
Chapter 1: Systems Overview

Chapter 2: Data Structures

Chapter 3: The Volatility Framework

Chapter 4: Memory Acquisition

I An Introduction
to Memory
Forensics

CO
PYRIG

HTED
 M

ATERIA
L

This chapter provides a general overview of the hardware components and operat-
ing system structures that affect memory analysis. Although subsequent chapters

discuss implementation details associated with particular operating systems, this chapter
provides useful background information for those who are new to the field or might need
a quick refresher. The chapter starts by highlighting important aspects of the hardware
architecture and concludes by providing an overview of common operating system primi-
tives. The concepts and terminology discussed in this chapter are referred to frequently
throughout the remainder of the book.

Digital Environment
This book focuses on investigating events that occur in a digital environment. Within
the context of a digital environment, the underlying hardware ultimately dictates the
constraints of what a particular system can do. In many ways, this is analogous to how
the laws of physics constrain the physical environment. For example, physical crime
scene investigators who understand the laws of physics concerning liquids can leverage
bloodstains or splatter patterns to support or refute claims about a particular crime. By
applying knowledge about the physical world, investigators gain insight into how or why
a particular artifact is relevant to an investigation. Similarly, in the digital environment,
the underlying hardware specifies the instructions that can be executed and the resources
that can be accessed. Investigators who can identify the unique hardware components of
a system and the impact those components can have on analysis are in the best position
to conduct an effective investigation.

On most platforms, the hardware is accessed through a layer of software called an
operating system, which controls processing, manages resources, and facilitates commu-
nication with external devices. Operating systems must deal with the low-level details
of the particular processor, devices, and memory hardware installed in a given system.

Systems Overview1

4 Part I: An Introduction to Memory Forensics

Typically, operating systems also implement a set of high-level services and interfaces
that define how the hardware can be accessed by the user’s programs.

During an investigation, you look for artifacts that suspected software or users might
have introduced into the digital environment and try to determine how the digital envi-
ronment changed in response to those artifacts. A digital investigator’s familiarity with
a system’s hardware and operating system provide a valuable frame of reference during
analysis and event reconstruction.

PC Architecture
This section provides a general overview of the hardware basics that digital investiga-
tors who are interested in memory forensics should be familiar with. In particular, the
discussion focuses on the general hardware architecture of a personal computer (PC). We
primarily use the nomenclature associated with Intel-based systems. It is important to note
that the terminology has changed over time, and implementation details are constantly
evolving to improve cost and performance. Although the specific technologies might
change, the primary functions these components perform remain the same.

NOTE

We generically refer to a PC as a computer with an Intel or compatible processor that
can run Windows, Linux, or Mac OS X.

Physical Organization
A PC is composed of printed circuit boards that interconnect various components and pro-
vide connectors for peripheral devices. The main board within this type of system, the moth-
erboard, provides the connections that enable the components of the system to communicate.
These communication channels are typically referred to as computer busses. This section
highlights the components and busses that an investigator should be familiar with. Figure 1-1
illustrates how the different components discussed in this section are typically organized.

CPU and MMU
The two most important components on the motherboard are the processor, which exe-
cutes programs, and the main memory, which temporarily stores the executed programs
and their associated data. The processor is commonly referred to as the central processing
unit (CPU). The CPU accesses main memory to obtain its instructions and then executes
those instructions to process the data.

Systems Overview 5

Disk Controller

USB Controller

PCI/PCIe Bridge

Interrupt Controller

Ethernet Controller

I/O Controller Hub

Southbridge

Northbridge Front Side Bus

DMA Controller

DMI/A-Link

Video Card

FireWire Card PCI

PCI Express/AGP

Memory Controller Hub
Memory Bus

Memory

DMI/A-Link

Cache

Memory Management Unit

Processor Core(s)

Processor

TLB

Figure 1-1: Physical organization of a modern system

Reading from main memory is often dramatically slower than reading from the CPU’s
own memory. As a result, modern systems leverage multiple layers of fast memory, called
caches, to help offset this disparity. Each level of cache (L1, L2, and so on) is relatively
slower and larger than its predecessor. In most systems, these caches are built into the
processor and each of its cores. If data is not found within a given cache, the data must
be fetched from the next level cache or main memory.

The CPU relies on its memory management unit (MMU) to help find where the data
is stored. The MMU is the hardware unit that translates the address that the processor
requests to its corresponding address in main memory. As we describe later in this chap-
ter, the data structures for managing address translation are also stored in main memory.
Because a given translation can require multiple memory read operations, the processor
uses a special cache, known as the translation lookaside buffer (TLB), for the MMU transla-
tion table. Prior to each memory access, the TLB is consulted before asking the MMU to
perform a costly address translation operation.

Chapter 4 discusses more about how these caches and the TLB can affect forensic
acquisition of memory evidence.

6 Part I: An Introduction to Memory Forensics

North and Southbridge
The CPU relies on the memory controller to manage communication with main memory.
The memory controller is responsible for mediating potentially concurrent requests for
system memory from the processor(s) and devices. The memory controller can be imple-
mented on a separate chip or integrated within the processor itself. On older PCs, the
CPU connected to the northbridge (memory controller hub) using the front-side-bus and
the northbridge connected to main memory via the memory bus. Devices (for example,
network cards and disk controllers) were connected via another chip, called the southbridge
or input/output controller hub, which had a single shared connection to the northbridge
for access to memory and the CPU.

To improve performance and reduce the costs of newer systems, most capabilities
associated with the memory controller hub are now integrated into the processor. The
remaining chipset functionality, previously implemented in the southbridge, are concen-
trated on a chip known as the platform controller hub.

Direct Memory Access
To improve overall performance, most modern systems provide I/O devices the capability
to directly transfer data stored in system memory without processor intervention. This
capability is called direct memory access (DMA). Before DMA was introduced, the CPU
would be fully consumed during I/O transfers and often acted as an intermediary. In
modern architectures, the CPU can initiate a data transfer and allow a DMA controller to
manage the data transfer, or an I/O device can initiate a transfer independent of the CPU.

Besides its obvious impact on system performance, DMA also has important rami-
fications for memory forensics. It provides a mechanism to directly access the contents
of physical memory from a peripheral device without involving the untrusted software
running on the machine. For example, the PCI bus supports devices that act as bus masters,
which means they can request control of the bus to initiate transactions. As a result, a PCI
device with bus master functionality and DMA support can access the system’s memory
without involving the CPU.

Another example is the IEEE 1394 interface, commonly referred to as Firewire. The
IEEE 1394 host controller chip provides a peer-to-peer serial expansion bus intended for
connecting high-speed peripheral devices to a PC. Although the IEEE 1394 interface is
typically natively found only on higher-end systems, you can add the interface to both
desktops and laptops using expansion cards.

Volatile Memory (RAM)
The main memory of a PC is implemented with random access memory (RAM), which
stores the code and data that the processor actively accesses and stores. In contrast with

Systems Overview 7

sequential access storage typically associated with disks, random access refers to the char-
acteristic of having a constant access time regardless of where the data is stored on the
media. The main memory in most PCs is dynamic RAM (DRAM). It is dynamic because
it leverages the difference between a charged and discharged state of a capacitor to store
a bit of data. For the capacitor to maintain this state, it must be periodically refreshed—a
task that the memory controller typically performs.

RAM is considered volatile memory because it requires power for the data to remain
accessible. Thus, except in the case of cold boot attacks (https://citp.princeton.edu/
research/memory), after a PC is powered down, the volatile memory is lost. This is the
main reason why the “pull the plug” incident response tactic is not recommended if you
plan to preserve evidence regarding the system’s current state.

CPU Architectures
As previously mentioned, the CPU is one of the most important components of a computer
system. To effectively extract structure from physical memory and understand how mali-
cious code can compromise system security, you should have a firm understanding of the
programming model that the CPU provides for accessing memory. Although the previous
section focused on the physical organization of the hardware, this section focuses on the
logical organization exposed to the operating system. This section begins by discussing
some general topics that pertain to CPU architectures and then highlights the features
relevant to memory analysis. In particular, this section focuses on the 32-bit (IA-32) and
64-bit (Intel 64) organization, as specified in the Intel 64 and IA-32 Architecture Software
Developer’s Manual (http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-manual-325462.pdf).

Address Spaces
For the CPU to execute instructions and access data stored in main memory, it must
specify a unique address for that data. The processors discussed in this book leverage
byte addressing, and memory is accessed as a sequence of bytes. The address space refers
to a range of valid addresses used to identify the data stored within a finite allocation
of memory. In particular, this book focuses on systems that define a byte as an 8-bit
quantity. This addressing scheme generally starts with byte 0 and ends at the offset of
the final byte of memory in the allocation. The single continuous address space that is
exposed to a running program is referred to as a linear address space. Based on the memory
models discussed in the book and their use of paging, we use the terms linear addresses
and virtual addresses interchangeably. We use the term physical address space to refer to the
addresses that the processor requests for accessing physical memory. These addresses
are obtained by translating the linear addresses to physical ones, using one or more

8 Part I: An Introduction to Memory Forensics

page tables (discussed in more detail soon). The following sections discuss how memory
address spaces are implemented in different processor architectures.

NOTE

When dealing with raw, padded memory dumps (see Chapter 4), a physical address
is essentially an offset into the memory dump file.

Intel IA-32 Architecture
The IA-32 architecture commonly refers to the family of x86 architectures that support
32-bit computation. In particular, it specifies the instruction set and programming envi-
ronment for Intel’s 32-bit processors. The IA-32 is a little endian machine that uses byte
addressing. Software running on an IA-32 processor can have a linear address space
and a physical address space up to 4GB. As you will see later, you can expand the size of
physical memory to 64GB using the IA-32 Physical Address Extension (PAE) feature. This
section and the remainder of the book focuses on protected-mode operation of the IA-32
architecture, which is the operational mode that provides support for features such as
virtual memory, paging, privilege levels, and segmentation. This is the primary state of
the processor and also the mode in which most modern operating systems execute.

Registers
The IA-32 architecture defines a small amount of extremely fast memory, called registers,
which the CPU uses for temporary storage during processing. Each processor core con-
tains eight 32-bit general-purpose registers for performing logical and arithmetic opera-
tions, as well as several other registers that control the processor’s behavior. This section
highlights a few of the control registers relevant for memory analysis.

The EIP register, also referred to as the program counter, contains the linear address
of the next instruction that executes. The IA-32 architecture also has five control registers
that specify configuration of the processor and the characteristics of the executing task.
CR0 contains flags that control the operating mode of the processor, including a flag that
enables paging. CR1 is reserved and should not be accessed. CR2 contains the linear
address that caused a page fault. CR3 contains the physical address of the initial structure
used for address translation. It is updated during context switches when a new task is
scheduled. CR4 is used to enable architectural extensions, including PAE.

Segmentation
IA-32 processors implement two memory management mechanisms: segmentation and
paging. Segmentation divides the 32-bit linear address space into multiple variable-length

Systems Overview 9

segments. All IA-32 memory references are addressed using a 16-bit segment selector,
which identifies a particular segment descriptor, and a 32-bit offset into the specified
segment. A segment descriptor is a memory-resident data structure that defines the loca-
tion, size, type, and permissions for a given segment. Each processor core contains two
special registers, GDTR and LDTR, which point to tables of segment descriptors, called
the Global Descriptor Table (GDT) and the Local Descriptor Table, respectively. The segmen-
tation registers CS (for code), SS (for stack), and DS, ES, FS, and GS (each for data) should
always contain valid segment selectors.

While segmentation is mandatory, the operating systems discussed in this book hide
segmented addressing by defining a set of overlapping segments with base address
zero, thereby creating the appearance of a single continuous “flat” linear address space.
However, segmentation protections are still enforced for each segment, and separate
segment descriptors must be used for code and data references.

NOTE

Because most operating systems do not take advantage of more sophisticated IA-32
segmentation models, segmented addressing is disabled in 64-bit mode. In particular,
segment base addresses are implicitly zero. Note that segmentation protections are
still enforced in 64-bit mode.

Paging
Paging provides the ability to virtualize the linear address space. It creates an execution
environment in which a large linear address space is simulated with a modest amount
of physical memory and disk storage. Each 32-bit linear address space is broken up into
fixed-length sections, called pages, which can be mapped into physical memory in an
arbitrary order. When a program attempts to access a linear address, this mapping uses
memory-resident page directories and page tables to translate the linear address into a physi-
cal address. In the typical scenario of a 4KB page, as shown in Figure 1-2, the 32-bit virtual
address is broken into three sections, each of which is used as an index in the paging
structure hierarchy or the associated physical page.

The IA-32 architecture also supports pages of size 4MB, whose translation requires only
a page directory. By using different paging structures for different processes, an operating
system can provide each process the appearance of a single-programmed environment
through a virtualized linear address space. Figure 1-3 shows a more detailed breakdown
of the bits that translate a virtual address into an offset in physical memory.

10 Part I: An Introduction to Memory Forensics

Virtual Address

Directory

31

10 12

Page Table Entry

Page Table

32

22 21 12 11 0

CR3

Table

Page Directory

Offset

Physical Address

4KB Page

Directory Entry

10

Figure 1-2: Address translation to a 4KB page using 32-bit paging

PDE

4MB Page

PTE

PA

CR3[31:12]

PDE[31:22]

PDE[31:12]

PTE[31:12]

VA[31:22]

VA[21:0]

VA[21:12]

0

0

0

0

VA[11:0]

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Figure 1-3: Formats for paging structure addresses used in 32-bit paging

To compute the page directory entry (PDE) address, you combine bits 31:12 from the
CR3 register with bits 31:22 from the virtual address. You then locate the page table entry
(PTE) by combining bits 31:12 from the PDE with bits 21:12 of the virtual address. Finally,
you can obtain the physical address (PA) by combining bits 31:12 of the PTE with bits 11:0
of the virtual address. You’ll see these calculations applied in the next section as you walk
through translating an address manually.

Address Translation
To fully support a CPU architecture that offers virtual memory, memory forensics soft-
ware such as Volatility must emulate the virtual address space and transparently handle
virtual-to-physical-address translation. Walking through the address translation steps
manually helps solidify your understanding of how these tools work and provides the
background to troubleshoot unexpected behavior.

Systems Overview 11

NOTE

The Python classes in Volatility that handle address translation expose a method called
vtop (virtual to physical). Callers pass the function a virtual address and it returns the
physical offset, which it computes using the steps described in this section. Similarly, if
you’re working with Microsoft’s debugger (WinDbg), you can use the !vtop command.

For the sake of this exercise, we assume you are analyzing one of the memory samples,
ENG-USTXHOU-148, included in Jack Crook’s November 2012 forensics challenge (see
http://blog.handlerdiaries.com/?p=14). During your analysis, you found a reference
to a virtual address, 0x10016270, within the virtual address space of the svchost.exe
process with PID 1024. The page directory base (CR3) for PID 1024 is 0x7401000. You
want to find the corresponding physical address to see what other data might be in close
spatial proximity.

Your first step is to convert the virtual address, 0x10016270, from hexadecimal to binary
format because you will be working with ranges of address bits:

0001 0000 0000 0001 0110 0010 0111 0000

Next, you decompose the address into the relevant offsets that are used during the
translation process. This data is shown in Table 1-1.

Table 1-1: A Breakdown of the Bits for Virtual Address Translation

Paging Structure VA Bits Binary Hex

Page directory index Bits 31:22 0001000000 0x40

Page table index Bits 21:12 0000010110 0x16

Address offset Bits 11:0 001001110000 0x270

As seen in Figure 1-2 and Figure 1-3, you can calculate the physical address of the PDE
by multiplying the page directory index by the size of the entry (4 bytes) and then adding
the page directory base, 0x7401000. The 10 bits from the virtual address can index 1024
(210) entries in the page directory.

PDE address = 0x40 * 4 + 0x7401000 = 0x7401100

Next, you must read the value from physical memory stored at the PDE address. Make
sure to account for the fact that the value is stored in a little endian format. At this point,
you know the value of the PDE is 0x17bf9067. Based on Figure 1-3, you know that bits
31:12 of the PDE provide the physical address for the base of the page table. Bits 21:12 of

12 Part I: An Introduction to Memory Forensics

the virtual address provide the page table index because the page table is composed of
1024 (210) entries. You can calculate the physical address of the PTE by multiplying the
size of the entry (4 bytes) by the page table index and then adding that value to the page
table base.

PTE address = 0x16 * 4 + 0x17bf9000 = 0x17bf9058

The value of the PTE stored at that address is 0x170b6067. Based on Figure 1-3, you
know that bits 31:12 of the physical address are from the PTE and bits 11:0 are from the
virtual address. Thus, the final converted physical address is this:

Physical address = 0x170b6000 + 0x270 = 0x170b6270

After completing the translation, you found that the virtual address 0x10016270 trans-
lates to the physical address 0x170b6270. Figure 1-4 provides a graphical illustration of
the steps that were involved. You can find that byte offset in the memory sample and
look for any related artifacts that might be in close proximity. This is the same process
that the Volatility IA32PagedMemory address space performs every time a virtual address
is accessed. In the following text, you see how this process can be extended to support
larger virtual address spaces.

Virtual Address

31

1023

4095

31:121023

31:12 0

0

0

0x17bf9000 + 0x16 * 4
0x17bf9058

0x170b6000 + 0x270
0x170b6270

0 000000100 0 011010000 0 001110010

22 21 12 11

Page Table

Page Directory

4KB Page

67 90 bf 17

0x7401000 + 0x40 * 4
0x7401100

0x40 0x16 0x270

67 60 0b 17

47 68 30 73

00

0

Figure 1-4: Example address translation to a 4KB page using 32-bit paging

Systems Overview 13

NOTE

It is also important to highlight a couple of the bit flags stored in paging structure
entries that directly affect translation for all three paging modes discussed in the book.
The address translation process will terminate if a paging structure entry has bit 0
(the present flag) set to 0, which signifies “not present.” Thus, it generates a page fault
exception. If you are processing an intermediary paging structure, meaning more than
12 bits remain in the linear address, bit 7 of the current paging structure entry is used
as the page size (PS) flag. When the bit is set, it designates that the remaining bits map
to a page of memory as opposed to another paging structure.

Physical Address Extension
The IA-32 architecture’s paging mechanism also supports PAE. This extension allows the
processor to support physical address spaces greater than 4GB. Although programs still
possess linear address spaces of up to 4GB, the memory management unit maps those
addresses into the expanded 64GB physical address space. On systems with PAE enabled,
the linear address is divided into four indexes:

•	Page directory pointer table (PDPT)

•	Page directory (PD)

•	Page table (PT)

•	Page offset

Figure 1-5 shows an example of address translation to a 4KB page using 32-bit PAE
paging. The main differences are the introduction of another level in the paging structure
hierarchy called the page directory pointer table and the fact that the paging structure entries
are now 64 bits. Given these changes, the CR3 register now holds the physical address of
the page directory pointer table.

Figure 1-6 shows the formats for the paging structure addresses that are used in 32-bit
PAE paging. When PAE is enabled, the first paging table has only 4 (22) entries. The bits
31:30 from the virtual address select the page directory pointer table entry (PDPTE).
The bits 29:21 are an index to select from the 512 (29) PDEs. If the PS flag is set, the PDE
maps a 2MB page. Otherwise, the 9 bits extracted from bits 20:12 are selected from the
512 (29) PTEs. Assuming that all entries are valid, and the address is mapping a 4KB
page, the final 12 bits of the virtual address specify the offset within the page for the
corresponding PA.

14 Part I: An Introduction to Memory Forensics

Directory Pointer

Virtual Address

Directory

293031

9 12

Page Table Entry

Page Table

21 20 12 11 0

Table

Page Directory

Offset

Physical Address

4KB Page

Directory Entry

9

32

CR3

Page Directory
Pointer Table

Dir. Pointer Entry

2

Figure 1-5: Address translation to a 4KB page using 32-bit PAE paging

5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

v v
3 3
1 0

PDPTE

2MB Page

PTE

PA

CR[31:5]

PDE[51:21]

PDE[51:12]

PTE[51:12]

VA[20:0]

VA[20:12]

0

0

0

0

0

0

PDE PDPTE[51:12] VA[29:21] 0 00

VA[11:0]

Figure 1-6: Formats for paging structure addresses used in 32-bit PAE paging

Intel 64 Architecture
The execution environment for the Intel 64 architecture is similar to IA-32, but there are a
few differences. The registers highlighted in the IA-32 architecture still exist within Intel
64, but have been expanded to hold 64 bits. The most significant change is that Intel 64
can now support 64-bit linear addresses. As a result, the Intel 64 architecture supports a
linear address space up to 264 bytes. Note that the most current implementations of the
architecture at the time of this writing do not support the entire 64 bits, only the 48-bit
linear addresses. As a result, virtual addresses on these systems are in canonical format.
This means that bits 63:48 are set to either all 1s or all 0s, depending on the status of bit

Systems Overview 15

47. For example, the address 0xfffffa800ccc0b30 has bits 63:48 set because bit 47 is set
(this is also known as sign-extension).

It is also important for you to focus on the changes to memory management because
they have a direct impact on memory forensics. The most important difference is that the
Intel 64 architecture now supports an additional level of paging structures called page map
level 4 (PML4). All entries in the hierarchy of paging structures are 64 bits, and they can
map virtual addresses to pages of size 4KB, 2MB, or 1GB. Figure 1-7 shows an example
of address translation to a 4KB page using 64-bit/IA-32e paging.

Virtual Address

47 39 38 30

Byte

29 21 20 12

64

12

4KB
Page

11 0

Table

9

Page
Tables

Directory

9

Page
Dirs.

Dir. Pntr

9

Dir.
Pntrs

Map

9

Page
map

CR3

Figure 1-7: Address translation to a 4KB page using 64-bit/IA-32e paging

Figure 1-8 shows the formats for the paging structure addresses used in 64-bit/IA-32e
paging. Each of the paging structures is composed of 512 entries (29) and is indexed by
the values extracted from the following ranges taken from the 48-bit virtual address:

•	Bits 47:39 (PML4E offset)

•	Bits 38-30 (PDPTE offset)

•	Bits 29:21 (PDE offset)

•	Bits 20:12 (PTE offset)

If the PS flag is set in the PDPTE, the entry maps a 1GB page if it is supported. Similarly,
if the PS flag is set in the PDE, the PDE maps a 2MB page. Assuming that all the interme-
diary entries are present, the final 12 bits specify the byte offset within the physical page.

16 Part I: An Introduction to Memory Forensics

If you are interested in the details of how the different paging structure entry flags
affect memory forensics, you are encouraged to check out the Intel Manual and Volatility’s
AMD64PagedMemory address space.

5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

1GB Page

2MB Page

PTE

PA

VA[20:0]PDPTE[51:30]

PTE[51:21]

PDE[51:12]

PTE[51:12]

VA[20:0]

VA[20:12] 0 00

PDPTE PML4E[51:12] VA[38:30] 0 00

PML4E CR3[51:12] VA[47:39] 0 00

PDE PDPTE[51:12] VA[29:21] 0 00

VA[11:0]

Figure 1-8: Formats for paging structure addresses used in 64-bit/IA-32e paging

Interrupt Descriptor Table
PC architectures often provide a mechanism for interrupting process execution and pass-
ing control to a privileged mode software routine. For the IA-32 and Intel 64 architectures,
the routines are stored within the Interrupt Descriptor Table (IDT). Each processor has
its own IDT composed of 256 8-byte or 16-byte entries, in which the first 32 entries are
reserved for processor-defined exceptions and interrupts. Each entry contains the address
of the interrupt service routine (ISR) that can handle the particular interrupt or exception. In
the event of an interrupt or exception, the specified interrupt number serves as an index
into the IDT (which indirectly references a segment in the GDT), and the CPU will call
the respective handler.

After most interrupts, the operating system will resume execution where it was origi-
nally interrupted. For example, if a thread attempts to access a memory page that is
invalid, it generates a page fault. The exception number 0xE handles page faults on x86
and Intel 64 architectures. Thus, the IDT entry for 0xE contains the function pointer for
the operating system’s page fault handler. Once the page fault handler executes, control
can return to the thread that attempted to access the memory page. Operating systems
also use the IDT to store handlers for numerous other events, including system calls,
debugger breakpoints, and other faults.

Systems Overview 17

WARNING

Given the critical role that the IDT performs for operating systems, it has been a fre-
quent target of malicious software. Malicious software might try to redirect entries,
modify handler code, add new entries, or even create entirely new interrupt tables.
For example, Shadow Walker (https://www.blackhat.com/presentations/bh-jp-05/
bh-jp-05-sparks-butler.pdf) hooked the page fault handler by modifying the IDT
and was able to return “fake” pages to the caller.

An interesting paper regarding the use of IDT for rootkit and anti-forensic pur-
poses is Stealth Hooking: Another Way to Subvert the Windows Kernel (http://phrack.org/
issues/65/4.html). You can use the Volatility plugins idt (Windows) and linux_idt
(Linux) for auditing the IDT.

Operating Systems
This section provides a general overview of the aspects of modern operating systems
that impact memory forensics. In particular, it focuses on important features common
to the three operating systems discussed in this book: Microsoft Windows, Linux, and
Mac OS X. Although the topics might be familiar, this section discusses them within
the context of memory forensics. Investigators familiar with operating system internals
might choose to skip most of the material in this section or use it as a reference for topics
covered in later chapters.

Privilege Separation
To prevent potentially malfunctioning or malicious user applications from accessing or
manipulating the critical components of the operating system, most modern operating
systems implement some form of user and kernel mode privilege isolation. This isola-
tion attempts to prevent applications from affecting the stability of the operating system
or other processes. The code associated with user applications (untrusted) executes in
user mode, and the code associated with the operating system (trusted) executes in
kernel mode.

This separation is enforced by the IA-32 processor architecture through the use of
four privilege levels commonly referred to as protection rings. In most operating systems,
kernel mode is implemented in ring 0 (most privileged) and user mode in ring 3 (least
privileged). When the processor is executing in kernel mode, the code has unrestricted
access to the underlying hardware, including privileged instructions, and to kernel and

18 Part I: An Introduction to Memory Forensics

process memory regions (except on newer systems with SMEP, which prevents ring 0
execution of user pages). For a user application to access critical components of the operat-
ing system, the application switches from user mode to kernel mode using a well-defined
set of system calls. Understanding the level of access that malicious code has gained can
help provide valuable insight into the type of modifications it can make to the system.

System Calls
Operating systems are designed to provide services to user applications. A user applica-
tion requests a service from the operating system’s kernel using a system call. For example,
when an application needs to interact with a file, communicate over the network, or spawn
another process, system calls are required. As a result, system calls define the low-level
API between user applications and the operating system kernel. Note that most appli-
cations are not implemented directly in terms of system calls. Instead, most operating
systems define a set of stable APIs that map to one or more system calls (for example, the
APIs provided by ntdll.dll and kernel32.dll on Windows).

Before a user application makes a system call, it must configure the execution environ-
ment to pass arguments to the kernel through a predetermined convention (for example,
on the stack or in specific registers). To invoke the system call, the application executes a
software interrupt or architecture-specific instruction, which saves the user mode register
context, changes the execution mode to kernel, initializes the kernel stack, and invokes
the system call handler. After the request is serviced, execution is returned to user mode
and the unprivileged register context is restored. Control then returns to the instruction
following the system call.

Because it is such a critical bridge between user applications and the operating sys-
tem, the code used to service system call interrupts is commonly intercepted by security
products and targeted by malicious software. Later in the book, you will learn how to
use memory forensics to detect modifications made to this critical interface on Windows,
Linux, and Mac systems.

Process Management
A process is an instance of a program executing in memory. The operating system is
responsible for managing process creation, suspension, and termination. Most modern
operating systems have a feature called multiprogramming, which allows many processes
to appear to execute simultaneously. When a program executes, a new process is created
and associated with its own set of attributes, including a unique process ID and address
space. The process address space becomes a container for the application’s code, shared
libraries, dynamic data, and runtime stack. A process also possesses at least a single

Systems Overview 19

thread of execution. A process provides the execution environment, resources, and con-
text for threads to run. An important aspect of memory analysis involves enumerating
the processes that were executing on a system and analyzing the data stored within their
address spaces, including passwords, URLs, encryption keys, e-mail, and chat logs.

Threads
A thread is the basic unit of CPU utilization and execution. A thread is often character-
ized by a thread ID, CPU register set, and execution stack(s), which help define a thread’s
execution context. Despite their unique execution contexts, a process’s threads share the
same code, data, address space, and operating system resources. A process with multiple
threads can appear to be simultaneously performing multiple tasks. For example, one
thread can communicate over the network while another thread displays data on the
screen. In terms of memory forensics, thread data structures are useful because they often
contain timestamps and starting addresses. This information can help you determine
what code in a process has executed and when it began.

CPU Scheduling
The operating system’s capability to distribute CPU execution time among multiple
threads is referred to as CPU scheduling. One goal of scheduling is to optimize CPU utili-
zation as threads switch back and forth between waiting for I/O operations and perform-
ing CPU-intensive computation. The operating system’s scheduler implements policies
that govern which threads execute and how long they execute. Switching execution of
one thread to another is called a context switch.

An execution context includes the values of the CPU registers, including the current
instruction pointer. During a context switch, the operating system suspends the execu-
tion of a thread and stores its execution context in main memory. The operating system
then retrieves the execution context of another thread from memory, updates the state of
the CPU registers, and resumes execution where it was previously suspended. The saved
execution context associated with suspended threads can provide valuable insight during
memory analysis. For example, it can provide details about which sections of code were
being executed or which parameters were passed to system calls.

System Resources
Another important service that an operating system provides is helping to manage a
process’ resources. As previously mentioned, a process acts as a container for system
resources that are accessible to its threads. Most modern operating systems maintain data
structures for managing the resources that are actively being accessed, which processes

20 Part I: An Introduction to Memory Forensics

can access them, and how they are accessed. Examples of operating system resources that
are typically tracked include processes, threads, files, network sockets, synchronization
objects, and regions of shared memory.

The type of resources being managed and the data structures being used to track them
often differ between operating systems. For example, Windows leverages an object man-
ager to supervise the use of system resources and subsequently stores that information in
a handle table. A handle provides the process with a unique identifier for accessing and
manipulating system resources. It is also used to enforce access control to those resources
and track their usage. Linux and Mac both use file descriptors in a similar manner. Later
in the book, we describe how to extract this information from the handle or file descriptor
tables and how to use it to gain insights into that process’ activity.

Memory Management
Memory management refers to the operating system’s algorithms for managing the alloca-
tion, deallocation, and organization of physical memory. These algorithms often depend
on the previously discussed hardware support.

Virtual Memory
Operating systems provide each process with its own private virtual address space. This
abstraction creates a separation between the logical memory that a process sees and the
actual physical memory installed on the machine. As a result, you can write programs
as if they have access to the entire address space and in which all ranges are memory
resident. In reality, some pages of the address space might not be resident. Behind the
scenes, the memory manager is responsible for transferring regions of memory to second-
ary storage to free up space in physical memory. During execution, the memory manager
and the MMU work together to translate the virtual address into physical addresses. If
a thread accesses a virtual address that has been moved to secondary storage, that data
is then brought back into physical memory (typically via page fault). This interaction is
represented in Figure 1-9.

The actual size of the virtual address space often depends on the characteristics of
the hardware and operating system. Operating systems frequently partition the range
of accessible addresses into those addresses associated with the operating system and
those that are private to the process. The range of addresses reserved for the operating
system is generally consistent across all processes, whereas the private ranges depend on
the process that is executing. With the support of the hardware, the memory manager can
partition the data to prevent a malicious or misbehaving process from reading or writing
memory that belongs to kernel memory or other processes.

Systems Overview 21

Virtual Address Space Virtual Address Space

Disk
(page�le/�le)

Physical Address Space

Physical Memory Sample

Figure 1-9: Illustration of multiple virtual address spaces sharing
memory and secondary storage

Demand Paging
The mechanism that is commonly used to implement virtual memory is demand paging,
which is a memory management policy for determining which regions are resident in
main memory and which are moved to a slower secondary storage when the need arises.
The most common secondary storage is a file or partition on an internal disk, referred to
as the page file or swap, respectively. A demand paging implementation attempts to load
only the pages that are actually needed into memory as opposed to entire processes.

Demand paging relies on a characteristic of memory usage known as locality of refer-
ence, which is based on the observation that memory locations are likely to be frequently
accessed in a short period time, as are their neighbors. Ideally, demand paging reduces
the time it takes to load a process into memory and increases the number of processes that
are memory resident at any one time. To improve performance and stability, an operat-
ing system’s memory manager often has a mechanism for designating which regions of
memory are paged versus those that must remain resident.

The memory manager typically tracks which pages are memory resident and which
are not in the previously discussed paging data structures. If a thread attempts to access
a page that is not resident, the hardware generates a page fault. While the hardware
generates the page fault, the operating system leverages state information encoded in
the paging structures to determine how to handle the fault. For example, the page might
be associated with a region of a file that had not been loaded into memory, or the page
might have been moved to the page file.

Demand paging provides substantial benefits to the operating system and is transpar-
ent to running applications. As you will see in later chapters, it does add some complex-
ity to memory forensics because some pages might not be memory resident at the time
the memory sample is collected. Under certain circumstances, it is possible to combine

22 Part I: An Introduction to Memory Forensics

non-memory-resident data found on disk with the data stored in memory to provide a
more complete view of virtual memory.

Shared Memory
The previous sections discussed how process address spaces are isolated from each other
to improve system security and stability. However, modern operating systems also pro-
vide mechanisms that allow processes to share memory. You can view shared memory
as memory that is accessible from more than one virtual address space. For example,
Figure 1-10 shows that Process A and Process B have regions of their private virtual
address space that map to common pages in physical memory. One common use for
shared memory is to provide an efficient means of communication between processes.
After a shared region is mapped into virtual address spaces, processes can use the region
to exchange messages and data.

Process A

0x1C0000

0x45720000

Physical Memory

0x4000

0x6000

Process B

0x56001000

0x74003000

Figure 1-10: Example of shared memory mappings between two processes

Shared memory is also commonly used to conserve physical memory. Instead of allocat-
ing multiple physical pages that contain the same data, you can create a single instance of
the data in physical memory and map various regions of virtual memory to it. Examples
include shared or dynamic libraries that contain common code and data. In these cases,
the shared pages are typically mapped as copy-on-write, which allows the memory man-
ager to defer making a private copy of the data within a process’ address space until the

Systems Overview 23

memory has been modified. After the page is written to, the memory manager allocates
a private copy of that page with the associated modifications and updates the virtual
memory mappings for that process. The other processes are unaffected and still map to
the original shared page.

Both shared memory and copy-on-write mappings are frequently encountered during
memory forensics because malicious software often attempts to modify the code of shared
libraries to hijack the flow of execution. In Chapter 17, you see an example of how to spot
discrepancies by comparing the data shared between multiple processes.

Stacks and Heaps
The user address space is typically divided into a number of regions. The stack region
holds the temporary data associated with executing functions. The data in this region is
stored in a data structure called a stack frame. Each frame includes information, such as the
function parameters, local variables, and the information required to recover the previous
stack frame. When a thread is executing, stack frames are stored (pushed) when calling a
function and removed (popped) when returning from a function. Because a process can
execute in either kernel mode or user mode, operating systems typically use a separate
stack for the functions executed within each mode.

Analysis of remnant and active stack frames are extremely useful during memory
forensics because they provide valuable insight into which code was being executed and
what data was being processed. For example, keys can be passed to encryption routines,
stolen data from the computer (keystrokes, file contents) can be sent to functions for
exfiltration, and a number of other possibilities. During malware analysis, stack frames
can be used to infer what part of the malware was active and what parts of the system
the malware was interacting with.

NOTE

Carl Pulley wrote a stack unwinding plugin for Volatility named exportstack (https://
github.com/carlpulley/volatility). It integrates with Microsoft’s debugging symbols
so that it can properly label addresses and associate them with API function names.
Edwin Smulders wrote a similar plugin named linux_process_stack (https://github
.com/Dutchy-/volatility-plugins) for analyzing stacks in Linux memory dumps.

The application’s data that needs to be dynamically allocated is stored within the region
called the heap. Unlike data allocated on the stack, which persists only for the scope of a
function, the data allocated within the heap can persist for the lifetime of the process. A
heap stores information whose length and contents may not be known at compile time.

24 Part I: An Introduction to Memory Forensics

Applications can allocate memory regions on the heap as they are needed and then deal-
locate them after use.

The operating system might also have regions of memory that are dynamically allo-
cated within kernel mode. For example, Windows creates paged and nonpaged regions
within the kernel that are referred to as pools. Common examples of interesting data that
you can find in the heap include data read from files on disk, data transferred over the
network, and input typed into a keyboard. Due to the nature of data stored within it, the
heap can provide valuable evidence during forensics investigations. Because the data can
be application dependent, manual analysis might be required, such as viewing data with
a hex editor or by extracting strings for further examination.

File System
We previously discussed how the memory management subsystem leverages second-
ary storage to free up main memory. Operating systems also use secondary storage to
manage persistent data objects that a user wants to access for a timeframe longer than
the lifetime of any particular process. Unlike volatile main memory, secondary storage
is typically composed of nonvolatile block devices such as hard disks. The collection of
data structures that allow an application to perform primitive operations on the stored
data is called a file system. File system forensics involves finding files or content of interest,
recovering file artifacts (deleted, fragments, hidden), and leveraging temporal metadata
such as timestamps to reconstruct the events of an incident.

Although file systems have historically been one of the most common sources of digital
evidence, general file system forensic analysis is not a focus of this book. This book dis-
cusses file system artifacts that you find in volatile storage, main memory artifacts that
you find within the file system, and how you can combine these types of data to provide
a more comprehensive view of the state of a system. For example, data stored in files and
the directory structures must be loaded into memory when they are needed. The operat-
ing system also caches frequently accessed data in main memory to reduce the overhead
associated with repetitively querying slower secondary storage.

Previous sections discussed how the memory management subsystem uses demand
paging and shared memory to optimize memory usage. Most modern operating systems
also support memory mapped files, which enable files or portions of files to map into the
virtual address space. After files map into memory, you can access and modify them in
the same manner as traditional in-memory data structures such as arrays. As a result, the
optimized functions of the operating system are responsible for transparently handling
the disk I/O, in which the file becomes the backing store. Pages of file data are read into
memory when addresses within the page are accessed, and regions of file data can be
easily shared among processes.

Systems Overview 25

Investigators can leverage information about cached file data to help triage and provide
context about recently accessed and frequently accessed data. The characteristics can also
provide insight into which users or processes were accessing the data. By comparing
cached data with the data stored on disk, investigators can also identify modifications
made to memory-resident data. Additionally, during file system analysis, investigators
might find memory artifacts in crash dumps or hibernation files that can provide insight
into previous states of the system. Thus, although this book does not cover general file
system forensics, a familiarity with file systems is useful.

I/O Subsystem
One of the major services that an operating system offers is managing and providing the
interface to peripheral input and output (I/O) devices. The I/O subsystem abstracts the
details of these devices and enables a process to communicate with them using a standard
set of routines. Many operating systems generalize the interface to devices by treating
them as files. Because you cannot predict the type of devices that people will connect to
the system, operating systems use kernel modules called device drivers as a mechanism
for extending the capabilities of the kernel to support new devices.

Device Drivers
Device drivers abstract away the details of how a device controls and transfers data. Device
drivers typically communicate with the registers of the device controller. Although some
CPU architectures provide a separate address space for I/O devices and subsequently
require privileged I/O instructions, other architectures map the memory and registers
of I/O devices into the virtual address space. This is typically referred to as memory
mapped I/O. As you see in later chapters, software commonly abuses device drivers to
modify the state of the system.

Operating systems also use device drivers to implement virtual, software-only devices.
For example, some operating systems provide a representation of physical memory via a
software device (for example, \Device\PhysicalMemory on Windows). This device interface
has been commonly used to collect forensic samples of physical memory. Note that device
memory and registers might also be mapped into memory, which can have interesting
consequences for memory acquisition (see Chapter 4).

I/O Controls (IOCTLs)
I/O Control (IOCTL) commands are another common mechanism for communicat-
ing between user mode and kernel mode. Although system calls provide a convenient

26 Part I: An Introduction to Memory Forensics

interface for accessing the fixed services provided by the operating system, user applica-
tions might need to communicate with a variety of peripheral devices or other operating
system components. IOCTLs allow a user application to communicate with a kernel mode
device driver. They also provide a mechanism for third-party hardware devices and driv-
ers to define their own interfaces and functionality.

As with system calls, kernel-level malware might hook IOCTL functions in order to
filter results or modify control flow. Malware has also used IOCTL handlers to commu-
nicate between user mode and kernel mode components (for example, to request that
a kernel component elevate privileges, disable a service, or modify firewall settings).
Memory forensics can detect modified or unknown IOCTLs and provide valuable insight
into how attackers leverage them.

Summary
Now that you’re familiar with the primitive hardware and software concepts of the digital
environment, you can move on to exploring the types of data you’ll encounter throughout
forensic analysis of digital media, such as RAM. Remember that the information shared in
this chapter is not specific to any one operating system—it applies to Windows, Linux, and
Mac OS X. Thus, as you’re reading the rest of the book, you may need to refer back to this
chapter to refresh your memory on keywords that you see us using in other discussions.

