy construction that can min-
imize data-snooping bias: make the model as simple as possible, with as few
parameters as possible. Many traders appreciate the second edict, but fail
to realize that a model with few parameters but lots of complicated trading
rules are just as susceptible to data-snooping bias. Both edicts lead to the
conclusion that nonlinear models are more susceptible to data-snooping bias
than linear models because nonlinear models not only are more complicated
but they usually have more free parameters than linear models.

Suppose we attempt to predict price by simple extrapolation of the his-
torical price series. A nonlinear model would certainly fi t the historical data
better, but that’s no guarantee that it can predict a future value better. But
even if we fi x the number of parameters to be the same for a nonlinear
model versus its linear contender, one has to remember that we can usually
approximate a nonlinear model by Taylor-series expansion familiar from
calculus. That means that there is usually a simpler, linear approximation
corresponding to every nonlinear model, and a good reason has to be given
why this linear model cannot be used. (The exceptions are those singular
cases where the lower-order terms vanish. But such cases seldom describe
realistic fi nancial time series.)

An equivalent reasoning can be made in the context of what probabil-
ity distributions we should assume for returns. We have heard often that the
Gaussian distribution fails to capture extreme events in the fi nancial market.
But the problem with going beyond the Gaussian distribution is that we will
be confronted with many choices of alternative distributions. Should it be a
Student’s t-distribution that allows us to capture the skew and kurtosis of the
returns, or should it be a Pareto distribution that dispenses with a fi nite second
moment completely? Any choice will have some element of arbitrariness, and
the decision will be based on a fi nite number of observations. Hence, Occam’s
razor dictates that unless there are strong theoretical and empirical reasons
to support a non-Gaussian distribution, a Gaussian form should be assumed.

Linear models imply not only a linear price prediction formula, but also
a linear capital allocation formula. Let’s say we are considering a mean-
reverting model for a price series such that the change in the price dy in

c01.indd 5c01.indd 5 4/18/13 6:49 PM4/18/13 6:49 PM

6

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

the next time period dt is proportional to the diff erence between the mean
price and the current price: dy(t) = (λy(t − 1) + μ)dt + dε, the so-called
“Ornstein-Uhlenbeck” formula, which is explained and examined in greater
detail in Chapter 2. Often, a trader will use a Bollinger band model to cap-
ture profi ts from this mean-reverting price series, so that we sell (or buy)
whenever the price exceeds (or falls below) a certain threshold. However, if
we are forced to stick to linear models, we would be forced to sell (or buy)
at every price increment, so that the total market value is approximately
proportional to the negative deviation from the mean. In common traders’
parlance, this may be called “averaging-in,” or “scaling-in,” a technique that
is discussed in Chapter 3.

You will fi nd several examples of linear trading models in this book be-
cause the simplicity of this technique lets us illustrate the point that profi ts
are not derived from some subtle, complicated cleverness of the strategy
but from an intrinsic ineffi ciency in the market that is hidden in plain sight.
The impatient reader can look ahead to Example 4.2, which shows a linear
mean-reverting strategy between an exchange-traded fund (ETF) and its
component stocks, or Examples 4.3 and 4.4, showing two linear long-short
statistical arbitrage strategies on stocks.

The most extreme form of linear predictive models is one in which
all the coefficients are equal in magnitude (but not necessarily in sign).
For example, suppose you have identified a number of factors (f ’s) that
are useful in predicting whether tomorrow’s return of a stock index is
positive. One factor may be today’s return, with a positive today’s re-
turn predicting a positive future return. Another factor may be today’s
change in the volatility index (VIX), with a negative change predicting
positive future return. You may have several such factors. If you normal-
ize these factors by turning them first into Z-scores (using in-sample
data!):

 z(i) = (f(i) − mean(f))/std(f), (1.1)

where f (i) is the ith factor, you can then predict tomorrow’s return R by

 ∑)(= +R mean R std R sign i z i n() () ()/
i

n
. (1.2)

The quantities mean(f) and std(f) are the historical average and standard
deviation of the various f(i), sign(i) is the sign of the historical correlation
between f(i) and R, and mean(R) and std(R) are the historical average and

c01.indd 6c01.indd 6 4/18/13 6:49 PM4/18/13 6:49 PM

7

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

standard deviation of one-day returns, respectively. Daniel Kahneman, the
Nobel Prize-winning economist, wrote in his bestseller Thinking, Fast and

Slow that “formulas that assign equal weights to all the predictors are often
superior, because they are not aff ected by accidents of sampling” (Kahneman,
2011). Equation 1.2 is a simplifi ed version of the usual factor model used in
stock return prediction. While its prediction of the absolute returns may or
may not be very accurate, its prediction of relative returns between stocks
is often good enough. This means that if we use it to rank stocks, and then
form a long-short portfolio by buying the stocks in the top decile and short-
ing those in the bottom decile, the average return of the portfolio is often
positive.

Actually, if your goal is just to rank stocks instead of coming up with an
expected return, there is an even simpler way to combine the factors f ’s
without using Equations 1.1 and 1.2. We can fi rst compute the ranks(i) of a
stock s based on a factor f(i). Then we multiply these ranks by the sign of the
correlation between f(i) and the expected return of the stock. Finally, we
sum all these signed ranks to form the rank of a stock:

 ∑)(=rank sign i rank i()s si

n
. (1.3)

As an example, Joel Greenblatt has famously used a two-factor model as a
“magic formula” to rank stocks: f(1) = return on capital and f(2) = earnings
yield (Greenblatt, 2006). We are supposed to buy the top 30 ranked stocks
and hold them for a year. The annual percentage rate (APR) for this strategy
was 30.8 percent from 1988 to 2004, compared with 12.4 percent for the
S&P 500. Quite a triumph of linearity!

In the end, though, no matter how carefully you have tried to prevent
data-snooping bias in your testing process, it will somehow creep into your
model. So we must perform a walk-forward test as a fi nal, true out-of-
sample test. This walk-forward test can be conducted in the form of pa-
per trading, but, even better, the model should be traded with real money
(albeit with minimal leverage) so as to test those aspects of the strategy that
eluded even paper trading. Most traders would be happy to fi nd that live
trading generates a Sharpe ratio better than half of its backtest value.

Stock Splits and Dividend Adjustments
Whenever a company’s stock has an N-to-1 split, the stock price will be di-
vided by N times. However, if you own a number of shares of that company’s

c01.indd 7c01.indd 7 4/18/13 6:49 PM4/18/13 6:49 PM

8

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

stock before the split, you will own N times as many shares after the split,
so there is in fact no change in the total market value. But in a backtest,
we typically are looking at just the price series to determine our trading
signals, not the market-value series of some hypothetical account. So unless
we back-adjust the prices before the ex-date of the split by dividing them by
N, we will see a sudden drop in price on the ex-date, and that might trigger
some erroneous trading signals. This is as true in live trading as in backtest-
ing, so you would have to divide the historical prices by N just before the
market opens on the ex-date during live trading, too. (If it is a reverse 1-to-
N split, we would have to multiply the historical prices before the ex-date
by N.)

Similarly, when a company pays a cash (or stock) dividend of $d per
share, the stock price will also go down by $d (absent other market move-
ments). That is because if you own that stock before the dividend ex-date,
you will get cash (or stock) distributions in your brokerage account, so
again there should be no change in the total market value. If you do not
back-adjust the historical price series prior to the ex-date, the sudden drop
in price may also trigger an erroneous trading signal. This adjustment, too,
should be applied to any historical data used in the live trading model just
before the market opens on an ex-date. (This discussion applies to ETFs as
well. A slightly more complicated treatment needs to be applied to options
prices.)

You can fi nd historical split and dividend information on many websites,
but I fi nd that earnings.com is an excellent free resource. It not only records
such historical numbers, but it shows the announced split and dividend
amounts and ex-dates in the future as well, so we can anticipate such events
in our automated trading software. If you are interested in historical stock
data that are already adjusted for stock splits and dividends, and are easy to
download, try csidata.com.

Survivorship Bias in Stock Database
If you are backtesting a stock-trading model, you will suff er from survi-
vorship bias if your historical data do not include delisted stocks. Imagine
an extreme case: suppose your model asks you to just buy the one stock
that dropped the most in the previous day and hold it forever. In actuality,
this strategy will most certainly perform poorly because in many cases the
company whose stock dropped the most in the previous day will go on to
bankruptcy, resulting in 100 percent loss of the stock position. But if your

c01.indd 8c01.indd 8 4/18/13 6:49 PM4/18/13 6:49 PM

9

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

historical data do not include delisted stocks—that is, they contain only
stocks that survive until today—then the backtest result may look excellent.
This is because you would have bought a stock when it was beaten down
badly but subsequently survived, though you could not have predicted its
eventual survival if you were live-trading the strategy.

Survivorship bias is more dangerous to mean-reverting long-only stock
strategies than to mean-reverting long-short or short-only strategies. This is
because, as we saw earlier, this bias tends to infl ate the backtest performance
of a long-only strategy that fi rst buys low and then sells high, whereas it will
defl ate the backtest performance of a short-only strategy that fi rst sells high
and then buys low. Those stocks that went to zero would have done very well
with a short-only strategy, but they would not be present in backtest data
with survivorship bias. For mean-reverting long-short strategies, the two
eff ects are of opposite signs, but infl ation of the long strategy return tends
to outweigh the defl ation of the short portfolio return, so the danger is re-
duced but not eliminated. Survivorship bias is less dangerous to momentum
models. The profi table short momentum trade will tend to be omitted in
data with survivorship bias, and thus the backtest return will be defl ated.

You can buy reasonably priced historical data that are free of survivor-
ship bias from csidata.com (which provides a list of delisted stocks). Other
vendors include kibot.com, tickdata.com, and crsp.com. Or you can in fact
collect your own survivorship bias–free data by saving the historical prices
of all the stocks in an index every day. Finally, in the absence of such survi-
vorship bias–free data, you can limit yourself to backtesting only the most
recent, say, three years of historical data to reduce the damage.

Primary versus Consolidated Stock Prices
Many U.S. stocks are traded on multiple exchanges, electronic communi-
cation networks (ECNs), and dark pools: The New York Stock Exchange
(NYSE), NYSE Arca, Nasdaq, Island, BATS, Instinet, Liquidnet, Bloomberg
Tradebook, Goldman Sachs’ Sigma X, and Credit Suisse’s CrossFinder are
just some of the example markets. When you look up the historical daily
closing price of a stock, it refl ects the last execution price on any one of
these venues during regular trading hours. Similarly, a historical daily open-
ing price refl ects the fi rst execution price on any one of these venues. But
when you submit a market-on-close (MOC) or market-on-open (MOO)
order, it will always be routed to the primary exchange only. For example,
an MOC order on IBM will be routed to NYSE, an MOC order on SPY

c01.indd 9c01.indd 9 4/18/13 6:49 PM4/18/13 6:49 PM

10

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

will be routed to NYSE Arca, and an MOC order on Microsoft (MSFT) will
be routed to Nasdaq. Hence, if you have a strategy that relies on market-
on-open or market-on-close orders, you need the historical prices from
the primary exchange to accurately backtest your model. If you use the
usual consolidated historical prices for backtesting, the results can be quite
unrealistic. In particular, if you use consolidated historical prices to back-
test a mean-reverting model, you are likely to generate infl ated backtest
performance because a small number of shares can be executed away from
the primary exchange at a price quite diff erent from the auction price on
the primary exchange. The transaction prices on the next trading day will
usually mean-revert from this hard-to-achieve outlier price. (The close and
open prices on the U.S. primary exchanges are always determined by an
auction, while a transaction at the close on a secondary exchange is not the
result of an auction.)

A similar consideration applies to using high or low prices for your strat-
egy. What were recorded in the historical data are usually the consolidated
highs or lows, not that of the primary exchange. They are often unrepresen-
tative, exaggerated numbers resulting from trades of small sizes on second-
ary exchanges. Backtest performance will also be infl ated if these historical
prices are used.

Where can we fi nd historical prices from the primary exchanges? Bloom-
berg users have access to that as part of their subscription. Of course, just as
in the case of storing and using survivorship bias–free data discussed earlier,
we can also subscribe to direct live feeds from the (primary) exchanges and
store those prices into our own databases in real time. We can then use these
databases in the future as our source of primary exchange data. Subscribing
to such feeds independently can be an expensive proposition, but if your
broker has such subscriptions and it redistributes such data to its clients that
colocate within its data center, the cost can be much lower. Unfortunately,
most retail brokers do not redistribute direct feeds from the exchanges, but
institutional brokers such as Lime Brokerage often do.

If we don’t have access to such data, all we can do is to entertain a healthy
skepticism of our backtest results.

Venue Dependence of Currency Quotes
Compared to the stock market, the currency markets are even more frag-
mented and there is no rule that says a trade executed at one venue has to be
at the best bid or ask across all the diff erent venues. Hence, a backtest will

c01.indd 10c01.indd 10 4/18/13 6:49 PM4/18/13 6:49 PM

11

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

be realistic only if we use historical data extracted from the same venue(s)
as the one(s) we expect to trade on.

There are quotes aggregators such as Streambase that consolidate data
feeds from diff erent venues into one order book. In this case, you may use
the consolidated historical data for backtesting, as long as you can execute
on the venue that formed part of the consolidated order book.

Another feature of currency live quotes and historical data is that trade
prices and sizes, as opposed to bid and ask quotes, are not generally avail-
able, at least not without a small delay. This is because there is no regula-
tion that says the dealer or ECN must report the trade price to all market
participants. Indeed, many dealers view transaction information as propri-
etary and valuable information. (They might be smart to do that because
there are high-frequency strategies that depend on order fl ow informa-
tion and that require trade prices, as mentioned in Chapter 7. The banks’
forex proprietary trading desks no doubt prefer to keep this information
to themselves.) But using bid-ask quotes for backtesting forex strategies
is recommended anyway, since the bid-ask spreads for the same currency
pair can vary signifi cantly between venues. As a result, the transaction costs
are also highly venue dependent and need to be taken into account in a
backtest.

Short-Sale Constraints
A stock-trading model that involves shorting stocks assumes that those
stocks can be shorted, but often there are diffi culties in shorting some
stocks. To short a stock, your broker has to be able to “locate” a quantity of
these stocks from other customers or other institutions (typically mutual
funds or other asset managers that have large long positions in many stocks)
and arrange a stock loan to you. If there is already a large short interest out
there so that a lot of the shares of a company have already been borrowed,
or if the fl oat of the stock is limited, then your stock can be “hard to bor-
row.” Hard to borrow may mean that you, as the short seller, will have to
pay interest to the stock lender, instead of the other way around in a normal
situation. In more extreme cases, hard to borrow may mean that you cannot
borrow the stock in the quantity you desire or at all. After Lehman Brothers
collapsed during the fi nancial crisis of 2008–2009, the U.S. Securities and
Exchange Commission (SEC) banned short sales in all the fi nancial indus-
try stocks for several months. So if your backtesting model shorts stocks
that were hard or impossible to borrow, it may show a wonderful return

c01.indd 11c01.indd 11 4/18/13 6:49 PM4/18/13 6:49 PM

12

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

because no one else was able to short the stock and depress its price when
your model shorted it. But this return is completely unrealistic. This renders
short-sale constraints dangerous to backtesting. It is not easy, though, to fi nd
a historically accurate list of hard-to-borrow stocks for your backtest, as this
list depends on which broker you use. As a general rule, small-cap stocks are
aff ected much more by short-sale constraint than are large-cap stocks, and
so the returns of their short positions are much more suspect. Bear in mind
also that sometimes ETFs are as hard to borrow as stocks. I have found, for
example, that I could not even borrow SPY to short in the months after the
Lehman Brothers’ collapse!

An additional short-sale constraint is the so-called “uptick rule” imposed
by the SEC. The original uptick rule was in eff ect from 1938 to 2007, where
the short sale had to be executed at a price higher than the last traded price,
or at the last traded price if that price was higher than the price of the trade
prior to the last. (For Nasdaq stocks, the short sale price must be higher
than the last bid rather than the last trade.) The Alternative Uptick Rule that
took eff ect in 2010 also requires a short sale to have a trade price higher than
the national best bid, but only when a circuit breaker has been triggered. A
circuit breaker for a stock is triggered when that stock traded at 10 percent
lower than its previous close. The circuit breaker is in eff ect for the follow-
ing day after the initial trigger as well. This eff ectively prevents any short
market orders from being fi lled. So, again, a really accurate backtest that
involves short sales must take into account whether these constraints were
in eff ect when the historical trade was supposed to occur. Otherwise, the
backtest performance will be infl ated.

Futures Continuous Contracts
Futures contracts have expiry dates, so a trading strategy on, say, crude oil
futures, is really a trading strategy on many diff erent contracts. Usually,
the strategy applies to front-month contracts. Which contract is the “front
month” depends on exactly when you plan to “roll over” to the next month;
that is, when you plan to sell the current front contract and buy the contract
with the next nearest expiration date (assuming you are long a contract to
begin with). Some people may decide to roll over 10 days before the current
front contract expires; others may decide to roll over when there is an “open
interest crossover”; that is, when the open interest of the next contract ex-
ceeds that of the current front contract. No matter how you decide your
rollover date, it is quite an extra bother to have to incorporate that in your

c01.indd 12c01.indd 12 4/18/13 6:49 PM4/18/13 6:49 PM

13

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

trading strategy, as this buying and selling is independent of the strategy and
should result in minimal additional return or profi t and loss (P&L). (P&L, or
return, is certainly aff ected by the so-called “roll return,” but as we discuss
extensively in Chapter 5, roll return is in eff ect every day on every contract
and is not a consequence of rolling over.) Fortunately, most futures histori-
cal data vendors also recognize this, and they usually make available what is
known as “continuous contract” data.

We won’t discuss here how you can go about creating a continuous con-
tract yourself because you can read about that on many futures historical
data vendors’ websites. But there is a nuance to this process that you need
to be aware of. The fi rst step in creating a continuous contract is to concat-
enate the prices of the front-month contract together, given a certain set of
rollover dates. But this results in a price series that may have signifi cant price
gaps going from the last date before rollover to the rollover date, and it will
create a false return or P&L on the rollover date in your backtest.

To see this, let’s say the closing price of the front contract on date T is
p(T), and the closing price of this same contract on date T + 1 is p(T + 1).
Also, let’s say the closing price of the next nearby contract (also called the
“back” contract) on date T + 1 is q(T + 1). Suppose T + 1 is the rollover date,
so if we are long the front contract, we should sell this contract at the close
at p(T + 1), and then buy the next contract at q(T + 1). What’s the P&L (in
points, not dollars) and return of this strategy on T + 1? The P&L is just
p(T + 1) − p(T), and the return is (p(T + 1) − p(T))/p(T). But the unad-
justed continuous price series will show a price of p(T) at T, and q(T + 1) at
T + 1. If you calculate P&L and return the usual way, you would have calcu-
lated the erroneous values of q(T + 1) − p(T) and (q(T + 1) − p(T))/p(T),
respectively. To prevent this error, the data vendor can typically back-adjust
the data series to eliminate the price gap, so that the P&L on T + 1 is p(T + 1)
− p(T). This can be done by adding the number (q(T + 1) − p(T + 1)) to
every price p(t) on every date t on or before T, so that the price change and
P&L from T to T + 1 is correctly calculated as q(T + 1) − (p(T) + q(T + 1)
− p(T + 1)) = p(T + 1) − p(T). (Of course, to take care of every rollover,
you would have to apply this back adjustment multiple times, as you go back
further in the data series.)

Is our problem solved? Not quite. Check out what the return is at T + 1
given this adjusted price series: (p(T + 1) − p(T))/(p(T) + q(T + 1) − p(T +
1)), not (p(T + 1) − p(T))/p(T). If you back-adjust to make the P&L calcu-
lation correct, you will leave the return calculation incorrect. Conversely,
you can back-adjust the price series to make the return calculation correct

c01.indd 13c01.indd 13 4/18/13 6:49 PM4/18/13 6:49 PM

14

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

(by multiplying every price p(t) on every date t on or before T by the num-
ber q(T + 1)/p(T + 1)), but then the P&L calculation will be incorrect. You
really can’t have both. As long as you want the convenience of using a con-
tinuous contract series, you have to choose one performance measurement
only, P&L or return. (If you bother to backtest your strategy on the various
individual contracts, taking care of the rollover buying and selling yourself,
then both P&L and return can be correctly calculated simultaneously.)

An additional diffi culty occurs when we choose the price back-adjustment
instead of the return back-adjustment method: the prices may turn negative
in the distant past. This may create problems for your trading strategy, and
it will certainly create problems in calculating returns. A common method
to deal with this is to add a constant to all the prices so that none will be
negative.

This subtlety in picking the right back-adjustment method is more im-
portant when we have a strategy that involves trading spreads between
diff erent contracts. If your strategy generates trading signals based on the
price diff erence between two contracts, then you must choose the price
back-adjustment method; otherwise, the price diff erence may be wrong and
generate a wrong trading signal. When a strategy involves calendar spreads
(spreads on contracts with the same underlying but diff erent expiration
dates), this back adjustment is even more important. This is because the
calendar spread is a small number compared to the price of one leg of the
spread, so any error due to rollover will be a signifi cant percentage of the
spread and very likely to trigger a wrong signal both in backtest and in live
trading. However, if your strategy generates trading signals based on the
ratio of prices between two contracts, then you must choose the return
back-adjustment method.

As you can see, when choosing a data vendor for historical futures prices,
you must understand exactly how they have dealt with the back-adjustment
issue, as it certainly impacts your backtest. For example, csidata.com uses
only price back adjustment, but with an optional additive constant to pre-
vent prices from going negative, while tickdata.com allows you the option
of choosing price versus return back-adjustment, but there is no option for
adding a constant to prevent negative prices.

Futures Close versus Settlement Prices
The daily closing price of a futures contract provided by a data vendor
is usually the settlement price, not the last traded price of the contract

c01.indd 14c01.indd 14 4/18/13 6:49 PM4/18/13 6:49 PM

15

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

during that day. Note that a futures contract will have a settlement price
each day (determined by the exchange), even if the contract has not traded
at all that day. And if the contract has traded, the settlement price is in
general diff erent from the last traded price. Most historical data vendors
provide the settlement price as the daily closing price. But some, such as
vendors that provide tick-by-tick data, may provide actual transaction price
only, and therefore the close price will be the last traded price, if there has
been a transaction on that day. Which price should we use to backtest our
strategies?

In most cases, we should use the settlement price, because if you had
traded live near the close, that would have been closest to the price of your
transaction. The last recorded trade price might have occurred several hours
earlier and bear little relation to your transaction price near the close. This
is especially important if we are constructing a pairs-trading strategy on
futures. If you use the settlement prices to determine the futures spreads,
you are guaranteed to be using two contemporaneous prices. (This is true
as long as the two futures contracts have the same underlying and therefore
have the same closing time. If you are trading intermarket spreads, see the
discussion at the end of this section.) However, if you use the last traded
prices to determine the spread, you may be using prices generated at two
very diff erent times and therefore incorrect. This incorrectness may mean
that your backtest program will be generating erroneous trades due to an
unrealistically large spread, and these trades may be unrealistically profi t-
able in backtest when the spreads return to a correct, smaller value in the
future, maybe when near-simultaneous transactions occur. As usual, an in-
fl ated backtest result is dangerous.

If you have an intraday spread strategy or are otherwise using intraday
futures prices for backtesting a spread strategy, you will need either histori-
cal data with bid and ask prices of both contracts or the intraday data on
the spread itself when it is native to the exchange. This is necessary because
many futures contracts are not very liquid. So if we use the last price of ev-
ery bar to form the spread, we may fi nd that the last prices of contract A and
contract B of the same bar may actually refer to transactions that are quite
far apart in time. A spread formed by asynchronous last prices could not in
reality be bought or sold at those prices. Backtests of intraday spread strate-
gies using the last price of each leg of the spread instead of the last price
of the spread itself will again infl ate the resulting returns. One vendor that
sells intraday historical calendar spread data (both quote and trade prices) is
cqgdatafactory.com.

c01.indd 15c01.indd 15 4/18/13 6:49 PM4/18/13 6:49 PM

16

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

There is one general detail in backtesting intermarket spreads that should
not be overlooked. If the contracts are traded on diff erent exchanges, they
are likely to have diff erent closing times. So it would be wrong to form an
intermarket spread using their closing prices. This is true also if we try to
form a spread between a future and an ETF. The obvious remedy of this is
to obtain intraday bid-ask data so that synchronicity is assured. The other
possibility is to trade an ETF that holds a future instead of the future itself.
For example, instead of trading the gold future GC (settlement price set
at 1:30 p.m. ET) against the gold-miners ETF GDX, we can trade the gold
trust GLD against GDX instead. Because both trade on Arca, their closing
prices are set at the same 4:00 p.m. ET.

 ■ Statistical Signifi cance of Backtesting:
Hypothesis Testing

In any backtest, we face the problem of fi nite sample size: Whatever statisti-
cal measures we compute, such as average returns or maximum drawdowns,
are subject to randomness. In other words, we may just be lucky that our
strategy happened to be profi table in a small data sample. Statisticians have
developed a general methodology called hypothesis testing to address this
issue.

The general framework of hypothesis testing as applied to backtesting
follows these steps:

 1. Based on a backtest on some fi nite sample of data, we compute a cer-
tain statistical measure called the test statistic. For concreteness, let’s say
the test statistic is the average daily return of a trading strategy in that
period.

 2. We suppose that the true average daily return based on an infi nite data
set is actually zero. This supposition is called the null hypothesis.

 3. We suppose that the probability distribution of daily returns is
known. This probability distribution has a zero mean, based on the
null hypothesis. We describe later how we determine this probability
distribution.

 4. Based on this null hypothesis probability distribution, we compute the
probability p that the average daily returns will be at least as large as
the observed value in the backtest (or, for a general test statistic, as
extreme, allowing for the possibility of a negative test statistic). This
probability p is called the p-value, and if it is very small (let’s say smaller

c01.indd 16c01.indd 16 4/18/13 6:49 PM4/18/13 6:49 PM

17

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

than 0.01), that means we can “reject the null hypothesis,” and conclude
that the backtested average daily return is statistically signifi cant.

The step in this procedure that requires most thought is step 3. How do
we determine the probability distribution under the null hypothesis? Per-
haps we can suppose that the daily returns follow a standard parametric
probability distribution such as the Gaussian distribution, with a mean of
zero and a standard deviation given by the sample standard deviation of the
daily returns. If we do this, it is clear that if the backtest has a high Sharpe
ratio, it would be very easy for us to reject the null hypothesis. This is be-
cause the standard test statistic for a Gaussian distribution is none other than
the average divided by the standard deviation and multiplied by the square
root of the number of data points (Berntson, 2002). The p-values for various
critical values are listed in Table 1.1. For example, if the daily Sharpe ratio
multiplied by the square root of the number days (n) in the backtest is
greater than or equal to the critical value 2.326, then the p-value is smaller
than or equal to 0.01.

This method of hypothesis testing is consistent with our belief that high-
Sharpe-ratio strategies are more statistically signifi cant.

Another way to estimate the probability distribution of the null hy-
pothesis is to use Monte Carlo methods to generate simulated historical
price data and feed these simulated data into our strategy to determine
the empirical probability distribution of profits. Our belief is that the
profitability of the trading strategy captured some subtle patterns or
correlations of the price series, and not just because of the first few
moments of the price distributions. So if we generate many simulated
price series with the same first moments and the same length as the
actual price data, and run the trading strategy over all these simulated
price series, we can find out in what fraction p of these price series
are the average returns greater than or equal to the backtest return.

TABLE 1.1 Critical Values for ×n Daily Sharpe Ratio

p-value Critical values

0.10 1.282

0.05 1.645

0.01 2.326

0.001 3.091

Source: Berntson (2002).

c01.indd 17c01.indd 17 4/18/13 6:49 PM4/18/13 6:49 PM

18

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

Ideally, p will be small, which allows us to reject the null hypothesis.
Otherwise, the average return of the strategy may just be due to the
market returns.

A third way to estimate the probability distribution of the null hypoth-
esis is suggested by Andrew Lo and his collaborators (Lo, Mamaysky, and
Wang, 2000). In this method, instead of generating simulated price data,
we generate sets of simulated trades, with the constraint that the number
of long and short entry trades is the same as in the backtest, and with the
same average holding period for the trades. These trades are distributed
randomly over the actual historical price series. We then measure what
fraction of such sets of trades has average return greater than or equal to
the backtest average return.

In Example 1.1, I compare these three ways of testing the statistical sig-
nifi cance of a backtest on a strategy. We should not be surprised that they
give us diff erent answers, since the probability distribution is diff erent in
each case, and each assumed distribution compares our strategy against a
diff erent benchmark of randomness.

Example 1.1: Hypothesis Testing on a Futures
Momentum Strategy

We apply the three versions of hypothesis testing, each with
a diff erent probability distribution for the null hypothesis, on
the backtest results of the TU momentum strategy described in
Chapter 6. That strategy buys (sells) the TU future if it has a positive
(negative) 12-month return, and holds the position for 1 month. We
pick this strategy not only because of its simplicity, but because it has
a fi xed holding period. So for version 3 of the hypothesis testing, we
need to randomize only the starting days of the long and short trades,
with no need to randomize the holding periods.

The fi rst hypothesis test is very easy. We assume the probability
distribution of the daily returns is Gaussian, with mean zero as
befi tting a null hypothesis, and with the standard deviation given by
the standard deviation of the daily returns given by our backtest. So
if ret is the Tx1 MATLAB© array containing the daily returns of the
strategy, the test statistic is just

mean(ret)/std(ret)*sqrt(length(ret))

c01.indd 18c01.indd 18 4/18/13 6:49 PM4/18/13 6:49 PM

19

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

Example 1.1 (Continued)

which turns out to be 2.93 for our data set. Comparing this test
statistic with the critical values in Table 1.1 tells us that we can reject
the null hypothesis with better than 99 percent probability.

The second hypothesis test involves generating a set of random,
simulated daily returns data for the TU future (not the daily returns
of the strategy) for the same number of days as our backtest. These
random daily returns data will have the same mean, standard
deviation, skewness, and kurtosis as the observed futures returns,
but, of course, they won’t have the same correlations embedded
in them. If we fi nd there is a good probability that the strategy can
generate an as good as or better return on this random returns series
as the observed returns series, it would mean that the momentum
strategy is not really capturing any momentum or serial correlations
in the returns at all and is profi table only because we were lucky that
the observed returns’ probability distribution has a certain mean and
a certain shape. To generate these simulated random returns with the
prescribed moments, we use the pearsrnd function from the MATLAB
Statistics Toolbox. After the simulated returns marketRet_sim are
generated, we then go on to construct a simulated price series cl_sim
using those returns. Finally, we run the strategy on these simulated
prices and calculate the average return of the strategy. We repeat
this 10,000 times and count how many times the strategy produces
an average return greater than or equal to that produced on the
observed data set.

Assuming that marketRet is the Tx1 array containing the
observed daily returns of TU, the program fragment is displayed
below. (The source codes for these tests can be downloaded as
TU_mom_hypothesisTest.m from www.wiley.com/go/algotrading.)

moments={mean(marketRet), std(marketRet), ...
 skewness(marketRet), kurtosis(marketRet)};
numSampleAvgretBetterOrEqualObserved=0;

for sample=1:10000

marketRet_sim=pearsrnd(moments{:}, length(marketRet), 1);

cl_sim=cumprod(1+marketRet_sim)-1;

longs_sim=cl_sim > backshift(lookback, cl_sim) ;

shorts_sim=cl_sim < backshift(lookback, cl_sim) ;
(Continued)

c01.indd 19c01.indd 19 4/18/13 6:49 PM4/18/13 6:49 PM

20

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

Example 1.1 (Continued)

pos_sim=zeros(length(cl_sim), 1);

for h=0:holddays-1

long_sim_lag=backshift(h, longs_sim);

long_sim_lag(isnan(long_sim_lag))=false;

long_sim_lag=logical(long_sim_lag);

short_sim_lag=backshift(h, shorts_sim);

short_sim_lag(isnan(short_sim_lag))=false;

short_sim_lag=logical(short_sim_lag);

pos_sim(long_sim_lag)=pos_sim(long_sim_lag)+1;

pos_sim(short_sim_lag)=pos_sim(short_sim_lag)-1;

end

ret_sim=backshift(1, pos_sim).*marketRet_sim/holddays;

ret_sim(~isfinite(ret_sim))=0;

if (mean(ret_sim)>= mean(ret))

numSampleAvgretBetterOrEqualObserved=numSampleAvgret
 BetterOrEqualObserved+1;

end

end

We found that out of 10,000 random returns sets, 1,166 have
average strategy return greater than or equal to the observed average
return. So the null hypothesis can be rejected with only 88 percent
probability. Clearly, the shape of the returns distribution curve has
something to do with the success of the strategy. (It is less likely that
the success is due to the mean of the distribution since the position
can be long or short at diff erent times.)

The third hypothesis test involves randomizing the long and short
entry dates, while keeping the same number of long trades and short
trades as the ones in the backtest, respectively. We can accomplish
this quite easily by the MATLAB function randperm:

numSampleAvgretBetterOrEqualObserved=0;

for sample=1:100000

P=randperm(length(longs));

c01.indd 20c01.indd 20 4/18/13 6:49 PM4/18/13 6:49 PM

21

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

Example 1.1 (Continued)

longs_sim=longs(P);

shorts_sim=shorts(P);

pos_sim=zeros(length(cl), 1);

for h=0:holddays-1

long_sim_lag=backshift(h, longs_sim);

long_sim_lag(isnan(long_sim_lag))=false;

long_sim_lag=logical(long_sim_lag);

short_sim_lag=backshift(h, shorts_sim);

short_sim_lag(isnan(short_sim_lag))=false;

short_sim_lag=logical(short_sim_lag);

pos(long_sim_lag)=pos(long_sim_lag)+1;

pos(short_sim_lag)=pos(short_sim_lag)-1;

end

ret_sim=backshift(1, pos_sim).*marketRet/holddays;

ret_sim(isnan(ret_sim))=0;

if (mean(ret_sim)>= mean(ret))

numSampleAvgretBetterOrEqualObserved=...
 numSampleAvgretBetterOrEqualObserved+1;

end

end

There is not a single sample out of 100,000 where the average
strategy return is greater than or equal to the observed return.
Clearly, the third test is much weaker for this strategy.

The fact that a null hypothesis is not unique and diff erent null hypoth-
eses can give rise to diff erent estimates of statistical signifi cance is one
reason why many critics believe that hypothesis testing is a fl awed meth-
odology (Gill, 1999). The other reason is that we actually want to know
the conditional probability that the null hypothesis is true given that we

c01.indd 21c01.indd 21 4/18/13 6:49 PM4/18/13 6:49 PM

22

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

have observed the test statistic R: P(H0|R). But the procedure we outlined
previously actually just computed the conditional probability of obtaining
a test statistic R given that the null hypothesis is true: P(R|H0). Rarely is
P(R|H0) = P(H0|R).

Even though hyp othesis testing and the rejection of a null hypothesis
may not be a very satisfactory way to estimate statistical signifi cance, the
failure to reject a null hypothesis can inspire very interesting insights. Our
Example 1.1 shows that any random returns distribution with high kurtosis
can be favorable to momentum strategies.

 ■ When Not to Backtest a Strategy

We have spent much eff ort earlier convincing you that you should backtest
every strategy that comes your way before trading it. Why would we rec-
ommend against backtesting some strategies? The fact is that there are some
published strategies that are so obviously fl awed it would be a waste of time
to even consider them. Given what you know now about common pitfalls of
backtesting, you are in a good position to judge whether you would want to
backtest a strategy without even knowing the details. We will look at a few
examples here.

Example 1: A strategy that has a backtest annualized return of 30 per-
cent and a Sharpe ratio of 0.3, and a maximum drawdown duration of
two years.

Very few traders (as opposed to “investors”) have the stomach for a strat-
egy that remains “under water” for two years. The low Sharpe ratio coupled
with the long drawdown duration indicates that the strategy is not consis-
tent. The high average return may be just a fl uke, and it is not likely to re-
peat itself when we start to trade the strategy live. Another way to say this
is that the high return is likely the result of data-snooping bias, and the long
drawdown duration will make it unlikely that the strategy will pass a cross-
validation test. Do not bother to backtest high return but low Sharpe ratio
strategies. Also, do not bother to backtest strategies with a maximum draw-
down duration longer than what you or your investors can possibly endure.

Example 2: A long-only crude oil futures strategy returned 20 percent
in 2007, with a Sharpe ratio of 1.5.

A quick check of the total return of holding the front-month crude oil fu-
tures in 2007 reveals that it was 47 percent, with a Sharpe ratio of 1.7. Hence,
this trading strategy is not in any way superior to a simple buy-and-hold

c01.indd 22c01.indd 22 4/18/13 6:49 PM4/18/13 6:49 PM

23

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

strategy! Moral of the story: We must always choose the appropriate bench-
mark to measure a trading strategy against. The appropriate benchmark of
a long-only strategy is the return of a buy-and-hold position—the informa-
tion ratio rather than the Sharpe ratio.

Example 3: A simple “buy-low-sell-high” strategy picks the 10 lowest-
priced stocks at the beginning of the year and holds them for a year.
The backtest return in 2001 is 388 percent.

The fi rst question that should come to mind upon reading this strategy is:
Was the strategy backtested using a survivorship-bias-free stock database?
In other words, does the stock database include those stocks that have since
been delisted? If the database includes only stocks that have survived until
today, then the strategy will most likely pick those lucky survivors that hap-
pened to be very cheap at the beginning of 2001. With the benefi t of hind-
sight, the backtest can, of course, achieve a 388 percent return. In contrast,
if the database includes delisted stocks, then the strategy will most likely
pick those stocks to form the portfolio, resulting in almost 100 percent
loss. This 100 percent loss would be the realized return if we had traded
the strategy back in 2001, and the 388 percent return is an infl ated backtest
return that can never be realized. If the author did not specifi cally mention
that the data used include delisted stocks, then we can assume the backtest
suff ers from survivorship bias and the return is likely to be infl ated.

Example 4: A neural net trading model that has about 100 nodes gener-
ates a backtest Sharpe ratio of 6.

My alarms always go off whenever I hear the term neural net trad-

ing model, not to mention one that has 100 nodes. All you need to
know about the nodes in a neural net is that the number of param-
eters to be fitted with in-sample training data is proportional to the
number of nodes. With at least 100 parameters, we can certainly fit the
model to any time series we want and obtain a fantastic Sharpe ratio.
Needless to say, it will have little or no predictive power going forward
due to data-snooping bias.

Example 5: A high-frequency E-mini S&P 500 futures trading strategy
has a backtest annual average return of 200 percent and a Sharpe ratio
of 6. Its average holding period is 50 seconds.

Can we really backtest a high-frequency trading strategy? The perfor-
mance of a high-frequency trading strategy depends on the order types
used and the execution method in general. Furthermore, it depends cru-
cially on the market microstructure. Even if we have historical data of the
entire order book, the profi t from a high-frequency strategy is still very

c01.indd 23c01.indd 23 4/18/13 6:49 PM4/18/13 6:49 PM

24

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

dependent on the reactions of other market participants. One has to ques-
tion whether there is a “Heisenberg uncertainty principle” at work: The
act of placing or executing an order might alter the behavior of the other
market participants. So be very skeptical of a so-called backtest of a high-
frequency strategy.

Life is too short to backtest every single strategy that we read about, so
we hope awareness of the common pitfalls of backtesting will help you se-
lect what strategies to backtest.

 ■ Will a Backtest Be Predictive of
Future Returns?

Even if we manage to avoid all the common pitfalls outlined earlier and there
are enough trades to ensure statistical signifi cance of the backtest, the predic-
tive power of any backtest rests on the central assumption that the statisti-
cal properties of the price series are unchanging, so that the trading rules
that were profi table in the past will be profi table in the future. This assump-
tion is, of course, invalidated often in varying degrees: A country’s economic
prospect changes, a company’s management changes, and a fi nancial market’s
structure changes. In the past decade in the United States, we have witnessed
numerous instances of the last category of changes. Among them:

 ■ Decimalization of U.S. stock quotes on April 9, 2001. (Prior to this date,
U.S. stocks were quoted in one-eighth or one-sixteenth of a penny.) This
caused bid-ask spreads to decrease, but also caused the “displayed liquidity”
at the best bid and ask prices to decrease (Arnuk and Saluzzi, 2012). This in
turn caused profi tability of many statistical arbitrage strategies to decrease
while increasing the profi tability of many high-frequency strategies.

 ■ The 2008 fi nancial crisis that induced a subsequent 50 percent collapse of
average daily trading volumes (Durden, 2012). Retail trading and owner-
ship of common stock is particularly reduced. This has led to decreasing
average volatility of the markets, but with increasing frequency of sudden
outbursts such as that which occurred during the fl ash crash in May 2010 and
the U.S. federal debt credit rating downgrade in August 2011. The overall
eff ect has been a general decrease in profi ts for mean-reverting strategies,
which thrive on a high but constant level of volatility.

 ■ The same 2008 fi nancial crisis, which also initiated a multiyear bear
market in momentum strategies, as discussed in Chapter 6.

c01.indd 24c01.indd 24 4/18/13 6:49 PM4/18/13 6:49 PM

25

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

 ■ The SEC’s Regulation NMS implemented in July 2007, which also
contributed to the drastic decrease in the average trade sizes and the ob-
solescence of the NYSE block trade (Arnuk and Saluzzi, 2012).

 ■ The removal of the old uptick rule for short sales in June 2007 and the
reinstatement of the new Alternative Uptick Rule in 2010.

Strategies that performed superbly prior to each of these “regime shifts”
may stop performing and vice versa. Backtests done using data prior to
such regime shifts may be quite worthless, while backtests done using
recent data may be no more indicative of future profi ts if and when a fu-
ture regime shift is to occur. The general point of this is that algorithmic
trading is not just about algorithms, programming, and mathematics: An
awareness of such fundamental market and economic issues is also needed
to inform us on whether a backtest is predictive and will continue to be
predictive.

 ■ Choosing a Backtesting and Automated
Execution Platform

Software companies have worked very hard to provide traders with a wide
variety of backtesting and automated execution platforms that cater to ev-
ery possible level of programming skills. We are faced with two basic choices
when it comes to deciding on a trading platform:

 1. Buying a special-purpose backtesting and execution platform, and
implementing your strategy using that platform’s special-purpose
graphical user interface (GUI) or programming language.

 2. Writing your own backtest and execution program in a generic
programming language such as C++, either in a completely stand-
alone manner with piecemeal purchases of software libraries to make
the task easier or within an integrated development environment
(IDE) that comes with a comprehensive library catering to algorith-
mic trading.

We consider some criteria for making this choice next.

How Good Is Your Programming Skill?
If you have little skill in programming, then the only choice is to pick a
special-purpose trading platform. These platforms unburden the user from

c01.indd 25c01.indd 25 4/18/13 6:49 PM4/18/13 6:49 PM

26

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

having to learn a programming language by presenting a graphical “drag-
and-drop” user interface for building a trading strategy. Examples of these
products are Deltix and Progress Apama. However, I have found that these
GUIs can be quite limiting in the variety of strategies that you can build,
and in the long run, it is far more effi cient to become adept in a program-
ming language in order to express your strategy. (Note that Deltix and
Progress Apama also allow other ways to specify a strategy, as explained
below.)

Traders possessing the next level of programming skill should consider
implementing both backtesting and automated execution using one of the
scripting languages. These languages do not require compilation, and you
can instantly see the results the moment you fi nish typing in the mathe-
matical or logical expressions. Many traders’ favorite backtesting platform,
Microsoft Excel, perhaps used in conjunction with Visual Basic (VB) macros,
belongs to this category. But it is actually quite hard to build a reasonably
complicated strategy in Excel, and even harder to debug it. Excel also is not
a particularly high-performance language, so if your strategy is very compu-
tationally intensive, it is not going to work. If you use Excel for automated
executions, you may fi nd that you have to use DDE links provided by your
brokerage for market data updates, and you will likely need to add Visual
Basic macros to handle more complicated trading logic, which is quite in-
effi cient. (However, see Box 1.1 for an Excel-like trading platform that is
supercharged for effi ciency.)

B
O

X
 1

.1 Excel on Steroids—The FXone Automated Execution Platform

There is a currency trading platform called FXone that looks like Excel, but the

underlying computational engine is written in a high-performance language

like C++ instead of relying on VB macros. It is a true tick-driven application:

Every tick (in the FX case, a tick is a new quote) triggers a recalculation of

all the values in all of the cells of the spreadsheet. Furthermore, it has an

internal cache for real-time data so that different cells that require the same

data to compute can simply retrieve it from the cache, instead of duplicating

subscriptions of the same data. It is also a true multithreaded platform at two

different levels. First, different strategies written on different Excel workbooks

can get market data updates and submit orders simultaneously. Second,

different cells within the same workbook can also get updates and act on

new data simultaneously. That is to say, even if the calculation in one cell

happens to take very long to complete, it will not prevent other cells from

responding to a new tick by, say, submitting an order. A screenshot of FXone

is shown in Figure 1.1.

c01.indd 26c01.indd 26 4/18/13 6:49 PM4/18/13 6:49 PM

27

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

B
O

X
 1

.1
 (
Co
nt
in
ue
d

)

F
IG

U
R

E
 1

.1

Sc
re

en
sh

ot
 o

f F
X

on
e.

c01.indd 27c01.indd 27 4/18/13 6:49 PM4/18/13 6:49 PM

28

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

Many special-purpose trading platforms, including QuantHouse and
RTD Tango and the aforementioned Deltix and Progress Apama, also in-
clude ways for coding a strategy with their own proprietary programming
languages, which are usually quite simple and easy to learn, maybe as easy
as Visual Basic. Aside from the institutional platforms mentioned here,
many retail traders are familiar with MetaTrader, NinjaTrader, Trading
Blox, or TradeStation Easy Language. I have not tried all of these platforms
personally, but I have a lingering suspicion that despite the apparent ease of
use and other advantages I mention later, they all in some way place some
limitations on the type of strategies that can be backtested and executed.

Requiring just slightly more skills than programming in VB, traders will
fi nd the scripting languages of MATLAB, R, and Python off er vastly more
ease of debugging, much greater fl exibility in the type of strategies that can
be backtested, and higher effi ciency in backtesting large data sets. These are
what we call “REPL” languages. REPL is programmer-speak for “Read-Eval-
Print-Loop.” That is, you can type in a mathematical expression, and the
program will immediately evaluate it and print out the answer, and get ready
for you to input the next expression. It works exactly like a handheld cal-
culator, but better: You can also save all these expressions in a fi le, and have
the program automatically execute them sequentially. The syntax of these
languages is designed to be more intuitive and easier to understand than
conventional programming languages such as C++ and much more fl exible
in terms of the type of variables that can be used in a program. Scalars, ar-
rays, and strings are all basically dealt with using a similar syntax and passed
along to functions in the same way.

MATLAB can also utilize Java, C++, or C# libraries or application pro-
gramming interfaces (APIs) and call functions implemented in those librar-
ies or APIs. This allows MATLAB to take advantage of the more effi cient
implementations in those conventional languages when a task is particularly
computationally intensive. Also, there are far more libraries and APIs that
are written in those conventional languages than those written in MATLAB,
R, or Python, so this feature is often essential.

Many algorithmic traders are aware that MATLAB, R, and Python are
excellent languages for backtesting. But less well known is the fact that
they can be turned into execution platforms as well with the addition
of some toolboxes. Most brokerages have APIs written in Java, C++, or
C#; and, as I said earlier, MATLAB can call functions in APIs written in
such languages, though it does take some familiarity with these languages

c01.indd 28c01.indd 28 4/18/13 6:49 PM4/18/13 6:49 PM

29

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

to know how to call these functions. If you would prefer a solution that
obviates making “foreign-language” API calls in MATLAB, there are a
number of commercial products available. MATLAB’s own Datafeed Tool-
box can send orders to Trading Technologies’ X_TRADER. To connect
MATLAB to Interactive Brokers, undocumentedmatlab.com has devel-
oped an API called IB-Matlab. Another vendor, www.exchangeapi.com,
has a similar API called quant2ib, as well as one called quant2tt for con-
necting MATLAB to Trading Technologies. For other brokerages, www.
pracplay.com off ers a bridge from MATLAB or R to 15 or more brokers
for a monthly fee. A free, open-source MATLAB API for connecting to
Interactive Brokers was developed by Jev Kuznetsov and is available for
download from MATLAB Central’s File Exchange. Meanwhile, the MAT-
FIX software from agoratron.com lets your MATLAB program send or-
ders using the Financial Information eXchange (FIX) protocol to brokers
or exchanges. You can also use MATLAB to call the Java or .NET func-
tions in QuickFIX, an open source FIX engine (Kozola, 2012). For Py-
thon users, the free, open-source software IbPy will connect your Python
trading program to Interactive Brokers. While these add-ons to MATLAB
and Python make it possible to connect to a broker, they nevertheless do
not shield you from all the complexity of such connections. And, more
important, it is cumbersome to use the same program for both backtest-
ing and execution.

If you are a hard-core programmer, you will, of course, have no prob-
lem backtesting and automating execution directly in the most fl exible,
most effi cient, and most robust of programming languages, such as afore-
mentioned trio of Java, C++, or C#. As I said earlier, all brokerages or
exchanges that cater to algorithmic traders provide APIs in one or more
of these languages, or they allow you to submit orders using the FIX
messages, which in turn can be created and transmitted using a program
written in one of these languages. (For example, QuickFIX, mentioned
previously, is available in C++, C#, VB, Python, and Ruby.) But even
here the software industry has come to make our strategy implementation
easier and more robust by providing IDEs designed just for backtesting.
In fact, many of the special-purpose trading platforms (Deltix, Progress
Apama, QuantHouse, RTD Tango, etc.) include ways for coding strategies
using general-purpose, advanced programming languages that make them
resemble IDEs. There are also free, open-source class libraries or IDEs
that I describe in the next section.

c01.indd 29c01.indd 29 4/18/13 6:49 PM4/18/13 6:49 PM

30

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

Can Backtesting and Execution Use
the Same Program?
Special-purpose execution platforms typically hide the complexity of con-
necting to a brokerage or exchange, receiving live market data, sending or-
ders and receiving order confi rmations, updating portfolio positions etc.
from the programmer. Meanwhile, special-purpose backtesting platforms
typically come integrated with historical data. So for many special-purpose
trading platforms, the backtest program can be made the same as the live
execution program by factoring out the pure trading logic into a function,
unencumbered with details of how to retrieve data or where to submit or-
ders, and switching between backtesting mode and live execution mode can
be done by pushing a button to switch between feeding in historical data
versus live market data.

This ease of switching between backtesting and live execution is more
than just convenience: It eliminates any possibility of discrepancies or er-
rors in transcribing a backtest strategy into a live strategy, discrepancies that
often plague strategies written in a general programming language whether
it is C++ or MATLAB. Just as importantly, it eliminates the possibility of
look-ahead bias. As explained before, look-ahead bias means mistakenly in-
corporating future, unknowable information as part of the historical data
input to the backtest engine. Special-purpose platforms feed in historical
market data into the trade generating engine one tick or one bar at a time,
just as it would feeding in live market data. So there is no possibility that
future information can be used as input. This is one major advantage of using
a special-purpose trading platform.

There is one more advantage in using a platform where the backtesting
and live execution programs are one and the same—it enables true tick-
based high-frequency trading strategies backtesting. This is because most in-
dustrial-strength live execution programs are “event-driven”; that is, a trade
is triggered by the arrival of a new tick, not the end of an arbitrary time
bar. So if the input historical data is also tick-based, we can also backtest a
high-frequency strategy that depends on the change of every tick or even
every change in the order book. (I said “in theory” assuming that your hard-
ware is powerful enough. Otherwise, see the discussion later in this chapter
in the section “What Type of Asset Classes or Strategies Does the Platform
Support?”) Of course, we can backtest tick-based strategies in MATLAB by
feeding every tick into the program as well, though that is quite a cumber-
some procedure.

c01.indd 30c01.indd 30 4/18/13 6:49 PM4/18/13 6:49 PM

31

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

If you are a competent programmer who prefers the fl exibility of a general
purpose programming language, yet you want to use the same program for
both backtesting and live trading because of the preceding considerations,
you can still use the institutional-grade special-purpose platforms as IDEs,
or you can use the many open-source IDEs available: Marketcetera, Trade-
Link, Algo-Trader, ActiveQuant. I call them IDEs, but they are more than
just a trading strategy development environment: They come with libraries
that deal with the nuts and bolts of connecting to and exchanging data with
your broker, much like a special-purpose platform does. Many of them are
also integrated with historical data, which is an important time saver. As
an added bonus, these open-source IDEs are either free or quite low-cost
compared to special-purpose platforms. I display in Table 1.2 the languages,
markets, and brokers that they support. (FIX as a broker means that the
system can directly access any execution venues via the FIX protocol, re-
gardless of clearing broker.) I also indicate whether the IDE is tick based
(sometimes called event driven or stream based).

One should note that Table 1.2 only compares features of open-source
IDEs. The institutional-grade special-purpose platforms typically have all of
these features.

What Type of Asset Classes or Strategies Does the
Platform Support?
While using a special-purpose platform for trading strategies has several
important advantages described earlier, few but the most high end of these

TABLE 1.2 Comparisons of Open-Source Integrated Development Environments
(IDEs) for Backtesting and Automated Execution

IDE Language(s)
Asset
class(es) Broker(s)

Tick
based?

CEP
enabled?

ActiveQuant Java, MATLAB, R Various CTS, FIX, Trading
Technologies-
supported brokers

Yes No

Algo-Trader Java Various Interactive Brokers,
FIX

Yes Yes

Marketcetera Java, Python, Ruby Various Various, FIX Yes Yes

OpenQuant .NET (C#, VB) Various Various, FIX ? No

TradeLink .NET (C#, C++,
VB), Java, Pascal,
Python

Various Various, FIX Yes No

c01.indd 31c01.indd 31 4/18/13 6:49 PM4/18/13 6:49 PM

32

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

platforms support all possible asset classes, including stocks, futures, cur-
rencies, and options. For example, the popular MetaTrader is for currencies
trading only. It is especially diffi cult for these platforms to trade strate-
gies that involve arbitrage between diff erent asset classes, such as between
futures and stocks or currencies and futures. The open-source IDEs are bet-
ter able to handle these situations. As Table 1.2 indicates, most IDEs can
trade a variety of asset classes. But, as usual, the most fl exible solution in this
respect is a stand-alone program written outside of any IDE.

Beyond asset classes, many special-purpose platforms also place restric-
tions on the type of strategies that they support even within one asset class.
Often, simple pairs trading strategies require special modules to handle. Most
lower-end platforms cannot handle common statistical arbitrage or portfolio
trading strategies that involve many symbols. Open-source IDEs do not have
such restrictions, and, of course, neither do stand-alone programs.

What about high(er)-frequency trading? What kind of platforms can sup-
port this demanding trading strategy? The surprising answer is that most
platforms can handle the execution part of high-frequency trading without
too much latency (as long as your strategy can tolerate latencies in the 1- to
10-millisecond range), and since special-purpose platforms as well as IDEs
typically use the same program for both backtesting and execution, back-
testing shouldn’t in theory be a problem either.

To understand why most platforms have no trouble handling high-
frequency executions, we have to realize that most of the latency that needs
to be overcome in high-frequency trading is due to live market data latency,
or brokerage order confi rmation latency.

 1. Live market data latency:
For your program to receive a new quote or trade price within 1 to
10 milliseconds (ms), you have to colocate your program at the ex-
change or in your broker’s data center (see Box 1.2); furthermore,
you have to receive a direct data feed from the exchanges involved, not
from a consolidated data feed such as SIAC’s Consolidated Tape System
(CTS). (For example, Interactive Brokers’ data feed only off ers snap-
shots of market data every 250 ms.)

 2. Brokerage order confi rmation latency:
If a strategy submits limit orders, it will depend on a timely order sta-
tus confi rmation before it can decide what to do next. For some retail
brokerages, it can take up to six seconds between the execution of an
order and your program receiving the execution confi rmation, virtually

c01.indd 32c01.indd 32 4/18/13 6:49 PM4/18/13 6:49 PM

33

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

B
O

X
 1

.2 Colocation of Trading Programs

The general term colocation can mean several ways of physically locating

your trading program outside of your desktop computer. Stretching the

defi nition a bit, it can mean installing your trading program in a cloud server or

VPS (virtual private server) such as Amazon’s EC2, slicehost.com, or gogrid.

com. The advantage of doing so is to prevent power or Internet outages

that are more likely to strike a private home or offi ce than a commercial data

center, with its backup power supply and redundant network connectivity.

Colocating in a cloud server does not necessarily shorten the time data take

to travel between your brokerage or an exchange to your trading program,

since many homes or offi ces are now equipped with a fi ber optics connection

to their Internet service provider (e.g., Verizon’s FiOS in the United States, and

Bell’s Fibe Internet in Canada). To verify whether colocating in a virtual private

server (VPS) actually reduces this latency, you would need to conduct a test

yourself by “pinging” your broker’s server to see what the average round

trip time is. Certainly, if your VPS happens to be located physically close to

your broker or exchange, and if they are directly connected to an Internet

backbone, this latency will be smaller. (For example, pinging the Interactive

Brokers’ quote server from my home desktop computer produces an average

round trip time of about 55 ms, pinging the same server from Amazon’s EC2

takes about 25 ms, and pinging it from various VPSs located near Interactive

Brokers takes about 16 to 34 ms.)

I mention VPS only because many trading programs are not so compu-

tationally intensive as to require their own dedicated servers. But if they are,

you can certainly upgrade to such services at many of the hosting companies

familiar with the requirements of the fi nancial trading industry such as Equinix

and Telx, both of whom operate data centers in close proximity to the various

exchanges.

If your server is already in a secure location (whether that is your offi ce

or a data center) and is immune to power outage, then all you need is a

fast connection to your broker or the exchange. You can consider using

an “extranet,” which is like the Internet but operated by a private company,

which will guarantee a minimum communication speed. BT Radianz, Savvis,

and TNS are examples of such companies. If you have a large budget, you

can also ask these companies to build a dedicated communication line from

your server to your broker or exchange as well.

The next step up in the colocation hierarchy is colocating inside your

brokerage’s data center, so that quotes or orders confi rmation generated

by your broker are transmitted to your program via an internal network,

unmolested by the noise and vagaries of the public Internet. Various brokers

that cater to professional traders have made available colocation service:

examples are Lime Brokerage and FXCM. (Because of colocation, clients

of Lime Brokerage can even receive direct data feeds from the NYSE at a
(Continued)

c01.indd 33c01.indd 33 4/18/13 6:49 PM4/18/13 6:49 PM

34

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

B
O

X
 1

.2
 (
Co
nt
in
ue
d

) relatively low rate, which, as I mentioned before, is faster than the consolidated

SIAC CTS data feed.)

The ultimate colocation is, of course, situating your trading server at the

exchange or ECN itself. This is likely to be an expensive proposition (except

for forex ECNs), and useful only if you have a prime broker relationship, which

allows you to have “sponsored access” to connect to the exchange without

going through the broker’s infrastructure (Johnson, 2010). Such prime broker

relationships can typically be established only if you can generate institutional-

level commissions or have multimillion-dollar account. The requirements as

well as expenses to establish colocation are lower for forex prime brokers and

ECNs. Most forex ECNs including Currenex, EBS, FXall, and Hotspot operate

within large commercial data centers such as Equinix’s NY4 facility, and it is

not too expensive to colocate at that facility or sign up with a VPS that does.

Some traders have expressed concern that colocating their trading

programs on a remote server exposes them to possible theft of their

intellectual property. The simplest way is eliminate this risk is to just store

“executables” (binary computer codes that look like gibberish to humans)

on these remote servers, and not the source code of your trading algorithm.

(Even with a MATLAB program, you can convert all the .m fi les to .p fi les

before loading them to the remote server.) Without source codes, no one

can know the operating instructions of running the trading program, and no

one will be foolish enough to risk capital on trading a black-box strategy of

which they know little about. For the truly paranoid, you can also require an

ever-changing password that depends on the current time to start a program.

ensuring that no high-frequency trading can be done. Even if your bro-
kerage has order confi rmation latency below 10 ms, or if they allow
you to have direct market access to the exchanges so you get your order
status confi rmation directly from the exchanges, you would still need
to colocate your program with either your broker in the former case,
or with the exchange in the latter case.
 Practically any software program (other than Excel running with a
VB macro) takes less than 10 ms to submit a new order after receiving
the latest market data and order status updates, so software or hardware
latency is usually not the bottleneck for high-frequency trading, unless
you are using one program to monitor thousands of symbols. (Concern-
ing this last point, see Box 1.3 for issues related to multithreading.) But
backtesting a high-frequency strategy is entirely a diff erent matter. To do
this, you will be required to input many months of tick data (trades and
quotes), maybe on many symbols, into the backtesting platform. Worse,
sometimes you have to input level 2 quotes, too. Just the quantity of

c01.indd 34c01.indd 34 4/18/13 6:49 PM4/18/13 6:49 PM

35

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

data will overwhelm the memory of most machines, if they are not han-
dled in special ways (such as using parallel computing algorithms). Most
special-purpose backtesting platforms are not designed to be especially
intelligent when handling this quantity of data, and most of them are not
equipped at all to backtest data with all of bid/ask/last tick prices (and
sizes) nor level 2 quotes either. So backtesting a high-frequency strategy
usually requires that you write your own stand-alone program with spe-
cial customization. Actually, backtesting a high-frequency strategy may
not tell you much about its real-life profi tability anyway because of the
Heisenberg uncertainty principle that I mentioned before.
 Besides high-frequency trading, news-driven trading often causes all
but the top-end special-purpose platforms to stumble. News-driven
trading by defi nition requires as input a machine-readable news feed.
Most special-purpose platforms do not have this capability, and neither
do most open-source IDEs. Exceptions include Progress Apama, which
incorporates both Dow Jones and Reuters machine-readable news feed,
and Deltix, which integrates Ravenpack’s News Sentiment data feed.
Among IDE’s, Marketcetera off ers a newsfeed from benzinga.com
(which is unlikely to match the speed of delivery of Bloomberg, Dow
Jones, and Reuters). If you are writing your own stand-alone trading

B
O

X
 1

.3 Multithreading and High-Frequency Trading of Multiple Symbols

Multithreading for a trading platform means that it can respond to multiple

events (usually the arrival of a new tick) simultaneously. This is particularly

important if the program trades multiple symbols simultaneously, which is

often the case for a stock-trading program. You certainly don’t want your buy

order for AAPL to be delayed just because the program is deciding whether to

sell BBRY! If you write your own stand-alone trading program using a modern

programming language such as Java or Python, you won’t have any problem

with multithreading because this ability is native to such languages. However,

if you use MATLAB, you will need to purchase the Parallel Computing Toolbox

as well; otherwise, there is no multithreading. (Even if you purchase that

Toolbox, you are limited to 12 independent threads, hardly enough to trade

500 stocks simultaneously!) But do not confuse the lack of multithreading

in MATLAB with the “loss of ticks.” If you write two “listeners,” A and B, in

MATLAB to receive tick data from two separate symbols, because the fact

that listener A is busy processing a tick-triggered event doesn’t mean that

listener B is “deaf.” Once listener A has fi nished processing, listener B will

start to process those tick events that it has received while A was busy, with

no lost ticks (Kuznetsov, 2010).

c01.indd 35c01.indd 35 4/18/13 6:49 PM4/18/13 6:49 PM

36

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

program, you have the fl exibility of connecting to these news feed ei-
ther using the news provider’s API (e.g., both Dow Jones and Thomson
Reuters have made available their machine-readable news through an
API) or simply read a news XML fi le ftp’ed to your hard-drive periodi-
cally by the news provider. If you are news trading at high frequency, the
former expensive solution is an absolute necessity. Otherwise, there are
much more aff ordable solutions from vendors such as Newsware. I will
discuss more on the topic of event-driven trading in Chapter 7.

Does the Platform Have Complex
Event Processing?
Complex event processing (CEP) is a fashionable term to describe a program
responding to an event instantaneously and taking appropriate action. The
events that concern us are usually the arrival of a new tick, or the delivery
of a news item. For an algorithmic trader, one important point is that the
program is event driven, and not bar driven. That is, the program does not
go poll prices or news items at the end of each bar and then decide what to
do. Because CEP is event driven, there is no delay between the occurrence
of an event and the response to it.

If instantaneity is the only strength of CEP, then we can just use the so-
called callback functions that almost every brokerage API provides. A call-
back function is also triggered whenever a new tick or news item arrives,
and based on this new data we can perform all kinds of computations and
determine whether to submit an order. This is easy when the rule required
is simply “moving average of the price over the last hour.”

But what if the rules are “complex,” such as “sell when the order fl ow in
the last half hour is positive, the price is above the moving average, the vola-
tility is low, and an important news item just arrived”?

What if the rule involves many clauses like during, between, afterwards, in
parallel when applied to the sequence of events? According to CEP afi cionados,
it is much more succinct to express these complicated rules using a CEP lan-
guage than a traditional programming language. But what about the argument
that trading rules should be simple to avoid data-snooping bias? Their answer
is that they are not data mining the data to fi nd arbitrary rules, but simply
implementing rules that seasoned traders already know are profi table. I am not
entirely convinced by their arguments, but if you are, you should know that
Progress Apama mentioned above is distinguished by their CEP technology.
Certain free, open-source IDEs have CEP, too, as you can see from Table 1.2.

c01.indd 36c01.indd 36 4/18/13 6:49 PM4/18/13 6:49 PM

37

B
A

C
K

T
E

ST
IN

G
 A

N
D

 A
U

T
O

M
A

T
E

D
 E

X
E

C
U

T
IO

N

• Backtesting is useless if it is not predictive of future performance of a

strategy, but pitfalls in backtesting will decrease its predictive power.

• Eliminating pitfalls:

• A platform that uses the same program for both backtesting and live

executions can eliminate look-ahead bias.

• Out-of-sample testing, cross-validation, and high Sharpe ratios are

all good practices for reducing data-snooping bias, but none is more

defi nitive than walk-forward testing.

• Simple models are a simple cure for data-snooping bias.

• “Why did my model generate a ‘short’ signal for THQI on 2012/7/9? Oh,

that’s because I forgot to adjust its historical prices for a 1:10 reverse

stock split!”

• “Did your model just buy the stock CMC? Are you sure it didn’t forget to

adjust its historical prices because today is its ex-date for dividends?”

• “I see that your model is long only. Did you make sure your data don’t

have survivorship bias?”

• “The backtest of your mean-reverting stock-trading model using closing

prices is excellent, but expect a defl ation of the results if you test it again

using primary exchange data.”

• “Your model performed brilliantly during November 2008. But did it short

a lot of fi nancial stocks back then? Don’t forget that short sales of those

stocks were banned.”

• “This high-frequency stock-trading model looks good on backtest, but I

wonder if it incorporated uptick rules for their short trades.”

• “Your futures calendar spread model uses the differences in price to form

the spread. Why are you back-adjusting your prices using returns gap?”

• “Why is it that my mean-reverting intraday futures spread performed so

well in backtest but so poorly in live trading? Oh, I should have used tick-

based instead of bar-based data for my backtest.”

• “Your backtest of this momentum strategy seems to be without any

pitfalls. But just because it performed well before 2008 doesn’t mean it

will perform well afterward.”

• Statistical signifi cance of backtests:

• “What do you mean by saying that the expected APR of this strategy is

10 percent and is statistically signifi cant to within 1 percent?” Answer:

“It means by running the strategy on 10,000 simulated price series with

the same length and the same fi rst three moments as the historical price

series, there are only 100 sample series where the APR is equal to or

greater than 10 percent.”

KEY POINTS

(Continued)

c01.indd 37c01.indd 37 4/18/13 6:49 PM4/18/13 6:49 PM

38

A
LG

O
R

IT
H

M
IC

 T
R

A
D

IN
G

• “What do you mean by saying that the expected APR of this strategy is

10 percent and is statistically signifi cant to within 1 percent?” Alternative

answer: “It means by randomizing the entry dates of my trades, there is

only 1 in 100 random permutations where the APR is equal to or greater

than 10 percent.”

• Which backtest platform to pick?

• “I am a brilliant mathematician starting a fund with $50 million to invest,

but I don’t know how to program. What trading platform should I use?”

Pick an institutional special-purpose platform like Deltix, QuantHouse,

Progress Apama, or RTD Tango.

• “I am an experienced, discretionary, independent trader, and I want to

automate my strategies. What trading platform should I use?” Pick a retail

special-purpose platform like MetaTrader, NinjaTrader, Trading Blox, or

TradeStation.

• “I am a quant who is great with strategy research using MATLAB.

But how should I implement these strategies and go ‘live’?” Try

exchangeapi.com’s quant2ib API for Interactive Brokers, quant2tt for

Trading Technologies, www.pracplay.com for other brokers, or MATFIX for

FIX connections.

• “I am a good C++, C#, and Java programmer, but I hate dealing with

low-level connections to the brokerage, and I hate having to rewrite my

connections every time I change brokers.” Try one of the IDEs such as

Marketcetera, TradeLink, AlgoTrader, or ActiveQuant.

• Automating executions:

• “I want to colocate my trading program at a data center to reduce my

order confi rmation latency below 10 ms.” Are you sure your broker has an

order confi rmation latency shorter than 10 ms?

• “I am colocated at Amazon’s EC2. Market data fed to my trading

programs should be much more up-to-date than getting them at my

desktop PC.” Not necessarily: EC2’s server may be farther away (in

Internet distance) from your broker’s data server than your desktop PC.

• “I am using MATLAB’s Parallel Computing Toolbox, and I run my

program on a GPU. Therefore, I can trade all 500 stocks in the SPX

simultaneously.” Even with MATLAB’s Parallel Computing Toolbox, you

are limited to handling 12 stocks simultaneously. Writing your own Java

or Python program will allow true multithreading on a graphics processing

unit (GPU).

• “My IDE isn’t CEP enabled. I can’t really run a tick-based trading

strategy.” Even platforms that are not CEP enabled often have callback

functions that enable your program to be triggered by ticks.

c01.indd 38c01.indd 38 4/18/13 6:49 PM4/18/13 6:49 PM

