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SPINTRONICS is a merger of magnetism and electronics. Conventional elec-

tronics uses only the charge of the electrons. For instance, transistors are based on

the modulation of the density of electrons in a semiconductor channel by an electric

field. Semiconductor-based memory (e.g., DRAM, Flash) stores information in the

form of an amount of charge stored in a capacitor. In contrast, spintronics uses

the spin of the electrons in addition to their charge to obtain new properties and use

these properties in innovative devices. The spin of the electrons is an elementary

magnetic moment carried by each electron. It has a quantum mechanical origin.

Magnetic materials can be used as polarizers or analyzers for electron spins. This is

why most spintronic devices combine magnetic and nonmagnetic materials, which

can be metals, semiconductors, or insulators.
Magnetism has been used for a long time for data storage applications. Indeed,

information can be stored in some magnetic materials in the form of a magnetization
orientation. This was developed for storage on magnetic tapes as well as in magnetic
hard disk drives (HDDs). The increase in the demand for storage capacity has
stimulated an increase by eight orders of magnitude in the areal density of information
stored in HDDs over the past 50 years; the bit area has decreased by the same factor. In
2014, bit sizes are typically on the order of 40 nm× 15 nm. This decrease in bit size
has required continual improvements in the storage medium, in the write head used to
switch the magnetization in the medium, and in the read head used to read out the
magnetic state. This field of magnetic recording has benefited strongly from research
and development in the field of spintronics. In particular, the discoveries of giant
magnetoresistance in 1988 (1) and tunnel magnetoresistance at room temperature in
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1995 (2,3) have been major breakthroughs from a scientific point of view, but they
also helped recording technology keep moving forward. In 2010, a total of around
12,000 PB (1015 bytes) of storage capacity contained in 674.6 million HDDs were
shipped worldwide.

Another type of spintronic devices that was proposed in the late 1990s is
magnetic random-access memory (MRAM) (4). Indeed, solid state memory is of
primary importance both for storage (the introduction of solid state drives in personal
computers, tablets, and handheld devices) and for fast working memory between logic
units and hard disk drives. In these applications, random-access memory based on
devices involving magnetic materials, called magnetic tunnel junctions, are among
the most promising technologies for future nonvolatile data storage, and may replace,
in the near future, semiconductor-based memory (i.e., DRAM and SRAM), which
represents a huge market.

This chapter is an introduction to the physical concepts required to understand
how information is stored in a magnetic data cell, how this information can be
detected, and how it is possible to modify the information by switching the magneti-
zation from one state to another. First we introduce the basics of electronic transport in
magnetic materials, a concept that is required for the comprehension of the physical
mechanisms at the origin of magnetoresistive properties: giant magnetoresistance
(GMR) and tunneling magnetoresistance (TMR), which is the magnetoresistive effect
at play in spin-transfer torque (STT) MRAM devices. Then we describe how a spin-
polarized current can exert a STT on the magnetizations in nanostructured spintronic
devices by the interaction with local magnetic moments. Finally, we show how this
novel effect can be used to modify the state of a magnetic element, leading to current-
induced magnetization switching as the writing process in STT-MRAM.

1.1 GIANT MAGNETORESISTANCE

After introducing the basic concepts of electronic transport in ferromagnetic metals, a
simple model of the GMR effect is presented, the so-called “two-current model” that
was proposed to describe the dependence of the electrical resistance of magnetic
multilayered stacks on their magnetic configuration. This model is helpful for the
understanding of the basic principles of spin-dependent transport. Finally, the main
applications of GMR are discussed.

1.1.1 Basics of Electronic Transport in Magnetic Materials

Magnetism, as produced by magnetite (Fe3O4), has been known from at least ancient
Greek times. It was described as a force, either attractive or repulsive, that can act at
distance. The origin of this force is due to a magnetic field that is created by some
materials (called magnets), or is induced by the motion of electrons, that is, electrical
currents. In magnetic materials, such as iron (Fe) or cobalt (Co), sources of
magnetization are mainly the electrons’ intrinsic magnetic moment associated
with spin angular momentum, or simply “spin,” and also to the electrons’ orbital
angular momentum. In Nature, other sources of magnetism are due to nuclear
magnetic moments of the nuclei, typically thousands of times smaller than the
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electrons’magnetic moments. Consequently, these nuclear moments are negligible in
the context of the magnetization of materials. However, they play an important role in
nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).

The spin magnetic moment~μS and spin angular momentum~S are linked through
the relationship~μS � �gμB~S, where g is a dimensionless number called the g-factor
(or Landé factor) and μB � eħ=2me is the Bohr magneton. In this expression, e �
1:60 � 10�19C is the electron charge, me � 9:31 � 10�31 kg is the electron mass, and
ħ � 1:05 � 10�34 m2 kg=s is the reduced Planck constant. Due to the quantum
mechanical nature of the spin, measurement of the projection of the electron spin
~S on any direction can take only two values: +1/2 and �1/2.

In the context of spintronics, the main question is to understand how this
fundamental characteristic property of the electrons, that is, the spin, influences the
mobility of the electrons in materials. In fact, although it was suggested by N. Mott in
1936, the influence of spin on the transport properties in a ferromagnetic material was
clearly demonstrated experimentally and described theoretically only in the late 1960s
(for a review, see Ref. 5). The property of spin-dependent transport is at the heart of
not only the GMR effect but also all related effects that have allowed the development
of spintronic devices.

The ferromagnetic transition metals, such as Fe, Co, Ni, and their alloys, which
are the key compounds in today’s spintronic devices, have a specific electronic band
structure compared to normal (nonmagnetic) metals. In transition metals, the two
highest filled energy bands, which are the conduction bands, are occupied by 3d and
4s electrons. This nomenclature refers to atomic orbitals of the electrons. They are
labeled s-orbital, p-orbital, d-orbital, and f-orbital referring to orbitals with angular
momentum quantum number l= 0, 1, 2, and 3, respectively. These nomenclatures
indicate the orbital shape and are used to describe the electron configuration. In a
crystal, electrons with similar orbitals associate to fill a band of energy. More precise
description on this topic can be found in any quantummechanics textbook. In the case
of ferromagnetic transition metals, each of these bands splits in two subbands
corresponding to each spin configuration (see Fig. 1.1a). And in these magnetic
materials, the interaction between spins, called the exchange interaction, energetically
favors a parallel orientation of the electrons’ spins.
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Figure 1.1 (a) Schematic representation of the band structure of a transition metal with
strong ferromagnetic properties such as Co or Ni. (b) Equivalent circuit for the two-spin
subbands in the “two-current” model.

1.1 GIANT MAGNETORESISTANCE 3



In the following, we will refer to electrons with a magnetic moment aligned
parallel to the local magnetization as “spin-up” (↑) electrons, and to electrons with a
magnetic moment aligned antiparallel to the local magnetization as “spin-down” (↓)
electrons.

As for ferromagnetic metals, similar to a normal metal, the 4s band contains
almost an equal number of spin-up and spin-down electrons. But the specificity of
ferromagnetic metals lies in the structure of their 3d bands, for which the resulting
lowest energy situation corresponds to a shift of the two subbands 3d" and 3d#
(Fig. 1.1a). This offset generates an asymmetry for the number of electrons of each
orientation, also responsible for the spontaneous magnetization. Consequently, they
are also known as majority spin (↑) and minority spin (↓) electrons. It finally creates,
for each spin orientation, a difference between spin-up and spin-down densities of
states at the Fermi energy EF . We remind here that the density of states (DOS)D(E) of
a system describes the number of states dn(E) per interval of energy dE around each
energy level E that are available to be occupied by electrons: dn(E)=D(E)dE. The
Fermi level EF corresponds to the highest energy level occupied by electrons in a
system at a temperature T= 0K. Electrons involved in the transport process lie at (or
close to) the Fermi level.

In the low-temperature limit, one considers that the electron’s spin is conserved
during most scattering events. Under this assumption, transport properties associated
with spin-up and spin-down electrons can be represented by two independent parallel
conduction channels (Fig. 1.1b), and the mixing of these two conduction channels is
then considered as negligible. In ferromagnetic metals, these two channels have
different resistivities ρ" and ρ#, which depend on whether the electron magnetic
moment is parallel (↑) or antiparallel (↓) to the direction of the local magnetization.

In a first, simple approximation, we can consider that 4s electrons, which are
fully delocalized in the metal because they belong to outer electronic shells, constitute
the conduction electrons that carry most of the current. In contrast, 3d electrons are
more localized and responsible for the magnetic properties of the metal. The over-
lapping of s and d bands at the Fermi level allows current-carrying 4s electrons to be
scattered on the localized 3d states, on the condition that they have the same energy
and the same spin. The difference between the density of states of (↑) and (↓) 3d
electrons at the Fermi level, therefore, results in different scattering probabilities for 4s
electrons with spin (↑) or (↓).

In the case of Co and Ni, materials with strong magnetization, the bands are
filled such that the Fermi level lies above the 3d↑ subband. This subband is then
completely filled and the 3d↑ density of states at the Fermi level is zero (as illustrated
in Fig. 1.1a). As a result, s→ d electron scattering is possible only for s (↓) electrons,
while (↑) electrons are not scattered on 3d states. This results in a much larger
diffusion rate and thus a larger resistivity for the minority spin channel (↓) as
compared to the majority spin channel (↑): ρ" < ρ#. At low temperature and under
this approximation of two independent channels, the total resistivity of a ferromag-
netic metal is then given by the following simple expression (6):

ρ � ρ"ρ#
ρ" � ρ#

: (1.1)
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At high temperatures, some additional scattering of conduction electrons, for instance,
by spin waves (propagating perturbations in the magnetic materials), can cause spin-
flip events, that is, a mixing of the two conduction channels, but those can be ignored
in first approximation up to room temperature.

Two definitions for the spin asymmetry coefficient of a given ferromagnetic
material are used in the literature, α � ρ#=ρ" or β � ρ" � ρ#

� �
= ρ" � ρ#
� �

. In strong
ferromagnets such as Co or Ni, ρ" < ρ# and thus α > 1.

A major consequence of the resistivity difference between conduction channels
of minority and majority spin is that most of the current flows through the low
resistivity spin (↑) channel. Consequently, an asymmetry in the current densities
associated with (↑) and (↓) electrons appears. Hence, the current flowing in the
ferromagnetic material is spin polarized. Calling j↑ and j↓ the current densities of spin
(↑) and (↓) electrons, respectively, and p the current spin polarization, p is defined by
p � j" � j#

� �
= j" � j#
� �

. Note that p � β at low temperature.

1.1.2 A Simple Model to Describe GMR: The “Two-Current
Model”

Historically, the two-current model, proposed byMott and then by Fert and Campbell,
was developed to explain the spin-dependent resistivity in materials doped with
magnetic impurities. It allows the anticipation, in a rather simple way, of the GMR
effect in magnetic multilayers. For this, we consider an archetypal multilayered stack
consisting of thin layers of alternating ferromagnetic metals (F) and nonmagnetic
(NM) metals. The magnetization of the ferromagnetic layers is supposed to be
uniform within each layer. We also assume that the relative orientation of the
magnetization in the successive F layers can somehow be changed from parallel
(P) to antiparallel (AP) magnetic configuration, as illustrated in Fig. 1.3. The way this
is achieved will be explained in more detail in the next section.

Two geometries to evaluate the resistance of this multilayered structure can be
considered: either with current flowing parallel to the plane of the layers (known as
“current-in-plane GMR,” CIP-GMR) or with current flowing in the direction per-
pendicular to the plane of the layers (known as “current-perpendicular-to-plane
GMR,” CPP-GMR). The same model can be used to evaluate the magnetoresistive
properties for both geometries, provided that the layers’ thickness remains small
compared to a characteristic length associated with each geometry.

For the CIP case, the characteristic length is actually the mean free path λ.
For the CPP case, it is the spin-flip length or spin diffusion length lsf (7).

As illustrated in Fig. 1.2, during their Brownian motion throughout the structure
with an average drift along the electrical field direction, the electrons traverse
successive ferromagnetic layers. We denote r=2 the resistance associated with
traversing a F layer for the majority spin channel (same direction as the magnetiza-
tion) and R=2 the corresponding resistance for the minority spin channel (opposite
direction to the magnetization), with r < R. r=2 and R=2 are associated with the
average resistance sensed by the electrons as they spend half of their total path,
respectively, in the majority or minority spin channels. For the sake of simplicity, let
us also assume that the resistance of the nonmagnetic separating layer is much smaller
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than r and R. Then, in the P configuration, spin (↑) and (↓) electrons behave,
respectively, as majority and minority electrons in all magnetic layers. As a result, the
respective resistances of the two spin channels are r" � r and r# � R. Since these two
channels conduct the current in parallel, the equivalent resistance of the F/NM/F stack
can be written as rP � rR= r � R� �. In the case of materials with large spin asymmetry
(α � 1 and r � R), the multilayer can be considered short-circuited by the spin
(↑) channel; its equivalent resistance is rP � r.

For the AP configuration, the electrons alternatively behave as majority or
minority electrons as they propagate from one ferromagnetic layer to another. As a
result, they are alternatively weakly and strongly scattered. Thus, the short-circuit
effect previously mentioned in P configuration is here suppressed. In the AP configu-
ration, the two channels have the same resistance R � r� �=2. The F/NM/F equivalent
resistance is then rAP � R � r� �=4, which is, in general, much larger than rP � r.

Following this model, one can finally derive a simple expression for the
amplitude of the GMR ratio:

GMR � rAP � rP
rP

� R � r� �2
4Rr

: (1.2)

Figure 1.2 Illustration of the two-current model. The conduction paths of spin-up and
spin-down electrons in a ferromagnetic metal/normal metal/ferromagnetic metal (F/N/F)
multilayer, in the two cases of CIP and CPP transport. Conduction electrons with spin
magnetic moment aligned antiparallel (blue paths) to the local magnetization experience
more scattering events than those with parallel spin (red paths). The equivalent resistance
circuit is represented for the two magnetic configurations: parallel and antiparallel.
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Let us mention that another definition of the GMR ratio is sometimes used in the
literature, notably in theoretical articles. It consists of normalizing the resistance
variation between P and AP configurations by the resistance in the AP configuration:
GMR � �rAP � rP�=rAP. In this definition, theGMRamplitude has amaximumvalue of
100%, whereas the commonly used definition often leads to magneto-resistive ratios
over 100%. The GMR ratio is of prime importance for the characterization of the
resistance variation, which is measured to determine the magnetic state of the stack.

1.1.3 Discovery of GMR and Early GMR Developments

The characteristic length scale of spin-dependent diffusion in thinfilms is on the order of
a few nanometers in magnetic materials and tens of nanometers in nonmagnetic
materials. These numbers explain why it took almost 20 years between the first basic
studies on spin-dependent transport carried out onmagnetic alloys in the late 1960s and
the GMR discovery. GMR could be observed only in multilayered stacks consisting of
nanometer thick layers. The growth of such multilayers became possible in the 1980s,
thanks to the development of a new growth technique adapted from semiconductor
industry: molecular beam epitaxy (MBE). GMR was actually discovered in magnetic
metallic multilayers consisting of alternating layers of iron and chromium (Fe/Cr). This
discovery by Albert Fert in Orsay, France, and Peter Grünberg in Jülich, Germany, in
1988, consisted of a very large variation in the CIP electrical resistance of these stacks
under the application of an external magnetic field. Due to an antiferromagnetic
coupling that exists between the successive Fe layers across the Cr spacers, the
magnetization in the successive Fe layers spontaneously orient themselves in an AP
configuration in zero magnetic field, as represented in Fig. 1.3. Upon application of a
large enough magnetic field to overcome this antiferromagnetic coupling, the magneti-
zation of all Fe layers can be saturated in the direction of the field, resulting in a
Pmagnetic configuration. TheGMRconsists in a very large drop of resistance of 80%at
4K (50% at 300K) between the AP and P configurations. In 1988, it has been named
“giantmagnetoresistance” because theGMRamplitudewasmuch larger than all known
magnetoresistance effects at room temperature at that time. This discovery of GMR is
considered the starting point of spinelectronics or spintronics. Almost immediately,
GMR attracted enormous interest both from the point of view of fundamental physics
and also for its possible applications, especially in thefields of data storage andmagnetic
field sensors. Fert and Grünberg were awarded the Nobel Prize in Physics in 2007 for
this discovery.

Research on magnetic multilayers and GMR rapidly became a very active topic.
It is not our aim here to provide an exhaustive review of all experimental and
theoretical results that followed the initial discovery. A more complete review can be
found in Ref. 6. Here we will rather introduce some of the key advances in GMR that
occurred in the first years of spintronics.

Parkin et al. first demonstrated in 1990 the existence of GMR in multilayers
prepared by sputtering (8), a simpler and faster physical vapor deposition (PVD)
technique: a technique that is compatible with industrial processes. In magnetic
multilayers consisting of alternating ferromagnetic and nonmagnetic layers, they also
demonstrated the existence of oscillations in the FM interlayer coupling across the
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NM spacers as a function of the NM spacer thickness (see Chapter 2). This oscillatory
coupling has been observed in a wide variety of multilayered systems, in particular
(Fe/Cr) and (Co/Cu) multilayers. Another crucial step toward applications of GMR
was also made in 1991 by Dieny et al., who developed trilayered ferromagnet/
nonmagnetic metal/ferromagnet (F/NM/F) structures called spin valves, which exhibit
GMR at low magnetic fields (a few millitesla instead of a few teslas for (Fe/Cr)
multilayers (9). In these trilayers, the magnetization of one of the ferromagnetic layers
is pinned in a fixed direction using a phenomenon called exchange bias, whereas the
magnetization of the second ferromagnetic layer can be easily switched in the
direction of the applied field. It is then possible to change the magnetic configuration
of these spin valves from P to AP by applying a weak magnetic field (a few millitesla)
parallel or antiparallel to the direction of magnetization of the pinned layer. These
systems, which exhibit very high ‘resistance versus field’ sensitivity, were introduced
as magnetoresistive heads in hard disk drives by IBM in 1998.

1.1.4 Main Applications of GMR

GMR has been primarily used as spin-valve magnetoresistive heads in HDDs between
1998 and 2004. It was subsequently replaced by TMR heads, which exhibit even
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Figure 1.3 Normalized resistance as a function of external magnetic field μ0H for Fe/Cr
multilayers, with different Cr intermediate layer thicknesses. The magnetic configuration is
AP at zero external field and P at large applied fields (positive or negative). (Adapted from
Ref. 1 with permission from American Physical Society.)
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larger magnetoresistance amplitude. GMR sensors are being used in other types of
applications in the automotive industry, robotics, as three-dimensional position
sensors, and sensors for biotechnological applications.

Some attempts have been made to use CIP-GMR for memory applications
(MRAM), but only low-memory densities of about 1Mbit per chip could be achieved.
This memory is used mainly for space applications because of its radiation
hardness (10).

1.2 TUNNELING MAGNETORESISTANCE

The development of artificial magnetic systems based on magnetic tunnel junctions
(MTJs) was a second major breakthrough in spin electronics. Magnetic tunnel
junctions look like spin valves from a magnetic point of view (two ferromagnetic
layers separated by a nonmagnetic spacer) but a major difference is that the
nonmagnetic spacer consists of a very thin insulating layer. In these junctions, the
current flows perpendicular to the plane of the layers so that the electrons have to
tunnel from one ferromagnetic layer to the other one across the thin insulating barrier.

After the pioneering work of Jullière (11) on Fe–GeO–Co junctions at 4.2 K in
1973, it was not until the mid-1990s that the improvement of both growth techniques
and lithography processes allowed the fabrication of reliable MTJs. The devices
studied used amorphous aluminum oxide (Al2O3) as the insulating barrier (2,3). They
led to the first measurements of large magnetoresistive effects (TMR) with ratios on
the order of 10–70% at room temperature. A great advantage of TMR with respect to
GMR is the much larger impedance of MTJs compared to GMR metallic structures in
the CPP geometry. Indeed, in MTJs, the resistance of the structure is effectively
determined by the thickness of the tunnel barrier. MTJs can be patterned in the form
of deeply submicrometer pillars with resistance ranging from kilohms to megohms,
depending on the barrier thickness. This makes MTJs easier to integrate with CMOS
components such as transistors, which have typical resistance in conducting mode of a
fewkilohms. In contrast, GMRsubmicrometer pillars inCPPgeometry have resistances
on the order of a few tens of ohms, which is fine for sensor applications, but difficult to
integrate with CMOS components, in particular for MRAM applications.

An important research effort was undertaken on the materials side to improve
the TMR amplitude. In 2004, it was discovered that much larger TMR ratios of about
250% at room temperature could be obtained in MTJs containing a monocrystalline
magnesium oxide (MgO) barrier instead of an amorphous alumina barrier (12,13),
reaching up to 600% at room temperature. These improvements have allowed a large
increase of the sensitivity of magnetic HDD heads, which are needed for increased bit
density. Thanks to their higher impedance than CPP-GMR devices, they also enabled
new types of MRAM that could be scaled down in size and ramped up in density.
Magnetic tunnel junctions are today the core elements of all MRAM technology (see
Chapter 5).

As already mentioned, the transport mechanism across MTJs is no longer
Ohmic transport as in GMR but relies on the well-known quantum mechanical
tunneling effect. We start our second section by summarizing the basics of quantum
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mechanical tunneling. This will allow us to introduce Jullière’s model for TMR,
giving an intuitive explanation of the magnetoresistive effect in magnetic tunnel
junctions. This introduction will be completed by a description of a more accurate
model (Slonczewski’s model), and the spin filtering effect. Lastly, the important
matter of voltage dependence of TMR will be discussed.

1.2.1 Basics of Quantum Mechanical Tunneling

In classical physics, charge transport through an insulating layer (even if it is ultra-thin) is
forbidden. Hence, tunnel conduction through a potential barrier is a pure quantum
mechanical phenomenon, called the tunnel effect. This effect, predicted in the early years
of quantum physics, now has important applications in semiconductor devices such as
the tunnel diodes. It is extensively described in elementary textbooks on quantum
mechanics: we will only summarize here the main points relevant to MTJ physics.

In Fig. 1.4, the potential landscape for a (injector) metal–insulator–metal
(collector) junction is schematically depicted. Themain characteristics of the insulating
barrier are its energy height Φ, and its thickness d. We consider an electron with an
energyE, propagating in themetallic injector in the direction of the stack (perpendicular
to the layers), with a wave vector amplitude k? � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2meE=ħ2
p

, whereme is the electron
effective mass and ħ is the reduced Planck constant. Based on the free-electron
approximation, the resolution of Schrödinger’s equation demonstrates that the electron
has a nonzero probability of propagating through the insulating barrier and inside the
collector electrode.We recall that in the free electron approximation, it is considered that
the electrons are not subjected to any confining potential inside the metal or the barrier.
The only potential variation is due to the insulating barrier. This model is well suited to
4s electrons, which are delocalized in the crystal.

Within the tunnel barrier, the electron wave function decays exponentially
so that the probability for the electron to tunnel through the insulating barrier is
given by

T E� �∝ e�2κd; (1.3)

ϕ

D1(E) 
f1(E) 

D2(E) 
f2(E) 

e-2kd

EF

EF
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Tunneling

EF + eV
eV

Figure 1.4 Schematics of the
wave function of an electron
tunneling between two metallic
layers across a potential barrier.
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with the decay coefficient κ E� � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2me Φ � E� �=ħ2p

. A first conclusion from these
expressions is that in order to limit the MTJ resistance with typically used materials
(MgO, Al2O3), the thickness of the insulating layer has to be on the order of a
nanometer, corresponding to a few atomic layers. As an illustration, considering that
an electron has to cross a Φ � EF� � � 1 eV barrier, it would experience a decay length
of 1=κ � 0:2 nm.

In MTJs at zero bias voltage, the Fermi levels of the two electrodes align so that
the same number of electrons are steadily tunneling from one side of the barrier to the
other and vice versa. In order to obtain a net nonzero current flow, a bias voltage has to
be applied between the two metallic electrodes. When a bias voltage V is applied, the
collector electrode’s Fermi level is lowered by eV relative to the injector’s, so that
electrons tunnel from injector to collector (see Fig. 1.4). The resulting current then
depends on the barrier properties, but also on the states accessible on both sides of the
barrier. Indeed, according to the Fermi’s golden rule, the probability for an electron
having an energy E to tunnel through the barrier from metal 1 to metal 2 is
proportional to the number of unoccupied electron states in 2 (collector) at this
energy. In addition, the number of electrons that are candidates for tunneling is
proportional to the number of occupied state in 1 (injector) at E. Therefore, the
tunneling current from 1 to 2 due to electrons with energy E can be written as

I1!2 E� �∝ D1 E� �f 1 E� � T E� � D2 E � eV� � 1 � f 2 E � eV� �� �; (1.4)

where D1 E� � and D2 E � eV� � are the density of states (DOS), respectively, in
electrode 1 at the energy E and in electrode 2 at E � eV� �, and the functions
f 1 E� � and f 2 E� � are the Fermi–Dirac distributions, which give the occupation
probabilities of states in electrodes 1 and 2. Consequently, the product D1 E� �f 1 E� �
represents the probability, in electrode 1, of having an electron with the energy E and
D2 E � eV� � 1 � f 2 E � eV� �� � the probability, in electrode 2, of having an unoccupied
state at the energy E � eV� �. Finally, the term T E� � is the previously described
transmission coefficient.

Using Eq. (1.4) to sum I1!2 E� � � I2!1 E� � overall energies, the total tunneling
current may be calculated. In the limit of zero temperature and small voltage V, it can
be shown that only electrons at the Fermi level EF contribute to the current. The
resulting conductance is then simply proportional to the product of the densities of
states at the Fermi energy in the two electrodes:

GT�0 ∝ D1 EF� � ?D2 EF� �: (1.5)

1.2.2 First Approach to Tunnel Magnetoresistance: Jullière’s
Model

The simplified approach described in the previous section for deriving the amplitude
of the tunneling current was used by Jullière in 1975 to analyze his pioneer results of
tunnel magnetoresistance in a MTJ composed of two ferromagnetic thin films, iron
(Fe) and cobalt (Co), separated by a thin GeO semiconducting layer (11). The
ferromagnetic character of the electrodes was taken into account by introducing
different densities of statesD" for the majority andD# for the minority electrons, using
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the following definition for the spin polarization of a ferromagnet:

P0 � D" EF� � � D# EF� �
D" EF� � � D# EF� � : (1.6)

As for the GMR, the TMR can then be understood within the two-current model by
summing in parallel the conductances of the spin-up and spin-down channels
assuming that the tunneling process is spin-conserving. As illustrated in Fig. 1.5,
in the P magnetic configuration, majority spin (↑) electrons from the injector tunnel

Figure 1.5 Schematics of the spin-dependent tunneling process through an insulating
barrier when the magnetizations in ferromagnetic electrodes are in parallel P or antiparallel
AP magnetic configurations. The process is assumed to be purely ballistic, so that no mixing
of spin states occurs during the tunneling process.

12 CHAPTER 1 BASIC SPINTRONIC TRANSPORT PHENOMENA



toward majority spin (↑) empty states in the collector. At the same time, minority spin
(↓) electrons from the injector tunnel toward minority spin (↓) empty states in the
collector. The conductance in P configuration is then written as

GP ∝ D"
1 EF� �:D"

2 EF� � � D#
1 EF� �:D#

2 EF� �: (1.7)

In case of AP magnetic configuration, majority spin (↑) electrons from the injector
tunnel toward minority spin (↓) empty states of the collector. At the same time,
minority spin (↓) electrons from the injector tunnel toward majority spin (↑) empty
states of the collector. The conductance in AP configuration is then written as

GAP ∝ D"
1 EF� �:D#

2 EF� � � D#
1 EF� �:D"

2 EF� �: (1.8)

Using these expressions, the TMR ratio, which characterizes the resistance difference
in P and AP configurations, may be expressed as

TMR � GP � GAP

GAP
� RAP � RP

RP
� 2P1P2

1 � P1P2
; (1.9)

where P1;2 are the spin polarization of electrode 1 and electrode 2 as defined in
Eq. (1.6). Note that similar to the GMR case, a “pessimistic” definition of the TMR
ratio can also be defined as TMR � ��GP � GAP�=GP� < 1.

This model is oversimplified in the sense that it neglects all band structure
effects in the magnetic electrodes and in the barrier. Nevertheless, this simple model
successfully predicted the amplitude of TMR (typically around 50–70% with spin
polarization on the order of 50–65% in Co–Fe-based alloys) in amorphous alumina-
based magnetic tunnel junctions. However, the model failed to explain the very large
TMR of magnetic tunnel junctions based on epitaxial barriers, notably of magnesium
oxide (MgO) barriers. A key challenge to get an accurate prediction of TMR is to
properly estimate the actual amplitude and sign of spin polarization for a given
ferromagnetic material. Clearly, the larger the spin polarization, the higher the TMR
amplitude. To maximize this spin polarization, a significant effort in materials science
has been devoted to the search for half-metals, which are expected to be conducting
for one spin direction and insulating for the other, resulting in 100% spin polarization
at Fermi energy (D# EF� � � 0). Some magnetic oxides and Heusler alloys seem
to exhibit this property in bulk form, but not when integrated in MTJs at room
temperature.

Several experimental techniques have been used to measure the ferromagnet’s
spin polarization, such as the Meservey and Tedrow technique (14), which is based on
tunneling transport in FM–insulator–superconductor junctions. A list of typical values
obtained for a variety of ferromagnetic materials is presented in Table 1.1.

Other experiments in 1999, involving the study of spin-dependent tunneling
through transition metal oxide barriers (SrTiO3), revealed that different values and
even opposite signs of spin polarization of tunneling electrons could be obtained for
the same ferromagnetic electrode by varying the nature of the tunneling barrier (15).
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These results clearly indicate that the spin polarization of the tunneling electrons is not
only determined by the nature of the ferromagnetic electrodes but also by the whole
trilayer ferromagnet/barrier/ferromagnet. In the following section, we introduce a
more advanced model for treating the ferromagnet and the tunneling barrier configu-
ration as a next step toward considering the whole trilayer band structure.

1.2.3 The Slonczewski Model

In 1989, Slonczewski proposed a more rigorous model based on the detailed
calculations of the electron wave functions across the barrier, taking into account
the exact matching conditions at the ferromagnetic/barrier and barrier/ferromagnetic
interfaces (16). To derive the actual value of the transmission coefficient T E� �, one
must consider not only the density of states of electrons at the Fermi level but also
their wave vector kF (or more simply their velocity vF). This velocity is dependent on
the type of electron one considers (s, p, and d bands). We will see below that this
approach is required to understand the large values of TMR that are obtained in MgO-
based MTJ devices.

1.2.3.1 The Model In Slonczewski model, several assumptions are made,
similar to those of Jullière’s model. First, the tunneling barrier is simply described
as a square potential (energy height Φ and thickness d) above the Fermi level of the
two ferromagnetic electrodes, considering the free-electron approximation. Second,
the two ferromagnetic electrodes are taken to be identical. Finally, the model assumes

that only electrons propagating perpendicular to the layers (~k � ~k? ; kk � 0) can
efficiently tunnel through the barrier. Indeed, if we consider electrons propagating in

another direction, with kk ≠ 0, then the decay coefficient inside the insulating layer

becomes κ E� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k � 2me=ħ2

� �
Φ � E� �

q
. Then, the higher the parallel wave vector,

the lower the probability for the electron to tunnel through the barrier. By solving
Schrödinger’s equation in each part of the junction and applying continuity of the

TABLE 1.1 Values of Ferromagnet (FM) Spin Polarization P0

Extracted from FM/Insulator/Al Tunneling Experiments, Where
Al Is a Superconductor at Low Temperatures.

Ferromagnet P0 %� �
Ni 33
Co 42
Fe 45
Ni90Fe10 36
Ni80Fe20 48
Co50Fe50 51
Ni40Fe60 55

This technique of tunneling from a ferromagnet to a superconductor is used to
determine the spin polarization in the ferromagnet (14).
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wave functions at the interfaces, it was analytically demonstrated that the equivalent
spin polarization of the ferromagnet/barrier couple, P, can be written as

P � kF;" � kF;#
� �

κ2 � kF;"kF;#
� �

kF;" � kF;#
� �

κ2 � kF;"kF;#
� � � P0

κ2 � kF;"kF;#
� �
κ2 � kF;"kF;#
� � ; (1.10)

where kF;" and kF;# are thewave vectors formajority andminority electrons at the Fermi
level, respectively, κ corresponds to the decay coefficient of the electrons’ tunneling
probability through the insulating barrier (see Eq. (1.3)), and P0 corresponds to the
previously defined polarization for a ferromagnet in Jullière’s model (see Eq. (1.6)).
Moreover, instead of defining a net polarization for the whole ferromagnetic layer, this
expression highlights that the polarization actually depends on the type of electron one
considers (towhich band it belongs). Indeed, the values of κ, kF;", and kF;# are associated
with the band one considers, and P can be derived for each of these bands.

The expression for the spin polarization P in this model reveals that the
attenuation of the wave function while crossing the barrier also results in a decrease
of the effective spin polarization of the total current. In the limit of large barrier height
Φ, and hence large decay coefficient κ, the resulting polarization is equivalent to the
one defined in the Jullière’s model. This model emphasizes the importance of the
electrons’ properties in the calculation of the polarization. One can perform a simple
calculation by considering only the contribution of the lighter (s band) electrons, but a
more complete calculation would sum the contributions of each type of electrons.

1.2.3.2 Experimental Observations On the experimental side, it has been
noted that TMR amplitude varies considerably depending on the nature of the
electrodes and the nature of the insulating barrier and interfaces. For example, Yuasa
and Djayaprawira showed that in epitaxial magnetic tunnel junctions of Fe–Al2O3–

CoFe, the TMR amplitude changes when the crystallographic orientation is changed
among (211), (110), and (100) planes (17). The major role of the interfaces between
the ferromagnet and the insulating layer has been highlighted by experiments
demonstrating that Co/Al2O3 and Co/MgO provide positive polarization of tunneling
electrons, whereas Co/SrTiO3 provides negative polarization of tunneling electrons,
at least at low bias voltage (15). These results demonstrate that it is possible to modify
the TMR amplitude by choosing different ferromagnet/barrier configurations.

1.2.3.3 About the TMR Angular Dependence Denoting θ the angle between
the magnetization directions in the two ferromagnetic electrodes, Slonczewski also
succeeded in deriving an expression of the tunnel conductance as a function of the
angle θ in the limit of large potential barrier U:

G θ� � � G0 1 � P2cos θ
� �

; (1.11)

where the conductance in the AP configuration G0 is given by

G0 � κ

ħd
eκ κ2 � k"k#
� �

k" � k#
� �

π κ2 � k2"
� �

κ2 � k2#
� �

" #2
e�2κd; (1.12)

1.2 TUNNELING MAGNETORESISTANCE 15



which represents the actual conductance when the quantum system is considered as a
whole (i.e., the two ferromagnetic layers separated by the tunnel barrier). With the
effective tunnel conductance varying as P2cos θ, the resistance dependence is then
given by R θ� � � R0= 1 � P2cos θ

� �
, which can be approximated by R �

R0 1 � P2cos θ
� �

when the electron polarization is weak, that is, for low TMR
amplitude.

1.2.4 More Complex Models: The Spin Filtering Effect

Another major breakthrough in the field of spintronics was made with the discovery of
much larger TMR amplitude in MTJ based on a crystalline MgO tunnel barrier rather
than an amorphous alumina barrier. These MgO-based MTJs are today’s standard
elements in spintronic devices, whether for MRAM, read heads, or field sensors
applications. The starting point of this work was the theoretical calculations carried
out by Butler andMathon in 2001, which predicted that TMR ratios as large as 1600%
could be expected for epitaxially grown Co or Fe electrodes on MgO (18,19). For
instance, an epitaxial MgO(001) barrier can be easily grown on a Fe bcc layer (001)
since the lattice mismatch is small (about 4%). We remind that bcc stands for body-
centered cubic, relative to the arrangement of atoms in the crystal. (001) later refers to
a growth direction along the cube edge direction. These calculations, performed with
ab initio methods, derived the tunneling probability of each kind of electrons,
depending on their orbital symmetry.

1.2.4.1 Incoherent Tunneling Through anAmorphous (Al2O3) Barrier The
electrons’wave functions in crystalline materials are described by Bloch states. Bloch
states are wave function solutions of the Schrödinger equation describing the quantum
mechanical state of electrons in a periodic potential, for example, in a perfect, infinite
atomic crystal. In crystalline ferromagnetic metals such as Fe, Ni, Co (3d ferromag-
netic transition metals), and their alloys, these Bloch states have some specific
symmetries: Δ1 symmetry (corresponding to spd hybridized states), Δ2 symmetry
(d states), and Δ5 symmetry (pd hybridized states). Bloch states with Δ1 symmetry
usually have a large positive associated polarization atEF , but it is not the case for other
symmetries (they can even have negative associated polarizations). Jullière’s model
(previously introduced) assumes equal tunneling probabilities independent of the
electrons’ Bloch states in the electrodes. This is true only if the tunneling process is
incoherent, meaning that the coherency of the Bloch states is not conserved during
tunneling.

In the case of an amorphous barrier, there is no crystallographic symmetry in the
barrier. Consequently, electron wave functions from the injector, no matter their
symmetry, couple identically to any tunneling/evanescent states in the barrier,
through which they will propagate and decay. The exponential decay of the wave
function throughout the barrier is then independent of the initial symmetry of the
tunneling electron wave function so that the transmission probability through
the barrier is itself independent on the initial electron wave function symmetry (see
Fig. 1.6). This tunneling process can be regarded as an incoherent tunneling. It can be
well described by Jullière’s model introduced earlier. It leads to comparable tunneling
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probabilities for all Bloch states from the electrode. The net polarization then simply
corresponds to the one calculated by summing the contributions from (↑) and (↓) DOS
from all Bloch states. In this case, the net polarization is reduced due to the
contributions of some Bloch states with negative spin polarization (i.e., opposite
to the local magnetization).

A major difference between MTJ based on crystalline magnetic electrodes with
amorphous barriers or crystalline barriers is that the symmetry of the tunneling
electron wave functions may be conserved in the latter case and this symmetry can
strongly influence the tunneling rates, that is, the probability of tunneling through the
barrier. If one can engineer a system in which the Bloch states with large positive spin
polarization have a higher tunneling probability than the Bloch states with negative
spin polarization, then a very high net polarization could be expected, resulting in a
very large MR ratio. This is possible in some epitaxially grown crystalline MTJs, in
particular Fe/MgO/Fe, as explained in the following section.

1.2.4.2 Coherent Tunneling Through a Crystalline MgO Barrier A crys-
talline MgO(001) can be epitaxially grown on a bcc Fe(001) layer to prepare a
crystalline Fe(001)/MgO(001)/Fe(001) MTJ. Considering the kk � 0 direction, there
are three kinds of tunneling/evanescent states in crystalline MgO, with different
associated symmetries: Δ1, Δ2´ , and Δ5. In such systems, coherent tunneling is
obtained: The electrons’ wave functions in the ferromagnetic material couple with
evanescent wave functions having the same symmetry in the barrier, so that electrons
conserve their orbital symmetry as they tunnel. Ab initio calculations then predict that
the tunneling probability of an electron strongly depends on its orbital symmetry,
leading to effective possible symmetry filtering of the tunneling current. The
mechanism of orbital selection for the tunnel conductance in Fe(001)/MgO/Fe(001)
systems is presented in Fig. 1.7a.

Figure 1.6 Schematic illustration of
electrons tunneling through an amorphous
(Al2O3) barrier. (From Ref. 17.)
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In Fe, the band structure is calculated with consideration of the energy splitting
between (↑) and (↓) for each Bloch state type, deducing the densities of states at the
Fermi energy, and hence the polarization. Both majority and minority electrons fill
many states at the Fermi energy, which corresponds to a small net polarization. But
these calculations have demonstrated that only majority electrons fill Δ1 symmetry
states, implying a full polarization PΔ1 � 1, whereas both majority and minority Δ2

and Δ5 symmetry states can be found at the Fermi energy, corresponding to low
polarizations. Note that for other materials such as bcc Co, only minority Δ2 and Δ5

symmetry states exist at the Fermi level, implying that PΔ2 � PΔ5 � �1.
Furthermore, calculations demonstrate that the exponential tunneling decay is

much stronger forΔ2 andΔ5 states compared withΔ1 states. Figure. 1.7b presents the
probability for a majority electron incoming from the left electrode to propagate
through the MTJ in the P configuration. For dMgO= 8 monolayers (ML), which is a
reasonable barrier thickness, the transmitted density of Δ1 states is larger than that of
Δ5 states by 10 orders of magnitude.

In addition, since there are no minority Δ1# states to tunnel from or to, only the
Δ1" ! Δ1" channel has a significant contribution to the conduction. Similarly, for
the AP configuration, Δ1" ! Δ1# and Δ1# ! Δ1" channels have a potentially zero
tunneling probability. There is therefore here a new mechanism of spin filtering of the
wave functions according to their symmetry, which yields a dramatic effective
increase in the net spin polarization of the tunneling current. As a result, significant
conduction occurs only in the P configuration. It is this spin filtering effect that
explains the very large TMR magnitudes predicted and measured in epitaxial or
highly textured MgO-based MTJs.

Not only bcc Fe(001) shows this high spin polarization of the Δ1 Bloch states,
but also many other bcc ferromagnetic metals, such as cobalt (Co) and alloys based on
Fe and Co. Similarly, very large TMR ratios are also predicted for other crystalline
barriers such as SrTiO3 (20). However, so far, MgO-based MTJs still give the best
results in terms of TMR. After these theoretical predictions, a strong worldwide

Figure 1.7 (a) Schematic illustration of the coupling between Bloch wave functions in iron
and evanescent wave functions in MgO having the same symmetry. (Reproduced from
Ref. 17 with permission from American Physical Society.) (b) Density of states for majority
electrons tunneling (kk � 0) in a MTJ Fe(001)/MgO(001)/Fe(001) in the parallel magnetic
configuration. Note the much slower decay of the DOS in the barrier for electrons with Δ1

symmetry than for those of other symmetries. (From Ref. 17.)
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research effort was made to obtain epitaxial growth of structures for Fe/MgO/Fe or
CoFeB/MgO/CoFeB. These efforts resulted in an extremely large TMR of about
600% obtained in 2008 in CoFeB/MgO/CoFeB MTJs at room temperature (21). The
difference between the values of experimental and theoretical TMR is mainly due to
imperfections in interface quality and defects in crystal growth of materials due to
dislocations, vacancies, and impurities (in particular absorbed water molecules).
More details on the growth of MgO-based MTJs can be found in Chapter 2 as well as
in Ref. 17.

1.2.5 Bias Dependence of Tunnel Magnetotransport

In most MTJs, the magnitude of TMR decreases markedly when the applied voltage
increases. This factor is critical for applications and particularly for reading out the
memory magnetic state in MRAM. This voltage-induced decrease of TMR in
magnetic tunnel junctions is characterized by V1/2, which is the voltage for which
the TMR ratio is reduced to half of its amplitude in the limit of zero bias voltage.
Several theories have been developed to describe this bias dependence of the
magnetotransport, which is often very complex because it involves several physical
mechanisms of spin depolarization, as explained below.

The first of these mechanisms is based on the emission of magnons by hot
electrons. When a finite bias voltage is applied across the junction, the electrons
tunnel ballistically through the barrier, that is, keeping their energy so that they arrive
in the collector electrode as hot electrons (Fig. 1.4). When they penetrate the collector
electrode, these hot electrons very quickly lose their excess energy by inelastic
relaxation to the Fermi energy. In a normal metal, the relaxation mechanisms are via
electron–electron and electron–phonon interactions. In ferromagnetic materials,
electrons can also reach the Fermi energy by emission of spin waves (magnons),
a process that does not preserve the spin. The higher the voltage, the greater the
density of emitted magnons. Both the spin polarization of the current and the TMR,
directly linked to the conservation of spin information, are then reduced.

Another mechanism of spin depolarization of the current is the presence of
defects inside the insulating barrier. These defects create trap states in the barrier
through which electrons can co-tunnel. This means that electrons tunnel from the
injector to the trap, and then from the trap to the collector, losing their spin
information in the process.

Finally, the decrease of TMR with bias voltage can be described by the voltage
dependence of the electronic properties involved in the tunneling process, for
example, the electron effective mass, the transmission coefficients in the barrier,
and the parameter of coherent reflections at interfaces. The polarization of the
tunneling electrons also depends itself on the bias voltage since at a bias voltage
V, electrons within a band of width eV below the Fermi energy can tunnel through the
barrier. If one considers a band structure such as the one depicted in Fig. 1.1a, it is
clear that the net polarization of the tunneling electrons is expected to decrease if
electrons from below the Fermi energy become allowed to tunnel through the barrier.

In MgO-based MTJs, V1/2 is typically in the range of 0.5–0.8V, depending on
the nature of the magnetic electrodes and growth conditions. The readout in MRAMs
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is usually performed at voltages on the order of only 0.15–0.2V for which the drop of
TMR is weak.

1.3 THE SPIN-TRANSFER PHENOMENON

In the first generation of MTJ-based MRAM, the switching of the storage layer
magnetization during the write process is achieved using pulses of magnetic field (4).
This field is induced by a current flowing in conducting lines located above and below
the MTJ. This writing process suffers both from the large energy consumption needed
to generate large enough magnetic fields and from write selectivity problems due to
the spatial extension of generated fields as well as dot-to-dot distribution in switching
fields (variability). A new generation of magnetic memory, called spin-transfer torque
magnetic random-access memory (STT-MRAM), is based on the pioneering theo-
retical work of Slonczewski (22) and Berger (23), which predicted that current
flowing through magnetic multilayers can directly reverse the magnetization of one of
the layers.

We describe below the origin and consequences of this physical phenomenon.
The details of the reversal dynamics as well as the use of this new writing mode in
MRAM will be described in other chapters.

1.3.1 The Concept and Origin of the Spin-Transfer Effect

The GMR and TMR magnetoresistive effects described in the previous sections
correspond to a variation of the current flow in a spin-valve device or a magnetic
tunnel junction (i.e., a variation in conductance) induced by a change of the magnetic
configuration of the device. This change of magnetic configuration was generally
mediated through the action of an external field. The spin-transfer effect may be seen
in a simple description as the reciprocal effect to GMR or TMR: via the spin-transfer
torque, the current, which gets spin polarized by traversing a first magnetic layer, can
exert a torque on the magnetization of a second ferromagnetic layer and thereby
change the magnetic configuration of the device.

The simplest system for describing this new effect is similar to the standard
magnetoresistive systems described in previous sections. It consists of two thinmagnetic
layers separated bya nonmagnetic layer (either a normalmetalNMor an insulator I).One
of the two ferromagnetic layers, F1 is presumably thick and fixed, whereas the second
ferromagnetic layer F2 and the nonmagnetic one are chosen to be thin in comparison to
the previously introduced characteristic length of spin-polarized transport.

1.3.1.1 The “In-Plane” Torque When electrons flow through the structure
perpendicularly to the interfaces, the current spin polarization evolves to remain
parallel to the direction of the local magnetization. Indeed, when the electrons
penetrate into a ferromagnetic material, the spins of the conduction electrons become
very rapidly aligned parallel to the local magnetization direction because of a strong
exchange interaction between conducting electrons (4s) and the more localized
electrons (3d) responsible for the local magnetization (see Section 1.1).
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In the case where the respective magnetizations ~M1 and ~M2 are noncollinear, the
spin polarization of electrons have to rotate in their paths. This occurs mainly through
relaxation of the spins transverse component at the F/NM interfaces. We illustrate this
phenomenon by considering the case of a spin-valve structure where the nonmagnetic
spacer is metallic (NM) as illustrated in Fig. 1.8. When the electrons flow from layer
F1 to F2, the current becomes spin polarized after traversing F1, through the
mechanism described in Section 1.2 and thus acquires a net spin polarization along
~M1. This nonzero spin polarization propagates across the NM spacer as long as the
spin-flip is negligible in this layer. The transmitted electrons then impinge on the NM/
F2 interface with a spin polarization that is not aligned with the direction of the local
magnetization ~M2.

If we focus on the relaxation process at the second NM/F2 interface, the
incoming electrons hence have a component of their magnetic moment ~m transverse
to the ~M2 direction (see Fig. 1.8a). When they penetrate into F2, their spin becomes
quickly aligned toward the local magnetization direction in a very short distance after
the interface (typically less than a nanometer). Hence, the electrons lose their
transverse component ~m? when they penetrate into F2 within the first nanometer
from the interface. In this interaction however, the total spin angular momentum is
conserved, and thus the transverse component ~m? has been actually absorbed and
transferred to the magnetization of F2.

This transfer of spin is therefore intrinsically an interfacial effect. For a very
thick magnetic layer, with very stable magnetization, it then has a negligible
influence. However, for a thin layer, this transfer of spin tends to modify the local
magnetization direction, somehow adding the transferred spins to it. As a result, this
transfer of spin tends to align the magnetization ~M2 along the direction of the spin
current polarization, and hence along the magnetization ~M1 (see Fig. 1.9a) when
electrons flow from the “reference” or “fixed” layer F1 to the “free” layer F2. It
translates as a torque exerted on the magnetization ~M2, named spin-transfer torque.

If electrons now propagate in the opposite direction, that is, from layer F2 to
layer F1, electrons impinging on the NM/F1 interface with spin antiparallel to the F2

Figure 1.8 (a) Illustration of the concept of spin-transfer torque in a simple F1/NM/F2
trilayer structure; (b) Torque ~m? exerted on the magnetization ~M2 of the thin magnetic layer
F2, which tends to get aligned along the magnetization ~M1 when electrons flow from F1
to F2.
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magnetization will have difficulty penetrating into the F1 layer or will be back-
scattered because their spin is antiparallel to the local magnetization. These electrons
are therefore reflected by the NM/F1 interface and impinge on the other side of the
NM spacer on the NM/F2 interface with a spin antiparallel to the F1 magnetization.
This flow of reflected electrons again exerts a torque on the F2 magnetization
which now tends to align the F2 magnetization antiparallel to the F1 magnetization
(see Fig. 1.9b). The STT therefore changes sign as a function of the current direction
and can favor either P or AP magnetic configurations depending on its direction.

As the current density increases, the number of electrons crossing the magnetic
layer per unit time increases, thereby proportionally increasing the spin-transfer
torque. Therefore, in metallic spin valves, STT can be considered proportional to the
current density.

If the system is a magnetic tunnel junction, as in STT-MRAM, the electrons are
transmitted ballistically through the spacer layer (the tunnel barrier) instead of
diffusely as in spin valves, but the STT effect is basically similar.

Analytically, the spin-transfer torque is equal to the sum of the absorbed
transverse spin magnetic moments per unit time:

V
d~M2

dt
� absorbed transverse magnetic moments per unit time; (1.13)

considering that each electron flowing across F2 will bring a contribution ~m? to the
local magnetization:

~m? � � gμB

2
~m2 � ~m2 � ~m1

� �� �
; (1.14)

In this formula, the cross product � ~m2 � ~m2 � ~m1

� �� �
simply corresponds to the

direction of the electron’s transverse magnetic moment ~m?. The free layer volume is
V � t ?A (t the thickness, A the cross section), g is the electrons Landé factor, and μB is
the Bohr magneton. The normalized magnetization is given by ~mi � ~Mi=MSi , where
MS is the saturation magnetization. The number of incoming electrons per second is
then simply given by

dN

dt
� jdc ?A

e
; (1.15)

Figure 1.9 In a F1(pinned)/NM/F2(free) trilayer structure, illustration of the sign reversal of
the spin-transfer torque with changing the current sign. (a) Positive current tends to align
magnetization ~M2 parallel to ~M1. (b) Negative current tends to push ~M2 away from ~M1.
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where jdc is the injected current density and e the electron’s charge. By summing the
contributions, and considering the current spin polarization Pspin at the NM/F2
interface, one obtains the expression for the spin-transfer torque as

d~m2

dt

!
ST

� �Pspin
jdc
2te

gμB ~m2 � ~m2 � ~m1

� �� �
:

 
(1.16)

This torque is often labeled “Slonczewski torque” (ST) or “in-plane torque” since its
direction lies in the plane defined by ~M1 and ~M2. It is proportional to the current spin
polarization at the interface, and to the current density. Hence, one can directly change
the magnitude or even the sign of the effect by simply tuning these two parameters.
Remarkably, by changing the sign of the current, it is possible to reverse the effect.
One sign of the current will make the local magnetization ~M2 rotate to align along the
magnetization ~M1 (thus favoring parallel magnetizations), while the other sign will
make the local magnetization rotate away from the magnetization ~M1 (thus favoring
antiparallel magnetizations). A review on in-plane torque in metallic spin valves can
be found in Ref. 24.

1.3.1.2 The “Out-of-Plane” Torque The in-plane torque is always the domi-
nant spin-transfer effect in junctions, and is the most significant torque in all metallic
structures. However, an additional component of spin-torque can also become
significant in tunnel junctions. It is referred to as field-like torque (FLT) or out-
of-plane torque, and is associated to another source of spin-transfer, leading to a torque
directed perpendicular to the ~M1; ~M2

� �
plane. Its action is equivalent to applying an

external magnetic field oriented along the ~M1 direction. The physical phenomena
behind the effect are beyond the scope of this book; we will simply mention that

d~m2

dt

!
Out-of-plane

∝ � ~m2 � ~m1

� �
:

0
@ (1.17)

This out-of-plane torque is often considered through its ratio to the in-plane torque. It is
usually negligible in metallic spin valves but its amplitude can reach about 30% of the
in-plane STT in tunnel junctions. It is often neglected in first approximation
but nevertheless can be responsible for undesirable behavior in the writing operation
of STT-MRAM such as back-switching phenomena (25).

1.3.2 Spin-Transfer-Induced Magnetization Dynamics

After having introduced the spin-dependent transport mechanisms at the origin of
spin-transfer torques, our aim is now to address the influence of these torques on the
magnetization dynamics of F2. The dynamics of a magnetization in response to
external torques in a solid is classically described by the Landau-Lifshitz-Gilbert
(LLG) equation. Because of the STT, two terms associated to the in-plane and out-of-
plane components of spin-transfer torques are added to this equation. The LLG
equation and the detailed description of magnetization dynamics are the topic of
another chapter. Here, we describe only some phenomenological aspects.
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We return to the simple trilayer of Fig. 1.8 and consider the ferromagnetic layer
F2, whose local magnetization is described by the normalized vector ~m2. This
magnetization is aligned at equilibrium along the so-called effective field ~Hef f .
~Hef f is the field resulting from the sum of all fields acting on ~M2, namely, the
external applied magnetic field, magnetic anisotropy field, interlayer coupling field,
and so on. When ~M2 is slightly pushed away from its stable equilibrium position, the
magnetization starts precessing around the effective field ~Hef f , following the differ-
ential equation:

d~m2

dt

!
precession

� �γ0~m2 � μ0~Hef f ;

0
@ (1.18)

where γ0 is the gyromagnetic ratio and μ0 is the vacuum permeability. Like any other
physical system with a stable equilibrium position, the magnetization will relax to this
position, with a characteristic damping coefficient α, the Gilbert damping (which can
range between ∼ 5× 10�3 and 0.1 for standard ferromagnets, depending on the
amplitude of their spin–orbit interactions). The damping force is once again associ-
ated with a torque, written

d~m2

dt

!
damping

� �α~m2 � d~m2

dt
;

0
@ (1.19)

which tends to bring back ~m2 toward ~Hef f (Fig. 1.10).

1.3.2.1 A Simple Analogy A simple analogy to understand the influence of STT
on magnetization dynamics is the classical RLC resonant circuit. If the circuit is
initially excited, for instance by introducing a charge on the capacity, the current in the
circuit exhibits damped oscillations and gradually relaxes toward the zero equilibrium
value. Because of dissipation, as long as no additional energy is supplied to the

Figure 1.10 (a) Relaxation of magnetization around the effective field without spin-transfer
torque. (b) Additional torque for positive or negative current. (c) Corresponding equivalent
(RLC) circuit.
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system, it has no other choice but to relax to the closest equilibrium position.
However, during this relaxation process, one can act on the system to modify the
relaxation rate, by reducing or increasing the damping of the system. In the RLC
analogy, this would correspond to adding a supplementary positive or negative
resistance in the circuit. When dealing with magnetization, a means to do this is to use
spin-transfer torque. Indeed, depending on the sign of the current, the resulting STT
torque can be oriented either in the same direction or in the opposite direction to the
damping torque.

This simplified description allows one to understand easily the nature of the
main contribution of spin-transfer force (in-plane torque), which can be described
through a non-conservative force acting in the same direction as the natural damping,
that is, perpendicular to the magnetization trajectory. Depending on the relative
orientation of ~M1 and ~M2, as well as the sign of the injected current, the spin-transfer
torque can increase or decrease the effective damping, that is, behave as an additional
damping or as an antidamping.

To continue the analogy with classical systems, like the RLC circuit, one can
bring it into a regime where the effective damping around equilibrium crosses zero
and becomes negative (RS < �R0�. In this case, the corresponding equilibriumposition
is no longer stable, and any deviation from equilibrium is amplified so that the
oscillations diverge. For the case of unstable local magnetization, thermal excitations
are sufficient to induce a small deviation from equilibrium, further amplified by
spin-transfer torque. Depending on the system configuration, the magnetic system can
be designed so that the oscillation divergence drives the magnetization toward
another stable minimum of energy or so that steady state excitations of the magnetiza-
tion can be sustained. The first behavior is the one used to write in STT-MRAM,
whereas the second behavior can yield to new types of frequency-tunable RF
oscillators.

1.3.2.2 Toward MRAM Based on Spin-Transfer Torque A STT-MRAM
cell is effectively composed of a MTJ consisting of a pinned ferromagnetic
reference layer and a ferromagnetic storage layer separated by a tunnel barrier.
This system is very similar to the one described in Fig. 1.8 where the storage layer is
F2 and the reference layer is F1. The MTJ is designed in such a way that the
magnetization of the storage layer has two natural equilibrium positions parallel or
antiparallel to the pinned layer magnetization. Using the spin-transfer torque to
destabilize either one of these positions, simply by choosing the sign of the current,
it is possible to induce a reversal of the magnetization, and consequently switch the
value of the memory cell. When electrons flow from the pinned layer to the storage
layer, parallel alignment is favored. When electrons flow from the storage layer to
the reference layer, antiparallel alignment is favored. To achieve the storage layer
magnetization switching, the current density must exceed a certain threshold, which
corresponds to the point where the Gilbert damping becomes balanced by the STT
antidamping. This current density threshold Jc can be calculated by finding the
conditions for which the net effective damping is zero. The expression of the
current density for switching depends in particular on whether the layers are
magnetized in-plane or out-of-plane. This will be explained in more details in
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Chapter 5. The LLG equation with Slonczewski in-plane torque yields the critical
current density for switching:

Jc � 2αeμ0MS t

ħPspin
Hef f ; (1.20)

and the corresponding critical current:

Ic � 2αeμ0MSV

ħPspin
Hef f ; (1.21)

where Ms is the saturation magnetization, α is the Gilbert damping, t is the layer
thickness, V is the volume, Pspin is the amplitude of the spin polarization, andHeff is the
effective field as previously defined. The other quantities are physical constants: e the
electron charge, μ0 the vacuum permeability, and ħ the reduced Planck constant.
The predicted critical current densities are relatively large, in the range of a few
1011A/m2 in metallic spin valves and in the range of 1 to a few 1010A/m2 inMTJs. The
higher STT efficiency in MTJs is associated with two phenomena: a higher spin
polarization in particular in MgO-based MTJs, and the fact that in a MTJ, electrons
impinging on the storage layer have mainly a perpendicular component of momentum.
The electrons that tunnel the most easily through the barrier are those propagating
perpendicular to the layers (with out-of-plane momentum~k �~k?; kk � 0), whereas in
metallic pillars, the electron momentum is broadly dispersed in all angular direction.

Very importantly for STT-MRAM considerations, STT switching is determined
by a current density threshold. This means that the current required to write in STT-
MRAM scales proportionally to the area of the device. For very small dimensions, for
which thermal stability becomes a problem, a reduction in size must be compensated
by an increase in the anisotropy field (and in Heff) to maintain a desired thermal
stability factor, that is, a given memory retention (see Chapter 5). As a consequence,
the thermal stability limits the decrease of the critical current with the device dimen-
sions. However, this minimum current value is in the range of 13μA with known
materials, which allows downsize scalability of STT-MRAM to sub-20 nm nodes.

The expression of critical current density provides paths to reduce the power
consumption for spin-transfer-induced switching. In particular the Gilbert damping
factor α plays a quite important role and must be minimized, and the spin polarization
must be maximized. The other parameters (t, Ms, Heff) also influence the thermal
stability of the magnetization, so a trade-off must often be found between minimizing
the write current density and maintaining sufficient thermal stability to achieve the
specified memory retention. The goal of minimizing the critical current for writing has
stimulated a strong research effort in the last few years, notably among two families of
materials: magnetic oxides (26) and Heusler alloys (27).

1.3.3 Main Events Concerning Spin-Transfer Advances

A complete review of all the theoretical and experimental advances made in the last
decade on spin-transfer is beyond the scope of this chapter (see Ref. 28 and
references therein). However, it is worth mentioning a few key dates in spin-transfer
torque research and development. The first experimental results to validate the
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theoretical prediction of spin-transfer torque made by Slonczewski and Berger were
obtained by Tsoi et al, using a point-contact geometry for injection of a large current
density into a magnetic layer (29). The experimental demonstration of the use of
spin-transfer torque to reverse the magnetization of metallic spin valves without any
applied field by Katine et al. in 2000 (30) showed that STT could be used as a new
write scheme in MRAM instead of field-induced magnetization switching, offering
a much better downsize scalability. The first demonstration of STT switching in
MTJs was made in 2004 (31) once the quality of the MTJ growth became good
enough to withstand the large current density required for STT switching. The first
functional demonstrator of an STT-MRAM chip was developed by Sony Corp,
which presented the first 4 kbit STT-RAM demonstrator in 2004 (32). A lot of
further progress has been made since then on both the fundamental understanding
of the STT effects as well as on the technological side (see Chapter 6). The first
STT-MRAM products were announced by Everspin at the end of 2012 (see
Chapter 5) and all the major microelectronic companies now have large research
and development efforts, in particular aiming at DRAM replacement by STT-
MRAM beyond the 20 nm technological node.
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