
CHAPTER 1 Understanding Relational Databases 11

0004306943.INDD 11 Trim size: 7.375 in × 9.25 in March 14, 2019 2:47 PM

 Understanding
Relational Databases

 S QL (pronounced ess cue el, but you’ll hear some people say see quel) is
the international standard language used in conjunction with relational
databases — and it just so happens that relational databases are the dom-

inant form of data storage throughout the world. In order to understand why
 relational databases are the primary repositories for the data of both small and
large organizations, you must fi rst understand the various ways in which com-
puter data can be stored and how those storage methods relate to the relational
database model. To help you gain that understanding, I spend a good portion of
this chapter going back to the earliest days of electronic computers and recapping
the history of data storage.

 I realize that grand historical overviews aren’t everybody’s cup of tea, but I’d
argue that it’s important to see that the diff erent data storage strategies that
have been used over the years each have their own strengths and weaknesses.
 Ultimately, the strengths of the relational model overshadowed its weaknesses
and it became the most frequently used method of data storage. Shortly after that,
SQL became the most frequently used method of dealing with data stored in a
relational database.

Chapter 1

 IN THIS CHAPTER

 » Working with data fi les and
databases

 » Seeing how databases, queries, and
database applications fi t together

 » Looking at diff erent database models

 » Charting the rise of relational
databases

CO
PYRIG

HTED
 M

ATERIA
L

0004306943.INDD 12	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

12 BOOK 1 SQL Concepts

Understanding Why Today’s Databases
Are Better than Early Databases

In the early days of computers, the concept of a database was more theoretical
than practical. Vannevar Bush, the twentieth-century visionary, conceived of the
idea of a database in 1945, even before the first electronic computer was built.
However, practical implementations of databases — such as IBM’s IMS (Informa-
tion Management System), which kept track of all the parts on the Apollo moon
mission and its commercial followers — did not appear for a number of years
after that. For far too long, computer data was still being kept in files rather than
migrated to databases.

Irreducible complexity
Any software system that performs a useful function is complex. The more val-
uable the function, the more complex its implementation. Regardless of how the
data is stored, the complexity remains. The only question is where that complex-
ity resides.

Any nontrivial computer application has two major components: the program and
the data. Although an application’s level of complexity depends on the task to be
performed, developers have some control over the location of that complexity. The
complexity may reside primarily in the program part of the overall system, or it
may reside in the data part. In the sections that follow, I tell you how the location
of complexity in databases shifted over the years as technological improvements
made that possible.

Managing data with complicated programs
In the earliest applications of computers to solve problems, all of the complex-
ity resided in the program. The data consisted of one data record of fixed length
after another, stored sequentially in a file. This is called a flat file data structure.
The data file contains nothing but data. The program file must include informa-
tion about where particular records are within the data file (one form of metadata,
whose sole purpose is to organize the primary data you really care about). Thus,
for this type of organization, the complexity of managing the data is entirely in
the program.

Here’s an example of data organized in a flat file structure:

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

0004306943.INDD 13	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

CHAPTER 1 Understanding Relational Databases 13

Harold Percival26262 S. Howards Mill Rd.Westminster CA92683
Jerry Appel 32323 S. River Lane Road Santa Ana CA92705
Adrian Hansen 232 Glenwood Court Anaheim CA92640
John Baker 2222 Lafayette Street Garden GroveCA92643
Michael Pens 77730 S. New Era Road Irvine CA92715
Bob Michimoto 25252 S. Kelmsley Drive Stanton CA92610
Linda Smith 444 S.E. Seventh StreetCosta Mesa CA92635
Robert Funnell 2424 Sheri Court Anaheim CA92640
Bill Checkal 9595 Curry Drive Stanton CA92610
Jed Style 3535 Randall Street Santa Ana CA92705

This example includes fields for name, address, city, state, and zip code. Each field
has a specific length, and data entries must be truncated to fit into that length. If
entries don’t use all the space allotted to them, storage space is wasted.

The flat file method of storing data has several consequences, some beneficial and
some not. First, the beneficial consequences:

»» Storage requirements are minimized. Because the data files contain
nothing but data, they take up a minimum amount of space on hard disks or
other storage media. The code that must be added to any one program that
contains the metadata is small compared to the overhead involved with
adding a database management system (DBMS) to the data side of the
system. (A database management system is the program that controls access
to — and operations on — a database.)

»» Operations on the data can be fast. Because the program interacts directly
with the data, with no DBMS in the middle, well-designed applications can run
as fast as the hardware permits.

Wow! What could be better? A data organization that minimizes storage require-
ments and at the same time maximizes speed of operation seems like the best of
all possible worlds. But wait a minute . . .

Flat file systems came into use in the 1940s. We have known about them for a long
time, and yet today they are almost entirely replaced by database systems. What’s
up with that? Perhaps it is the not-so-beneficial consequences:

»» Updating the data’s structure can be a huge task. It is common for an
organization’s data to be operated on by multiple application programs,
with multiple purposes. If the metadata about the structure of data is in the
program rather than attached to the data itself, all the programs that access
that data must be modified whenever the data structure is changed. Not only
does this cause a lot of redundant work (because the same changes must be

0004306943.INDD 14	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

14 BOOK 1 SQL Concepts

made in all the programs), but it is an invitation to problems. All the programs
must be modified in exactly the same way. If one program is inadvertently
forgotten, the program will fail the next time you run it. Even if all the pro-
grams are modified, any that aren’t modified exactly as they should be will fail,
or even worse, corrupt the data without giving any indication that some-
thing is wrong.

»» Flat file systems provide no protection of the data. Anyone who can
access a data file can read it, change it, or delete it. A flat file system doesn’t
have a database management system, which restricts access to authorized
users.

»» Speed can be compromised. Accessing records in a large flat file can actually
be slower than a similar access in a database because flat file systems do not
support indexing. Indexing is a major topic that I discuss in Book 2, Chapter 3.

»» Portability becomes an issue. If the specifics that handle how you retrieve
a particular piece of data from a particular disk drive is coded into each
program, what happens when your hardware becomes obsolete and you
must migrate to a new system? All your applications will have to be changed
to reflect the new way of accessing the data. This task is so onerous that many
organizations have chosen to limp by on old, poorly performing systems
instead of enduring the pain of transitioning to a system that would meet
their needs much more effectively. Organizations with legacy systems
consisting of millions of lines of code are pretty much trapped.

In the early days of electronic computers, storage was relatively expensive, so
system designers were highly motivated to accomplish their tasks using as little
storage space as possible. Also, in those early days, computers were much slower
than they are today, so doing things the fastest possible way also had a high prior-
ity. Both of these considerations made flat file systems the architecture of choice,
despite the problems inherent in updating the structure of a system’s data.

The situation today is radically different. The cost of storage has plummeted and
continues to drop on an exponential curve. The speed at which computations
are performed has increased exponentially also. As a result, minimizing storage
requirements and maximizing the speed with which an operation can be performed
are no longer the primary driving forces that they once were. Because systems have
continually become bigger and more complex, the problem of maintaining them
has likewise grown. For all these reasons, flat file systems have lost their attrac-
tiveness, and databases have replaced them in practically all application areas.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

0004306943.INDD 15	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

CHAPTER 1 Understanding Relational Databases 15

Managing data with simple programs
The major selling point of database systems is that the metadata resides on the
data end of the system rather than in the program. The program doesn’t have to
know anything about the details of how the data is stored. The program makes
logical requests for data, and the DBMS translates those logical requests into com-
mands that go out to the physical storage hardware to perform whatever opera-
tion has been requested. (In this context, a logical request asks for a specific piece
of information, but does not specify its location on hard disk in terms of platter,
track, sector, and byte.) Here are the advantages of this organization:

»» Because application programs need to know only what data they want to
operate on, and not where that data is located, they are unaffected when the
physical details of where data is stored changes.

»» Portability across platforms, even when they are highly dissimilar, is easy as
long as the DBMS used by the first platform is also available on the second.
Generally, you don’t need to change the programs at all to accommodate
various platforms.

What about the disadvantages? They include the following:

»» Placing a database management system in between the application program
and the data slows down operations on that data. This is not nearly the
problem that it used to be. Modern advances, such as the use of high speed
cache memories have eased this problem considerably.

»» Databases take up more space on disk storage than the same amount of data
would take up in a flat file system. This is due to the fact that metadata is
stored along with the data. The metadata contains information about how the
data is stored so that the application programs don’t have to include it.

Which type of organization is better?
I bet you think you already know how I’m going to answer this question. You’re
probably right, but the answer is not quite so simple. There is no one correct
answer that applies to all situations. In the early days of electronic computing, flat
file systems were the only viable option. To perform any reasonable computation
in a timely and economical manner, you had to use whatever approach was the
fastest and required the least amount of storage space. As more and more appli-
cation software was developed for these systems, the organizations that owned
them became locked in tighter and tighter to what they had. To change to a more
modern database system requires rewriting all their applications from scratch and

0004306943.INDD 16	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

16 BOOK 1 SQL Concepts

reorganizing all their data, a monumental task. As a result, we still have legacy
flat file systems that continue to exist because switching to more modern tech-
nology isn’t feasible, both economically and in terms of the time it would take to
make the transition.

Databases, Queries, and
Database Applications

What are the chances that a person could actually find a needle in a haystack?
Not very good. Finding the proverbial needle is so hard because the haystack is a
random pile of hay with individual pieces of hay going in every direction, and the
needle is located at some random place among all that hay.

A flat file system is not really very much like a haystack, but it does lack
structure — and in order to find a particular record in such a file, you must use
tools that lie outside of the file itself. This is like applying a powerful magnet to
the haystack to find the needle.

Making data useful
For a collection of data to be useful, you must be able to easily and quickly retrieve
the particular data you want, without having to wade through all the rest of the
data. One way to make this happen is to store the data in a logical structure.
Flat files don’t have much structure, but databases do. Historically, the hierar-
chical database model and the network database model were developed before the
relational model. Each one organizes data in a different way, but all three produce
a highly structured result. Because of that, starting in the 1970s, any new devel-
opment projects were most likely done using one of the aforementioned three
database models: hierarchical, network, or relational. (I explore each of these
database models further in the “Examining Competing Database Models” section,
later in this chapter.)

Retrieving the data you want —
and only the data you want
Of all the operations that people perform on a collection of data, the retrieval
of specific elements out of the collection is the most important. This is because
retrievals are performed more often than any other operation. Data entry is done

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

0004306943.INDD 17	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

CHAPTER 1 Understanding Relational Databases 17

only once. Changes to existing data are made relatively infrequently, and data is
deleted only once. Retrievals, on the other hand, are performed frequently, and
the same data elements may be retrieved many times. Thus, if you could optimize
only one operation performed on a collection of data, that one operation should be
data retrieval. As a result, modern database management systems put a great deal
of effort into making retrievals fast.

Retrievals are performed by queries. A modern database management system
analyzes a query that is presented to it and decides how best to perform it. Gener-
ally, there are multiple ways of performing a query, some much faster than oth-
ers. A good DBMS consistently chooses a near-optimal execution plan. Of course,
it helps if the query is formulated in an optimal manner to begin with. (I discuss
optimization strategies in depth in Book 7, which covers database tuning.)

THE FIRST DATABASE SYSTEM
The first true database system was developed by IBM in the 1960s in support of NASA’s
Apollo moon landing program. The number of components in the Saturn V launch
vehicle, the Apollo Command and Service Module, and the lunar lander far exceeded
anything that had been built up to that time. Every component had to be tested more
exhaustively than anything had ever been tested before because each component
would have to withstand the rigors of an environment that was more hostile and
more unforgiving than any environment that humans had ever attempted to work in.
Flat file systems were out of the question. IBM’s solution, which IBM later transformed
into a commercial database product named IMS (Information Management System),
kept track of each individual component, as well as its complete history.

When the ill-fated Apollo 13’s main oxygen tank ruptured on the way to the Moon,
engineers worked frantically to come up with a plan to save the lives of the three
astronauts headed for the Moon. The engineers succeeded and transmitted a plan
to the astronauts that worked.

After the crew had returned safely to Earth, querying IMS records about the oxygen
tank that failed showed that somewhere between the oxygen tank’s manufacture and
its installation in Apollo 13, it had been dropped on the floor. Engineers retested it for its
ability to withstand the pressure it would have to contain during the mission, and then
put it back in stock after it passed the test. But it turns out that in this case, the test did
not detect the hidden damage to the tank, and NASA should not have used the oxygen
tank on the Apollo 13 mission. The history stored in IMS showed that passing a pressure
test is not enough to assure that a dropped tank is undamaged. No dropped tanks were
ever used on subsequent Apollo missions.

0004306943.INDD 18	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

18 BOOK 1 SQL Concepts

Examining Competing Database Models
A database model is simply a way of organizing data elements within a database.
In this section, I give you the details on the three database models that appeared
first on the scene:

»» Hierarchical: Organizes data into levels, where each level contains a
single category of data, and parent/child relationships are established
between levels

»» Network: Organizes data in a way that avoids much of the redundancy
inherent in the hierarchical model

»» Relational: Organizes data into a structured collection of two-dimensional
tables

After the introductions of the hierarchical, network, and relational models, com-
puter scientists have continued to develop databases models that have been found
useful in some categories of applications. I briefly mention some of these later
in this chapter, along with their areas of applicability. However, the hierarchical,
network, and relational models are the ones that have been primarily used for
general business applications.

Looking at the historical background
of the competing models
The first functioning database system was developed by IBM and went live at
an Apollo contractor’s site on August 14, 1968. (Read the whole story in “The
first database system” sidebar, here in this chapter.) Known as IMS (Information
Management System), it is still (amazingly enough) in use today, over 50 years
later, because IBM has continually upgraded it in support of its customers.

If you are in the market for a database management system, you may want to
consider buying it from a vendor that will be around, and that is committed to
supporting it for as long as you will want to use it. IBM has shown itself to be such
a vendor, and of course, there are others as well.

IMS is an example of a hierarchical database product. About a year after IMS was
first run, the network database model was described by an industry committee.
About a year after that, Dr. Edgar F. “Ted” Codd, also of IBM, proposed the rela-
tional model. Within a short span of years, the three models that were to dominate
the database market for decades were spawned.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

0004306943.INDD 19	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

CHAPTER 1 Understanding Relational Databases 19

Quite a few years went by before the object-oriented database model made its
appearance, presenting itself as an alternative meant to address some of the
deficiencies of the relational model. The object-oriented database model accommo-
dates the storage of types of data that don’t easily fit into the categories handled
by relational databases. Although they have advantages in some applications,
object-oriented databases have not captured significant market share. The object-
relational model is a merger of the relational and object models, and it is designed
to capture the strengths of both, while leaving behind their major weaknesses.
Now, there is something called the NoSQL model. It is designed to work with data
that is not rigidly structured. Because it does not use SQL, I will not discuss it in
this book.

The hierarchical database model
The hierarchical database model organizes data into levels, where each level con-
tains a single category of data, and parent/child relationships are established
between levels. Each parent item can have multiple children, but each child item
can have one and only one parent. Mathematicians call this a tree-structured orga-
nization, because the relationships are organized like a tree with a trunk that
branches out into limbs that branch out into smaller limbs. Thus all relationships
in a hierarchical database are either one-to-one or one-to-many. Many-to-many
relationships are not used. (More on these kinds of relationships in a bit.)

A list of all the stuff that goes into building a finished product— a listing known
as a bill of materials, or BOM — is well suited for a hierarchical database. For exam-
ple, an entire machine is composed of assemblies, which are each composed of
subassemblies, and so on, down to individual components. As an example of such
an application, consider the mighty Saturn V Moon rocket that sent American
astronauts to the Moon in the late 1960s and early 1970s. Figure 1-1 shows a
hierarchical diagram of major components of the Saturn V.

Three relationships can occur between objects in a database:

»» One-to-one relationship: One object of the first type is related to one
and only one object of the second type. In Figure 1-1, there are several exam-
ples of one-to-one relationships. One is the relationship between the S-2 stage
LOX tank and the aft LOX bulkhead. Each LOX tank has one and only one
aft LOX bulkhead, and each aft LOX bulkhead belongs to one and only
one LOX tank.

»» One-to-many relationship: One object of the first type is related to multiple
objects of the second type. In the Saturn V’s S-1C stage, the thrust structure
contains five F-1 engines, but each engine belongs to one and only one thrust
structure.

0004306943.INDD 20	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

20 BOOK 1 SQL Concepts

FIGURE 1-1:
A hierarchical
model of the

Saturn V moon
rocket.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

0004306943.INDD 21	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

CHAPTER 1 Understanding Relational Databases 21

»» Many-to-many relationship: Multiple objects of the first type are related to
multiple objects of the second type. This kind of relationship is not handled cleanly
by a hierarchical database. Attempts to do so tend to be kludgy. One example might
be two-inch hex-head bolts. These bolts are not considered to be uniquely identifi-
able, and any one such bolt is interchangeable with any other. An assembly might
use multiple bolts, and a bolt could be used in any of several different assemblies.

A great strength of the hierarchical model is its high performance. Because rela-
tionships between entities are simple and direct, retrievals from a hierarchical
database that are set up to take advantage of the way the data is structured can
be very fast. However, retrievals that don’t take advantage of the way the data is
structured are slow and sometimes can’t be made at all. It’s difficult to change the
structure of a hierarchical database to address new requirements. This structural
rigidity is the greatest weakness of the hierarchical model. Another problem with
the hierarchical model is the fact that, structurally, it requires a lot of redundancy,
as my next example makes clear.

First off, time to state the obvious: Not many organizations today are designing
rockets capable of launching payloads to the moon. The hierarchical model can
also be applied to more common tasks, however, such as tracking sales transac-
tions for a retail business. As an example, I use some sales transaction data from
Gentoo Joyce’s fictitious online store of penguin collectibles. She accepts PayPal,
MasterCard, Visa, and money orders and sells various items featuring depictions
of penguins of specific types — gentoo, chinstrap, and adelie.

As shown in Figure 1-2, customers who have made multiple purchases show up in
the database multiple times. For example, you can see that Lynne has purchased
with PayPal, MasterCard, and Visa. Because this is hierarchical, Lynne’s informa-
tion shows up multiple times, and so does the information for every customer who
has bought more than once. Product information shows up multiple times too.

This organization is actually more complex than what is shown in Figure 1-2.
Additional “trees” would hold the details about each customer and each product.
This duplicate data is a waste of storage space because one copy of a customer’s
data is sufficient, and so is one copy of product information.

Perhaps even more damaging than the wasted space that results from redun-
dant data is the possibility of data corruption. Whenever multiple copies of the
same data exist in a database, there is the potential for modification anomalies.
A modification anomaly is an inconsistency in the data after a modification is made.
Suppose you want to delete a customer who is no longer buying from you. If mul-
tiple copies of that customer’s data exist, you must find and delete all of them to
maintain data integrity. On a slightly more positive note, suppose you just want
to update a customer’s address information. If multiple copies of the customer’s
data exist, you must find and modify all of them in exactly the same way to main-
tain data integrity. This can be a time-consuming and error-prone operation.

0004306943.INDD 22	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

22 BOOK 1 SQL Concepts

FIGURE 1-2:
A hierarchical

model of a sales
database for a

retail business.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

0004306943.INDD 23	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

CHAPTER 1 Understanding Relational Databases 23

The network database model
The network model — the one that followed close upon the heels of the hierarchi-
cal, appearing as it did in 1969 — is almost the exact opposite of the hierarchical
model. Wanting to avoid the redundancy of the hierarchical model without sac-
rificing too much in the way of performance, the designers of the network model
opted for an architecture that does not duplicate items, but instead increases the
number of relationships associated with some items. Figure 1-3 shows this archi-
tecture for the same data that was shown in Figure 1-2.

As you can see in Figure 1-3, the network model does not have the tree structure
with one-directional flow characteristic of the hierarchical model. Looked at this
way, it shows very clearly that, for example, Lynne had bought multiple products,
but also that she has paid in multiple ways. There is only one instance of Lynne in
this model, compared to multiple instances in the hierarchical model. However,
to balance out that advantage, there are seven relationships connected to that one
instance of Lynne, whereas in the hierarchical model there are no more than three
relationships connected to any one instance of Lynne.

The network model eliminates redundancy, but at the expense of more compli-
cated relationships. This model can be better than the hierarchical model for some
kinds of data storage tasks, but worse for others. Neither one is consistently supe-
rior to the other.

The relational database model
In 1970, Edgar Codd of IBM published a paper introducing the relational database
model. Initially, database experts gave it little consideration. It clearly had an
advantage over the hierarchical model in that data redundancy was minimal; it
had an advantage over the network model with its relatively simple relationships.
However, it had what was perceived to be a fatal flaw. Due to the complexity of the
relational database engine that it required, any implementation would be much
slower than a comparable implementation of either the hierarchical or the net-
work model. As a result, it was almost ten years before the first implementation
of the relational database idea hit the market.

Moore’s Law had finally made relational database technology feasible. (In 1965,
Gordon Moore, one of the founders of Intel, noticed that the cost of computer
memory chips was dropping by half about every two years. He predicted that this
trend would continue. After over 50 years, the trend is still going strong, and
Moore’s prediction has been enshrined as an empirical law.)

0004306943.INDD 24	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

24 BOOK 1 SQL Concepts

FIGURE 1-3:
A network model
of transactions at

an online store.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

0004306943.INDD 25	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

CHAPTER 1 Understanding Relational Databases 25

IBM delivered a relational DBMS (RDBMS) integrated into the operating system
of the System 38 computer server platform in 1978, and Relational Software, Inc.,
delivered the first version of Oracle — the granddaddy of all standalone relational
database management systems — in 1979.

Defining what makes a database relational
The original definition of a relational database specified that it must consist of
two-dimensional tables of rows and columns, where the cell at the intersection
of a row and column contains an atomic value (where atomic means not divisible
into subvalues). This definition is commonly stated by saying that a relational
database table may not contain any repeating groups. The definition also specified
that each row in a table be uniquely identifiable. Another way of saying this is that
every table in a relational database must have a primary key, which uniquely iden-
tifies a row in a database table. Figure 1-4 shows the structure of an online store
database, built according to the relational model.

The relational model introduced the idea of storing database elements in two-
dimensional tables. In the example shown in Figure 1-4, the Customer table con-
tains all the information about each customer; the Product table contains all the
information about each product, and the Transaction table contains all the infor-
mation about the purchase of a product by a customer. The idea of separating
closely related things from more distantly related things by dividing things up
into tables was one of the main factors distinguishing the relational model from
the hierarchical and network models.

Protecting the definition of relational
databases with Codd’s rules
As the relational model gained in popularity, vendors of database products that
were not really relational started to advertise their products as relational data-
base management systems. To fight the dilution of his model, Codd formulated
12 rules that served as criteria for determining whether a database product was in
fact relational. Codd’s idea was that a database must satisfy all 12 criteria in order
to be considered relational.

Codd’s rules are so stringent, that even today, there is not a DBMS on the market
that completely complies with all of them. However, they have provided a good
goal toward which database vendors strive.

0004306943.INDD 26	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

26 BOOK 1 SQL Concepts

FIGURE 1-4:
A relational

model of
transactions
at an online

store.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

0004306943.INDD 27	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

CHAPTER 1 Understanding Relational Databases 27

Here are Codd’s 12 rules:

1.	The information rule: Data can be represented only one way, as values in
column positions within rows of a table.

2.	The guaranteed access rule: Every value in a database must be accessible by
specifying a table name, a column name, and a row. The row is specified by the
value of the primary key.

3.	Systematic treatment of null values: Missing data is distinct from specific
values, such as zero or an empty string.

4.	Relational online catalog: Authorized users must be able to access the
database’s structure (its catalog) using the same query language they use to
access the database’s data.

5.	The comprehensive data sublanguage rule: The system must support at
least one relational language that can be used both interactively and within
application programs, that supports data definition, data manipulation, and
data control functions. Today, that one language is SQL.

6.	The view updating rule: All views that are theoretically updatable must be
updatable by the system.

7.	The system must support set-at-a-time insert, update, and delete
operations: This means that the system must be able to perform insertions,
updates, and deletions of multiple rows in a single operation.

8.	Physical data independence: Changes to the way data is stored must not
affect the application.

9.	Logical data independence: Changes to the tables must not affect the
application. For example, adding new columns to a table should not “break” an
application that accesses the original rows.

10.	Integrity independence: Integrity constraints must be specified indepen-
dently from the application programs and stored in the catalog. (I say a lot
about integrity in Book 2, Chapter 3.)

11.	Distribution independence: Distribution of portions of the database to
various locations should not change the way applications function.

12.	The nonsubversion rule: If the system provides a record-at-a-time interface, it
should not be possible to use it to subvert the relational security or integrity
constraints.

0004306943.INDD 28	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

28 BOOK 1 SQL Concepts

Over and above the original 12 rules, in 1990, Codd added one more rule:

Rule Zero: For any system that is advertised as, or is claimed to be, a relational
database management system, that system must be able to manage databases
entirely through its relational capabilities, no matter what additional capabilities
the system may support.

Rule Zero was in response to vendors of various database products who claimed
their product was a relational DBMS, when in fact it did not have full relational
capability.

Highlighting the relational database
model’s inherent flexibility
You might wonder why it is that relational databases have conquered the planet
and relegated hierarchical and network databases to niches consisting mainly of
legacy customers who have been using them for more than 40 years. It’s even
more surprising in light of the fact that when the relational model was first
introduced, most of the experts in the field considered it to be utterly uncompeti-
tive with either the hierarchical or the network model.

One advantage of the relational model is its flexibility. The architecture of a
relational database is such that it is much easier to restructure a relational data-
base than it is to restructure either a hierarchical or network database. This is a
tremendous advantage in dynamic business environments where requirements
are constantly changing.

The reason database practitioners originally dissed the relational model is because
the extra overhead of the relational database engine was sure to make any product
based on that model so much slower than either hierarchical or network data-
bases, as to be noncompetitive. As time has passed, Moore’s Law has nullified
that objection.

The object-oriented database model
Object-oriented database management systems (OODBMS) first appeared in
1980. They were developed primarily to handle nontext, nonnumeric data such
as graphical objects. A relational DBMS typically doesn’t do a good job with such
so-called complex data types. An OODBMS uses the same data model as object-
oriented programming languages such as Java, C++, and C#, and it works well with
such languages.

Although object-oriented databases outperform relational databases for selected
applications, they do not do as well in most mainstream applications, and have

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

0004306943.INDD 29	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

CHAPTER 1 Understanding Relational Databases 29

not made much of a dent in the hegemony of the relational products. As a result,
I will not be saying anything more about OODBMS products.

The object-relational database model
An object-relational database is a relational database that allows users to create and
use new data types that are not part of the standard set of data types provided by
SQL. The ability of the user to add new types, called user-defined types, was added
to the SQL:1999 specification and is available in current implementations of IBM’s
DB2, Oracle, and Microsoft SQL Server.

Current relational database management systems are actually object-relational
database management systems rather than pure relational database management
systems.

The nonrelational NoSQL model
In contrast to the relational model, a nonrelational model has been gaining adher-
ents, particularly in the area of cloud computing, where databases are maintained
not on the local computer or local area network, but reside somewhere on the
Internet. This model, called the NoSQL model, is particularly appropriate for large
systems consisting of clusters of servers, accessed over the World Wide Web.
CouchDB and MongoDB are examples of DBMS products that follow this model.
The NoSQL model is not competitive with the SQL-based relational model for tra-
ditional reporting applications.

Why the Relational Model Won
Throughout the 1970s and into the 1980s, hierarchical- and network-based tech-
nologies were the database technologies of choice for large organizations. Oracle,
the first standalone relational database system to reach the market, did not appear
until 1979, and initially met with limited success.

For the following reasons, as well as just plain old inertia, relational databases
caught on slowly at first:

»» The earliest implementations of relational database management
systems were slow performers. This was due to the fact that they were
required to perform more computations than other database systems to
perform the same operation.

0004306943.INDD 30	 Trim size: 7.375 in × 9.25 in� March 14, 2019 2:47 PM

30 BOOK 1 SQL Concepts

»» Most business managers were reluctant to try something new when
they were already familiar with one or the other of the older
technologies.

»» Data and applications that already existed for an existing database
system would be very difficult to convert to work with a relational
DBMS. For most organizations with an existing hierarchical or network
database system, it would be too costly to make a conversion.

»» Employees would have to learn an entirely new way of dealing with
data. This would be very costly, too.

However, things gradually started to change.

Although databases structured according to the hierarchical and network models
had excellent performance, they were difficult to maintain. Structural changes to
a database took a high level of expertise and a lot of time. In many organizations,
backlogs of change requests grew from months to years. Department managers
started putting their work on personal computers rather than going to the cor-
porate IT department to ask for a change to a database. IT managers, fearing that
their power in the organization was eroding, took the drastic step of considering
relational technology.

Meanwhile, Moore’s Law was inexorably changing the performance situation. In
1965, Gordon Moore of Intel noted that about every 18 months to 2 years the price
of a bit in a semiconductor memory would be cut in half, and he predicted that
this exponential trend would continue. A corollary of the law is that for a given
cost, the performance of integrated circuit processors would double every 18 to
24 months. Both of these laws have held true for more than 50 years, although the
end of the trend is in sight. In addition, the capacities and performance of hard
disk storage devices have also improved at an exponential rate, paralleling the
improvement in semiconductor chips.

The performance improvements in processors, memories, and hard disks com-
bined to dramatically improve the performance of relational database systems,
making them more competitive with hierarchical and network systems. When this
improved performance was added to the relational architecture’s inherent advan-
tage in structural flexibility, relational database systems started to become much
more attractive, even to large organizations with major investments in legacy
systems. In many of these companies, although existing applications remained on
their current platforms, new applications and the databases that held their data
were developed using the new relational technology.

