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Introduction to Power System Analysis

1.1 Introduction

As electricity comes out of the alternating current (AC) outlet every day, and
has already been doing so formore than 100 years, itmay nowadays be regarded
as a commodity. It is a versatile and clean source of energy; it is fairly cheap
and “always available.” In the Netherlands, for instance, an average household
encountered only 20minutes’ interruption to their supply in the year 2014 [1]
out of a total of 8760 hours, resulting in an availability of 99.996195%!
Society’s dependence on this commodity has become critical and the social

impact of a failing power system is beyond imagination:

• Cars would not be refueled as gas station pumps are driven by electricity.
• The sliding doors of shops and shopping malls would not be able to open or

close and people would therefore be locked out or in.
• Electrified rail systems, such as subways and trains, would come to a

standstill.
• Traffic lights would not work.
• Refrigerators would stop.
• Heating/cooling installations would fail.
• Cash dispensers would be offline.
• Computers would serve us no longer.
• Water supplies would stop or run out.

Many more examples may be given, but the message is clear: electric power
systems are the backbone of modern society (see Figure 1.1), and chaos would
result if the electricity supply failed for an extended period.
Our society needs engineers who know how to design, build, and operate an

electrical power system. So let us discover what lies beyond the AC outlet and
enter the challenging world of power system analysis.
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2 1 Introduction to Power System Analysis

Figure 1.1 The Earth’s city lights, indicating the most urbanized areas. The Visible Earth,
NASA.

1.2 Scope of the Material

Power system analysis is a broad subject, too broad to cover in a single textbook.
The authors confine themselves to an overview of the structure of the power
system (from generation via transmission and distribution to customers) and
only take into account its steady-state behavior.Thismeans that only the power
frequency (50 or 60Hz) is considered. An interesting aspect of power systems
is that the modeling of the system depends on the time scale under review.
Accordingly, the models for the power system components that are used in this
book have a limited validity; they are only valid in the steady-state situation and
for the analysis of low-frequency phenomena. In general, the time scales we are
interested in are as follows:

• Years, months, weeks, days, hours, minutes, and seconds for steady-state
analysis at power frequency (50 or 60Hz)
This is the time scale on which this book focuses. Steady-state analysis cov-
ers a variety of topics such as planning, design, economic optimization, load
flow/power flow computations, fault calculations, state estimation, protec-
tion, stability, and control.

• Milliseconds for dynamic analysis (kHz)
Understanding the dynamic behavior of electric networks and their compo-
nents is important in predicting whether the system, or a part of the system,
remains in a stable state after a disturbance. The ability of a power system to
maintain stability depends heavily on the controls in the system to dampen
the electromechanical oscillations of the synchronous generators.
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• Microseconds for transient analysis (MHz)
Transient analysis is of importance when we want to gain insight into the
effect of switching actions, for example, when connecting or disconnecting
loads or switching off faulty sections, or into the effect of atmospheric dis-
turbances, such as lightning strokes, and the accompanying overvoltages and
overcurrents in the system and its components.

Although the power system itself remains unchanged when different time
scales are considered, components in the power system should be modeled in
accordance with the appropriate time frame. An example to illustrate this is
the modeling of an overhead transmission line. For steady-state computations
at power frequency, the wavelength of the sinusoidal voltages and currents is
6000 km (in the case of 50Hz):

λ = v
f
= 3 × 105

50
= 6000km (1.1)

λ the wavelength [km]
v the speed of light≈ 300000 [km/s]
f the frequency [Hz= 1/s]

Thus, the transmission line is, so to speak, of “electrically small” dimensions
compared to the wavelength of the voltage. The Maxwell equations can
therefore be approximated by a quasi-static approach, and the transmission
line can accurately be modeled by lumped elements (see also Appendix A).
Kirchhoff’s laws may fruitfully be used to compute the voltages and currents.
When the effects of a lightning stroke have to be analyzed, frequencies
of 1MHz and higher occur and the typical wavelength of the voltage and
current waves is 300m or less. In this case the transmission line is far from
being “electrically small,” and it is not allowed to use the lumped-element
representation anymore. The distributed nature of the transmission line
has to be taken into account, and we have to calculate with traveling
waves.
Despite the fact that we mainly use lumped-element models in our book, it

is important to realize that the energy is mainly stored in the electromagnetic
fields surrounding the conductors rather than in the conductors themselves
as is shown in Figure 1.2. The Poynting vector, being the outer product of the
electric field intensity vector and the magnetic field intensity vector, indicates
the direction and intensity of the electromagnetic power flow [2, 3]:

S = E × H (1.2)

S the Poynting vector [W/m2]
E the electric field intensity vector [V/m]
H the magnetic field intensity vector [A/m]
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Figure 1.2 Transmission line–transformer–transmission line–load: the energy is stored in
the electromagnetic field.

Due to the finite conductivity of the conductor material and the finite per-
meability of the transformer core material, a small electric field component is
present inside the conductor and a small magnetic field component results in
the transformer core:

E = J
σ

(1.3)

J the current density vector [A/m2]
σ the conductivity [S/m]

H = B
μ

(1.4)

B the magnetic flux density vector [T=AH/m2]
μ the permeability [H/m]

This leads to small Poynting vectors pointing toward the conductor and
the transformer core: the losses in the transmission line and the trans-
former are fed from the electromagnetic field, as is the power consumed by
the load.



�

� �

�

1.3 General Characteristics of Power Systems 5

1.3 General Characteristics of Power Systems

Most of the power systems are 50 or 60Hz three-phaseAC systems.The voltage
levels used are quite diverse. In the following sections, we explain why these
choices have been made.

1.3.1 AC versus DC Systems

The choice for AC systems over DC systems can be brought back to the “bat-
tle” between Nikola Tesla (1856–1943) andThomas Alva Edison (1847–1931).
Edison managed to let a light bulb burn for 20 hours in the year 1879. He used
a 100V DC voltage and this was one of the main drawbacks of the system. At
that time a DC voltage could not be transformed to another voltage level, and
the transportation of electricity at the low voltage level of 100V over relatively
short distances already requires very thick copper conductors to keep the volt-
age drop within limits; this makes the system rather expensive. Nevertheless,
it took quite some time before AC became the standard. The reason for this
was that Edison, besides being a brilliant inventor, was also a talented and cun-
ning businessman as will become clear from the following anecdote. Edison
tried to conquer the market and made many efforts to have the DC adopted
as the universal standard. But behind the scenes he also tried hard to have AC
adopted for a special application: the electric chair. After having accomplished
this, Edison intimidated the general public into choosing DC by claiming that
AC was highly dangerous, the electric chair being the proof of this! Eventually
AC became the standard because transformers can quite easily transform the
voltage from lower to higher voltage levels and vice versa.
Nowadays, power-electronic devices make it possible to convert AC to DC,

DC to AC, andDC toDCwith a high rate of efficiency, and the obstacle of alter-
ing the voltage level in DC systems has disappeared. What determines, in that
case, the choice between AC and DC systems? Of course, financial investments
do play an important role here.The incremental costs of DC transmission over
a certain distance are less than the incremental costs of AC, because in a DC
system two conductors are neededwhereas three-phaseAC requires three con-
ductors. On the other hand, the power-electronic converters for the conversion
of AC to DC at one side, and from DC to AC at the other side, of the DC trans-
mission line are more expensive than the AC transmission terminals. If the
transmission distance is sufficiently long, the savings on the conductors over-
come the cost of the converters, as shown in Figure 1.3, and DC transmission
is, from a capital investment point of view, an alternative to AC.
The following are a few of the examples of high-voltage DC (HVDC)

applications.

• Long submarine crossings. For example, the Baltic cable between the Scan-
dinavian countries and Germany and the 600 km cable connection between
Norway and the Netherlands (the NorNed Cable Project).
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Figure 1.3 Break-even distance for HVDC [4].

• Asynchronous interconnection to interconnect networks that operate at dif-
ferent frequencies. For example, the HVDC intertie connection between the
50Hz, 500 kV Argentinean system and the 60Hz, 525 kV Brazilian system.

• Asynchronous interconnection to interconnect networks that operate at the
same frequency but cannot be connected by means of AC due to stability
reasons or operational differences. For example, the Scandinavian system is
asynchronously connected to the western continental European system; the
same applies for the US Eastern Interconnection and the US Western Inter-
connection.

Also in our domestic environment DC systems are present as the majority of
our electronic equipment works internally with a DC voltage: personal com-
puters, hi-fi equipment, video, DVD players, the television, and so on.

Shape of the alternating voltage
When an alternating voltage is considered, several types of alternating volt-
age are possible, such as sinusoidal, block, or triangular-shaped voltages, as
depicted in Figure 1.4. For power systems, the sinusoidal alternating voltage
is the right one to choose. By approximation, the power system can be con-
sidered to be a linear time-invariant (LTI) dynamic system. The elementary
operations in such a system are multiplication with a constant number and
addition and subtraction of quantities and delay in time (phase shift). When we
perform these operations on a sinusoidal signal of constant frequency, another

vv

tt

v

t

Figure 1.4 Alternating voltages: triangular, sinusoidal, and block.
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Figure 1.5 The definition of RMS values of sinusoidal quantities.

sinusoidal signal with the same frequency is the result. The same applies for
differentiation and integration. The signal, after manipulation, may differ in
amplitude or may be out of phase with the original signal, but the frequency
and the shape of the signal have not been affected.This is not the case when the
other alternating voltage shapes are used.
In otherwords, a sinusoidal excitation of a linear system results in a sinusoidal

response.Therefore, all the voltages and currents in the power system are sinu-
soidal and have the same frequency so that the components in the system can
be designed for this wave shape.

Sinusoidal alternating voltage
When we talk about an alternating sinusoidal voltage (or current), we generally
refer to the so-called RMS root mean square (RMS) value or effective value of
the voltage (or current). This RMS or effective value of a sinusoidal alternating
voltage (or current) is the equivalent value of the corresponding direct voltage
(or current) that dissipates the same amount of power in a given resistor during
one time period of the alternating voltage (or current). We derive this equality
for the DC and AC circuit shown in Figure 1.5.
The power dissipated in the resistance in the DC circuit is

P = V 2

R
= I2R (1.5)

When we write the voltage and the current in the AC circuit as

v(t) =
√
2|V | sin(ωt) and i(t) =

√
2|I| sin(ωt) (1.6)

ω the angular frequency (ω= 2πf ) [rad/s]

the instantaneous power dissipated in the AC circuit is

p(t) = v2(t)
R

= i2(t)R (1.7)

and for the average power this results in

P = 1
T ∫

T

0

v2
R

dt = 1
T ∫

T

0
i2Rdt (1.8)

T the period of the sine wave (T = 1/f = 2π/ω) [s]
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When the power in the DC circuit (Equation 1.5) and the average power in the
AC circuit (Equation 1.8) are demanded to be equal, we can write

V 2 = 1
T ∫

T

0
v2dt and I2 = 1

T ∫
T

0
i2dt (1.9)

and substitution of the equations for the alternating voltage and current
(Equation 1.6) gives us

V =

√
1
T ∫

T

0
v2dt =

√
2|V |

√
1
T ∫

T

0
sin2(ωt)dt =

√
2|V |√1

2
= |V |

(1.10)

I =

√
1
T ∫

T

0
i2dt =

√
2|I|

√
1
T ∫

T

0
sin2(ωt)dt =

√
2|I|√1

2
= |I|

|V | the RMS or effective value of the alternating voltage|I| the RMS or effective value of the alternating current

So summing up, the RMS or effective value of a sinusoidal alternating voltage
(or current) is equal to the value of the equivalent direct voltage (or current)
that dissipates the same amount of power in a given resistor during one time
period of the alternating voltage (or current).
The expression RMS is related to the previously derived expressions:

(1.11)

The term below the square root in Equation 1.11 is in fact the mean of sin2(ωt),
as indicated in Figure 1.6.
From the equations of the sinusoidal voltage and current (Equation 1.6), we

see the relation between the RMS value and the peak value:√
2|V | = V̂ and

√
2|I| = Î (1.12)

v

1

–1

0

1

–1

0

Mean = 0.5

t t
Mean = 0

v2

Figure 1.6 Mean value of a squared sine.
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It is the RMS value of the sinusoidal voltage and current that is read by the
common type of voltmeters and ammeters.

Example 1.1 RMS and peak value
When we speak of a voltage of 230V, the RMS value of the voltage amounts to
230V, while the peak value of the sinusoidal voltage is

√
2 ⋅ 230 = 325V.

1.3.2 50 and 60Hz Frequency

Thechoice of the frequency is not as arbitrary as onemight think. Between 1885
and 1900, a diversity of frequencies was used in the United States: 140, 1331/3,
125, 831/3, 662/3, 60, 50, 40, 331/3, 30, 25, and 162/3Hz [5–8]. Each frequency had
its own field of application. The power frequency finally came out at 60Hz in
North America, Brazil, and Japan and at 50Hz in most of the other countries.
Nowadays, 162/3 (Europe) and 25Hz (North America) are in use for railway
applications, and 400Hz is a popular frequency on board of ships, airplanes,
and oil rigs.
A too low frequency, such as 10 or 20Hz, is useless for domestic lighting as

the human eye records this as flicker. On the other hand, the frequency cannot
be too high as:
• The hysteresis losses in the transformer core increase in proportion to the

frequency while the eddy current losses increase in quadratic proportion to
the frequency.

• The capacitive reactance of cables and transmission lines increases
(X =−1/ωC).

• The inductive reactance, and the related voltage drop, increases (X =ωL).
• The electromagnetic interference with the radio traffic will grow.
Yet there is also an advantage in using a higher power system frequency – the
power-to-weight ratio of transformers, motors, and generators is higher. In
other words, the components can be smaller, while the power output is the
same. The formula of Esson gives a generalized expression for the power of an
electrical machine:

P = K ⋅ D2 ⋅ l ⋅ n (1.13)

K the “output coefficient” [J/m3], which depends on the type of machine, the
type of cooling, and the magnetic material used

D the diameter of the armature [m]
l the axial length of the armature [m]
n the rotational speed of the machine [1/s]

From Equation 1.13 we see that when we increase the rotational speed, by
choosing a higher system frequency, the dimension of the machine can be
smaller for the same output power.
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Another example is the transformer.The relation between the applied voltage
and the resulting flux is given by the following equations:

v1(t) =
√
2|V1| cos(ωt) = N1

dΦ
dt

Φ(t) = C +
√
2|V1|
ωN1

sin(ωt) =
√
2|Φ| sin(ωt) (1.14)

|Φ| = |B|A
N1 the number of turns of the primary transformer winding
Φ the magnetic flux [Wb=V s]
C the integration constant [Wb]; zero in steady-state conditions
B the magnetic flux density [T=Wb/m2]
A the cross-sectional area of the iron transformer core [m2]

We see that when the applied voltage remains the same, a higher system fre-
quency (ω= 2πf ) results in a lower effective value of the magnetic flux (|Φ|) so
that we can use a smaller cross-sectional area for the iron core when we keep
the magnetic flux density constant.
When there is freedom to choose the system frequency, a higher frequency

can be very advantageous, especially in the case that weight and volume play a
role, for example, on board of airplanes and ships.

1.3.3 Balanced Three-Phase Systems

The transmission and distribution systems are three-phase systems. In this
book we restrict ourselves to balanced three-phase power systems. In the
case of a balanced three-phase system, the sinusoidal voltages are of equal
magnitude in all three phases and shifted in phase by 120∘, as shown in
Figure 1.7:

va =
√
2|V | cos(ωt)

vb =
√
2|V | cos(ωt − 2π

3

)
(1.15)

vc =
√
2|V | cos(ωt − 4π

3

)

t

6.67 ms ⇔ 120°

va vb vc Figure 1.7 Phase voltages in a balanced
three-phase power system (50 Hz).
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Figure 1.8 A balanced three-phase power system.

Furthermore, the network has identical impedances in each phase and the loads
are identical. We can imagine the three-phase system consisting of three sep-
arate single-phase systems, as depicted in Figure 1.8 (a). Since the voltages in
the three phases are equal in magnitude and 120∘ shifted in phase and since
the impedances in the three phases are equal, the currents will also be equal in
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magnitude and shifted in phase by 120∘:

ia =
va

Z
=
√
2|I| cos(ωt − φ)

ib =
vb

Z
=
√
2|I| cos(ωt − φ − 2π

3

)
(1.16)

ic =
vc

Z
=
√
2|I| cos(ωt − φ − 4π

3

)
When the three return conductors are combined as a single return conductor,
the three-phase system in Figure 1.8 (b) can be drawn.The current through the
common return conductor is equal to the sum of the three individual phase
currents:

in = ia + ib + ic

=
√
2|I| [cos(ωt − φ) + cos

(
ωt − φ − 2π

3

)
+ cos

(
ωt − φ − 4π

3

)]
= 0

(1.17)

Because the current in the common return conductor is zero, in the case of a
balanced three-phase power system with a balanced load, this common return
conductor can be removed (see Figure 1.8 (c)), and a network with only three
conductors results.
Because of the fact that in the power system many single-phase loads

(domestic users and also some industrial ones) are connected, the utilities try
to divide the single-phase loads equally over the three phases (see also Section
4.3). The assumption that the power system is balanced is therefore a valid
approximation.
The reason to build a power system as a three-phase system is twofold as

explained in the following text.

Power considerations
The voltage and current of a single-phase inductive load can be written as

v(t) =
√
2|V | cos(ωt) and i(t) =

√
2|I| cos(ωt − φ) (1.18)

and the instantaneous power, consumed by this load, amounts to

p(t) = 2|V ||I| cos(ωt) cos(ωt − φ)
(1.19)

= |V ||I|[cos(φ) + cos(2ωt − φ)]

From this expression we learn that the single-phase instantaneous power is
not constant, but varies in time with double the power frequency (2ωt). This
is rather unpleasant, especially when the electrical energy is used for electrical
motors and traction applications, because this results in a pulsating torque on
the axis of the machine.
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The voltages and currents of a balanced three-phase inductive load can be
written as

va =
√
2|V | cos(ωt) ia =

√
2|I| cos(ωt − φ)

vb =
√
2|V | cos(ωt − 2π

3

)
ib =

√
2|I| cos(ωt − φ − 2π

3

)
(1.20)

vc =
√
2|V | cos(ωt − 4π

3

)
ic =

√
2|I| cos(ωt − φ − 4π

3

)
and the instantaneous power, consumed by this load, amounts to

p(t) = vaia + vbib + vcic

= |V ||I|[cos(φ) + cos(2ωt − φ)] + |V ||I| [cos(φ) + cos
(
2ωt − φ − 4π

3

)]
+ |V ||I| [cos(φ) + cos

(
2ωt − φ − 2π

3

)]
(1.21)

= 3|V ||I| cos(φ)
In a balanced three-phase power system, the instantaneous power is constant!
This is in fact valid for every balanced power system with more than three
phases. For an n-phase system, we can write the following general expression
for the instantaneous power:

p(t) = n|V ||I| cos(φ) + |V ||I| n∑
k=1

cos
(
2ωt − φ − 2k ⋅

2π
n

)
= n|V ||I| cos(φ)

+ |V ||I| cos(2ωt − φ)
n∑

k=1
cos

(
2k ⋅

2π
n

)
(1.22)

+ |V ||I| sin(2ωt − φ)
n∑

k=1
sin

(
2k ⋅

2π
n

)
A close observation of the terms behind the summation signs reveals

n∑
k=1

cos
(
2k ⋅

2π
n

)
= 0 ∀n ≥ 3

(1.23)n∑
k=1

sin
(
2k ⋅

2π
n

)
= 0 ∀n ≥ 1

Thus, the instantaneous power, as given in Equation 1.22, is constant for every
number of phases greater than or equal to three. Then why do we apply a
three-phase system and not a four- or five-phase system? This is because each
phase requires its own conductor, and the balanced three-phase system is the
system with the smallest number of phase conductors capable of delivering
constant instantaneous power.
The power supplied by the balanced three-phase system equals three times

the average power supplied by one of the three single-phase systems of which
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the system is built up, while only one extra conductor is required. As the cosine
term with the double frequency in Equation 1.19 has an average value of zero,
the average power supplied by the single-phase system amounts to

P1ϕ = |V ||I| cos(φ) (1.24)
The average power supplied by the balanced three-phase system equals the
instantaneous power (Equation 1.21):

P3ϕ = p(t) = 3|V ||I| cos(φ) = 3P1ϕ (1.25)
The three-phase system depicted in Figure 1.8 (c) transports the same amount
of power as the three-phase system built of three individual single-phase sys-
tems, as shown in Figure 1.8 (a), but with only half the number of conductors!

Rotatingmagnetic field
A three-phase system is able to produce a rotating magnetic field, as is
visualized in Figure 1.9. This is a very important property as all AC machines

i1

v1

i2 i3

v2

v3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12

t0 t1 t2 t3 t4 t5 t6

t7...t12: reverse of t1...t6

Resultant magnetic field vectorMagnetic field vector of one phase

3 2 3
2

1

2

1 1

2

3

1

3

1

32
32

+

–

+

–

+

–

i1

i2

i3

t

Figure 1.9 Magnetic field generated by a three-phase coil system [9].
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t
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t0 t1 t2 t3 t4 t5 t6

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

+

–

Figure 1.10 Magnetic field generated by a single-phase coil system.

operate on this principle. In a three-phase coil system, the resulting magnetic
field vector rotates with a constant magnitude, while in a single-phase coil
system the magnitude of the magnetic field vector varies in one direction
(see Figure 1.10). The expressions for the currents in the three-phase coil
system are

i1 =
√
2|I| sin(ωt)

i2 =
√
2|I| sin(ωt − 2π

3

)
(1.26)

i3 =
√
2|I| sin(ωt − 4π

3

)
and the resulting magnetic fields can be written as

H1 =
√
2|H| sin(ωt) sin(x)

H2 =
√
2|H| sin(ωt − 2π

3

)
sin

(
x − 2π

3

)
(1.27)

H3 =
√
2|H| sin(ωt − 4π

3

)
sin

(
x − 4π

3

)
t the time [s]; t = 0↔H1 = 0 ∀x
x the circumferential position [rad]; x= 0↔H1 = 0 ∀t
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Therefore, in the three-phase coil system, the resulting magnetic field
amounts to

Hr = H1 + H2 + H3

= 1
2
√
2|H|[cos(ωt − x) − cos(ωt + x)]

+ 1
2
√
2|H| [cos(ωt − x) − cos

(
ωt + x − 4π

3

)]
(1.28)

+ 1
2
√
2|H| [cos(ωt − x) − cos

(
ωt + x − 2π

3

)]
= 3

2
√
2|H| cos(ωt − x)

When the time varies and the radial position is kept equal to x=ωt, the
resulting magnetic field vector remains constant in length Hr = (3∕2)

√
2|H|

and rotates with a constant velocity dx/dt =ω [rad/s].
When a compass needle is positioned in the middle of the three-phase coil

system, the needle keeps pacewith the rotating field, which is a crude equivalent
of the synchronousmotor.When a copper cylinder is placed in the center of the
three-phase coil system, the rotating field drags the cylinder aroundwith it, and
we have a primitive equivalent of the induction motor.

Example 1.2 “Two-phase” system
It is possible to create a system with two-phase windings that delivers constant
instantaneous power and that produces a rotating magnetic field. To achieve
this, the voltages in the two phases should be 90∘ out of phase. The voltages
and currents of a balanced two-phase inductive load can be written as

va =
√
2|V | cos(ωt) ia =

√
2|I| cos(ωt − φ)

(1.29)
vb =

√
2|V | cos(ωt − π

2

)
ib =

√
2|I| cos(ωt − φ − π

2

)
and the instantaneous power, consumed by this load, amounts to

p(t) = vaia + vbib

= |V ||I|[cos(φ) + cos(2ωt − φ)]
(1.30)

+ |V ||I|[cos(φ) + cos(2ωt − φ − π)]
= 2|V ||I| cos(φ)

The resulting magnetic field vector of the two-phase coil system rotates with a
constant amplitude as visualized in Figure 1.11.
A drawback of such a two-phase system is that the current through the return

conductor is not equal to zero:
in = ia + ib ≠ 0 (1.31)
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Figure 1.11 Magnetic field generated by a two-phase coil system.

Accordingly, this system requires as many conductors (three) as a balanced
three-phase system, but only a powerp(t) = 2|V ||I| cos(φ) is transported (com-
pared with p(t) = 3|V ||I| cos(φ) in the three-phase system).

1.3.4 Voltage Levels

The range of voltage ratings finds its origin in the use of carbon arc lamps in
the early days of the power system. These lamps, the source of electric light-
ing before the incandescent lamp was invented, worked with a DC voltage of
55V. In those days the systems were laid out as three-wire systems, with con-
ductors at a potential of −55, 0, and 55V as shown in Figure 1.12 (b). In this
configuration a higher voltage of 110V was available as well. By using such a
three-conductor system, one could save considerably on copper. In the system
with two conductors (Figure 1.12 (a)), the losses equal I2 ⋅ 2R, with a resis-
tance per conductor of R and a total copper weight of 100%. In the case of
the three-conductor system, the losses equal (I2/4) ⋅ 2r (note that the current
in the middle conductor equals zero). In the case of equal losses in the two sys-
tems, the resistance per conductor in the three-conductor system equals r = 4R.
Therefore, the copper weight per conductor is reduced to 25%, which brings the
total required copper weight to 3/2 ⋅ 25%= 37.5% of the copper needed for the
two-wire layout.
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Figure 1.12 Two- (a) and three- (b) conductor system.
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Figure 1.13 Reducing losses by increasing the voltage level.

The choice for a higher voltage level of 220V (and in Europe later on for
230V) was made in order to reduce losses, as is illustrated in Figure 1.13. Both
voltage sources deliver a power of VI = 2V ⋅ I/2. The losses in the circuit with
supply voltage V equal I2 ⋅ 2R, while the losses in the circuit with double this
supply voltage amount to (I2/4) ⋅ 2R, which means a loss reduction of 75%.
When the choice was made for the alternating voltage system, the same voltage
levels were maintained.
The voltage ratings in a power system can be divided into three levels:

• The generation level: 10–25 kV. The power is generated at a relatively low
voltage level to keep the high-voltage insulation of the generator armature
within limits.

• The transmission level: 110–420 kV and higher (in the former Soviet Union
even the 1200 kV level is in operation).

• The distribution level: 10–72.5 kV.

The power is supplied to the customer at a variety of voltage levels; heavy-
industrial consumers can be connected from 150 to 10 kV, while households are
connected to the 0.4 kV voltage level. The changeover between voltage levels is
made by transformers.The voltage ratings used in the Dutch system are shown
in Figure 1.14.
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380 kV

150 kV

50 kV

10 kV 10 kV
∗

10 kV
∗

10 kV

0.4 kV 0.4 kV 0.4 kV 0.4 kV 0.4 kV

High voltage

Intermediate voltage

Medium voltage

Low voltage

20 kV

110 kV

220 kV

110 kV

Figure 1.14 Voltage levels and transformation steps in the Dutch power system; *this
voltage level can be 20 kV as well.

Line-to-line and line-to-neutral voltages
The voltage ratings of three-phase systems are usually expressed as line-to-line
voltages instead of line-to-neutral voltages, as is illustrated in Figure 1.15.
When the line-to-neutral voltages in the phases a and b are

van =
√
2|V | cos(ωt)

(1.32)
vbn =

√
2|V | cos(ωt − 2π

3

)
,

the line-to-line voltage between the phases a and b can be calculated as follows:

vab = van − vbn =
√
2|V | [cos(ωt) − cos

(
ωt − 2π

3

)]
=
√
2|V | [2 ⋅ cos(π

6

)
⋅ cos

(
ωt + π

6

)]
=
√
3
[√

2|V | cos(ωt + π
6

)]
(1.33)

The amplitude of the line-to-line voltage is
√
3 times the amplitude of the

line-to-neutral voltage (|Vab| = √
3|Van|), and the line-to-line voltage vab leads

the line-to-neutral voltage van by 30 electrical degrees.
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Figure 1.15 Line-to-line and line-to-neutral voltages.

In this book, a line-to-line voltage is indicated by the subscript LL, whereas
a line-to-neutral voltage is indicated by the subscript LN.The relation between
the line-to-line voltage and the line-to-neutral voltage is

|VLL| = √
3|VLN| (1.34)

|VLL| the RMS value of the line-to-line voltage|VLN| the RMS value of the line-to-neutral voltage

Example 1.3 Line-to-line and line-to-neutral voltage
The highest voltage level of the Dutch transmission network is 380 kV. This is
the RMS value of the line-to-line voltage. The RMS value of the corresponding
line-to-neutral voltage equals 380kV∕(

√
3) ≈ 220kV. The lowest voltage

used in the Netherlands is 0.4 kV (line-to-line voltage). The corresponding
line-to-neutral voltage amounts to 400∕(

√
3) ≈ 230V.

1.4 Phasors

Power system calculations in the steady-state situation are considerably sim-
plified by introducing the phasor. A phasor is an arrow in the complex plane
that has a one-to-one relation with a sinusoidal signal as can be seen from
Figure 1.16. When the sine/cosine in Figure 1.16 has a frequency of 50Hz, a
radiuswith a length

√
2 times the length of the phasor rotates counterclockwise

in the complex plane with a frequency of 50Hz.
Consider the following general sinusoidal voltage and current expressions:

v(t) =
√
2|V | cos(ωt) and i(t) =

√
2|I| cos(ωt − φ) (1.35)

In order to express these quantities as phasors, we apply Euler’s identity:

ejφ = cos(φ) + j sin(φ) (1.36)
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α

α

α

Figure 1.16 Relation between a counterclockwise rotating radius and a sinusoidal signal.

and the sinusoidal voltage and current can be written as

v(t) = Re{
√
2|V |e jωt} = Re{

√
2V e jωt} with V = |V | = |V |∠0

i(t) = Re{
√
2|I|e j(ωt−φ)} = Re{

√
2Ie jωt} with I = |I|e−jφ = |I|∠−φ

(1.37)
Re the operator that takes the real part of a complex quantity
V the voltage phasor
I the current phasor

The phasor represents a sinusoidal signal: the length of the phasor equals the
effective or RMS value of the signal, and the angle of the phasor matches the
phase shift of the signalwith respect to a reference (an ideal cosine (or sine)).We
see that the frequency component is absent when we use the phasor notation.
The voltages produced by the synchronous generators in the power system

are 50Hz (or 60Hz) sinusoidal voltages. As the power system is supposed to
be a linear system (see Section 1.3.1) in steady state, the voltage out of the AC
outlet at home is also a sinusoidal voltage with a frequency of 50Hz; only the
amplitude of the voltage differs and a phase shift may have occurred.Therefore,
in steady-state calculations, the frequency gives no extra information and can
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be omitted so that we can do our calculations with the phasors, fixed in the
complex plane. No relevant information is lost as the information with respect
to the phase angle and the amplitude is still available in this phasor.

Example 1.4 Phasor notation
The phasor of the sinusoidal signal v(t)= 141.4 cos(ωt +π/6) is written as
V = 100∠30∘.

1.4.1 Network Elements in the Phasor Domain

After having introduced the phasor representation for the voltages and currents
in the sinusoidal steady state, it is necessary to investigate the voltage–current
relations of the resistance, inductance, and capacitance in the phasor domain.
In Figure 1.17, the sinusoidal voltages and currents and also the corresponding
phasors for those three elements are shown.
Consider the following sinusoidal voltage:

v(t) =
√
2|V | cos(ωt) = Re{

√
2V ejωt} = Re{v′(t)} with V = |V |∠0∘

(1.38)

The current through a resistance R, when excited with a voltage v′(t) (as defined
in Equation 1.38), can be calculated as follows:

i′(t) = v′(t)
R

=
√
2 ⋅ V

R
⋅ ejωt =

√
2Iejωt (1.39)
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Figure 1.17 Relation between the sinusoidal voltage and current and the corresponding
phasors for a resistance, inductance, and capacitance.
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Therefore, the voltage–current relation of a resistance in the phasor domain is

I = V
R

(1.40)

When we take the real part of Equation 1.39, we get the expression of the
time-varying sinusoidal current:

i(t) = Re{i′(t)} =
√
2 ⋅ |V |

R
⋅ cos(ωt) (1.41)

The current through a capacitor C, when connected to a voltage source v′(t) (as
defined in Equation 1.38), can be obtained as follows:

i′(t) = C dv′
dt

=
√
2 ⋅ jωCV ⋅ ejωt =

√
2Iejωt (1.42)

Thus, the voltage–current relation of a capacitor in the phasor domain is
I = jωCV (1.43)

Taking the real part of Equation 1.42 leads to the expression of the time-varying
sinusoidal current:

i(t) = Re{i′(t)} =
√
2 ⋅ ωC|V | ⋅ − sin(ωt) =

√
2 ⋅ ωC|V | ⋅ cos(ωt + π

2

)
(1.44)

The current through an inductor L, driven by a voltage v′(t) (as defined in
Equation 1.38), is

i′(t) = 1
L∫ v′dt =

√
2 ⋅ V

jωL
⋅ ejωt =

√
2Iejωt (1.45)

and the voltage–current relation of an inductor in the phasor domain is

I = V
jωL

(1.46)

The real part of Equation 1.45 gives us the expression for the time-varying sinu-
soidal current:

i(t) = Re{i′(t)} =
√
2 ⋅ |V |

ωL
⋅ sin(ωt) =

√
2 ⋅ |V |

ωL
⋅ cos

(
ωt − π

2

)
(1.47)

The voltage–current relations are summarized in Table 1.1.

Table 1.1 Voltage–current relations.

Element Time Domain Phasor Domain

Resistance v= iR V = IR
Capacitance i=C(dv)/(dt) I = jωCV
Inductance v= L(di)/(dt) V = jωLI
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In the phasor domain, a general expression for the impedance can be writ-
ten as

Z = V
I
= R + jX (1.48)

Z the impedance [Ω]
R the resistance [Ω]
X the reactance [Ω]

When X has a positive sign, the energy-storage element is an inductor
(jX = jωL). When X has a negative sign, the energy-storage element is a
capacitor (jX = 1/(jωC)=−j/(ωC)).
When X equals zero, there is no energy storage and the impedance is purely

resistive. This is the case when we have no capacitors or inductors or when the
frequency is zero and we deal with DC.
In a similar way, a general expression for the admittance can be written as

Y = I
V

= G + jB (1.49)

Y the admittance [S]
G the conductance [S]
B the susceptance [S]

1.4.2 Calculations in the Phasor Domain

When we set aside the “deeper meaning” of the phasor (being the representa-
tion of a sinusoidal signal), a phasor is nothing more than a complex number
represented by a vector in the complex plane.Therefore, themathematical rules
for vector calculus can be applied for phasors.
A vector can be described by its length and its angle (polar coordinates)

or represented by its real and imaginary part (rectangular or Cartesian
coordinates). The relation between these two forms of notation is shown in
Figure 1.18. Basically, it makes no difference whether a phasor is expressed by

Re

Im

V

φ

Re(V )

Im(V )
V =

φ = tan
1– Im(V )

Re(V )
----------------

Re(V ) V cos(φ)=

Im(V ) V sin(φ)=

|V|

Re(V )2 + Im(V )2

V = ∣V∣∠φ = Re(V) + jIm(V )

Figure 1.18 The phasor as a vector in the complex plane.
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– V2

Figure 1.19 Two basic operations on vectors: addition and subtraction.

the Cartesian notation or the polar notation; however, for certain calculations
it can be advantageous to use one or the other. For addition and subtraction of
two phasors, the Cartesian notation is in general the easiest to apply as shown
graphically in Figure 1.19:

V1 = a + jb and V2 = c + jd (1.50)

V1 + V2 = (a + c) + j(b + d) addition

V1 − V2 = (a − c) + j(b − d) subtraction (1.51)

V ∗
1 = a − jb complex conjugate

For multiplication and division of phasors, the polar notation is more handy
to use:

V = |V |∠α and I = |I|∠β (1.52)

VI = |V ||I|∠(α + β) multiplication

V
I
= |V ||I| ∠(α − β) division (1.53)

V ∗ = |V |∠ − α complex conjugate

Other complex quantities, such as the complex power (which is introduced in
Section 1.6.2) or impedance or admittance, can be drawn as a vector in the com-
plex plane too as is shown in Figure 1.20, and the samemathematical rules apply
for those quantities as well.These quantities, however, cannot be interpreted as
phasors, as they do not have the same mathematical background.
The familiar complex operator j (i in themathematical literature; j is common

practice in the electrotechnical world in order to avoid confusion between the
current and the complex operator) is in fact a vector too:

j = ej90 = 0 + j1 = 1∠90∘ (1.54)
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Figure 1.20 The complex power, impedance, and admittance as vectors in the complex
plane.

Multiplication of a vector in the complex plane with the j operator causes a
counterclockwise rotation of the vector with 90∘ while the length of the vector
is unchanged. Another multiplication with j leads to a rotation over 180∘:

j2 = ej180 = −1 + j0 = 1∠180∘ (1.55)

In electrical power engineering another complex operator is commonly used,
the so-called a operator:

a = ej120 = −0.5 + j0.866 = 1∠120∘ (1.56)

A vector multiplied in the complex plane with the a operator rotates counter-
clockwise by 120∘ while the length of the vector remains unchanged. A repeated
multiplication with the a operator results in

a2 = ej240 = −0.5 − j0.866 = 1∠240∘
(1.57)

a3 = ej360 = 1 + j0 = 1∠0∘

From Equations 1.56 and 1.57, it is evident that

1 + a + a2 = 0 (1.58)

This is shown graphically in Figure 1.21.

1

a

1

a

Re

Im

Re

Im

a2

(b)(a)

1 + a + a2  = 0

a2

Figure 1.21 Vector diagrams of various powers of the a operator.
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Figure 1.22 The relation
between the line-to-line and
the line-to-neutral voltage.
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Example 1.5 Line-to-line and line-to-neutral voltage
When voltage phasors are applied, the relation between the line-to-neutral and
the line-to-line voltage (|VLL| = √

3|VLN|), as found in Section 1.3.4, can be cal-
culated as follows. The phasor representation of the line-to-neutral voltages in
the phases a and b, defined earlier in Equation 1.32, areVan = |V |∠0∘ andVbn =|V |∠240∘, respectively (see Figure 1.22). The line-to-line voltage between the
phases a and b is

Vab = Van − Vbn = 3
2
|V | + j1

2
√
3|V |

(1.59)
=
√
3|V |∠30∘ = √

3Van∠30∘

This is simply the phasor representation of the line-to-line voltage in the time
domain as denoted in Equation 1.33.Themathematical relation can be verified
graphically from Figure 1.22.

Example 1.6 Balanced three-phase voltage
The voltage phasors in a balanced three-phase system can be written as (see
Figure 1.22)

Van = |V |∠0∘ = |V |
Vbn = |V |∠240∘ = a2|V | (1.60)

Vcn = |V |∠120∘ = a|V |
Therefore, the sum of these voltage phasors equals zero (see also Equation 1.58
and Figure 1.21 (b)):

Van + Vbn + Vcn = |V |(1 + a2 + a) = 0 (1.61)
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Z = R + jX

Vs Vr

I Figure 1.23 Power transport over a short single-phase
transmission line.

5I IR

Vs

Vr

jXI

Figure 1.24 Phasor diagram.

Example 1.7 Phasor calculation and phasor diagram
Given is a short single-phase transmission line, which can be modeled as a
series impedance Z = 4+ j7 Ω (see also Appendix E.4), with a (line-to-neutral)
voltage at the receiving end (subscript r) of 10∕

√
3kV.The current amounts to|I| = 150A. At the receiving end of the line, an inductive load is present, and

the current phasor lags the voltage phasor by 36.9∘. This situation is depicted
in Figure 1.23. We want to calculate the voltage at the sending end of the line
(subscript s).
The impedance of the transmission line can be written in polar coordinates

Z = 8∠60∘ Ω. When the voltage at the receiving end of the line is used as a ref-
erence, the corresponding phasor is Vr = 5773.5∠0∘ V, and the current phasor
is I = 150∠− 36.9∘ A. The voltage at the sending end of the transmission line
can be calculated in the following way:

Vs = Vr + ZI = 5773.5∠0∘ + 8∠60∘ ⋅ 150∠ − 36.9∘

= 5773.5 + 1200∠23.1∘ = 6877.3 + j470.8 (1.62)
= 6.9∠3.9∘ kV

When the voltage and current phasors are drawn in a single diagram, the pha-
sor diagram in Figure 1.24 results. The voltage drop across the transmission
line (Vs =Vr +ZI) is now visualized. For a better visibility, the current has been
drawn at a five times larger scale: 5I instead of I. The voltage phasor IR is the
product of the current phasor I and the resistance R: only the length of the
current vector changes, whereas the angle remains the same. The voltage pha-
sor jXI is the product of the current phasor I, the reactance value X, and the
complex operator j. The length of the current vector alters (XI) and the vector
rotates counterclockwise by 90∘ (jXI).

1.5 Equivalent Line-to-neutral Diagrams

When solving balanced three-phase systems, one can work with a single-phase
equivalent of the three-phase system. In fact, the consecutive steps made
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Figure 1.25 Conversion of a delta-connected load to a wye-connected load.

to arrive at the balanced three-phase system consisting of three conductors
in Figure 1.8 are reversed: the three-phase system is split up into three
single-phase networks, of which only one needs to be analyzed. When the
voltages and currents are known in this single phase, one can simply obtain the
expressions for the voltages and currents in the other two phases by rotating
the corresponding phasors with 120∘ and 240∘.
When the three-phase network contains delta-connected elements, they

have to be converted to their equivalent wye connections first, as shown in
Figure 1.25. The delta–wye transformation formulas for both impedances and
admittances are given in Table 1.2.

Table 1.2 Delta–wye transformation.

Impedance Admittance

Za =
ZabZac

Zab + Zac + Zbc
Ya =

YabYac + YabYbc + YacYbc

Ybc

Zb =
ZabZbc

Zab + Zac + Zbc
Yb =

YabYac + YabYbc + YacYbc

Yac

Zc =
ZacZbc

Zab + Zac + Zbc
Yc =

YabYac + YabYbc + YacYbc

Yab
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Figure 1.26 Phasors in Figure 1.24, obtained from
single-phase computations (solid), are rotated
counterclockwise with 120 (dashed) and 240 (dotted)
degrees.

As we assume the system to be balanced (i.e., Zab =Zac =Zbc and
Yab =Yac =Ybc), the two following delta–wye transformation formulas
can be derived:

ZY =
ZΔ

3
(1.63)

YY = 3YΔ (1.64)

Example 1.8 Equivalent line-to-neutral diagram and single-phase com-
putation
The loaded single-phase short transmission line of Example 1.7 (p. 28), with a
(line-to-neutral) voltage at the receiving end of 10∕

√
3kV, can be interpreted

as an equivalent line-to-neutral diagram of a balanced three-phase short
transmission line with a line-to-line voltage at the receiving end of 10 kV,
which supplies a balanced wye-connected inductive load. As the voltages and
currents are known in one phase (e.g., phase a), the voltages and currents
in the other two phases (phases c and b) can be obtained by rotating the
corresponding phasors with 120∘ and 240∘ counterclockwise as shown in
Figure 1.26.

1.6 Power in Single-phase Circuits

In Section 1.3.3, we learned that the single-phase instantaneous power is a func-
tion of time and therefore not constant. In this section, we examine the power
concept of a single-phase circuit more thoroughly, and we determine the rela-
tions between the voltage and current phasors and the power.
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Figure 1.27 An inductive load split up into a resistor in parallel with an inductor.

1.6.1 Active and Reactive Power

The sinusoidal expressions for voltage and current of a general single-phase
load, as shown in Figure 1.27 (a), are

v(t) =
√
2|V | cos(ωt) and i(t) =

√
2|I| cos(ωt − φ) (1.65)

φ the phase shift between the voltage and the current: φ is positive for a
current lagging the voltage and negative for a leading current

The instantaneous power consumed by the impedance Z amounts to

p(t) = 2|V ||I| cos(ωt) cos(ωt − φ)

= |V ||I| cos(φ)[1 + cos(2ωt)] + |V ||I| sin(φ) sin(2ωt) (1.66)

= P[1 + cos(2ωt)] + Q sin(2ωt)

The first term in Equation 1.66 (P[1+ cos(2ωt)]) describes an unidirectional
component of the instantaneous power with an average value P, which is called
the average power and is also addressed as real or active power. So

P = |V ||I| cos(φ) (1.67)

P the active/real/average power [W]
cos(φ) the power factor (the cosine of the phase shift between the voltage

and current (or, in other words, the cosine of the phase angle between
the voltage and current phasor (see Figure 1.27 (c))))

The second term in Equation 1.66 (Q sin(2ωt)) is alternately positive and nega-
tive and has an average value of zero. This term describes a bidirectional, that
is, oscillating, component of the instantaneous power. When this term has a
positive sign, the power flow is toward the load; when the sign is negative, the
power flows from the load back to the source of supply. Because the average
value of this oscillating power component equals zero, it gives on average no
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transfer of energy toward the load. The amplitude of this oscillating power is
called imaginary or reactive power Q and is defined as

Q = |V ||I| sin(φ) (1.68)

Q the reactive/imaginary power [var; reactive volt-amperes]

A better understanding of these aspects of electrical power is obtained when an
inductive load is modeled as a resistor in parallel with an inductor as visualized
in Figure 1.27 (b).The current can be resolved into two components: one that is
in phase with the voltage (the current through the resistor) and one that is 90∘
out of phase (the current through the inductor). As the length of the current
phasor in phase with the voltage equals |IR| = |I| cos(φ) (see the phasor dia-
gram in Figure 1.27 (c)), the instantaneous current component in phase with
the voltage can be written as

iR =
√
2|IR| cos(ωt) =

√
2|I| cos(φ) cos(ωt) (1.69)

Similarly, the length of the current phasor lagging the voltage with 90∘ equals|IX| = |I| sin(φ), and the instantaneous current component lagging the voltage
with 90∘ can be written as

iX =
√
2|IX| sin(ωt) =

√
2|I| sin(φ) sin(ωt) (1.70)

The instantaneous power consumed by the resistor (see Figure 1.28 (b)) equals

viR = 2|V ||I| cos(φ)cos2(ωt)
= |V ||I| cos(φ)[1 + cos(2ωt)] (1.71)
= P[1 + cos(2ωt)]

The instantaneous power toward the inductor (see Figure 1.28 (c)) equals

viX = 2|V ||I| sin(φ) sin(ωt) cos(ωt)
= |V ||I| sin(φ) sin(2ωt) (1.72)
= Q sin(2ωt)

v
i PP

v v
Q

ttt

φ

p = viR
p = vi

p = viX
t = 0t = 0

iX

iR

(c)(b)(a)

Figure 1.28 Voltage, current, and instantaneous power of an inductive load.
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Figure 1.29 A simple series
(a) and parallel (b) circuit.

V XRV

II

R

X

(b)(a)

IXIR

When we add both instantaneous power components (see Figure 1.28 (a)), we
recognize the same expression as found earlier in Equation 1.66:

p = vi = viR + viX (1.73)

Therefore, of the instantaneous power p, consumed by an element at any
instant, a part (viR) is utilized for permanent consumption, such as conversion
into heat. This part always has a positive value, that is, it cannot be returned
to the rest of the circuit. The remainder (viX) is used to establish either a
magnetic or electric field, that is, it is taken up and returned to the circuit with
the rhythm of double the power frequency.
In a simple series circuit, as shown in Figure 1.29 (a), easier expressions for

the active and reactive power can be derived. When the series impedance is
written as Z =R+ jX and |V | = |Z||I| is substituted into the equations for the
active and reactive power, the following equations are the result:

P = |V ||I| cos(φ) = |I|2|Z| cos(φ) (1.74)

Q = |V ||I| sin(φ) = |I|2|Z| sin(φ) (1.75)

When we recognize that R = |Z| cos(φ) and X = |Z| sin(φ) (see Figure 1.20),
the active and reactive power consumed by a series impedance can bewritten as

P = |I|2R and Q = |I|2X (1.76)

In a simple parallel circuit, as shown in Figure 1.29 (b), easier expressions for
the active and reactive power can also be derived. Deconstructing the current
phasor into two components with a length |IR| = |I| cos(φ) and |IX| = |I| sin(φ)
(see the phasor diagram in Figure 1.27 (c)) results in the following equations for
the active and reactive power:

P = |V ||I| cos(φ) = |V ||IR| (1.77)

Q = |V ||I| sin(φ) = |V ||IX| (1.78)
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When we realize that |V | = |IR|R = |IX|X, the active and reactive power con-
sumed by a parallel impedance can be written as

P = |V |2
R

and Q = |V |2
X

(1.79)

Example 1.9 Single-phase power
In Example 1.7 (p. 28), the single-phase inductive load consumes both active
and reactive power (an explanation why the word “consumes” has been used
here is given in Section 1.6.2):

P = |Vr||I| cos(φ) = 10 × 103√
3

⋅ 150 ⋅ cos(36.9) = 692.5kW (1.80)

Q = |Vr||I| sin(φ) = 10 × 103√
3

⋅ 150 ⋅ sin(36.9) = 520kvar (1.81)

The inductive load can be represented as a resistance in parallel with an induc-
tance.The component values can be computed from the following relations (the
frequency is 50Hz):

Q =
|Vr|2

X
→ 520 × 103 =

(
10 × 103√

3

)2

∕(2πfL) (1.82)

P =
|Vr|2

R
→ 692.5 × 103 =

(
10 × 103√

3

)2

∕R (1.83)

This results in the following values: L= 0.2H and R= 48.1Ω.
The active power loss in the transmission line can be computed as follows:

P = |I|2R = (150)2 ⋅ 4 = 90kW (1.84)

The reactive power consumed by the transmission line amounts to

Q = |I|2X = (150)2 ⋅ 7 = 157.5kvar (1.85)

1.6.2 Complex Power

We now examine whether the expressions that we derived for the active and
reactive power can be obtained from some kind of multiplication of the voltage
phasor (V = |V |∠α) and the current phasor (I = |I|∠β) as shown in Figure 1.30.
The angle between the voltage and the current phasor is defined as φ=α−β.
Direct multiplication of both phasors gives the following expression:

VI = |V ||I|∠(α + β)
(1.86)

= |V ||I|[cos(α + β) + j sin(α + β)]
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Figure 1.30 Phasor diagram of a single-phase load.

It is obvious that the equations of the active and reactive power do not
result. Two other voltage and current phasor multiplications are shown in the
following:

V ∗I = |V ||I|∠(−α + β)
= |V ||I|[cos(−α + β) + j sin(−α + β)]

(1.87)
= |V ||I|[cos(φ) − j sin(φ)]
= P − jQ

V I∗ = |V ||I|∠(α − β)
= |V ||I|[cos(α − β) + j sin(α − β)]

(1.88)
= |V ||I|[cos(φ) + j sin(φ)]
= P + jQ

In both equations, an active and reactive power component is present, but how
about the sign of the reactive power?
We adopt the sign convention recommended by the International Elec-

trotechnical Commission (IEC). A capacitor supplies reactive power, whereas
an inductor consumes reactive power. Or in other words, the reactive power
absorbed by an inductive load has a positive sign, and the reactive power
absorbed by a capacitive load a negative sign. In the case that α> β (see
Figure 1.30), the current lags the voltage. Therefore, the load is inductive
and, in line with the IEC convention, consumes reactive power. To obtain the
proper sign for the reactive power, it is necessary to calculate VI*.
The mode of operation of an element, in terms of active and reactive

power, can be seen from a quadrant diagram as shown in Figure 1.31. The
non-reference phasor points to the quadrant of operation. As an example, let
us consider the situation shown in the quadrant diagram in Figure 1.31. The
current lags behind the voltage. Therefore, the load is inductive and consumes
both active (+P) and reactive power (+Q). The load can be represented by a
resistance in series with an inductance as shown in quadrant 1. Note that the
quadrants 2 and 3 require an active element, that is, an underexcited generator
and an overexcited generator (see also Section 2.5).
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Figure 1.31 Quadrant
diagram.

The quantity, obtained after the multiplication of the voltage phasor and the
complex conjugated of the current phasor, is called the complex power S:

S = V I∗ = P + jQ (1.89)

S the complex power [VA]

The complex power S is a complex quantity and can be expressed in both polar
coordinates and rectangular or Cartesian coordinates, as shown in Figure 1.32:

S = V I∗

= |V ||I|∠φ
(1.90)

= |S|∠φ (polar)
= P + jQ (Cartesian)

φ the phase shift between the voltage and the current [rad]|S| the apparent power [VA]
The apparent power |S| is defined as (see also Figure 1.32)

|S| = |V ||I| = √
P2 + Q2 (1.91)

The apparent power is a useful practical quantity for specifying the rating of
electrical apparatus when the maximum voltage and maximum current are
fixed, and the phase angle is not considered.
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Q
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P =  ∣S∣ cos(φ)
Q =  ∣S∣ sin(φ)

Figure 1.32 The complex power (consumed by an inductive load).

Table 1.3 Power definitions.

Symbols Terminology Units

p Instantaneous power W
S Complex power VA|S| Apparent power VA
P Active power W

Real power
Average power

Q Reactive power var
Imaginary power

The different symbols that we use to address electrical power are summarized
in Table 1.3. There is no “deeper meaning” behind the different units (W, VA,
var) that are used to express the different types of power values. (It is in fact no
different from the impedance terms Z =R+ jX; we do not use three different
kinds of ohm!) But it is convenient that we are able to read from the unit which
type of power is addressed.

Example 1.10 Complex power
Consider Example 1.7 (p. 28). In Example 1.9 (p. 34), the active and reactive
power consumed by the single-phase inductive load were calculated:

P = |Vr||I| cos(φ) = 10 × 103√
3

⋅ 150 ⋅ cos(36.9) = 692.5kW (1.92)

Q = |Vr||I| sin(φ) = 10 × 103√
3

⋅ 150 ⋅ sin(36.9) = 520kvar (1.93)
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Figure 1.33 The complex power consumed by
the inductive load.

Therefore, the complex power consumed by the load amounts to

S = P + jQ = 692.5 + j520kVA
(1.94)

= |S|∠φ = 866∠36.9∘ kVA

This relation is displayed in Figure 1.33. The complex power can also be calcu-
lated in a different way:

S = VrI∗ = 5773.5∠0∘ ⋅ 150∠36.9∘ = 866∠36.9∘ kVA (1.95)

Taking the real and imaginary parts of this complex power results in the values
for the active and reactive power that we found earlier.

1.6.3 Power Factor

In previous sections, the active power has been defined as

P = |V ||I| cos(φ) = |S| cos(φ) (1.96)

The term cos(φ) is called the power factor, being the cosine of the phase shift
between the voltage and current, that is, the cosine of the phase angle between
the voltage and current phasor. In fact, the power factor is that part of the appar-
ent power that is related to the mean energy flow, like mechanical energy in the
case of a machine or heat in the case of a resistor.
The power factor can be computed by using several (equivalent) formulas.

They can be obtained easily by inspection of the power diagram in Figure 1.32:

cos(φ) = P|S| = P√
P2 + Q2

(1.97)
= cos

(
tan−1

(
Q
P

))
The power factor gives the information to calculate the active power from the
apparent power. When we want to calculate the reactive power that is con-
sumed, extra information is needed in order to specify whether the consumed
reactive power is positive or negative. This information is expressed in words.
When the current lags the voltage, the power factor is said to be lagging.When
the current leads the voltage, the power factor is said to be leading.
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It is evident from Equation 1.96 that a value of the power factor (cos(φ))
close to 1 is beneficial. When a certain amount of active power is consumed
at a fixed voltage, a power factor lower than 1 leads to increased currents and
higher ohmic losses in the power system. From the utility point of view, it is
therefore desirable that the large (industrial) loads have a power factor close
to 1. Unfortunately, most of the heavy-industrial loads are inductive (electrical
drives, for instance) and have rather low power factors. As a consequence,
power-factor corrections should be made by these larger industries to improve
their power factor. The power factors for households and small commercial
users are usually closer to 1.

Example 1.11 Power factor
Consider Example 1.7 (p. 28). The power factor is defined as the cosine of the
phase angle between the voltage and current phasor. Thus, the power factor of
the inductive load is

cos(φ) = cos(36.9) = 0.8 (1.98)

Because the current lags the voltage, the power factor is said to be 0.8 lag-
ging. This value can be calculated from the consumed power as well (see also
Example 1.10 (p. 37)):

cos(φ) = P|S| = P√
P2 + Q2

= 692.5 × 103

866 × 103
= 0.8 (1.99)

cos(φ) = cos
(
tan−1

(
Q
P

))
= cos

(
tan−1

(
520 × 103

692.5 × 103

))
= 0.8

(1.100)

Example 1.12 Power-factor improvement
Consider Example 1.7 (p. 28) and the previous example. The power factor of
the inductive load amounts to 0.8 and is to be increased to the value of 1. This
can be done by connecting a capacitor in parallel to the load. The value of the
capacitance is such that the capacitor supplies the amount of reactive power
that is consumed by the inductive load. When we assume that the voltage at
the load terminals remains fixed, the required capacitance can be calculated as
follows:

Q =
|Vr|2
−X

→ 520 × 103 =

(
10 × 103√

3

)2

(2πfC) (1.101)

The capacitance value amounts to C = 50 μF.
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After the power-factor correction, cos(φ)= 1, the current equals

|I| = P|Vr| cos(φ) = 692.5 × 103

(10 × 103∕(
√
3)) ⋅ 1

= 120A (1.102)

Now, the power loss in the short transmission line is

Ploss = |I|2R = (120)2 ⋅ 4 = 57.6kW (1.103)

which means that considerable savings, by a loss reduction from 90 kW at a
cos(φ)= 0.8 to 57.6 kW at a cos(φ)= 1, have been established.

1.7 Power in Three-phase Circuits

The power (consumed by a load or produced by a generator) in a three-phase
network can be found easily by adding up the power for each of the three
phases. For balanced three-phase systems, the three-phase complex power
is three times the complex power of the single-phase equivalent network.
Therefore, the following equations hold for the complex, apparent, active, and
reactive power:

S3ϕ = 3S1ϕ = 3VLNI∗ (1.104)

|S3ϕ| = 3|S1ϕ| = 3|VLN||I| = √
3|VLL||I| (1.105)

P3ϕ = 3P1ϕ = 3|VLN||I| cos(φ) = √
3|VLL||I| cos(φ) (1.106)

Q3ϕ = 3Q1ϕ = 3|VLN||I| sin(φ) = √
3|VLL||I| sin(φ) (1.107)

V LL the line-to-line voltage phasor
V LN the line-to-neutral voltage phasor
I the current phasor

Example 1.13 Three-phase power
The loaded single-phase short transmission line in Example 1.7 (p. 28), with
a (line-to-neutral) voltage at the receiving end of |Vr,LN| = 10∕

√
3kV, can be

interpreted as an equivalent line-to-neutral diagram of a balanced three-phase
short transmission line with a line-to-line voltage at the receiving end of|Vr,LL| = 10kV, which is loaded by a balanced wye-connected inductive load.
The three-phase active power consumed by the load can be calculated in the
following (equivalent) ways (see also Example 1.9 (p. 34)):

P3ϕ = 3P1ϕ = 3 ⋅ 692.5 × 103 = 2077.5 kW (1.108)
P3ϕ = 3|Vr,LN||I| cos(φ) (1.109)

= 3 ⋅ 10 × 103√
3

⋅ 150 ⋅ cos(36.9) = 2077.5 kW
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P3ϕ =
√
3|Vr,LL||I| cos(φ) (1.110)

=
√
3 ⋅ 10 × 103 ⋅ 150 ⋅ cos(36.9) = 2077.5 kW

1.8 Per-unit Normalization

In power engineering a normalization of numerical values is common prac-
tice. This so-called per-unit (pu) normalization is similar to calculating with
percentages. In the percentage system, the product of two quantities expressed
as percentages must be divided by 100 to obtain the result in percentage. This
drawback is circumvented in the pu system. In the pu system, 100% corresponds
to 1 pu. The pu value of a certain quantity is defined as

Per-unit value = actual value
base value

(1.111)

In power system analysis, the following quantities are of interest and frequently
normalized: voltages, currents, impedances, and powers. These quantities are
interrelated and this means that a selection of two base values fixes immedi-
ately the base values for the other two. Therefore, selecting a base for the pu
calculation requires a selection of two base values only, and the other two base
values can be calculated. Taking into account the constant voltage nature of
the power system and the fact that the equipment is rated in volt-amperes, the
base voltage and (apparent) power are usually the quantities to specify the base
values, as shown in Table 1.4.

Example 1.14 Base quantities and per-unit calculation
Consider Example 1.7 (p. 28). The calculation of the voltage at the sending end
of the short transmission line is repeated here in per-unit quantities. The base

Table 1.4 Base quantities in the per-unit system.

Base Quantity
Single Phase (Line-to-Neutral
Voltage, Single-Phase Power)

Three Phase (Line-to-Line
Voltage, Three-Phase Power)

Voltage [V] |Vb| (selected) |Vb| (selected)
(Apparent) Power [VA] |Sb| (selected) |Sb| (selected)
Current [A] |Ib| = |Sb||Vb| |Ib| = |Sb|√

3|Vb|
Impedance [Ω] |Zb| = |Vb||Ib| =

|Vb|2|Sb| |Zb| = |Vb|∕√3|Ib| =
|Vb|2|Sb|
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voltage and base (apparent) power are selected: |Vb| = |Vr,LN| = 10∕
√
3kV

(line-to-neutral) and |Sb| = 1MVA (single-phase power). Now the base current
and base impedance can be calculated:

|Ib| = |Sb||Vb| = 1 × 106

10 × 103∕
√
3
= 173.2A (1.112)

|Zb| = |Vb|2|Sb| =
(10 × 103∕

√
3)2

1 × 106
= 33.3Ω (1.113)

The network quantities expressed in pu are obtained by dividing the actual
value by the corresponding pu value: |Vr,LN| = 1pu, I = 0.87∠−36.9∘ pu,Z =
0.24∠60∘ pu. Now, the voltage in pu at the sending end of the transmission line
can be computed:

Vs,LN = Vr,LN + ZI = 1∠0∘ + 0.24∠60∘ ⋅ 0.87∠−36.9∘

= 1 + 0.21∠23.1∘ (1.114)

= 1.19 + j0.08 = 1.19∠3.9∘ pu

Thevalue in volts is found bymultiplication of the pu valuewith the base voltage
value:

Vs,LN = 10 × 103√
3

⋅ 1.19∠3.9∘ = 6.9∠3.9∘ kV (1.115)

This is the same value as we found earlier in Example 1.7 (p. 28).

There are several reasons why the pu normalization is used. First of all, it
is more comfortable to work with a voltage value of, for example, 1.00895 pu
than with a value of 151343V (in this case, 1 pu corresponds to a base value of
150 kV): the actual deviation in the voltage value can be more easily observed.
Another advantage is that a pu quantity contains “more information.” Consider,
for instance, a voltage drop of 1500V along a transmission line. This informa-
tion is rather insignificant since we have no information about the nominal
voltage rating of the transmission line. A voltage drop of 1500V on a 10 kV
transmission line is extraordinary, while on a 150 kV transmission line it is an
acceptable value. When we have a pu value, for example, a voltage drop of
0.015 pu, all relevant information for a useful interpretation is present: the volt-
age drop amounts to 1.5% of the base voltage level. Another advantage of the pu
calculation appears when we deal with systems with transformers. When the
base quantities are selected properly, the transformers disappear from our line
diagrams if we suppose them to be ideal. In Figure 1.34, an ideal transformer
is shown, and the relations between voltage and current at the primary side
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Figure 1.34 An ideal (single-phase) transformer.

V1 V2

I2I1 n:1

(subscript 1) and secondary side (subscript 2) are (see also Appendix B.2)

|V2| = |V1|
n

(1.116)

|I2| = n|I1| (1.117)

n the turns ratio: the number of windings at the primary side divided by the
number of windings at the secondary side (n=N1/N2)

To achieve the previously mentioned advantage, the base (apparent) power
(|Sb|) is selected and must be the same at both the primary and the secondary
sides of the transformer.
Furthermore, the base voltages at the primary and secondary sides of the

transformer should be selected such that they have the same ratio as the turns
ratio of the transformer windings:

|Vb|2 = |Vb|1
n

(1.118)

In that case, the base currents at the primary and secondary sides are related
as follows:

|Ib|2 = |Sb||Vb|2 = n ⋅
|Sb||Vb|1 = n|Ib|1 (1.119)

Dividing the voltage relation of the ideal transformer (Equation 1.116) by the
base voltage |Vb|2 and substituting the relation |Vb|2 = |Vb|1∕n results in|V2||Vb|2 =

|V1|
n|Vb|2 =

|V1||Vb|1 (1.120)

In other words, the pu voltage at the secondary side of the ideal transformer
equals the pu voltage at the primary side. The same procedure can be fol-
lowed for the current. Dividing the current relation of the ideal transformer
(Equation 1.117) by the base current |Ib|2 and substituting the relation|Ib|2 = n|Ib|1 results in|I2||Ib|2 = n ⋅

|I1||Ib|2 =
|I1||Ib|1 (1.121)
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In other words, the pu current at the secondary side of the ideal transformer
equals the pu current at the primary side. As both the pu voltage and the pu
current are equal at the primary and secondary sides of the ideal transformer,
the electrotechnical symbol of the ideal transformer does not serve any purpose
in the circuit diagram and can be left out.

Example 1.15 Per-unit calculation and ideal transformers
Consider the single-phase power system of Figure 1.35. In the system are two
ideal transformers with ratings:

A − B∶ 10MVA, 13.8kV∕138kV
B − C∶ 10MVA, 138kV∕69kV

As base power the value for the apparent power is chosen: |Sb| = 10MVA.The
base voltage in circuit B is chosen to be equal to |Vb|B = 138kV.The base volt-
ages in the circuits A and C are derived from the base voltage in circuit B and
the turns ratio of the transformers:|Vb|A = 1

10
⋅ |Vb|B = 13.8kV

(1.122)|Vb|C = 1
2
⋅ |Vb|B = 69kV

Now, the base impedances in the three circuits can be calculated as

|Zb|A =
|Vb|2A|Sb| = 19Ω

|Zb|B =
|Vb|2B|Sb| = 1904Ω (1.123)

|Zb|C =
|Vb|2C|Sb| = 476Ω

The resistive load in circuit C, expressed in pu, is

RC = 100|Zb|C
= 100

476
= 0.21pu (1.124)

When the resistance is referred to circuit B (see also Appendix B.2) and
expressed in pu, the following value is the result:

RB = 22 ⋅ 100 = 400Ω RB = 400|Zb|B
= 400

1904
= 0.21pu (1.125)

R = 100 Ω

1:10 2:1

|V| = 10 kV

+

–

A B C

Figure 1.35 Single-phase circuit with ideal transformers.



�

� �

�

1.9 Power System Structure 45

Figure 1.36 Per-unit diagram of the
single-phase circuit in Figure 1.35.

R = 0.21 pu|V| = 0.72 pu

+

–

When the resistance is referred to circuit A and expressed in pu, the following
value results:

RA = 0.12 ⋅ 22 ⋅ 100 = 4 Ω RA = 4|Zb|A
= 4

19
= 0.21pu (1.126)

Because of the well-chosen base quantities, the pu resistance of the load, when
referred to another part of the system, is the same as the pu resistance of
the load in its original position. It is evident that the single-phase circuit of
Figure 1.35, when expressed in pu, turns into the simplified circuit, which is
shown in Figure 1.36, in which all the ideal transformers have disappeared.

1.9 Power System Structure

The graphical layout of the three-phase power system is often displayed as a
single-line equivalent or as a one-line diagram. Such a one-line diagram gives
only an overview of the topology of the power system. The components are
identified by means of standardized symbols and not by models built up from
lumped-circuit elements (as is the case with the equivalent line-to-neutral dia-
gram as introduced in Section 1.5). The symbols used in such a one-line dia-
gram are shown in the list of symbols. Sometimes lumped-circuit elements
appear in a “one-line diagram.” An example of such a “one-line diagram” is
shown in Figure 5.28 (Section 5.5.3): it shows a device used in the power system
for sophisticated control actions. The lumped elements in the diagram show
what is actually inside the device.
A one-line diagram that schematically displays part of the structure of a

power system is shown in Figure 1.37. The one-line diagram shows a clear
vertical structure: a relatively small number of large power stations supply
the transmission network (380 and 150 kV). Besides some large industrial
consumers that are connected to the higher voltage levels (150 kV), most
of the power is transported and distributed to the consumption centers
located at the lowest voltage levels (10 and 0.4 kV). Nowadays, more and more
decentralized generation, that is, small-scale generators connected to the
lower voltage levels (like the generator connected to the 10 kV bus shown in
Figure 1.37), is being integrated in the system (see also Section 8.3). Examples
of such decentralized generators are windmills, solar panels, and combined
heat-power units (producing steam for industrial processes and electricity as
a by-product).
Our book closely follows the vertical structure of the power system. In

Chapter 2 the generation of electric energy is examined. In Chapter 3 the
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150 kV

150 kV

150 kV

380 kV

10 kV

10 kV

150 kV

380 kV

150 kV

10 kV

10 kV

Vk4.0Vk4.0

Connection to another part of the system that is not shown in this diagram

380 kV

150 kV10 kV

380 kV

:

Figure 1.37 One-line diagram of a section of a power system [10].

transmission and distribution are highlighted. The utilization of electricity is
described in Chapter 4. Without controls, the power system cannot function,
and the controls implemented are presented in Chapter 5. In the control
center, the generation, transmission, and distribution of electrical energy are
monitored, coordinated, and controlled by means of the energy management
system (EMS). The EMS is the interface between the operator and the power
system, and its fundamentals are outlined in Chapter 6. The electricity market,
where all the previously treated itemsmeet each other in a commercial sense, is
introduced in Chapter 7.The book concludes by questioning the vertical struc-
ture of the power system in Chapter 8, when some thoughts on future power
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systems are offered. The relation between Maxwell’s laws and lumped-element
modeling is the topic of the first appendix. The lumped-element models for
the power transformer, the synchronous machine, the induction machine,
and the overhead lines and underground cables are derived in the other
appendices.

Problems

1.1 For a specific node in a 50Hz single-phase circuit, the voltage
equals v(t) = 325.27 sin(ωt + φ) V, and the injected current is i(t) =
141.42 sin(ωt − φ) A, where φ = π∕6 rad.
a. Calculate for v(t) and i(t) the peak value and the RMS value.
b. Express the voltage and current as phasors.
c. Is the circuit capacitive or inductive? Explain your answer.

1.2 In a three-phase circuit, the voltages of the phases a and b, with
respect to the neutral n, are Van = 140∠45∘ V and Vbn = 90∠−15∘ V.
Calculate Vba.

1.3 In a balanced three-phase system, with a phase sequence abc, the
Y-connected impedances are Z = 10∠30∘ Ω. If Vbc = 400∠90∘ V,
calculate
a. Vcn
b. Icn
c. S consumed by the impedances

1.4 Two ideal voltage sources, E1 = 100∠0∘ V and E2 = 100∠30∘, are con-
nected through an impedance Z = j5Ω. For both voltage sources the
generator convention is used, which means that the power delivered by
the voltage sources is positive.
a. Calculate the currents I1 and I2 delivered by both sources.
b. Calculate the active power and the reactive power consumed by both

sources.
c. Which of the two sources is the generator?
d. Calculate the losses.

1.5 In a balanced three-phase system, the power injected at node m equals
S = 100 + j60 MVA, while the line-to-line voltage equals 380∠0∘ kV.
a. Determine the power factor of the supplied power.
b. Give an expression for the current phasor magnitude.
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1.6 In a balanced three-phase system, the voltage between phases a and b
is Vab = 173.2∠0∘ V. The Y-connected load is Z = 10∠0∘ Ω. The phase
sequence is abc.
a. Calculate all phase-to-neutral voltages.
b. Calculate all phase currents.

1.7 A three-phase Y-connected load consumes 250 kW, with a power factor
of 0.8 lagging from a 400V line. In parallel with this load is a three-phase
capacitor bank connected, which delivers 60 kvar.
a. Calculate the total phase current (combined load and capacitor bank).
b. What is the resulting power factor?

1.8 The equivalent circuit to represent a load on a 110 kV transmission line
consists of three Y-connected impedances of Z = 80 + j30Ω. Assuming
an RMS line-to-line voltage of 100 kV,
a. What are the phase currents drawn by the load?
b. What is the active and reactive power drawn by the load?

1.9 A three-phase transmission line can be represented by a phase
impedance of Z = 5 + j60Ω/phase. The complex power, measured at
the sending end of the line, is S1 = 210 + j30 MVA. The line has a fixed
line-to-line voltage of 220 kV at the sending end.
a. Calculate the voltage and the complex power at the receiving end of

the line.
b. What are the transmission losses?

1.10 Redo Problem 1.9 and use per-unit values. The base quantities are
• |Sb| = 300MVA (three phase)
• |Vb| = 130 kV (line-to-neutral)

1.11 In a base system |Sb,1| and |Vb,1|, the base impedance equals |Zb,1|. |Zb,2|
is the base impedance in a base system using |Sb,2| and |Vb,2|.
Show that the following equation holds:

|Zb,2| = |Zb,1| |Sb,1||Sb,2| |Vb,2|2|Vb,1|2
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