
rt

Access Buildin

E
ach part of this book builds on previ-
ous parts, and the chapters in each
part contain examples that draw ondraw on

techniques explained in previouss parts and
chapters. As a developer, your applications
will benefi t from the skills you accquire by
reading the chapters and practiciing the
examples contained in this book.

But everyone has to start somewhhere when
approaching a new discipline, andd Part I
of this book presents the essentiaal skills
necessary for anyone to succeed aat database
development with Access. The toppics cov-
ered in this part explain the conccepts and
techniques that are necessary to success-
fully use database environments and give
you the skills necessary to normaalize data
and plan and implement effectivee tables.

If you’re already familiar with thee concepts
involved in database design, you may want
to skim these chapters. If you’re nnew to the
world of databases, spend some tiime here
gaining a thorough understandinng of these
important topics.

IN THIS PART

Chapter 1p

An Introduction to Database Development

Chapter 2

Getting Started with Access

CO
PYRIG

HTED
 M

ATERIA
L

3

CHAP T ER

An Introduction to Databa

Development

IN THIS CHAPTER

Examining the differences between databases, tables, records, fi elds, and values

Discovering why multiple tables are used in a database

Exploring Access database objects

Designing a database system

D
atabase development is unlike most other ways you work with computers. Unlike Microsoft
Word or Excel, where the approach to working with the application is relatively intuitive,
good database development requires prior knowledge. You have to learn a handful of funda-

mentals, including database terminology, basic database concepts, and database best practices.

Throughout this chapter, we cover the fundamentals of database development.

If your goal is to get right into Access, you might want to skip to Chapter 2.

The Database Terminology of Access
Access follows most, but not all, traditional database terminology. The terms database, table, record,
field, and value indicate a hierarchy from largest to smallest. These same terms are used with virtu-
ally all database systems.

Databases
Generally, the word database is a computer term for a collection of information concerning a
certain topic or business application. Databases help you organize this related information in a
logical fashion for easy access and retrieval.

4

Part I: Access Building Blocks

Some older database systems used the term database to describe individual tables; current use of database applies

to all elements of a database system.

Databases aren’t only for computers. There are also manual databases; we sometimes refer
to these as manual filing systems or manual database systems. These fi ling systems usually
consist of people, papers, folders, and fi ling cabinets—paper is the key to a manual data-
base system. In manual database systems, you typically have in and out baskets and some
type of formal fi ling method. You access information manually by opening a fi le cabinet,
taking out a fi le folder, and fi nding the correct piece of paper. Users fi ll out paper forms for
input, perhaps by using a keyboard to input information that’s printed on forms. You fi nd
information by manually sorting the papers or by copying information from many papers
to another piece of paper (or even into an Excel spreadsheet). You may use a spreadsheet or
calculator to analyze the data or display it in new and interesting ways.

An Access database is nothing more than an automated version of the fi ling and retrieval
functions of a paper fi ling system. Access databases store information in a carefully defi ned
structure. Access tables store a variety of different kinds of data, from simple lines of text
(such as name and address) to complex data (such as pictures, sounds, or video images).
Storing data in a precise format enables a database management system (DBMS) like Access
to turn data into useful information.

Tables serve as the primary data repository in an Access database. Queries, forms, and
reports provide access to the data, enabling a user to add or extract data, and presenting
the data in useful ways. Most developers add macros or Visual Basic for Applications (VBA)
code to forms and reports to make their Access applications easier to use.

A relational database management system (RDBMS), such as Access, stores data in related
tables. For example, a table containing employee data (names and addresses) may be related
to a table containing payroll information (pay date, pay amount, and check number).

Queries allow the user to ask complex questions (such as “What is the sum of all paychecks
issued to Jane Doe in 2012?”) from these related tables, with the answers displayed as
onscreen forms and printed reports.

One of the fundamental differences between a relational database and a manual fi ling sys-
tem is that, in a relational database system, data for a single person or item may be stored
in separate tables. For example, in a patient management system, the patient’s name,
address, and other contact information is likely to be stored in a different table from the
table holding patient treatments. In fact, the treatment table holds all treatment informa-
tion for all patients, and a patient identifi er (usually a number) is used to look up an indi-
vidual patient’s treatments in the treatment table.

In Access, a database is the overall container for the data and associated objects. It’s more
than the collection of tables, however—a database includes many types of objects, includ-
ing queries, forms, reports, macros, and code modules.

5

Chapter 1: An Introduction to Database Development

1

As you open an Access database, the objects (tables, queries, and so on) in the database are
presented for you to work with. You may open several copies of Access at the same time and
simultaneously work with more than one database, if needed.

Many Access databases contain hundreds or even thousands of tables, forms, queries, reports,
macros, and modules. With a few exceptions, all the objects in an Access 2016 database reside
within a single fi le with an extension of ACCDB or ACCDE. Access databases can also have an
extension of MDB or MDE. Databases with these extensions are backward-compatible with
Access 2003 and prior versions.

Tables
A table is just a container for raw information (called data), similar to a folder in a manual
fi ling system. Each table in an Access database contains information about a single topic,
such as employees or products, and the data in the table is organized into rows and columns.

 In Chapters 3 and 4, you learn the very important rules governing relational table design and how to

incorporate those rules into your Access databases. These rules and guidelines ensure that your appli-

cations perform well while protecting the integrity of the data contained within your tables.

In Access, a table is an entity. As you design and build Access databases, or even when
working with an existing Access application, you must think of how the tables and other
database objects represent the physical entities managed by your database and how the
entities relate to one another.

After you create a table, you can view the table in a spreadsheet-like form, called a
datasheet, comprising rows and columns (known as records and fields, respectively—see the
following section, “Records and fi elds”). Although a datasheet and a spreadsheet are super-
fi cially similar, a datasheet is a very different type of object.

Chapter 5 discusses Access datasheets and the differences between datasheets and spreadsheets.

You can fi nd much more about fi elds and fi eld properties in Chapter 3.

Records and fi elds
A datasheet is divided into rows (called records) and columns (called fields), with the fi rst
row (the heading on top of each column) containing the names of the fi elds in the database.

Each row is a single record containing fi elds that are related to that record. In a manual
system, the rows are individual forms (sheets of paper), and the fi elds are equivalent to the
blank areas on a printed form that you fi ll in.

Each column is a fi eld that includes many properties that specify the type of data con-
tained within the fi eld, and how Access should handle the fi eld’s data. These properties
include the name of the fi eld (Company) and the type of data in the fi eld (Text). A fi eld may
include other properties as well. For example, the Address fi eld’s Size property tells Access
the maximum number of characters allowed for the address.

6

Part I: Access Building Blocks

When working with Access, the term field is used to refer to an attribute stored in a record. In many other database

systems, including Microsoft SQL Server, column is the expression you’ll hear most often in place of field. Field and

column mean the same thing. The terminology used relies somewhat on the context of the database system underly-

ing the table containing the record.

Values
At the intersection of a record and a fi eld is a value—the actual data element. For example,
if you have a fi eld called Company, a company name entered into that fi eld would represent
one data value. Certain rules govern how data is contained in an Access table.

See Chapters 3 and 4 for more on these rules.

Relational Databases
Access is a relational database management system. Access data is stored in related tables,
where data in one table (such as Customers) is related to data in another table (such as
Orders). Access maintains the relationships between related tables, making it easy to
extract a customer and all the customer’s orders, without losing any data or pulling order
records not owned by the customer.

Multiple tables simplify data entry and reporting by decreasing the input of redundant
data. By defi ning two tables for an application that uses customer information, for exam-
ple, you don’t need to store the customer’s name and address every time the customer pur-
chases an item.

After you’ve created the tables, they need to be related to each other. For example, if
you have a Customers table and a Sales table, you can relate the two tables using a com-
mon fi eld between them. In this case, Customer Number would be a good fi eld to have in
both tables. This will allow you to see sales in the Sales table where the Customer Number
matches the Customers table.

The benefi t of this model is that you don’t have to repeat key attributes about a customer
(like customer name, address, city, state, zip) each time you add a new record to the Sales
table. All you need is the customer number. When a customer changes address, for example,
the address changes only in one record in the Customers table.

7

Chapter 1: An Introduction to Database Development

1

Separating data into multiple tables within a database makes a system easier to maintain
because all records of a given type are within the same table. By taking the time to prop-
erly segment data into multiple tables, you experience a signifi cant reduction in design and
work time. This process is known as normalization.

You can read about normalization in Chapter 4.

Why Create Multiple Tables?
The prospect of creating multiple tables almost always intimidates beginning database users. Most
often, beginners want to create one huge table that contains all the information they need—for example,
a Customers table with all the sales placed by the customer and the customer’s name, address, and
other information. After all, if you’ve been using Excel to store data so far, it may seem quite reason-
able to take the same approach when building tables in Access.

A single large table for all customer information quickly becomes diffi cult to maintain. You have to input
the customer information for every sale a customer makes (repeating the name and address information
over and over in every row). The same is true for the items purchased for each sale when the customer
has purchased multiple items as part of a single purchase. This makes the system more ineffi cient and
prone to data-entry mistakes. The information in the table is ineffi ciently stored—certain fi elds may
not be needed for each sales record, and the table ends up with a lot of empty fi elds.

You want to create tables that hold a minimum of information while still making the system easy to use
and fl exible enough to grow. To accomplish this, you need to consider making more than one table,
with each table containing fi elds that are related only to the focus of that table. Then, after you create
the tables, you can use other Access database objects to link them and create meaningful views and
reports. We’ll dive into those topics in the next section.

Access Database Objects
If you’re new to databases (or even if you’re an experienced database user), you need to
understand a few key concepts before starting to build Access databases. The Access data-
base contains six types of top-level objects, which consist of the data and tools that you
need to use Access:

■ Table: Holds the actual data

■ Query: Searches for, sorts, and retrieves specifi c data

■ Form: Lets you enter and display data in a customized format

■ Report: Displays and prints formatted data

8

Part I: Access Building Blocks

■ Macro: Automates tasks without programming

■ Module: Contains programming statements written in the VBA (Visual Basic for
Applications) programming language

Tables
As you’ve discovered earlier in this chapter, tables serve as the primary data repository in
an Access database. You interact with tables through a special kind of object called a data-
sheet. Although not a permanent database object, a datasheet displays a table’s content
in a row-and-column format, similar to an Excel worksheet. A datasheet displays a table’s
information in a raw form, without transformations or fi ltering. The Datasheet view is the
default mode for displaying all fi elds for all records.

You can scroll through the datasheet using the directional keys on your keyboard. You can
also display related records in other tables while in a datasheet. In addition, you can make
changes to the displayed data.

Queries
Queries extract information from a database. A query selects and defi nes a group of records
that fulfi ll a certain condition. Most forms and reports are based on queries that combine,
fi lter, or sort data before it’s displayed. Queries are often called from macros or VBA proce-
dures to change, add, or delete database records.

An example of a query is when a person at the sales offi ce tells the database, “Show me all
customers, in alphabetical order by name, who are located in Massachusetts and bought
something over the past six months” or “Show me all customers who bought Chevrolet car
models within the past six months and display them sorted by customer name and then by
sale date.”

Instead of asking the question in plain English, a person uses the query by example (QBE)
method. When you enter instructions into the Query Designer window and run the query,
the query translates the instructions into Structured Query Language (SQL) and retrieves
the desired data.

Chapter 8 discusses the Query Designer window and building queries.

Data-entry and display forms
Data-entry forms help users get information into a database table quickly, easily, and accu-
rately. Data-entry and display forms provide a more structured view of the data than what
a datasheet provides. From this structured view, database records can be viewed, added,
changed, or deleted. Entering data through the data-entry forms is the most common way
to get the data into the database table.

9

Chapter 1: An Introduction to Database Development

1

Data-entry forms can be used to restrict access to certain fi elds within the table. Forms can
also be enhanced with data validation rules or VBA code to check the validity of your data
before it’s added to the database table.

Most users prefer to enter information into data-entry forms rather than into Datasheet
views of tables. Forms often resemble familiar paper documents and can aid the user with
data-entry tasks. Forms make data entry easy to understand by guiding the user through
the fi elds of the table being updated.

Read-only forms are often used for inquiry purposes. These forms display certain fi elds
within a table. Displaying some fi elds and not others means that you can limit a user’s
access to sensitive data while allowing access to other fi elds within the same table.

Reports
Reports present your data in PDF-style formatting. Access allows for an extraordinary
amount of fl exibility when creating reports. For instance, you can confi gure a report to list
all records in a given table (such as a Customers table), or you can have the report contain
only the records meeting certain criteria (such as all customers living in Arizona). You do
this by basing the report on a query that selects only the records needed by the report.

Reports often combine multiple tables to present complex relationships among different
sets of data. An example is printing an invoice. The Customers table provides the customer’s
name and address (and other relevant data) and related records in the sales table to print
the individual line-item information for each product ordered. The report also calculates the
sales totals and prints them in a specifi c format. Additionally, you can have Access output
records into an invoice report, a printed document that summarizes the invoice.

Macros and VBA
Just as Excel has macros and VBA programming functionality, Microsoft Access has its equiv-
alents. This is where the true power and fl exibility of Microsoft Access data analysis resides.
Whether you are using them in custom functions, batch analysis, or automation, macros and
VBA modules can add a customized fl exibility that is hard to match using any other means.
For example, you can use macros and VBA to automatically perform redundant analyses and
recurring analytical processes, leaving you free to work on other tasks. Macros and VBA also
allow you to reduce the chance of human error and to ensure that analyses are preformed the
same way every time. Starting in Chapter 22, you will explore the benefi ts of macros and VBA,
and learn how you can use them to schedule and run batch analysis.

When you design your database tables, keep in mind all the types of information that you want to print. Doing so

ensures that the information you require in your various reports is available from within your database tables.

10

Part I: Access Building Blocks

Planning for Database Objects
To create database objects, such as tables, forms, and reports, you fi rst complete a series of
design tasks. The better your design is, the better your application will be. The more you think
through your design, the faster and more successfully you can complete any system. The design
process is not some necessary evil, nor is its intent to produce voluminous amounts of docu-
mentation. The sole intent of designing an object is to produce a clear-cut path to follow as you
implement it.

A Five-Step Design Method
The fi ve design steps described in this section provide a solid foundation for creating
database applications—including tables, queries, forms, reports, macros, and simple VBA
modules.

The time you spend on each step depends entirely on the circumstances of the database
you’re building. For example, sometimes users give you an example of a report they want
printed from their Access database, and the sources of data on the report are so obvious
that designing the report takes a few minutes. Other times, particularly when the users’
requirements are complex or the business processes supported by the application require a
great deal of research, you may spend many days on Step 1.

As you read through each step of the design process, always look at the design in terms of
outputs and inputs.

Step 1: The overall design—from concept to reality
All software developers face similar problems, the fi rst of which is determining how to meet
the needs of the end user. It’s important to understand the overall user requirements before
zeroing in on the details.

For example, your users may ask for a database that supports the following tasks:

■ Entering and maintaining customer information (name, address, and fi nancial
history)

■ Entering and maintaining sales information (sales date, payment method, total
amount, customer identity, and other fi elds)

■ Entering and maintaining sales line-item information (details of items purchased)

■ Viewing information from all the tables (sales, customers, sales line items, and
payments)

■ Asking all types of questions about the information in the database

■ Producing a monthly invoice report

11

Chapter 1: An Introduction to Database Development

1

■ Producing a customer sales history

■ Producing mailing labels and mail-merge reports

When reviewing these eight tasks, you may need to consider other peripheral tasks that
weren’t mentioned by the user. Before you jump into designing, sit down and learn how the
existing process works. To accomplish this, you must do a thorough needs analysis of the
existing system and how you might automate it.

Prepare a series of questions that give insight to the client’s business and how the client
uses his data. For example, when considering automating any type of business, you might
ask these questions:

■ What reports and forms are currently used?

■ How are sales, customers, and other records currently stored?

■ How are billings processed?

As you ask these questions and others, the client will probably remember other things
about the business that you should know.

A walkthrough of the existing process is also helpful to get a feel for the business. You
may have to go back several times to observe the existing process and how the employ-
ees work.

As you prepare to complete the remaining steps, keep the client involved—let the users
know what you’re doing and ask for input on what to accomplish, making sure it’s within
the scope of the user’s needs.

Step 2: Report design
Although it may seem odd to start with reports, in many cases, users are more interested
in the printed output from a database than they are in any other aspect of the application.
Reports often include every bit of data managed by an application. Because reports tend
to be comprehensive, they’re often the best way to gather important information about a
database’s requirements.

When you see the reports that you’ll create in this section, you may wonder, “Which comes
fi rst, the chicken or the egg?” Does the report layout come fi rst, or do you fi rst determine
the data items and text that make up the report? Actually, these items are considered at
the same time.

It isn’t important how you lay out the data in a report. The more time you take now, how-
ever, the easier it will be to construct the report. Some people go so far as to place grid-
lines on the report to identify exactly where they want each bit of data to be.

12

Part I: Access Building Blocks

Step 3: Data design
The next step in the design phase is to take an inventory of all the information needed by
the reports. One of the best methods is to list the data items in each report. As you do so,
take careful note of items that are included in more than one report. Make sure that you
keep the same name for a data item that is in more than one report because the data item
is really the same item.

For example, you can start with all the customer data you’ll need for each report, as shown
in Table 1.1.

TABLE 1.1 Customer-Related Data Items Found in the Reports

Customers Report Invoice Report

Customer Name Customer Name

Street Street

City City

State State

ZIP Code ZIP Code

Phone Numbers Phone Numbers

E-Mail Address

Web Address

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate

Credit Information (four fi elds)

As you can see by comparing the type of customer information needed for each report,
there are many common fi elds. Most of the customer data fi elds are found in both reports.
Table 1.1 shows only some of the fi elds that are used in each report—those related to cus-
tomer information. Because the related row and fi eld names are the same, you can easily
make sure that you have all the data items. Although locating items easily isn’t critical
for this small database, it becomes very important when you have to deal with large tables
containing many fi elds.

After extracting the customer data, you can move on to the sales data. In this case,
you need to analyze only the Invoice report for data items that are specifi c to the sales.
Table 1.2 lists the fi elds in the report that contain information about sales.

13

Chapter 1: An Introduction to Database Development

1

TABLE 1.2 Sales Data Items Found in the Reports

Invoice Report Line Item Data

Invoice Number Product Purchased

Sales Date Quantity Purchased

Invoice Date Description of Item Purchased

Payment Method Price of Item

Salesperson Discount for Each Item

Discount (overall for sale)

Tax Location

Tax Rate

Product Purchased (multiple lines)

Quantity Purchased (multiple lines)

Description of Item Purchased (multiple lines)

Price of Item (multiple lines)

Discount for each item (multiple lines)

Payment Type (multiple lines)

Payment Date (multiple lines)

Payment Amount (multiple lines)

Credit Card Number (multiple lines)

Expiration Date (multiple lines)

As you can see when you examine the type of sales information needed for the report, a
few items (fi elds) are repeating (for example, the Product Purchased, Quantity Purchased,
and Price of Item fi elds). Each invoice can have multiple items, and each of these items
needs the same type of information—number ordered and price per item. Many sales have
more than one purchased item. Also, each invoice may include partial payments, and it’s
possible that this payment information will have multiple lines of payment information, so
these repeating items can be put into their own grouping.

You can take all the individual items that you found in the sales information group in the
preceding section and extract them to their own group for the invoice report. Table 1.2
shows the information related to each line item.

Step 4: Table design
Now for the diffi cult part: You must determine which fi elds are needed for the tables that
make up the reports. When you examine the multitude of fi elds and calculations that make
up the many documents you have, you begin to see which fi elds belong to the various

14

Part I: Access Building Blocks

tables in the database. (You already did much of the preliminary work by arranging the
fi elds into logical groups.) For now, include every fi eld you extracted. You’ll need to add
others later (for various reasons), although certain fi elds won’t appear in any table.

It’s important to understand that you don’t need to add every little bit of data into the
database’s tables. For example, users may want to add vacation and other out-of-offi ce days
to the database to make it easy to know which employees are available on a particular day.
However, it’s very easy to burden an application’s initial design by incorporating too many
ideas during the initial development phases. Because Access tables are so easy to modify
later, it’s probably best to put aside noncritical items until the initial design is complete.
Generally speaking, it’s not diffi cult to accommodate user requests after the database
development project is under way.

After you’ve used each report to display all the data, it’s time to consolidate the data by
purpose (for example, grouped into logical groups) and then compare the data across those
functions. To do this step, fi rst look at the customer information and combine all its different
fi elds to create a single set of data items. Then do the same thing for the sales information and
the line-item information. Table 1.3 compares data items from these groups of information.

TABLE 1.3 Comparing the Data Items

Customer Data Invoice Data Line Items Payment Information

Customer Company
Name

Invoice Number Product Purchased Payment Type

Street Sales Date Quantity Purchased Payment Date

City Invoice Date Description of Item
Purchased

Payment Amount

State Discount (overall for
this sale)

Price of Item Credit Card Number

ZIP Code Tax Rate Discount for Each Item Expiration Date

Phone Numbers
(two fi elds)

Taxable?

E-Mail Address

Web Address

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate

Credit Information
(four fi elds)

15

Chapter 1: An Introduction to Database Development

1

Consolidating and comparing data is a good way to start creating the individual table, but
you have much more to do.

As you learn more about how to perform a data design, you also learn that the customer
data must be split into two groups. Some of these items are used only once for each cus-
tomer, while other items may have multiple entries. An example is the Sales column—the
payment information can have multiple lines of information.

You need to further break these types of information into their own columns, thus separat-
ing all related types of items into their own columns—an example of the normalization part
of the design process. For example, one customer can have multiple contacts with the com-
pany or make multiple payments toward a single sale. Of course, we’ve already broken the
data into three categories: customer data, invoice data, and line item details.

Keep in mind that one customer may have multiple invoices, and each invoice may have
multiple line items on it. The invoice-data category contains information about individual
sales and the line-items category contains information about each invoice. Notice that
these three columns are all related; for example, one customer can have multiple invoices,
and each invoice may require multiple line items.

The relationships between tables can be different. For example, each sales invoice has one
and only one customer, while each customer may have multiple sales. A similar relationship
exists between the sales invoice and the line items of the invoice.

Database table relationships require a unique fi eld in both tables involved in a relationship.
A unique identifi er in each table helps the database engine to properly join and extract
related data.

Only the Sales table has a unique identifi er (Invoice Number), which means that you need
to add at least one fi eld to each of the other tables to serve as the link to other tables—for
example, adding a Customer ID fi eld to the Customers table, adding the same fi eld to the
Invoice table, and establishing a relationship between the tables through Customer ID in
each table. The database engine uses the relationship between customers and invoices to
connect customers with their invoices. Relationships between tables are facilitated through
the use of key fi elds.

We cover creating and understanding relationships and the normalization process in Chapter 4.

With an understanding of the need for linking one group of fi elds to another group, you
can add the required key fi elds to each group. Table 1.4 shows two new groups and link
fi elds created for each group of fi elds. These linking fi elds, known as primary keys and
foreign keys, are used to link these tables together.

16

Part I: Access Building Blocks

The fi eld that uniquely identifi es each row in a table is the primary key. The correspond-
ing fi eld in a related table is the foreign key. In our example, Customer ID in the Customers
table is a primary key, while Customer ID in the Invoices table is a foreign key.

Let’s assume a certain record in the Customers table has 12 in its Customer ID fi eld. Any
record in the Invoices table with 12 as its Customer ID is “owned” by customer 12.

TABLE 1.4 Tables with Keys

Customers Data Invoice Data Line Items Data Sales Payment Data

Customer ID Invoice ID Invoice ID Invoice ID

Customer Name Customer ID Line Number Payment Type

Street Invoice Number Product Purchased Payment Date

City Sales Date Quantity Purchased Payment Amount

State Invoice Date Description of Item
Purchased

Credit Card Number

ZIP Code Payment Method Price of Item Expiration Date

Phone Numbers
(two fi elds)

Salesperson Discount for Each Item

E-Mail Address Tax Rate

Web Address

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate

With the key fi elds added to each table, you can now fi nd a fi eld in each table that links
it to other tables in the database. For example, Table 1.4 shows Customer ID in both the
Customers table (where it’s the primary key) and the Invoice table (where it’s a foreign key).

You’ve identifi ed the three core tables for your system, as refl ected by the fi rst three col-
umns in Table 1.4. This is the general, or fi rst, cut toward the fi nal table designs. You’ve
also created an additional fact table to hold the sales payment data. Normally, payment
details (such as the credit card number) are not part of a sales invoice.

Taking time to properly design your database and the tables contained within it is arguably
the most important step in developing a database-oriented application. By designing your
database effi ciently, you maintain control of the data, eliminating costly data-entry mis-
takes and limiting your data entry to essential fi elds.

17

Chapter 1: An Introduction to Database Development

1

Although this book is not geared toward teaching database theory and all its nuances, this
is a good place to briefl y describe the art of database normalization. You’ll read the details
of normalization in Chapter 4, but in the meantime you should know that normalization is
the process of breaking data down into constituent tables. Earlier in this chapter you read
about how many Access developers add dissimilar information, such as customers, invoice
data, and invoice line items, into one large table. A large table containing dissimilar data
quickly becomes unwieldy and hard to keep updated. Because a customer’s phone number
appears in every row containing that customer’s data, multiple updates must be made when
the phone number changes.

Step 5: Form design
After you’ve created the data and established table relationships, it’s time to design your
forms. Forms are made up of the fi elds that can be entered or viewed in Edit mode. Generally
speaking, your Access screens should look a lot like the forms used in a manual system.

When you’re designing forms, you need to place three types of objects onscreen:

■ Labels and text-box data-entry fields: The fi elds on Access forms and reports are
called controls.

■ Special controls (command buttons, multiple-line text boxes, option buttons,
list boxes, check boxes, business graphs, and pictures).

■ Graphical objects to enhance the forms (colors, lines, rectangles, and three-
dimensional effects).

Ideally, if the form is being developed from an existing printed form, the Access data-entry
form should resemble the printed form. The fi elds should be in the same relative place on
the screen as they are in the printed counterpart.

Labels display messages, titles, or captions. Text boxes provide an area where you can type
or display text or numbers that are contained in your database. Check boxes indicate a con-
dition and are either unchecked or checked. Other types of controls available with Access
include command buttons, list boxes, combo boxes, option buttons, toggle buttons, and
option groups.

 Starting with Part V, we cover in detail the topic of creating forms.

