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1.1. INTRODUCTION

Pigments are widely used in a variety of industries. In the food industry, one of the
most important goals is to develop foods that have an attractive flavor and appearance.
Artificial food coloring using synthetic dyes can make foods more appealing and
desirable. However, the safety of these dyes has been questioned. Recent research has
linked synthetic food dyes to a number of potential health problems, such as cancer in
animals and attention-deficit disorder in children (Potera 2010). Synthetic colorants
are criticized for having these problems, and consumers are showing more and more
interest in products that do not include artificial coloring agents. Therefore, various
natural sources of food-grade colorants are in high demand. The textile industry also
uses millions of tons of dyes, pigments, and dye precursors every year, and almost all
of them are manufactured synthetically (Chequer ef al. 2013). Synthetic dyes have
serious limitations in that their production involves the use of toxic chemicals and
can generate hazardous wastes, which is unfriendly to the environment and to human
health (Khan et al. 2013).

Biological pigments are substances from biological sources that have a par-
ticular color, corresponding to their structure. They are found in plants, animals,
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2 INTRODUCTION OF NATURAL PIGMENTS FROM MICROORGANISMS

and microbial organisms. Natural pigments have been long studied, but they are
receiving increasing attention from industry because of the potential health and
environmental concerns around synthetic dyes. Biological pigments from microbial
cells are termed “microbial pigments.” In addition to their function as colorants,
some microbial pigments are also used to promote human health, providing key
nutrients or compounds required by the body. Some also have particular biological
activities, such as anti-inflammatory, antibiotic, anticancer, and immunosuppressive
properties (Soliev et al. 2011). Microbial pigments with fluorescence are used in
laboratories to label antibodies (Mahmoudian et al. 2010). Some pigments can also
be used to indicate the progress of specific reactions or to track pH changes through
changes in their color (Venil et al. 2014). A large number of pigments are produced
by various species of bacteria, yeasts, fungi, and algae, with colors including
brown, black, red, orange, yellow, green, blue, and purple, and structures such as
carotenoids, anthraquinones, flavonoids, and tetrapirroles. Different biosynthetic
enzymes are involved in the biosynthesis of microbial pigments. For example,
carotenoids are typically synthesized by terpene synthases, flavonoids are assembled
by polyketide synthases (PKSs), and indigoidine — a bacterial blue pigment — is
synthesized by a nonribosomal peptide synthetase. Microbial pigments are used for
different purposes depending on their color property and biological function. This
chapter covers a variety of microbial pigments from eukaryotic and prokaryotic
sources and discusses their properties and applications.

1.2. MICROBIAL PIGMENTS FROM EUKARYOTIC SOURCES

The cells of eukaryotes such as plants, animals, and fungi contain a nucleus and other
organelles. Eukaryotic microorganisms produce a lot of different pigments. Some rep-
resentative pigments from these organisms are described in this section, categorized
according to their source: algae, fungi, and yeasts.

1.2.1. Pigments from Algae

Algae produce a variety of pigments. The most commonly used in the industry is
the carotenoid p-carotene (Figure 1.1). Carotenoids belong to the family of tetrater-
penoids and are found in the chloroplasts and chromoplasts of plants, algae, fungi,
and some bacteria (Asker ef al. 2007). They are yellow, orange, and red pigments that
can be used for coloration. 3-carotene is a red-orange nonpolar pigment that can be
obtained from Dunaliella salina, a kind of marine green microalga. The production
of p-carotene in D. salina is affected by high salinity, temperature, and light inten-
sity. A high B-carotene content in D. salina can help it protect itself from intense
light and osmotic pressure in the ocean (Oren 2005). B-carotene is well known for
its antioxidant activity and for its use as food supplement (Stargrove et al. 2008). It
is commercially produced across the world, due to its widespread use (Oren 2005).
The first company to manufacture and sell natural p-carotene, Betatene Ltd., was
established in 1985 (Nelis and Deleenheer 1991). Production of f-carotene from
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4 INTRODUCTION OF NATURAL PIGMENTS FROM MICROORGANISMS

D. salina is often seen in large open ponds located in or near salt lakes in Australia,
the United States, and China.

Besides fB-carotene, many other carotenoids are produced by microalgae. For
example, lutein (Figure 1.1) is obtained from different green algae, such as Chlorella,
Chlorococcum, Chlamydomonas, and Spongiococcum. Lutein is a red-orange pig-
ment that is generally insoluble in water. For some time, it was widely used in chicken
feeds to improve the color of broiler chicken skin and egg yolks (Philip et al. 1976). In
the human body, lutein is concentrated in the macula. Some research has revealed that
lutein protects eyes against oxidation (Berendschot et al. 2000; Malinow et al. 1980).
Canthaxanthin (Figure 1.1), a dark red food coloring agent, is another example of
a cartenoid produced by algae. Dictyococcus cinnabarinus was reported to produce
it canthaxanthin in 1970. The final concentration of cellular canthaxanthin in this
organism is 1.0—1.2 mg/g (Tuttobelll and Ranciag 1970). Astaxanthin (Figure 1.1) is
a red terpene that is biosynthesized by Haematococcus pluviais with up to 2% dry
weight quantity (Nonomura 1990). This compound is a food coloring agent approved
by the US Food and Drug Administration (FDA).

Algae produce many other microbial pigments, including water-soluble
green chlorophyll, blue phycocyanins, and red phycoerythrins, from Rhodophta,
Cyanophta, and Cryptophyta, respectively (Telford et al. 2001). Halobacterium spp.
have been found to be responsible for the red color in the Great Salt Lake, Dead Sea,
and Lake Magadi (Oren 2005).

1.2.2. Pigments from Fungi

Fungi comprise a diverse group of eukaryotic organisms, including yeasts, molds, and
mushrooms. Some fungi are known to produce color compounds with particular bio-
logical properties. Many fungal pigments possess ecological functions varying from
providing protection against environmental stress to preventing photo-oxidation.
Some pigments, such as flavins, can even act as cofactors in enzyme catalysis
(Mapari et al. 2010).

Riboflavin (vitamin B2) is a yellow food colorant that is approved for use in many
countries. It is also used in the clinic to treat neonatal jaundice (Bailey et al. 1997) and
it has been reported to prevent migraine (Sandor ef al. 2000). Its structure is shown
in Figure 1.2. Many molds can be used to produce riboflavin through fermentation
(Jacobson and Wasileski 1994; Santos et al. 2005; Stahmann et al. 2000). Ashbya
gossypi has been widely used in the production of riboflavin, as it provides a high
yield and good genetic stability. Its final riboflavin level can reach 15 g/L. (Broder
and Koehler 1980).

A variety of color compounds have been discovered from fungi. The same
genus may produce different pigments. This is exemplified by Monascus. Monascus
can be classified into four different species: M. pilosus, M. purpureus, M. ruberand
and M. froridanus. Different Monascus species produce many different industrially
important pigments with three colors: red, orange, and yellowish. For example,
M. purpureus 192F produces the yellow pigments monascin and ankaflavin, the
orange pigment rubropunctatin, and the red pigment monascorubramine (Figure 1.2).
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6 INTRODUCTION OF NATURAL PIGMENTS FROM MICROORGANISMS

Monascorubramine is the major product. The pH and nitrogen source in the
fermentation broth affect the composition and yield of the pigments. Supplementa-
tion of Monascus pigments as a coloring agent into food can provide novel flavors
(Chen and Johns 1993). These fungal metabolites have also shown interesting
biological activities. For example, monascin and ankaflavin are natural 5’ adenosine
monophosphate-activated protein kinase (AMPK) activators and have shown
hypolipidemic and anti-inflammatory activities (Hsu er al. 2013, 2014). The two
compounds have been found to improve memory and learning ability in amyloid
[-protein intracerebroventricular-infused rat by suppressing Alzheimer’s disease risk
factors (Lee er al. 2015). Anticancer, antiatherosclerotic, antiallergic, antioxidant,
and antidiabetic properties have also been reported (Hsu and Pan 2014; Hsu et al.
2011, 2012, 2014; Lee et al. 2012).

While the most common method of pigment production from microbes on an
industrial scale is submerged fermentation, an immobilized culture system or solid-
state fermentation system can be used for Monascus fermentation, with rice cassava,
corn, and oat as the substrates. Under this system, the carbon source, nitrogen
source, pH, and temperature can be easily controlled during production (Chen and
Johns 1993; Tuli et al. 2015). Blue light has also shown various effects on pigment
production in Monascus (Chen et al. 2016; Wang et al. 2015).

Bikaverin (Figure 1.2) is a red pigment that comes from fungi such as Fusarium
and Gibberella (Chelkowski et al. 1992; Zhan et al. 2007). It represents a medici-
nally relevant compound, having been found to possess strong antimicrobial activity
against certain protozoa and fungi, as well as promising anticancer activity (Desh-
mukh et al. 2014; Zhan et al. 2007). It is a polyketide compound that is assembled
by a nonreducing type I PKS from ten units of malonyl-CoA. Its production has
been extensively studied. During production from Gibberella fujikuro, its produc-
tion medium was determined by a fractional factorial design and tested in a fluidized
bioreactor, with the pigment found to be produced at 6.83 g/L. (Escamilla-Silva et al.
2001).

Atrovenetin and herqueinone (Figure 1.2) are two structurally related pigments
from filamentous fungi such as Penicillium herquei (Narasimhachari and Ramaswami
1966; Narasimhachari and Vining 1963) and Penicillium atrovenetum (Neill and
Raistrick 1957). These compounds belong to the family of polyketides. Atrovenetin
is purified as yellow-orange plates. It is a deoxyherqueinone-type phenalenone that
has characteristic color reactions. It is orange in sodium hydroxide, yellow in con-
centrated sulfuric acid (with an intense yellow-green fluorescence), and red-brown
in ethanolic ferric chloride. It has shown potent antioxidant activity and can
stabilize vegetable oils such as soybean, rapeseed, and palm oils (Ishikawa and
Sada 1991; Ishikawa et al. 1991). Herqueinone is a red pigment from P. herquei.
Recently, the herqueinone biosynthetic gene cluster was identified from the genome
of P. herquei. A nonreducing PKS in this gene cluster named PhnA synthesizes
the heptaketide backbone and cyclizes it into the angular, hemiketal-containing
naphtho-y-pyroneprephenalenone (Gao et al. 2016), which is subjected to additional
tailoring to form herqueinone.
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The aforementioned pigments are just the tip of the iceberg of microbial
pigments that can be produced from fungi. Fungal pigments exhibit rich chemical
and structural diversity, with different colors. Emericella represents another good
example of the diversity of fungal pigments: epurpurins A—C can be isolated from
Emericella purpurea, falconensins A—H from Emericella falconensis, and falconen-
sones Al and B2 from Emericella fructiculosa (Mapari et al. 2005; Ogasawara and
Kawai 1997). Anthraquinone (octaketide) pigments such as catenarin (Figure 1.2),
parietin, macrosporin, chrysophanol, cynodontin, helminthosporin, tritisporin, and
erythroglaucin are polyketide compounds produced by Eurotium spp., Fusarium
oxysporum, Curvularia lunata, Dermocybe sanguinea, Penicillium sp., and Drech-
slera spp. (Gessler et al. 2013; Zhan et al. 2004). Catenarin is a red compound that
has been isolated from a variety of fungi, including Pyrenophora tritici-repentis
(Wakulinski et al. 2003), Ventilago leiocarpa (Lin et al. 2001), Talaromyces stipitatus
(van Eijk 1973), and marine sponge-associated fungus Eurotium cristatum (Lin et al.
2001). It is phytotoxic and has been proposed to cause the red smudge symptom and
contribute to tan spot, an important foliar disease of wheat caused by P. tritici-repentis
(Bouras and Strelkov 2008). Catenarin has been found to inhibit the growth of fungi
accompanying P. tritici-repentis during the saprophytic phase of development, with
Epicoccum nigrum as the most sensitive species (Wakulinski et al. 2003). A recent
study showed that catenarin can prevent type 1 diabetes in non-obese diabetic mice
via inhibition of leukocyte migration involving the MEK6/p38 and MEK7/JNK
pathways (Shen et al. 2012). This pigment has also shown in vitro inhibition of
DNA-dependent RNA polymerase from Escherichia coli (Anke et al. 1980).

Besides the structural diversity, fungal pigments demonstrate a wide range of
applications in industry and in the clinic, and their use is thus not limited to coloring
agents. While anthraquinone from D. sanguinea and other pigments from Tricho-
derma spp. are widely involved in the wool and silk fiber industry, a red anthraquinone
isolated from Penicillium oxalicum has been reported to have anticancer effects when
used in food supplements (Sardaryan 2002). Some pigments mentioned in the algae
section, such as p-carotene, astaxanthin, and canthaxanthin, can be produced by some
fungi as well. Given the huge reservoir of fungi and their complex metabolic net-
works, it is expected that more and more pigments will be discovered from them in
the future.

1.2.3. Pigments from Yeasts

Yeasts are a good source of microbial pigments. Different yeast strains, such as
Rhodotorula glutinis, Cryptococus sp., Phaffia rhodozyma, and Yarrowia lipolytica,
are able to produce different microbial pigments (Buzzini 2001). R. glutinis is
a good example of why the biotech industry is so interested in yeasts, as it can
make a number of different high-value pigments, such as P-carotene, torulene,
and torularhodin (Latha and Jeevaratnam 2010). Researchers have engineered the
production of total carotenoids from this strain by ultraviolet (UV)-B radiation
mutation, because the low production rate of the wild type limited its industrial
application (Moline et al. 2012). R. glutinis is also rich in vitamins and fat, and its
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extract has thus been used in feeds to enrich their nutrition and to protect against
fungal contamination (Buzzini 2001).

Another specific yeast worth mentioning here is the basidiomycetous
P. rhodozyma, also known as ‘“colorful odyssey.” P. rhodozyma was first iso-
lated in the 1960s. Researchers first became interested in this pink yeast because of
its ability to biosynthesize the economically important pigment astaxanthin. An effi-
cient method for the isolation of this pigment from P. rhodozyma has been established
(Johnson et al. 1978). In fact, it has been found that the production of astaxan-
thinin in P. rhodozyma protects the strain against reactive oxygen species (ROS)
(Johnson 2003).

In addition to the previously mentioned microbial pigments, yeasts can biosyn-
thesize other kinds of pigment as well. Melanin has been reported to be produced
by Saccharomyces neoformans var. nigricans (Vinarov et al. 2003). “Melanin”
(Figure 1.3) and “melanin-like pigment” are broad terms for the black pigments
observed in various organisms, including yeasts and bacteria. The biosynthesis of
melanin results from the oxidation of tyrosine. This group of pigments can efficiently
dissipate UV radiation. Therefore, melanin is used to protect against UV radiation
and reduce the risk of skin cancer (Brenner and Hearing 2008). Another yeast
species, Y. lipolytica, has been reported to produce a brown microbial pigment from
tyrosine. Based on the production of this pigment in Y. lipolytica, Carreira et al.
(2001) were able to reveal the mechanism of pigment production from tyrosine in a
yeast species. Biliverdin (Figure 1.3) is a green tetrapyrrolic bile pigment found in
human and non-human animals. This compound has shown promising antimutagenic
and antioxidant properties. It is generated from heme by heme oxygenase. It can be
further converted to bilirubin by biliverdin reductase. Microorganisms, including
yeasts, are known to produce this pigment as well. For example, it has been reported
that Candida lipolytica produces biliverdin with glucose or hexadecane as the carbon
source (Finogenova and Glazunova 1969). The gene responsible for the biosynthesis
of biliverdin has been discovered in yeast. Though biliverdin’s production yield is
low in yeast, bioengineers have successfully cloned, optimized, and expressed it in
engineered E. coli (Chen et al. 2012), which represents a scalable and more efficient
production method.

HOOC COOH

Melanin Biliverdin

Figure 1.3. Structures of melanin and biliverdin.
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1.3. NATURAL PIGMENTS FROM PROKARYOTES

Prokaryotes are structurally simpler and have fewer metabolic pathways than eukary-
otes. However, they are also known to produce a variety of metabolites with different
colors. Pigments from cyanobacteria and other bacteria are discussed in this section.

1.3.1. Natural Pigments from Cyanobacteria

Cyanobacteria are a diverse and ubiquitous group of prokaryotes that were formerly
called blue-green algae. Unlike other algae, cyanobacteria are unicellular organisms
and lack a nucleus and other membrane-bound organelles. Thus, they belong to
prokaryotes, and have some features similar to those of common bacteria.

Many cyanobacteria produce light-absorbing pigments such as chlorophylls,
carotenoids, and phycobiliproteins. Separation of cyanobacterial pigments by chro-
matography has been reported (Merzlyak et al. 1983). Most photosynthetic pigments
bind to specific proteins in cyanobacteria to form complexes. Phycocyanin (blue),
allophycocyanin (red), and phycoerythrin (red) are representative phycobiliproteins
from cyanobacteria such as Oscillatoria redekei. Phycocyanobilin (Figure 1.4) is a
blue phycobillin that is present in allophycocyanin and phycocyanin, while phycoery-
throbilin (Figure 1.4) is a red phycobillin from phycoerythrin. These water-soluble
pigment—protein complexes possess a variety of pharmacological properties. For
example, phycocyanin is known to have antioxidant, anti-inflammatory, hepatopro-
tective, and neuroprotective activities (Rajagopal et al. 1997b). Phycocyanin can be
used as a natural dye and food additive, and has applications in the nutraceutical

HOOC COOH

Phycocyanbilin

HOOC COOH

Phycoerythrobilin

Figure 1.4. Structures of phycocyanbilin and phycoerythrobilin.
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and pharmaceutical industries. It has also been proposed that phycocyanin may act
as a nitrogen reserve that can be reused during nitrogen starvation (Allen and Smith
1969).

Scytonemin (Figure 1.5) is an extracellular pigment produced by various
sheathed cyanobacteria, such as Scytonema myochrous, Calothrix sp., and Lyngbya
aestuarii (Dillon and Castenholz 2003). It has a yellow-brown color. Scytonemin
becomes green and red in oxidized and reduced states, respectively. This pigment
is an effective, photostable UV shield in prokaryotes (Rastogi er al. 2013, 2015).
Though it was discovered in 1849, its structure was not characterized until 1993.
This compound contains novel indolic and phenolic subunits (Proteau et al. 1993).
Its biosynthesis in Lyngbya aestuarii has been studied. Three enzymes, ScyA, ScyB,
and ScyC, are involved in the biosynthetic pathway that converts L-tryptophan and
p-hydroxyphenylpyruvic acid into scytonemin (Figure 1.5) (Balskus et al. 2011). In
addition to its UV-blocking activity, scytonemin has also shown anti-inflammatory,
anticancer, antiproliferative, and antioxidant activities. Thus, it has found applica-
tions in sunscreen and as a therapeutic agent. In addition, scytonemin can be used as
a biosignature in searching for life on Mars and other planets (Mishra et al. 2015).

1.3.2. Natural Pigments from Bacteria

The pigments produced by bacteria are usually light-absorbing compounds. They
are responsible for the colors displayed by the organisms that produce them
(Rajagopal et al. 1997b). As an alternative to the synthetic pigments used in various
industries (food, drinks, cosmetics, textiles, pharmaceuticals), bacterial pigments
provide a promising avenue for various applications, because of their significantly
better biodegradability, safety profile, health benefits, and compatibility with the
environment.

Bacteria produce a variety of carotenoids. The ketocarotenoid pigments
astaxanthin and canthaxanthin, described in Section 1.2.1, are widely distributed
in nature. Astaxanthin, a red ketocarotenoid, exhibits health-promoting activities
such as antioxidant and anti-inflammatory effects. A unique astaxanthin-producing
bacterium (strain TDMA-17T) belonging to the family Sphingomonadaceae has
been isolated (Asker et al. 2012a). Photosynthetic bacteria have also been reported
to produce carotenoids. Bradyrhizobium sp. strain ORS278 can produce a higher
quantity of canthaxanthin, and the pigment represents 85% of its total carotenoid
content (Hannibal ef al. 2000). Humans and animals must obtain carotenoids through
their diet as they lack the ability to synthesize carotenoids (Sacchi 2013). Carotenoids
are added to animal feed to improve the color of chicken skin, egg yolks, and salmon
(Rajput et al. 2012). p-carotene and zeaxanthin (Figure 1.6), which belong to the
carotene family, are produced by many bacteria, including Flavobacterium sp. and
Paracoccus xanthinifaciens (Berry et al. 2003). Zeaxanthin, with a yellow color, is a
promising nutraceutical with many applications in the feed, food, and pharmaceutical
industries due to its powerful antioxidant property. Dalal Asker isolated two effective
zeaxanthin-producing bacteria, strains TDMA-5T and -16T, from the families of
Sphingobacteriaceae and Sphingomonadaceae, respectively (Asker et al. 2012b).
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These carotene pigments are essential to maintaining the yellow color of the retinal
macula, which gives them the ability to act as a sunblock on certain parts of the
retina.

The phytopathogenic genus Xanthomonas produces a group of carotenoid-like
pigments called xanthomonadins. These yellow, water-insoluble pigments are bromi-
nated aryl-polyenes associated exclusively with the outer membrane of the bacterial
cell wall. Studies have shown that xanthomonadins are associated with the protection
of the producing strains against photobiological damage (Jenkins and Starr 1982;
Poplawsky et al. 2000; Rajagopal et al. 1997a). The structure of xanthomonadin I
(Andrewes et al. 1976) is shown in Figure 1.6.

The bright-red pigment prodigiosin (Figure 1.6) is a tripyrrole. It was first charac-
terized from Serratia marcescens and has been shown to be localized in extracellular
and cell-associated vesicles and in intracellular granules (Kobayashi and Ichikawa
1991). A wide variety of bacteria can produce prodigiosin-related metabolites, and
S. marcescens is a major producer of prodigiosin (Furstner 2003). Prodigiosin has
been found to provide significant protection against UV stress in Vibrio sp. DSM
14379 (Boric et al. 2011). Immunosuppressive and anticancer activities have been
reported for different prodigiosin analogs and synthetic indole derivatives (Montaner
and Perez-Tomas 2003; Pandey et al. 2007). Prodigiosin has also been reported to
be an active component in preventing and treating diabetes mellitus, and it has some
applications in this regard (Hwanmook et al. 2003). Prodigiosin shows a red color,
which means it can be used to dye many fibers, including wool, nylon, acrylics, and
silk (Alihosseini et al. 2008). Ahmad et al. (2012) tested prodigiosin for its dyeing
efficiency in a number of different fabrics (pure cotton, pure silk, pure rayon, jacquard
rayon, acrylic, cotton, silk satin, and polyester). The results suggest that it could be
used to dye acrylic. They also evaluated the potential of prodigiosin in coloring can-
dles, paper, and soap and to be used as ink. Translucent candles showed a more intense
coloration than fluted varieties. Prodigiosin-dyed paper became substantially reduced
in color upon exposure to both sunlight and fluorescent light (Ahmad et al. 2012).

Violacein (Figure 1.6) is a natural pigment with striking purple hues. It is pro-
duced by diverse genera of bacterial strains, including Collimonas and Duganella.
It has strong antibacterial effects due to its function as a toxin guarding against
diverse potential bacterial predators, which makes it a promising drug candidate
against Staphylococcus aureus and other Gram-positive pathogens. It has also
shown activities against various cancer cells (Choi et al. 2015). Because it is easy
to visualize, production of violacein by C. violaceum has become a useful indicator
of quorum-sensing molecules and their inhibitors (Burt ez al. 2014). The production
of violacein by Duganella sp. B2 has been studied. The concentrations of potassium
nitrate, L-tryptophan, and beef extract, the volume in the flask, and the pH showed
significant effects on the production yield. The yield of violacein by Duganella sp.
B2 reached 1.62 g/L under optimal conditions (Wang et al. 2009).

Melanin is a negatively charged, high-molecular-weight polymer with a black,
brown, or gray color. It is synthesized from polymerized phenolic and/or indolic com-
pounds and is usually used in sunblock to protect the skin against UV radiation. It
can be found in many bacteria, including Cryptococcus neoformans and Burkholderia
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14 INTRODUCTION OF NATURAL PIGMENTS FROM MICROORGANISMS

cepacia (Nosanchuk and Casadevall 2006). Microbes that can produce melanin show
ametal-chelating ability (McLean et al. 1998). In addition, melanin shows significant
antioxidant activity (Plonka and Grabacka 2006).

Actinorhodin (Figure 1.6) is a benzoisochromanequinone polyketide antibiotic
produced from Streptomyces coelicolor (Magnolo et al. 1991). It belongs to a class
of aromatic polyketides synthesized by type II PKSs (Manikprabhu and Lingappa
2013). It can be used as a pH indicator, turning red below pH 8.5 and blue above.

Indigo (Figure 1.7a) is a widely used natural dye originally from plants such
as Indigofera. Since the natural source for indigo is limited, chemical synthesis has
become the most economic method of producing this dye. However, chemical synthe-
sis requires harsh conditions and the use of a strong base, which is environmentally
unfriendly. Indigoidine (Figure 1.7b) is a water-insoluble blue pigment that was first
isolated from phytopathogenic Erwinia as a powerful radical scavenger that enables
phytopathogens to tolerate oxidative stress, organic peroxides, and superoxides dur-
ing the plant defense response due to its structure of carbon—carbon double bonds
conjugated with a carbonyl group. This bacterial pigment shows a bright blue color
similar to that of indigo. Several different strains are reported to produce it. Indigoi-
dine is assembled from two units of L-glutamine by a nonribosomal peptide syn-
thetase (e.g. IndC from Erwinia chrysanthemi and Streptomyces aureofaciens CCM
3239, BpsA from Streptomyces lavendulae and Sc-indC from Streptomyces chro-
mofuscus ATCC 49982) (Figure 1.7b). Recently, an indigoidine biosynthetic gene
cluster was located in the genome of S. chromofuscus ATCC 49982. The gene cluster

N2 Indigoidine

(b)

Figure 1.7. Indigo (from plants) and indigoidine (from bacteria). (a) Structure of indigo.
(b) Biosynthetic pathway of indigoidine.
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is silent and consists of five open reading frames, called orfl, Sc-indC, Sc-indA,
Sc-indB, and orf2. Sc-IndC was functionally characterized as an indigoidine syn-
thase through heterologous expression of the enzyme in both Streptomyces coelicolor
CH999 and E. coli BAPI. The titer of indigoidine in E. coli BAP1 was reported to
be 2.78 g/l under optimized conditions. Its production was dramatically increased
(by 41.4%/3.93 g/L) when Sc-IndB was co-expressed with it in E. coli BAP1 (Yu
et al. 2013). In order to further improve production, a glutamine synthetase gene was
amplified from E. coli and co-expressed with Sc-indC and Sc-indB in E. coli BAP1.
At 2.5mM (NH,),HPO,, the titer can reach 7.08 +0.11 g/L (Xu et al. 2015). This
provides a green, efficient production process for this promising blue dye.

Flaviolin is a dark yellow-brown compound from bacteria. It is synthesized
through a type III polyketide biosynthetic pathway (Figure 1.8). Sequencing of the
genome of Streptomyces toxytricini NRRL 15443 revealed a type III polyketide
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Figure 1.8. Biosynthetic pathway of flaviolin.
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biosynthetic gene cluster, which includes stzs (type III PKS), stmo (monooxygenase),
and two cytochrome P450 genes, stp450-1 and stp450-2. StTS is a type III polyketide
synthase that is homologous to RppA, a 1,3,6,8-tetrahydroxynaphthalene (THN)
synthase from Streptomyces griseus (Funa et al. 1999). When it was overexpressed in
E. coli BL21(DE3), flaviolin was produced. StTS utilizes five units of malonyl-CoA
to synthesize THN, which can be oxidized by StMO or air to generate flaviolin.
UV irradiation test showed that expression of StTS in E. coli BL21(DE3) provides
strong protection of the cells against UV radiation.

1.4. CONCLUSION

Microorganisms produce a variety of pigments — many more than have been
discussed in this chapter. The structures and functions of some of these microbial
pigments are well established, but many others still remain to be solved. It is
important to discover and identify more pigments and understand their physical,
chemical, and biological properties, in order to use them in industry. In comparison
to pigments from other sources, such as animals and plants, the production of
microbial pigments can be easily scaled up. The recent development of recombinant
technology, synthetic biology, and metabolic engineering will further facilitate
cost-effective production of microbial pigments for industrial applications.
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