
CHAPTER 1 Macro Fundamentals 9

0003038454.INDD 9 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

 IN THIS CHAPTER

 » Why use macros

 » Recording macros

 » Understanding macro security

 » Examples of macros in action

 Macro Fundamentals

A macro is essentially a set of instructions or code that you create to tell Excel
to execute any number of actions. In Excel, macros can be written or
recorded. The key word here is recorded.

 Recording a macro is like programming a phone number into your cell phone. You
fi rst manually dial and save a number. Then when you want, you can redial those
numbers with the touch of a button. Just as on a cell phone, you can record your
actions in Excel while you perform them. While you record, Excel gets busy in the
background, translating your keystrokes and mouse clicks to written code (also
known as Visual Basic for Applications (VBA)). After a macro is recorded, you can
play back those actions anytime you want.

 In this chapter, you’ll explore macros and learn how you can use macros to auto-
mate your recurring processes to simplify your life.

 Why Use a Macro?
 The fi rst step in using macros is admitting you have a problem. Actually, you may
have several problems:

 » Problem 1 - Repetitive tasks: As each new month rolls around, you have to
make the donuts (that is, crank out those reports). You have to import that data.

Chapter 1
CO

PYRIG
HTED

 M
ATERIA

L

10 PART 1 Holy Macro Batman!

0003038454.INDD 10 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

You have to update those PivotTables. You have to delete those columns, and
so on. Wouldn’t it be nice if you could fire up a macro and have those more
redundant parts of your dashboard processes done automatically?

 » Problem 2 - You’re making mistakes: When you go hand-to-hand combat
with Excel, you’re bound to make mistakes. When you’re repeatedly applying
formulas, sorting, and moving things around manually, there’s always that risk
of catastrophe. Add to that the looming deadlines and constant change
requests, and your error rate goes up. Why not calmly record a macro, ensure
that everything is running correctly, and then forget it? The macro is sure to
perform every action the same way every time you run it, reducing the chance
of errors.

 » Problem 3 - Awkward navigation: You often create reports for an audience
that probably has a limited knowledge of Excel. It’s always helpful to make
your reports more user-friendly. Macros can be used to dynamically format
and print worksheets, navigate to specific sheets in your workbook, or even
save the open document in a specified location. Your audience will appreciate
these little touches that help make perusal of your workbooks a bit more
pleasant.

Macro Recording Basics
To start recording your first macro, you need to first find the Macro Recorder,
which is on the Developer tab. Unfortunately, Excel comes out of the box with the
Developer tab hidden — you may not see it on your version of Excel at first. If you
plan to work with VBA macros, you’ll want to make sure that the Developer tab is
visible. To display this tab

1. Choose File ➪  Excel Options.

2. In the Excel Options dialog box, select Customize Ribbon.

3. In the list box on the right, place a check mark next to Developer.

4. Click OK to return to Excel.

Now that you have the Developer tab showing in the Excel Ribbon, you can start
up the Macro Recorder by selecting Record Macro from the Developer tab. This
activates the Record Macro dialog box, as shown in Figure 1-1.

CHAPTER 1 Macro Fundamentals 11

0003038454.INDD 11 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

Here are the four parts of the Record Macro dialog box:

 » Macro Name: This should be self-explanatory. Excel gives a default name to
your macro, such as Macro1, but you should give your macro a name more
descriptive of what it actually does. For example, you might name a macro
that formats a generic table as FormatTable.

 » Shortcut Key: Every macro needs an event, or something to happen, for it to
run. This event can be a button press, a workbook opening, or in this case, a
keystroke combination. When you assign a shortcut key to your macro,
entering that combination of keys triggers your macro to run. This is an
optional field.

 » Store Macro In: This Workbook is the default option. Storing your macro in
This Workbook simply means that the macro is stored along with the active
Excel file. The next time you open that particular workbook, the macro is
available to run. Similarly, if you send the workbook to another user, that user
can run the macro as well (provided the macro security is properly set by your
user — more on that later in this chapter).

 » Description: This is an optional field, but it can come in handy if you have
numerous macros in a spreadsheet or if you need to give a user a more
detailed description about what the macro does.

With the Record Macro dialog box open, follow these steps to create a simple
macro that enters your name into a worksheet cell:

1. Enter a new single-word name for the macro to replace the default
Macro1 name.

A good name for this example is MyName.

FIGURE 1-1:
The Record

Macro dialog box.

12 PART 1 Holy Macro Batman!

0003038454.INDD 12 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

2. Assign this macro to the shortcut key Ctrl+Shift+N.

You do this by entering uppercase N in the edit box labeled Shortcut Key.

3. Click OK.

This closes the Record Macro dialog box and begins recording your actions.

4. Select any cell on your Excel spreadsheet, type your name into the
selected cell, and then press Enter.

5. Choose Developer ➪  Code ➪  Stop Recording (or click the Stop Recording
button in the status bar).

Examining the macro
The macro was recorded in a new module named Module1. To view the code in this
module, you must activate the Visual Basic Editor. You can activate the VB Editor
in either of two ways:

 » Press Alt+F11.

 » Choose Developer ➪  Code ➪  Visual Basic.

In the VB Editor, the Project window displays a list of all open workbooks and add-
ins. This list is displayed as a tree diagram, which you can expand or collapse. The
code that you recorded previously is stored in Module1 in the current workbook.
When you double-click Module1, the code in the module appears in the Code
window.

The macro should look something like this:

Sub MyName()
'
' MyName Macro
'
' Keyboard Shortcut: Ctrl+Shift+N
'
 ActiveCell.FormulaR1C1 = "Michael Alexander"

End Sub

The macro recorded is a Sub procedure named MyName. The statements tell Excel
what to do when the macro is executed.

Notice that Excel inserted some comments at the top of the procedure. These
comments are some of the information that appeared in the Record Macro dialog

CHAPTER 1 Macro Fundamentals 13

0003038454.INDD 13 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

box. These comment lines (which begin with an apostrophe) aren’t really neces-
sary, and deleting them has no effect on how the macro runs. If you ignore the
comments, you’ll see that this procedure has only one VBA statement:

ActiveCell.FormulaR1C1 = "Michael Alexander"

This single statement causes the name you typed while recording to be inserted
into the active cell.

Testing the macro
Before you recorded this macro, you set an option that assigned the macro to the
Ctrl+Shift+N shortcut key combination. To test the macro, return to Excel by using
either of the following methods:

 » Press Alt+F11.

 » Click the View Microsoft Excel button on the VB Editor toolbar.

When Excel is active, activate a worksheet. (It can be in the workbook that con-
tains the VBA module or in any other workbook.) Select a cell and press
Ctrl+Shift+N. The macro immediately enters your name into the cell.

In the preceding example, notice that you selected the cell to be altered before you
started recording your macro. This step is important. If you select a cell while the
macro recorder is turned on, the actual cell that you selected is recorded into the
macro. In such a case, the macro would always format that particular cell, and it
would not be a general-purpose macro.

Editing the macro
After you record a macro, you can make changes to it (although you must know
what you’re doing). For example, assume that you want your name to be bold. You
could re-record the macro, but this modification is simple, so editing the code is
more efficient. Press Alt+F11 to activate the VB Editor window. Then activate Mod-
ule1 and insert the following statement before the End Sub statement:

ActiveCell.Font.Bold = True

The edited macro appears as follows:

Sub MyName()
'

14 PART 1 Holy Macro Batman!

0003038454.INDD 14 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

' MyName Macro
'
' Keyboard Shortcut: Ctrl+Shift+N
'
 ActiveCell.Font.Bold = True

 ActiveCell.FormulaR1C1 = "Michael Alexander"

End Sub

Test this new macro, and you see that it performs as it should.

Comparing Absolute and Relative
Macro Recording

Now that you’ve read about the basics of the Macro Recorder interface, it’s time to
go deeper and begin recording macros. The first thing you need to understand
before you begin is that Excel has two modes for recording — absolute reference
and relative reference.

Recording macros with absolute references
Excel’s default recording mode is in absolute reference. As you may know, the
term absolute reference is often used in the context of cell references found in
formulas. When a cell reference in a formula is an absolute reference, it does not
automatically adjust when the formula is pasted to a new location.

The best way to understand how this concept applies to macros is to try it out.
Open the Chapter 1 Sample File.xlsx file and record a macro that counts the rows
in the Branchlist worksheet. (See Figure 1-2.)

The sample dataset used in this chapter can be found on this book’s companion
website at www.dummies.com/go/excelmacros.

Follow these steps to record the macro:

1. Before recording, make sure cell A1 is selected.

2. Select Record Macro from the Developer tab.

3. Name the macro AddTotal.

4. Choose This Workbook for the save location.

CHAPTER 1 Macro Fundamentals 15

0003038454.INDD 15 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

5. Click OK to start recording.

At this point, Excel is recording your actions. While Excel is recording, perform
the following steps:

1. Select cell A16 and type Total in the cell.

2. Select the first empty cell in Column D (D16) and enter =
COUNTA(D2:D15).

This gives a count of branch numbers at the bottom of column D. You need
to use the COUNTA function because the branch numbers are
stored as text.

3. Click Stop Recording on the Developer tab to stop recording the macro.

The formatted worksheet should look something like the one in Figure 1-3.

FIGURE 1-2:
Your pre-totaled

worksheet
containing two

tables.

FIGURE 1-3:
Your post-totaled

worksheet.

16 PART 1 Holy Macro Batman!

0003038454.INDD 16 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

To see your macro in action, delete the total row you just added and play back your
macro by following these steps:

1. Select Macros from the Developer tab.

2. Find and select the AddTotal macro you just recorded.

3. Click the Run button.

If all goes well, the macro plays back your actions to a T and gives your table a
total. Now here’s the thing: No matter how hard you try, you can’t make the
AddTotal macro work on the second table (G1:I15 in Figure 1-3). Why? Because you
recorded it as an absolute macro.

To understand what this means, examine the underlying code. To examine the
code, select Macros from the Developer tab to get the Macro dialog box you see in
Figure 1-4.

Select the AddTotal macro and click the Edit button. This opens the Visual Basic
Editor to show you the code that was written when you recorded your macro:

Sub AddTotal()

 Range("A16").Select

 ActiveCell.FormulaR1C1 = "Total"

 Range("D16").Select

FIGURE 1-4:
The Excel Macro

dialog box.

CHAPTER 1 Macro Fundamentals 17

0003038454.INDD 17 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

 ActiveCell.FormulaR1C1 = "=COUNTA(R[-14]C:R[-1]C)"

End Sub

Pay particular attention to lines 2 and 4 of the macro. When you asked Excel to
select cell range A16 and then D16, those cells are exactly what it selected. Because
the macro was recorded in absolute reference mode, Excel interpreted your range
selection as absolute. In other words, if you select cell A16, that cell is what Excel
gives you. In the next section, you take a look at what the same macro looks like
when recorded in relative reference mode.

Recording macros with relative references
In the context of Excel macros, relative means relative to the currently active cell.
So you should use caution with your active cell choice — both when you record the
relative reference macro and when you run it.

First, make sure the Chapter 1 Sample File.xlsx file is open. Then, use the following
steps to record a relative-reference macro:

To download the Chapter 1 Sample file, visit www.dummies.com/go/excelmacros.

1. Select the Use Relative References option from the Developer tab, as
shown in Figure 1-5.

2. Before recording, make sure cell A1 is selected.

3. Select Record Macro from the Developer tab.

4. Name the macro AddTotalRelative.

5. Choose This Workbook for the save location.

6. Click OK to start recording.

7. Select cell A16 and type Total in the cell.

8. Select the first empty cell in Column D (D16) and type = COUNTA(D2:D15).

9. Click Stop Recording on the Developer tab to stop recording the macro.

FIGURE 1-5:
Recording a
macro with

relative
references.

18 PART 1 Holy Macro Batman!

0003038454.INDD 18 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

At this point, you have recorded two macros. Take a moment to examine the code
for your newly created macro.

Select Macros from the Developer tab to open the Macro dialog box. Here, choose
the AddTotalRelative macro and click Edit.

Again, this opens the Visual Basic Editor to show you the code that was written
when you recorded your macro. This time, your code looks something like the
following:

Sub AddTotalRelative()

 ActiveCell.Offset(15, 0).Range("A1").Select

 ActiveCell.FormulaR1C1 = "Total"

 ActiveCell.Offset(0, 3).Range("A1").Select

 ActiveCell.FormulaR1C1 = "=COUNTA(R[-14]C:R[-1]C)"

End Sub

Notice that there are no references to any specific cell ranges at all (other than the
starting point “A1”). Let’s take a quick look at what the relevant parts of this VBA
code really mean.

Notice that in line 2, Excel uses the Offset property of the active cell. This property
tells the cursor to move a certain number of cells up or down and a certain number
of cells left or right.

The Offset property code tells Excel to move 15 rows down and 0 columns across
from the active cell (in this case, A1). There’s no need for Excel to explicitly select
a cell as it did when recording an absolute reference macro.

To see this macro in action, delete the total row for both tables and do the
following:

1. Select cell A1.

2. Select Macros from the Developer tab.

3. Find and select the AddTotalRelative macro.

4. Click the Run button.

5. Now select cell F1.

6. Select Macros from the Developer tab.

CHAPTER 1 Macro Fundamentals 19

0003038454.INDD 19 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

7. Find and select the AddTotalRelative macro.

8. Click the Run button.

Notice that this macro, unlike your previous macro, works on both sets of data.
Because the macro applies the totals relative to the currently active cell, the totals
are applied correctly.

For this macro to work, you simply need to ensure that

 » You’ve selected the correct starting cell before running the macro.

 » The block of data has the same number of rows and columns as the data on
which you recorded the macro.

Hopefully, this simple example has given you a firm grasp of macro recording
with both absolute and relative references.

Other Macro Recording Concepts
At this point, you should feel comfortable recording your own Excel macros. Here
are some of other important concepts you’ll need to keep in mind when working
with macros.

Macro-enabled file extensions
Beginning with Excel 2007, Excel workbooks were given the standard file exten-
sion .xlsx. Files with the .xlsx extension cannot contain macros. If your workbook
contains macros and you then save that workbook as an .xlsx file, your macros are
removed automatically. Excel warns you that macro content will be removed when
saving a workbook with macros as an .xlsx file.

If you want to retain the macros, you must save your file as an Excel Macro-
Enabled Workbook. This gives your file an .xlsm extension. The idea is that all
workbooks with an .xlsx file extension are automatically known to be safe, whereas
you can recognize .xlsm files as a potential threat.

Macro security in Excel 2010
With the release of Office 2010, Microsoft introduced significant changes to its
Office security model. One of the most significant changes is the concept of trusted

20 PART 1 Holy Macro Batman!

0003038454.INDD 20 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

documents. Without getting into the technical minutia, a trusted document is
essentially a workbook you have deemed safe by enabling macros.

If you open a workbook that contains macros in Excel 2010, you see a yellow bar
message under the Ribbon stating that macros (active content) have, in effect,
been disabled.

If you click Enable, it automatically becomes a trusted document. This means you
no longer are prompted to enable the content as long as you open that file on your
computer. The basic idea is that if you told Excel that you “trust” a particular
workbook by enabling macros, it is highly likely that you will enable macros each
time you open it. Thus, Excel remembers that you’ve enabled macros before and
inhibits any further messages about macros for that workbook.

This is great news for you and your clients. After enabling your macros just one
time, they won’t be annoyed at the constant messages about macros, and you
won’t have to worry that your macro-enabled dashboard will fall flat because
macros have been disabled.

Trusted locations
If the thought of any macro message coming up (even one time) unnerves you,
you can set up a trusted location for your files. A trusted location is a directory that
is deemed a safe zone where only trusted workbooks are placed. A trusted location
allows you and your clients to run a macro-enabled workbook with no security
restrictions as long as the workbook is in that location.

To set up a trusted location, follow these steps:

1. Select the Macro Security button on the Developer tab.

This activates the Trust Center dialog box.

2. Click the Trusted Locations button.

This opens the Trusted Locations menu (see Figure 1-6), which shows you all
the directories that are considered trusted.

3. Click the Add New Location button.

4. Click Browse to find and specify the directory that will be considered a
trusted location.

After you specify a trusted location, any Excel file opened from this location will
have macros automatically enabled.

CHAPTER 1 Macro Fundamentals 21

0003038454.INDD 21 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

Storing macros in your Personal
Macro Workbook
Most user-created macros are designed for use in a specific workbook, but you
may want to use some macros in all your work. You can store these general-
purpose macros in the Personal Macro Workbook so that they’re always available
to you. The Personal Macro Workbook is loaded whenever you start Excel. This
file, named personal.xlsb, doesn’t exist until you record a macro using Personal
Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down list (refer to Figure 1-1).

If you store macros in the Personal Macro Workbook, you don’t have to remember
to open the Personal Macro Workbook when you load a workbook that uses mac-
ros. When you want to exit, Excel asks whether you want to save changes to the
Personal Macro Workbook.

The Personal Macro Workbook normally is in a hidden window to keep it out of
the way.

FIGURE 1-6:
The Trusted

Locations menu
allows you to add

directories that
are considered

trusted.

22 PART 1 Holy Macro Batman!

0003038454.INDD 22 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

Assigning a macro to a button and other
form controls
When you create macros, you may want to have a clear and easy way to run each
macro. A basic button can provide a simple but effective user interface.

As luck would have it, Excel offers a set of form controls designed specifically for
creating user interfaces directly on spreadsheets. There are several different types
of form controls, from buttons (the most commonly used control) to scrollbars.

The idea behind using a form control is simple: You place a form control on a
spreadsheet and then assign a macro to it — that is, a macro you’ve already
recorded. When a macro is assigned to the control, that macro is executed, or
played, when the control is clicked.

Take a moment to create a button for the AddTotalRelative macro you created
earlier. Here’s how:

1. Click the Insert button under the Developer tab. (See Figure 1-7.)

2. Select the Button Form Control from the drop-down list that appears.

3. Click the location where you want to place your button.

When you drop the button control onto your spreadsheet, the Assign Macro dialog
box, shown in Figure 1-8, activates and asks you to assign a macro to this button.

4. Select the macro you want to assign to the button and then click OK.

At this point, you have a button that runs your macro when you click it! Keep in
mind that all the controls in the Form Controls group (shown in Figure 1-7) work
in the same way as the command button, in that you assign a macro to run when
the control is selected.

FIGURE 1-7:
You can find

the form
controls in the
Developer tab.

CHAPTER 1 Macro Fundamentals 23

0003038454.INDD 23 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

Placing a macro on the
Quick Access Toolbar
You can also assign a macro to a button in Excel’s Quick Access Toolbar. The Quick
Access Toolbar sits either above or below the Ribbon. You can add a custom button
that runs your macro by following these steps:

1. Right-click your Quick Access Toolbar and select Customize Quick Access
Toolbar.

This opens the dialog box shown in Figure 1-9.

2. Click the Quick Access Toolbar button on the left of the Excel Options
dialog box.

3. Select Macros from the Choose Commands From drop-down list
on the left.

FIGURE 1-8:
Assign a macro

to the newly
added button.

FORM CONTROLS VERSUS
ActiveX CONTROLS
Notice the form controls and ActiveX controls in Figure 1-7. Although they look similar,
they’re quite different. Form controls are designed specifically for use on a spreadsheet,
and ActiveX controls are typically used on Excel user forms. As a general rule, you
should always use form controls when working on a spreadsheet. Why? Form controls
need less overhead, so they perform better, and configuring form controls is far easier
than configuring their ActiveX counterparts.

24 PART 1 Holy Macro Batman!

0003038454.INDD 24 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

4. Select the macro you want to add and click the Add button.

5. Change the icon by clicking the Modify button.

Examples of Macros in Action
Covering the fundamentals of building and using macros is one thing. Coming up
with good ways to incorporate them into your reporting processes is another. Take
a moment to review a few examples of how macros automate simple reporting
tasks.

Open the Chapter 1 Samples.xlsm file to follow along in the next section.
To download the Chapter 1 Sample file, visit www.dummies.com/go/excelmacros.

Building navigation buttons
The most common use of macros is navigation. Workbooks that have many work-
sheets or tabs can be frustrating to navigate. To help your audience, you can create
some sort of a switchboard, like the one shown in Figure 1-10. When a user clicks
the Example 1 button, he’s taken to the Example 1 sheet.

FIGURE 1-9:
Adding a macro

to the Quick
Access Toolbar.

CHAPTER 1 Macro Fundamentals 25

0003038454.INDD 25 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

Creating a macro to navigate to a sheet is quite simple.

1. Start at the sheet that will become your switchboard or starting point.

2. Start recording a macro.

3. While recording, click the destination sheet (the sheet this macro will
navigate to).

4. After you click in the destination sheet, stop recording the macro.

5. Assign the macro to a button.

It’s useful to know that Excel has a built-in hyperlink feature, allowing you to
convert the contents of a cell into a hyperlink that links to another location.
That location can be a separate Excel workbook, a website, or even another tab
in the current workbook. Although using a hyperlink may be easier than setting
up a macro, you can’t apply a hyperlink to form controls (like buttons). Instead
of a button, you’d use text to let users know where they’ll go when they click
the link.

Dynamically rearranging PivotTable data
Macros be used with any Excel object normally used in reporting. For instance,
you can use a macro to give your audience a way to dynamically change a pivot
table. In the example illustrated in Figure 1-11, macros allow a user to change the
perspective of the chart simply by selecting any one of the buttons shown.

Figure 1-12 reveals that the chart is actually a pivot chart tied to a PivotTable. The
recorded macros assigned to each button are doing nothing more than rearrang-
ing the PivotTable to slice the data using various pivot fields.

FIGURE 1-10:
Use macros to
build buttons

that help users
navigate your

reports.

26 PART 1 Holy Macro Batman!

0003038454.INDD 26 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

Here are the high-level steps needed to create this type of setup:

1. Create your PivotTable and a pivot chart.

2. Start recording a macro.

3. While recording, move a pivot field from one area of the PivotTable to the
other. When you’re done, stop recording the macro.

4. Record another macro to move the data field back to its original position.

5. After both macros are set up, assign each one to a separate button.

FIGURE 1-12:
The macros

behind these
buttons

rearrange the
data fields in a

PivotTable.

FIGURE 1-11:
This report allows

users to choose
their perspective.

CHAPTER 1 Macro Fundamentals 27

0003038454.INDD 27 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

You can fire your new macros in turn to see your pivot field dynamically move
back and forth.

Offering one-touch reporting options
The last two examples demonstrate that you can record any action that you find of
value. That is, if you think users would appreciate a certain feature being auto-
mated for them, why not record a macro to do so?

In Figure 1-13, notice that you can filter the PivotTable for the top or bottom 20
customers. Because the steps to filter a PivotTable for the top and bottom 20 have
been recorded, users can get the benefit of this functionality without knowing
how to do it themselves. Also, recording a specific action allows you to manage
risk a bit. That is to say, you’ll know that your users will interact with your reports
in a method that has been developed and tested by you.

This not only saves them time and effort, but it also allows users that don’t know
how to take these actions to benefit from them.

Figure 1-14 demonstrates how you can give your audience a quick and easy way to
see the same data on different charts. Don’t laugh too quickly at the uselessness
of this example. It’s not uncommon to be asked to see the same data different
ways. Instead of taking up real estate, just record a macro that changes the Chart
Type of the chart. Your clients can switch views to their heart’s content.

FIGURE 1-13:
Offering

prerecorded
views not only

saves time and
effort, but it also
allows users that
don’t know how
to use advanced

features to
benefit from

them.

28 PART 1 Holy Macro Batman!

0003038454.INDD 28 Trim size: 7.375 in × 9.25 in February 3, 2017 10:40 PM

FIGURE 1-14:
You can give

your audience a
choice in how

they view data.

