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Introduction
Information in science, business, and mathematics is often organized into rows and
columns to form rectangular arrays called “matrices” (plural of “matrix”). Matrices often
appear as tables of numerical data that arise from physical observations, but they occur
in various mathematical contexts as well. For example, we will see in this chapter that all
of the information required to solve a system of equations such as

5x + y = 3
2x − y = 4

is embodied in the matrix

[52
1

−1
3
4]

and that the solution of the system can be obtained by performing appropriate opera-
tions on this matrix. This is particularly important in developing computer programs for
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solving systems of equations because computers are well suited for manipulating arrays
of numerical information. However, matrices are not simply a notational tool for solving
systems of equations; they can be viewed as mathematical objects in their own right, and
there is a rich and important theory associated with them that has a multitude of practi-
cal applications. It is the study of matrices and related topics that forms the mathematical
field that we call “linear algebra.” In this chapter we will begin our study of matrices.

1.1 Introduction to Systems of
Linear Equations

Systems of linear equations and their solutions constitute one of the major topics that we
will study in this course. In this first section we will introduce some basic terminology
and discuss a method for solving such systems.

Linear Equations
Recall that in two dimensions a line in a rectangular xy-coordinate system can be repre-
sented by an equation of the form

ax + by = c (a, b not both 0)
and in three dimensions a plane in a rectangular xyz-coordinate system can be represented
by an equation of the form

ax + by + cz = d (a, b, c not all 0)
These are examples of “linear equations,” the first being a linear equation in the variables
x and y and the second a linear equation in the variables x, y, and z. More generally, we
define a linear equation in the n variables x1, x2, . . . , xn to be one that can be expressed
in the form

a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = b (1)
where a1, a2, . . . , an and b are constants, and the a’s are not all zero. In the special cases
where n = 2 or n = 3, wewill often use variableswithout subscripts andwrite linear equa-
tions as

a1x + a2 y = b (2)
a1x + a2 y + a3z = b (3)

In the special case where b = 0, Equation (1) has the form
a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = 0 (4)

which is called a homogeneous linear equation in the variables x1, x2, . . . , xn.

EXAMPLE 1 | Linear Equations

Observe that a linear equation does not involve any products or roots of variables. All vari-
ables occur only to the first power and do not appear, for example, as arguments of trigono-
metric, logarithmic, or exponential functions. The following are linear equations:

x+ 3y = 7 x1 − 2x2 − 3x3 + x4 = 0
1
2 x− y+ 3z = −1 x1 + x2 + ⋅ ⋅ ⋅ + xn = 1

The following are not linear equations:

x+ 3y2 = 4 3x+ 2y− xy = 5
sin x+ y = 0 √x1 + 2x2 + x3 = 1
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Afinite set of linear equations is called a system of linear equations or, more briefly,
a linear system. The variables are called unknowns. For example, system (5) that follows
has unknowns x and y, and system (6) has unknowns x1, x2, and x3.

5x + y = 3 4x1 − x2 + 3x3 = −1
2x − y = 4 3x1 + x2 + 9x3 = −4 (5–6)

A general linear system ofm equations in the n unknowns x1, x2, . . . , xn can be written as
The double subscripting on
the coefficients ai j of the
unknowns gives their loca-
tion in the system—the first
subscript indicates the equa-
tion in which the coefficient
occurs, and the second
indicates which unknown
it multiplies. Thus, a12 is
in the first equation and
multiplies x2.

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = b1
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn = bm

(7)

A solution of a linear system in n unknowns x1, x2, . . . , xn is a sequence of n numbers
s1, s2, . . . , sn for which the substitution

x1 = s1, x2 = s2, . . . , xn = sn
makes each equation a true statement. For example, the system in (5) has the solution

x = 1, y = −2

and the system in (6) has the solution

x1 = 1, x2 = 2, x3 = −1

These solutions can be written more succinctly as

(1, −2) and (1, 2, −1)

in which the names of the variables are omitted. This notation allows us to interpret these
solutions geometrically as points in two-dimensional and three-dimensional space. More
generally, a solution

x1 = s1, x2 = s2, . . . , xn = sn
of a linear system in n unknowns can be written as

(s1, s2, . . . , sn)

which is called an ordered n-tuple. With this notation it is understood that all variables
appear in the same order in each equation. If n = 2, then the n-tuple is called an ordered
pair, and if n = 3, then it is called an ordered triple.

Linear Systems in Two and Three Unknowns
Linear systems in two unknowns arise in connectionwith intersections of lines. For exam-
ple, consider the linear system

a1x + b1y = c1
a2x + b2y = c2

in which the graphs of the equations are lines in the xy-plane. Each solution (x, y) of this
system corresponds to a point of intersection of the lines, so there are three possibilities
(Figure 1.1.1):

1. The lines may be parallel and distinct, in which case there is no intersection and con-
sequently no solution.

2. The lines may intersect at only one point, in which case the system has exactly one
solution.

3. The lines may coincide, in which case there are infinitely many points of intersection
(the points on the common line) and consequently infinitely many solutions.
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FIGURE 1.1.1

In general, we say that a linear system is consistent if it has at least one solution
and inconsistent if it has no solutions. Thus, a consistent linear system of two equa-
tions in two unknowns has either one solution or infinitely many solutions—there are
no other possibilities. The same is true for a linear system of three equations in three
unknowns

a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3

in which the graphs of the equations are planes. The solutions of the system, if any, corre-
spond to points where all three planes intersect, so again we see that there are only three
possibilities—no solutions, one solution, or infinitely many solutions (Figure 1.1.2).

No solutions
(three parallel planes;

no common intersection)

No solutions
(two parallel planes;

no common intersection)

No solutions
(no common intersection)

In5nitely many solutions
(planes are all coincident;

intersection is a plane)

In5nitely many solutions
(intersection is a line)

One solution
(intersection is a point)

No solutions
(two coincident planes

parallel to the third;
no common intersection)

In5nitely many solutions
(two coincident planes;

intersection is a line)

FIGURE 1.1.2

Wewill prove later that our observations about the number of solutions of linear sys-
tems of two equations in two unknowns and linear systems of three equations in three
unknowns actually hold for all linear systems. That is:

Every system of linear equations has zero, one, or infinitely many solutions. There are
no other possibilities.
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EXAMPLE 2 | A Linear System with One Solution

Solve the linear system
x− y = 1
2x+ y = 6

Solution We can eliminate x from the second equation by adding−2 times the first equa-
tion to the second. This yields the simplified system

x− y = 1
3y = 4

From the second equation we obtain y = 4
3 , and on substituting this value in the first equa-

tion we obtain x = 1+ y = 7
3 . Thus, the system has the unique solution

x = 7
3 , y = 4

3

Geometrically, this means that the lines represented by the equations in the system intersect
at the single point ( 73 ,

4
3 ). We leave it for you to check this by graphing the lines.

EXAMPLE 3 | A Linear System with No Solutions

Solve the linear system
x+ y = 4

3x+ 3y = 6

Solution We can eliminate x from the second equation by adding−3 times the first equa-
tion to the second equation. This yields the simplified system

x+ y = 4
0 = −6

The second equation is contradictory, so the given system has no solution. Geometrically,
this means that the lines corresponding to the equations in the original system are parallel
and distinct. We leave it for you to check this by graphing the lines or by showing that they
have the same slope but different y-intercepts.

EXAMPLE 4 | A Linear System with Infinitely Many Solutions

Solve the linear system
4x− 2y = 1
16x− 8y = 4

Solution We can eliminate x from the second equation by adding−4 times the first equa-
tion to the second. This yields the simplified system

4x− 2y = 1
0 = 0

The second equation does not impose any restrictions on x and y and hence can be omitted.
Thus, the solutions of the system are those values of x and y that satisfy the single equation

4x− 2y = 1 (8)

Geometrically, this means the lines corresponding to the two equations in the original sys-
tem coincide. Oneway to describe the solution set is to solve this equation for x in terms of y to
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obtain x = 1
4 +

1
2 y and then assign an arbitrary value t (called aparameter) to y. This allows

us to express the solution by the pair of equations (called parametric equations)

x = 1
4 +

1
2 t, y = t

We can obtain specific numerical solutions from these equations by substituting numerical
values for the parameter t. For example, t = 0 yields the solution ( 14 , 0), t = 1 yields the

solution ( 34 , 1), and t = −1 yields the solution (− 1
4 , −1). You can confirm that these are

solutions by substituting their coordinates into the given equations.

In Example 4 we could have
also obtained parametric
equations for the solutions
by solving (8) for y in terms
of x and letting x= t be the
parameter. The resulting
parametric equations would
look different but would
define the same solution set.

EXAMPLE 5 | A Linear System with Infinitely Many Solutions

Solve the linear system
x− y+ 2z = 5

2x− 2y+ 4z = 10
3x− 3y+ 6z = 15

Solution This system can be solved by inspection, since the second and third equations
are multiples of the first. Geometrically, this means that the three planes coincide and that
those values of x, y, and z that satisfy the equation

x− y+ 2z = 5 (9)

automatically satisfy all three equations. Thus, it suffices to find the solutions of (9). We can
do this by first solving this equation for x in terms of y and z, then assigning arbitrary values
r and s (parameters) to these two variables, and then expressing the solution by the three
parametric equations

x = 5+ r− 2s, y = r, z = s
Specific solutions can be obtained by choosing numerical values for the parameters r and s.
For example, taking r = 1 and s = 0 yields the solution (6, 1, 0).

Augmented Matrices and Elementary Row Operations
As the number of equations and unknowns in a linear system increases, so does the com-
plexity of the algebra involved in finding solutions. The required computations can be
mademoremanageable by simplifying notation and standardizing procedures. For exam-
ple, by mentally keeping track of the location of the +’s, the x’s, and the =’s in the linear
system

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = b1
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn = bm

we can abbreviate the system by writing only the rectangular array of numbers

⎡⎢⎢⎢⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n b1
a21 a22 ⋅ ⋅ ⋅ a2n b2
...

...
...

...
am1 am2 ⋅ ⋅ ⋅ amn bm

⎤⎥⎥⎥⎥
⎦

This is called the augmentedmatrix for the system. For example, the augmented matrix

As noted in the introduc-
tion to this chapter, the
term “matrix” is used in
mathematics to denote a
rectangular array of num-
bers. In a later section we
will study matrices in detail,
but for now we will only be
concerned with augmented
matrices for linear systems.

for the system of equations
x1 + x2 + 2x3 = 9
2x1 + 4x2 − 3x3 = 1
3x1 + 6x2 − 5x3 = 0

is [
1 1 2 9
2 4 −3 1
3 6 −5 0

]
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Historical Note

Maxime Bôcher
(1867–1918)

The first known use of augmented matrices appeared between
200 B.C. and 100 B.C. in a Chinesemanuscript entitledNineChapters
of Mathematical Art. The coefficients were arranged in columns
rather than in rows, as today, but remarkably the system was
solved by performing a succession of operations on the columns.
The actual use of the term augmentedmatrix appears to have been
introduced by the American mathematician Maxime Bôcher
in his book Introduction to Higher Algebra, published in 1907.
In addition to being an outstanding research mathematician and
an expert in Latin, chemistry, philosophy, zoology, geography,
meteorology, art, andmusic, Bôcherwas an outstanding expositor
of mathematics whose elementary textbooks were greatly appre-
ciated by students and are still in demand today.

[Image: HUP Bocher, Maxime (1), olvwork650836]

The basic method for solving a linear system is to perform algebraic operations on
the system that do not alter the solution set and that produce a succession of increasingly
simpler systems, until a point is reached where it can be ascertained whether the system
is consistent, and if so, what its solutions are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.
2. Interchange two equations.
3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the equations in
the associated system, these three operations correspond to the following operations on
the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.
3. Add a constant times one row to another.

These are called elementary row operations on a matrix.
In the following example we will illustrate how to use elementary row operations

and an augmented matrix to solve a linear system in three unknowns. Since a systematic
procedure for solving linear systems will be developed in the next section, do not worry
about how the steps in the example were chosen. Your objective here should be simply to
understand the computations.

EXAMPLE 6 | Using Elementary Row Operations

In the left column we solve a system of linear equations by operating on the equations in the
system, and in the right column we solve the same system by operating on the rows of the
augmented matrix.

x + y + 2z = 9
2x + 4y − 3z = 1
3x + 6y − 5z = 0

⎡
⎢
⎢
⎣

1 1 2 9
2 4 −3 1
3 6 −5 0

⎤
⎥
⎥
⎦
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Add−2 times the first equation to the second
to obtain

x + y + 2z = 9
2y − 7z = −17

3x + 6y − 5z = 0

Add−2 times the first row to the second to
obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 2 −7 −17
3 6 −5 0

⎤
⎥
⎥
⎦

Add −3 times the first equation to the third
to obtain

x + y + 2z = 9
2y − 7z = −17
3y − 11z = −27

Add −3 times the first row to the third to
obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 2 −7 −17
0 3 −11 −27

⎤
⎥
⎥
⎦

Multiply the second equation by 1
2 to obtain

x + y + 2z = 9
y − 7

2 z = − 17
2

3y − 11z = −27

Multiply the second row by 1
2 to obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 3 −11 −27

⎤
⎥
⎥
⎦

Add −3 times the second equation to the
third to obtain

x + y + 2z = 9
y − 7

2 z = − 17
2

− 1
2 z = − 3

2

Add−3 times the second row to the third to
obtain

⎡
⎢
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 0 − 1
2 − 3

2

⎤
⎥
⎥
⎥
⎦

Multiply the third equation by−2 to obtain
x + y + 2z = 9

y − 7
2 z = − 17

2
z = 3

Multiply the third row by−2 to obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 0 1 3

⎤
⎥
⎥
⎦

Add−1 times the second equation to the first
to obtain

x + 11
2 z =

35
2

y − 7
2 z = − 17

2
z = 3

Add−1 times the second row to the first to
obtain

⎡
⎢
⎢
⎢
⎣

1 0 11
2

35
2

0 1 − 7
2 − 17

2
0 0 1 3

⎤
⎥
⎥
⎥
⎦

Add−11
2 times the third equation to the first

and 7
2 times the third equation to the second

to obtain x = 1
y = 2

z = 3

Add− 11
2 times the third row to the first and

7
2 times the third row to the second to obtain

⎡
⎢
⎢
⎣

1 0 0 1
0 1 0 2
0 0 1 3

⎤
⎥
⎥
⎦

The solution x = 1, y = 2, z = 3 is now evident.

The solution in this example
can also be expressed as
the ordered triple (1, 2, 3)
with the understanding that
the numbers in the triple
are in the same order as
the variables in the system,
namely, x, y, z.

Exercise Set 1.1

1. In each part, determine whether the equation is linear in x1,
x2, and x3.

a. x1 + 5x2 −√2 x3 = 1 b. x1 + 3x2 + x1x3 = 2

c. x1 = −7x2 + 3x3 d. x−21 + x2 + 8x3 = 5

e. x3/51 − 2x2 + x3 = 4 f. 𝜋x1 −√2 x2 = 71/3

2. In each part, determine whether the equation is linear in x
and y.

a. 21/3x+√3y = 1 b. 2x1/3 + 3√y = 1

c. cos (𝜋7 )x− 4y = log 3 d. 𝜋
7 cos x− 4y = 0

e. xy = 1 f. y+ 7 = x
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3. Using the notation of Formula (7), write down a general linear
system of

a. two equations in two unknowns.
b. three equations in three unknowns.
c. two equations in four unknowns.

4. Write down the augmented matrix for each of the linear sys-
tems in Exercise 3.

In each part of Exercises 5–6, find a system of linear equations in the
unknowns x1, x2, x3, . . . , that corresponds to the given augmented
matrix.

5. a. [
2 0 0
3 −4 0
0 1 1

] b. [
3 0 −2 5
7 1 4 −3
0 −2 1 7

]

6. a. [
0 3 −1 −1 −1
5 2 0 −3 −6]

b.
⎡
⎢
⎢
⎢
⎣

3 0 1 −4 3
−4 0 4 1 −3
−1 3 0 −2 −9
0 0 0 −1 −2

⎤
⎥
⎥
⎥
⎦

In each part of Exercises 7–8, find the augmented matrix for the lin-
ear system.

7. a. −2x1 = 6
3x1 = 8
9x1 = −3

b. 6x1 − x2 + 3x3 = 4
5x2 − x3 = 1

c. 2x2 − 3x4 + x5 = 0
−3x1 − x2 + x3 = −1
6x1 + 2x2 − x3 + 2x4 − 3x5 = 6

8. a. 3x1 − 2x2 = −1
4x1 + 5x2 = 3
7x1 + 3x2 = 2

b. 2x1 + 2x3 = 1
3x1 − x2 + 4x3 = 7
6x1 + x2 − x3 = 0

c. x1 = 1
x2 = 2

x3 = 3

9. In each part, determine whether the given 3-tuple is a solution
of the linear system

2x1 − 4x2 − x3 = 1
x1 − 3x2 + x3 = 1
3x1 − 5x2 − 3x3 = 1

a. (3, 1, 1) b. (3,−1, 1) c. (13, 5, 2)

d. ( 132 ,
5
2 , 2) e. (17, 7, 5)

10. In each part, determine whether the given 3-tuple is a solution
of the linear system

x + 2y − 2z = 3
3x − y + z = 1
−x + 5y − 5z = 5

a. ( 57 ,
8
7 , 1) b. ( 57 ,

8
7 , 0) c. (5, 8, 1)

d. ( 57 ,
10
7 ,

2
7) e. ( 57 ,

22
7 , 2)

11. In each part, solve the linear system, if possible, and use the
result to determine whether the lines represented by the equa-
tions in the system have zero, one, or infinitely many points of
intersection. If there is a single point of intersection, give its
coordinates, and if there are infinitely many, find parametric
equations for them.

a. 3x− 2y = 4
6x− 4y = 9

b. 2x− 4y = 1
4x− 8y = 2

c. x− 2y = 0
x− 4y = 8

12. Under what conditions on a and b will the linear system have
no solutions, one solution, infinitely many solutions?

2x− 3y = a
4x− 6y = b

In each part of Exercises 13–14, use parametric equations to describe
the solution set of the linear equation.
13. a. 7x− 5y = 3

b. 3x1 − 5x2 + 4x3 = 7

c. −8x1 + 2x2 − 5x3 + 6x4 = 1

d. 3𝑣 − 8𝑤 + 2x− y+ 4z = 0

14. a. x+ 10y = 2

b. x1 + 3x2 − 12x3 = 3

c. 4x1 + 2x2 + 3x3 + x4 = 20

d. 𝑣 +𝑤 + x− 5y+ 7z = 0

In Exercises 15–16, each linear system has infinitely many solutions.
Use parametric equations to describe its solution set.

15. a. 2x− 3y = 1
6x− 9y = 3

b. x1 + 3x2 − x3 = −4
3x1 + 9x2 − 3x3 = −12
−x1 − 3x2 + x3 = 4

16. a. 6x1 + 2x2 = −8
3x1 + x2 = −4

b. 2x − y + 2z = −4
6x − 3y + 6z = −12

−4x + 2y − 4z = 8

In Exercises 17–18, find a single elementary row operation that will
create a 1 in the upper left corner of the given augmentedmatrix and
will not create any fractions in its first row.

17. a. [
−3 −1 2 4
2 −3 3 2
0 2 −3 1

] b. [
0 −1 −5 0
2 −9 3 2
1 4 −3 3

]

18. a. [
2 4 −6 8
7 1 4 3

−5 4 2 7
] b. [

7 −4 −2 2
3 −1 8 1

−6 3 −1 4
]

In Exercises 19–20, find all values of k for which the given aug-
mented matrix corresponds to a consistent linear system.

19. a. [1 k −4
4 8 2] b. [1 k −1

4 8 −4]

20. a. [ 3 −4 k
−6 8 5] b. [k 1 −2

4 −1 2]



November 12, 2018 13:09 C01 Sheet number 10 Page number 10 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

10 CHAPTER 1 Systems of Linear Equations and Matrices

21. The curve y = ax2 + bx+ c shown in the accompanying fig-
ure passes through the points (x1, y1), (x2, y2), and (x3, y3).
Show that the coefficients a, b, and c form a solution of the
system of linear equations whose augmented matrix is

⎡
⎢
⎢
⎣

x21 x1 1 y1
x22 x2 1 y2
x23 x3 1 y3

⎤
⎥
⎥
⎦

y

x

y = ax2 + bx + c

(x1, y1)

(x3, y3)

(x2, y2)

FIGURE Ex-21

22. Explain why each of the three elementary row operations does
not affect the solution set of a linear system.

23. Show that if the linear equations
x1 + kx2 = c and x1 + l x2 = d

have the same solution set, then the two equations are identi-
cal (i.e., k = l and c = d).

24. Consider the system of equations
ax + by = k
cx + dy = l
ex + 𝑓y = m

Discuss the relative positions of the lines ax+ by = k,
cx+ dy = l, and ex+𝑓y = m when

a. the system has no solutions.

b. the system has exactly one solution.

c. the system has infinitely many solutions.

25. Suppose that a certain diet calls for 7 units of fat, 9 units of
protein, and 16 units of carbohydrates for the main meal, and
suppose that an individual has three possible foods to choose
from to meet these requirements:

Food 1: Each ounce contains 2 units of fat, 2 units of
protein, and 4 units of carbohydrates.

Food 2: Each ounce contains 3 units of fat, 1 unit of
protein, and 2 units of carbohydrates.

Food 3: Each ounce contains 1 unit of fat, 3 units of
protein, and 5 units of carbohydrates.

Let x, y, and z denote the number of ounces of the first, sec-
ond, and third foods that the dieter will consume at the main
meal. Find (but do not solve) a linear system in x, y, and z
whose solution tells how many ounces of each food must be
consumed to meet the diet requirements.

26. Suppose that you want to find values for a, b, and c such that
the parabola y = ax2 + bx+ c passes through the points
(1, 1), (2, 4), and (−1, 1). Find (but do not solve) a system
of linear equations whose solutions provide values for a, b,
and c. How many solutions would you expect this system of
equations to have, and why?

27. Suppose you are asked to find three real numbers such that
the sum of the numbers is 12, the sum of two times the first
plus the second plus two times the third is 5, and the third
number is one more than the first. Find (but do not solve) a
linear system whose equations describe the three conditions.

True-False Exercises
TF. In parts (a)–(h) determine whether the statement is true or

false, and justify your answer.
a. A linear system whose equations are all homogeneous

must be consistent.

b. Multiplying a row of an augmented matrix through by
zero is an acceptable elementary row operation.

c. The linear system

x − y = 3
2x − 2y = k

cannot have a unique solution, regardless of the value of k.

d. A single linear equation with two or more unknowns
must have infinitely many solutions.

e. If the number of equations in a linear system exceeds
the number of unknowns, then the system must be
inconsistent.

f. If each equation in a consistent linear system ismultiplied
through by a constant c, then all solutions to the new sys-
tem can be obtained by multiplying solutions from the
original system by c.

g. Elementary row operations permit one row of an aug-
mented matrix to be subtracted from another.

h. The linear system with corresponding augmented matrix

[2 −1 4
0 0 −1]

is consistent.

Working with Technology
T1. Solve the linear systems in Examples 2, 3, and 4 to see how

your technology utility handles the three types of systems.

T2. Use the result in Exercise 21 to find values of a, b, and c for
which the curve y = ax2 + bx+ c passes through the points
(−1, 1, 4), (0, 0, 8), and (1, 1, 7).
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1.2 Gaussian Elimination
In this section we will develop a systematic procedure for solving systems of linear equa-
tions. The procedure is based on the idea of performing certain operations on the rows of
the augmentedmatrix that simplify it to a form fromwhich the solution of the system can
be ascertained by inspection.

Considerations in Solving Linear Systems
When considering methods for solving systems of linear equations, it is important to dis-
tinguish between large systems that must be solved by computer and small systems that
can be solved by hand. For example, there are many applications that lead to linear sys-
tems in thousands or even millions of unknowns. Large systems require special tech-
niques to deal with issues of memory size, roundoff errors, solution time, and so forth.
Such techniques are studied in the field of numerical analysis and will only be touched
on in this text. However, almost all of the methods that are used for large systems are
based on the ideas that we will develop in this section.

Echelon Forms
In Example 6 of the last section, we solved a linear system in the unknowns x, y, and z by
reducing the augmented matrix to the form

[
1 0 0 1
0 1 0 2
0 0 1 3

]

fromwhich the solution x = 1, y = 2, z = 3 became evident. This is an example of amatrix
that is in reduced row echelon form. To be of this form, amatrix must have the following
properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the row
is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.

A matrix that has the first three properties is said to be in row echelon form. (Thus,
a matrix in reduced row echelon form is of necessity in row echelon form, but not
conversely.)

EXAMPLE 1 | Row Echelon and Reduced Row Echelon Form

The following matrices are in reduced row echelon form.

[
1 0 0 4
0 1 0 7
0 0 1 −1

], [
1 0 0
0 1 0
0 0 1

],
⎡
⎢
⎢
⎢
⎣

0 1 −2 0 1
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

, [0 0
0 0]
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The following matrices are in row echelon form but not reduced row echelon form.

[
1 4 −3 7
0 1 6 2
0 0 1 5

], [
1 1 0
0 1 0
0 0 0

], [
0 1 2 6 0
0 0 1 −1 0
0 0 0 0 1

]

EXAMPLE 2 | More on Row Echelon and Reduced
Row Echelon Form

As Example 1 illustrates, a matrix in row echelon form has zeros below each leading 1,
whereas a matrix in reduced row echelon form has zeros below and above each leading 1.
Thus, with any real numbers substituted for the ∗’s, all matrices of the following types are in
row echelon form:

⎡
⎢
⎢
⎢
⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 1 ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

All matrices of the following types are in reduced row echelon form:

⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

If, by a sequence of elementary row operations, the augmented matrix for a system of
linear equations is put in reduced row echelon form, then the solution set can be obtained
either by inspection or by converting certain linear equations to parametric form. Here
are some examples.

EXAMPLE 3 | Unique Solution

Suppose that the augmented matrix for a linear system in the unknowns x1, x2, x3, and x4
has been reduced by elementary row operations to

⎡
⎢
⎢
⎢
⎣

1 0 0 0 3
0 1 0 0 −1
0 0 1 0 0
0 0 0 1 5

⎤
⎥
⎥
⎥
⎦

This matrix is in reduced row echelon form and corresponds to the equations

x1 = 3
x2 = −1

x3 = 0
x4 = 5

Thus, the system has a unique solution, namely, x1 = 3, x2 = −1, x3 = 0, x4 = 5, which can
also be expressed as the 4-tuple (3,−1, 0, 5).
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EXAMPLE 4 | Linear Systems in Three Unknowns

In each part, suppose that the augmented matrix for a linear system in the unknowns x, y,
and zhas been reduced by elementary row operations to the given reduced row echelon form.
Solve the system.

(a) [
1 0 0 0
0 1 2 0
0 0 0 1

] (b) [
1 0 3 −1
0 1 −4 2
0 0 0 0

] (c) [
1 −5 1 4
0 0 0 0
0 0 0 0

]

Solution (a) The equation that corresponds to the last row of the augmented matrix is

0x+ 0y+ 0z = 1

Since this equation is not satisfied by any values of x, y, and z, the system is inconsistent.

Solution (b) The equation that corresponds to the last row of the augmented matrix is

0x+ 0y+ 0z = 0

This equation can be omitted since it imposes no restrictions on x, y, and z; hence, the linear
system corresponding to the augmented matrix is

x + 3z = −1
y − 4z = 2

In general, the variables in a linear system that correspond to the leading l’s in its augmented
matrix are called the leading variables, and the remaining variables are called the free vari-
ables. In this case the leading variables are x and y, and the variable z is the only free variable.
Solving for the leading variables in terms of the free variables gives

x = −1− 3z
y = 2+ 4z

From these equations we see that the free variable z can be treated as a parameter and
assigned an arbitrary value t, which then determines values for x and y. Thus, the solution
set can be represented by the parametric equations

x = −1− 3t, y = 2+ 4t, z = t

By substituting various values for t in these equations we can obtain various solutions of the
system. For example, setting t = 0 yields the solution

x = −1, y = 2, z = 0

and setting t = 1 yields the solution

x = −4, y = 6, z = 1

Solution (c) As explained in part (b), we can omit the equations corresponding to the zero
rows, in which case the linear system associated with the augmented matrix consists of the
single equation

x− 5y+ z = 4 (1)

fromwhichwe see that the solution set is a plane in three-dimensional space. Although (1) is
a valid formof the solution set, there aremany applications inwhich it is preferable to express
the solution set in parametric form. We can convert (1) to parametric form by solving for the
leading variable x in terms of the free variables y and z to obtain

x = 4+ 5y− z

From this equation we see that the free variables can be assigned arbitrary values, say y = s
and z = t, which then determine the value of x. Thus, the solution set can be expressed para-
metrically as

x = 4+ 5s− t, y = s, z = t (2)

We will usually denote
parameters in a general
solution by the letters
r, s, t, . . . , but any letters
that do not conflict with the
names of the unknowns can
be used. For systems with
more than three unknowns,
subscripted letters
such as t1, t2, t3, . . .
are convenient.
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Formulas, such as (2), that express the solution set of a linear system parametrically
have some associated terminology.

Definition 1

If a linear system has infinitely many solutions, then a set of parametric equa-
tions from which all solutions can be obtained by assigning numerical values to
the parameters is called a general solution of the system.

Thus, for example, Formula (2) is a general solution of system (iii) in the previous
example.

Elimination Methods
We have just seen how easy it is to solve a system of linear equations once its augmented
matrix is in reduced row echelon form. Now we will give a step-by-step algorithm that
can be used to reduce any matrix to reduced row echelon form. As we state each step in
the algorithm, we will illustrate the idea by reducing the following matrix to reduced row
echelon form.

⎡
⎢
⎢
⎣

0 0 −2 0 7 12
2 4 −10 6 12 28
2 4 −5 6 −5 −1

⎤
⎥
⎥
⎦

Step 1. Locate the leftmost column that does not consist entirely of zeros.

0 0 2 0 7 12

2 4 10 6 12 28

2 4 5 6 5 1

Leftmost nonzero column

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry
to the top of the column found in Step 1.

[
2 4 −10 6 12 28
0 0 −2 0 7 12
2 4 −5 6 −5 −1

] The first and second rows in the
preceding matrix were interchanged.

Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply the
first row by 1/a in order to introduce a leading 1.

[
1 2 −5 3 6 14
0 0 −2 0 7 12
2 4 −5 6 −5 −1

] The first row of the preceding matrix
was multiplied by 12 .

Step 4. Add suitable multiples of the top row to the rows below so that all entries below
the leading 1 become zeros.

[
1 2 −5 3 6 14
0 0 −2 0 7 12
0 0 5 0 −17 −29

] −2 times the first row of the preceding
matrix was added to the third row.
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Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the
submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.

1 2 5 3 6 14

0 0 2 0 7 12

0 0 5 0 17 29

Leftmost nonzero column

in the submatrix

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 5 0 17 29

The -rst row in the submatrix was

multiplied by 1
2

                                 to introduce a
leading 1.

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1
2

1

The top row in the submatrix was
covered, and we returned again to
Step 1.

Leftmost nonzero column

in the new submatrix

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1
2

1

–5 times the Arst row of the submatrix
was added to the second row of the
submatrix to introduce a zero below
the leading 1.

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1 2

The ,rst (and only) row in the new
submatrix was multiplied by 2 to
introduce a leading 1.

The entire matrix is now in row echelon form. To find the reduced row echelon
form we need the following additional step.

Step 6. Beginning with the last nonzero row and working upward, add suitable multiples
of each row to the rows above to introduce zeros above the leading 1’s.

[
1 2 −5 3 6 14
0 0 1 0 0 1
0 0 0 0 1 2

] 7
2 times the third row of the preceding
matrix was added to the second row.

[
1 2 −5 3 0 2
0 0 1 0 0 1
0 0 0 0 1 2

] −6 times the third row was added to the
first row.

[
1 2 0 3 0 7
0 0 1 0 0 1
0 0 0 0 1 2

] 5 times the second row was added to the
first row.

The last matrix is in reduced row echelon form.

The algorithm we have just described for reducing a matrix to reduced row echelon
form is called Gauss–Jordan elimination. It consists of two parts, a forward phase in
which zeros are introduced below the leading 1’s and a backward phase in which zeros
are introduced above the leading 1’s. If only the forward phase is used, then the procedure
produces a row echelon form and is called Gaussian elimination. For example, in the
preceding computations a row echelon form was obtained at the end of Step 5.
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Historical Note

Carl Friedrich Gauss
(1777–1855)

Wilhelm Jordan
(1842–1899)

Although versions of Gaussian elimination were known much
earlier, its importance in scientific computation became clear
when the great German mathematician Carl Friedrich Gauss
used it to help compute the orbit of the asteroid Ceres from lim-
ited data. What happened was this: On January 1, 1801 the Sicil-
ian astronomer and Catholic priest Giuseppe Piazzi (1746–1826)
noticed a dim celestial object that he believed might be a “miss-
ing planet.” He named the object Ceres andmade a limited num-
ber of positional observations but then lost the object as it neared
the Sun. Gauss, then only 24 years old, undertook the problem of
computing the orbit of Ceres from the limited data using a tech-
nique called “least squares,” the equations of which he solved by
the method that we now call “Gaussian elimination.” The work
of Gauss created a sensation when Ceres reappeared a year later
in the constellation Virgo at almost the precise position that he
predicted! The basic idea of the method was further popularized
by the German engineer Wilhelm Jordan in his book on geodesy
(the science of measuring Earth shapes) entitled Handbuch der
Vermessungskunde and published in 1888.

[Images: Photo Inc/Photo Researchers/Getty Images (Gauss);
https://en.wikipedia.org/wiki/Andrey_Markov#/media/

File:Andrei_Markov.jpg. Public domain. (Jordan)]

EXAMPLE 5 | Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination.

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

Solution The augmented matrix for the system is

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 −1
0 0 5 10 0 15 5
2 6 0 8 4 18 6

⎤
⎥
⎥
⎥
⎦

Adding−2 times the first row to the second and fourth rows gives

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 5 10 0 15 5
0 0 4 8 0 18 6

⎤
⎥
⎥
⎥
⎦

Multiplying the second row by−1 and then adding−5 times the new second row to the third
row and−4 times the new second row to the fourth row gives

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 0 0
0 0 0 0 0 6 2

⎤
⎥
⎥
⎥
⎦
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Interchanging the third and fourth rows and then multiplying the third row of the resulting
matrix by 1

6 gives the row echelon form

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

This completes the forward phase since
there are zeros below the leading 1’s.

Adding−3 times the third row to the second row and then adding 2 times the second row of
the resulting matrix to the first row yields the reduced row echelon form

⎡
⎢
⎢
⎢
⎣

1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

This completes the backward phase since
there are zeros above the leading 1’s.

The corresponding system of equations is

x1 + 3x2 + 4x4 + 2x5 = 0
x3 + 2x4 = 0

x6 = 1
3

(3)

Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5
x3 = −2x4
x6 = 1

3

Finally, we express the general solution of the system parametrically by assigning the free
variables x2, x4, and x5 arbitrary values r, s, and t, respectively. This yields

x1 = −3r− 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

Note that in constructing
the linear system in (3) we
ignored the row of zeros
in the corresponding aug-
mented matrix. Why is this
justified?

Homogeneous Linear Systems
A system of linear equations is said to be homogeneous if the constant terms are all zero;
that is, the system has the form

a11 x1 + a12 x2 + ⋅ ⋅ ⋅ + a1nxn = 0
a21 x1 + a22 x2 + ⋅ ⋅ ⋅ + a2nxn = 0
...

...
...

...
am1 x1 + am2 x2 + ⋅ ⋅ ⋅ + amnxn = 0

Every homogeneous systemof linear equations is consistent because all such systemshave
x1 = 0, x2 = 0, . . . , xn = 0 as a solution. This solution is called the trivial solution; if there
are other solutions, they are called nontrivial solutions.

Because a homogeneous linear system always has the trivial solution, there are only
two possibilities for its solutions:

• The system has only the trivial solution.
• The system has infinitely many solutions in addition to the trivial solution.

In the special case of a homogeneous linear system of two equations in two unknowns,
say

a1x + b1y = 0 [a1,b1 not both zero]

a2x + b2y = 0 [a2,b2 not both zero]

the graphs of the equations are lines through the origin, and the trivial solution corre-
sponds to the point of intersection at the origin (Figure 1.2.1).
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x

y

Only the trivial solution

x

y

In0nitely many
solutions

a1x + b1y = 0

a1x + b1y = 0
and

a2x + b2y = 0

a2x + b2y = 0

FIGURE 1.2.1

There is one case in which a homogeneous system is assured of having nontrivial
solutions—namely, whenever the system involves more unknowns than equations. To
see why, consider the following example of four equations in six unknowns.

EXAMPLE 6 | A Homogeneous System

Use Gauss–Jordan elimination to solve the homogeneous linear system

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

(4)

Solution Observe that this system is the same as that in Example 5 except for the constants
on the right side, which in this case are all zero. The augmented matrix for this system is

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 0
0 0 5 10 0 15 0
2 6 0 8 4 18 0

⎤
⎥
⎥
⎥
⎦

(5)

which is the same as that in Example 5 except for the entries in the last column, which are
all zeros in this case. Thus, the reduced row echelon form of this matrix will be the same as
that of the augmentedmatrix in Example 5, except for the last column. However, a moment’s
reflection will make it evident that a column of zeros is not changed by an elementary row
operation, so the reduced row echelon form of (5) is

⎡
⎢
⎢
⎢
⎣

1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

(6)

The corresponding system of equations is

x1 + 3x2 + 4x4 + 2x5 = 0
x3 + 2x4 = 0

x6 = 0

Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5
x3 = −2x4
x6 = 0

(7)

If we now assign the free variables x2, x4, and x5 arbitrary values r, s, and t, respectively, then
we can express the solution set parametrically as

x1 = −3r− 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

Note that the trivial solution results when r = s = t = 0.
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Free Variables in Homogeneous Linear Systems
Example 6 illustrates two important points about solving homogeneous linear systems:

1. Elementary row operations do not alter columns of zeros in a matrix, so the reduced
row echelon form of the augmented matrix for a homogeneous linear system has
a final column of zeros. This implies that the linear system corresponding to the
reduced row echelon form is homogeneous, just like the original system.

2. When we constructed the homogeneous linear system corresponding to augmented
matrix (6), we ignored the row of zeros because the corresponding equation

0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 = 0

does not impose any conditions on the unknowns. Thus, depending on whether or
not the reduced row echelon form of the augmented matrix for a homogeneous lin-
ear system has any zero rows, the linear system corresponding to that reduced row
echelon formwill either have the same number of equations as the original system or
it will have fewer.

Now consider a general homogeneous linear system with n unknowns, and suppose
that the reduced row echelon form of the augmented matrix has r nonzero rows. Since
each nonzero row has a leading 1, and since each leading 1 corresponds to a leading vari-
able, the homogeneous system corresponding to the reduced row echelon form of the aug-
mented matrix must have r leading variables and n − r free variables. Thus, this system is
of the form

xk1 + ∑( ) = 0
xk2 + ∑( ) = 0

. . .
...

xkr + ∑( ) = 0

(8)

where in each equation the expression∑( ) denotes a sum that involves the free variables,
if any [see (7), for example]. In summary, we have the following result.

Theorem 1.2.1

Free Variable Theorem for Homogeneous Systems
If a homogeneous linear system has n unknowns, and if the reduced row echelon
form of its augmented matrix has r nonzero rows, then the system has n − r free
variables.

Theorem 1.2.1 has an important implication for homogeneous linear systems with
Note that Theorem 1.2.2
applies only to homoge-
neous systems—a non-
homogeneous system with
more unknowns than equa-
tions need not be consistent.
However, we will prove
later that if a nonhomoge-
neous system with more
unknowns than equations
is consistent, then it has
infinitely many solutions.

more unknowns than equations. Specifically, if a homogeneous linear system hasm equa-
tions in n unknowns, and ifm < n, then it must also be true that r < n (why?). This being
the case, the theorem implies that there is at least one free variable, and this implies that
the system has infinitely many solutions. Thus, we have the following result.

Theorem 1.2.2

A homogeneous linear system with more unknowns than equations has infinitely
many solutions.

In retrospect, we could have anticipated that the homogeneous system in Example 6
would have infinitely many solutions since it has four equations in six unknowns.
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Gaussian Elimination and Back-Substitution
For small linear systems that are solved by hand (such asmost of those in this text), Gauss–
Jordan elimination (reduction to reduced row echelon form) is a good procedure to use.
However, for large linear systems that require a computer solution, it is generally more
efficient to use Gaussian elimination (reduction to row echelon form) followed by a tech-
nique known as back-substitution to complete the process of solving the system. The
next example illustrates this technique.

EXAMPLE 7 | Example 5 Solved by Back-Substitution

From the computations in Example 5, a row echelon form of the augmented matrix is

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

To solve the corresponding system of equations

x1 + 3x2 − 2x3 + 2x5 = 0
x3 + 2x4 + 3x6 = 1

x6 = 1
3

we proceed as follows:
Step 1. Solve the equations for the leading variables.

x1 = −3x2 + 2x3 − 2x5
x3 = 1− 2x4 − 3x6
x6 = 1

3

Step 2. Beginning with the bottom equation and working upward, successively substitute
each equation into all the equations above it.

Substituting x6 = 1
3 into the second equation yields

x1 = −3x2 + 2x3 − 2x5
x3 = −2x4
x6 = 1

3

Substituting x3 = −2x4 into the first equation yields

x1 = −3x2 − 4x4 − 2x5
x3 = −2x4
x6 = 1

3

Step 3. Assign arbitrary values to the free variables, if any.

If we now assign x2, x4, and x5 the arbitrary values r, s, and t, respectively, the general
solution is given by the formulas

x1 = −3r− 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

This agrees with the solution obtained in Example 5.
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EXAMPLE 8 | Existence and Uniqueness of Solutions

Suppose that thematrices below are augmentedmatrices for linear systems in the unknowns
x1, x2, x3, and x4. These matrices are all in row echelon form but not reduced row echelon
form. Discuss the existence and uniqueness of solutions to the corresponding linear systems

(a)
⎡
⎢
⎢
⎢
⎣

1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

(b)
⎡
⎢
⎢
⎢
⎣

1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

(c)
⎡
⎢
⎢
⎢
⎣

1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 1 0

⎤
⎥
⎥
⎥
⎦

Solution (a) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 1

from which it is evident that the system is inconsistent.

Solution (b) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 0

which has no effect on the solution set. In the remaining three equations the variables x1, x2,
and x3 correspond to leading 1’s and hence are leading variables. The variable x4 is a free
variable. With a little algebra, the leading variables can be expressed in terms of the free
variable, and the free variable can be assigned an arbitrary value. Thus, the system must
have infinitely many solutions.

Solution (c) The last row corresponds to the equation

x4 = 0

which gives us a numerical value for x4. If we substitute this value into the third equation,
namely,

x3 + 6x4 = 9
we obtain x3 = 9. You should now be able to see that if we continue this process and substi-
tute the known values of x3 and x4 into the equation corresponding to the second row, we
will obtain a unique numerical value for x2; and if, finally, we substitute the known values
of x4, x3, and x2 into the equation corresponding to the first row, we will produce a unique
numerical value for x1. Thus, the system has a unique solution.

Some Facts About Echelon Forms
There are three facts about row echelon forms and reduced row echelon forms that are
important to know but we will not prove:

1. Every matrix has a unique reduced row echelon form; that is, regardless of whether
you use Gauss–Jordan elimination or some other sequence of elementary row opera-
tions, the same reduced row echelon form will result in the end.*

2. Row echelon forms are not unique; that is, different sequences of elementary row
operations can result in different row echelon forms.

*A proof of this result can be found in the article “The Reduced Row Echelon Form of a Matrix Is Unique: A Simple
Proof,” by Thomas Yuster,Mathematics Magazine, Vol. 57, No. 2, 1984, pp. 93–94.
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3. Although row echelon forms are not unique, the reduced row echelon form and all
row echelon forms of a matrix𝐴 have the same number of zero rows, and the leading
1’s always occur in the same positions. Those are called the pivot positions of𝐴. The
columns containing the leading 1’s in a row echelon or reduced row echelon form
of 𝐴 are called the pivot columns of 𝐴, and the rows containing the leading 1’s are
called the pivot rows of 𝐴. A nonzero entry in a pivot position of 𝐴 is called a pivot
of 𝐴.

EXAMPLE 9 | Pivot Positions and Columns

Earlier in this section (immediately after Definition 1) we found a row echelon form of

𝐴 = [
0 0 −2 0 7 12
2 4 −10 6 12 28
2 4 −5 6 −5 −1

] to be [
1 2 −5 3 6 14
0 0 1 0 − 7

2 −6
0 0 0 0 1 2

]

The leading 1’s occur in (row 1, column 1), (row 2, column 3), and (row 3, column 5). These
are the pivot positions of𝐴. The pivot columns of𝐴 are 1, 3, and 5, and the pivot rows are 1,
2, and 3. The pivots of 𝐴 are the nonzero numbers in the pivot positions. These are marked
by shaded rectangles in the following diagram.

0 0 2 0 7 12

2 4A = 10 6 12 28

2 4 5 6 5 1

Pivot columns

If A is the augmented matrix
for a linear system, then
the pivot columns identify
the leading variables. As an
illustration, in Example 5
the pivot columns are 1,
3, and 6, and the leading
variables are x1, x3, and x6.

Roundoff Error and Instability
There is often a gap between mathematical theory and its practical implementation—
Gauss–Jordan elimination and Gaussian elimination being good examples. The problem
is that computers generally approximate numbers, thereby introducing roundoff errors,
so unless precautions are taken, successive calculationsmaydegrade an answer to a degree
that makes it useless. Algorithms in which this happens are called unstable. There are
various techniques for minimizing roundoff error and instability. For example, it can be
shown that for large linear systems Gauss–Jordan elimination involves roughly 50%more
operations than Gaussian elimination, so most computer algorithms are based on the lat-
ter method. Some of these matters will be considered in Chapter 9.

Exercise Set 1.2

In Exercises 1–2, determine whether the matrix is in row echelon
form, reduced row echelon form, both, or neither.

1. a. [
1 0 0
0 1 0
0 0 1

] b. [
1 0 0
0 1 0
0 0 0

] c. [
0 1 0
0 0 1
0 0 0

]

d. [
1 0 3 1
0 1 2 4] e.

⎡
⎢
⎢
⎢
⎣

1 2 0 3 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

f. [
0 0
0 0
0 0

] g. [
1 −7 5 5
0 1 3 2]

2. a. [
1 2 0
0 1 0
0 0 0

] b. [
1 0 0
0 1 0
0 2 0

] c. [
1 3 4
0 0 1
0 0 0

]

d. [
1 5 −3
0 1 1
0 0 0

] e. [
1 2 3
0 0 0
0 0 1

]

f.
⎡
⎢
⎢
⎢
⎣

1 2 3 4 5
1 0 7 1 3
0 0 0 0 1
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

g. [
1 −2 0 1
0 0 1 −2]
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In Exercises 3–4, suppose that the augmentedmatrix for a linear sys-
tem has been reduced by row operations to the given row echelon
form. Identify the pivot rows and columns and solve the system.

3. a. [
1 −3 4 7
0 1 2 2
0 0 1 5

]

b. [
1 0 8 −5 6
0 1 4 −9 3
0 0 1 1 2

]

c.
⎡
⎢
⎢
⎢
⎣

1 7 −2 0 −8 −3
0 0 1 1 6 5
0 0 0 1 3 9
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

d. [
1 −3 7 1
0 1 4 0
0 0 0 1

]

4. a. [
1 0 0 −3
0 1 0 0
0 0 1 7

]

b. [
1 0 0 −7 8
0 1 0 3 2
0 0 1 1 −5

]

c.
⎡
⎢
⎢
⎢
⎣

1 −6 0 0 3 −2
0 0 1 0 4 7
0 0 0 1 5 8
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

d. [
1 −3 0 0
0 0 1 0
0 0 0 1

]

In Exercises 5–8, solve the system by Gaussian elimination.

5. x1 + x2 + 2x3 = 8
−x1 − 2x2 + 3x3 = 1
3x1 − 7x2 + 4x3 = 10

6. 2x1 + 2x2 + 2x3 = 0
−2x1 + 5x2 + 2x3 = 1
8x1 + x2 + 4x3 = −1

7. x − y + 2z − 𝑤 = −1
2x + y − 2z − 2𝑤 = −2
−x + 2y − 4z + 𝑤 = 1
3x − 3𝑤 = −3

8. − 2b + 3c = 1
3a + 6b − 3c = −2
6a + 6b + 3c = 5

In Exercises 9–12, solve the system by Gauss–Jordan elimination.

9. Exercise 5 10. Exercise 6

11. Exercise 7 12. Exercise 8

In Exercises 13–14, determine whether the homogeneous system has
nontrivial solutions by inspection (without pencil and paper).

13. 2x1 − 3x2 + 4x3 − x4 = 0
7x1 + x2 − 8x3 + 9x4 = 0
2x1 + 8x2 + x3 − x4 = 0

14. x1 + 3x2 − x3 = 0
x2 − 8x3 = 0

4x3 = 0

In Exercises 15–22, solve the given linear system by any method.

15. 2x1 + x2 + 3x3 = 0
x1 + 2x2 = 0

x2 + x3 = 0

16. 2x − y − 3z = 0
−x + 2y − 3z = 0
x + y + 4z = 0

17. 3x1 + x2 + x3 + x4 = 0
5x1 − x2 + x3 − x4 = 0

18. 𝑣 + 3𝑤 − 2x = 0
2u + 𝑣 − 4𝑤 + 3x = 0
2u + 3𝑣 + 2𝑤 − x = 0

−4u − 3𝑣 + 5𝑤 − 4x = 0

19. 2x + 2y + 4z = 0
𝑤 − y − 3z = 0
2𝑤 + 3x + y + z = 0

−2𝑤 + x + 3y − 2z = 0

20. x1 + 3x2 + x4 = 0
x1 + 4x2 + 2x3 = 0
− 2x2 − 2x3 − x4 = 0

2x1 − 4x2 + x3 + x4 = 0
x1 − 2x2 − x3 + x4 = 0

21. 2𝐼1 − 𝐼2 + 3𝐼3 + 4𝐼4 = 9
𝐼1 − 2𝐼3 + 7𝐼4 = 11
3𝐼1 − 3𝐼2 + 𝐼3 + 5𝐼4 = 8
2𝐼1 + 𝐼2 + 4𝐼3 + 4𝐼4 = 10

22. 𝑍3 + 𝑍4 + 𝑍5 = 0
−𝑍1 − 𝑍2 + 2𝑍3 − 3𝑍4 + 𝑍5 = 0
𝑍1 + 𝑍2 − 2𝑍3 − 𝑍5 = 0
2𝑍1 + 2𝑍2 − 𝑍3 + 𝑍5 = 0

In each part of Exercises 23–24, the augmented matrix for a lin-
ear system is given in which the asterisk represents an unspecified
real number. Determine whether the system is consistent, and if so
whether the solution is unique. Answer “inconclusive” if there is not
enough information to make a decision.

23. a. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗

] b. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0

]

c. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 1

] d. [
1 ∗ ∗ ∗
0 0 ∗ 0
0 0 1 ∗

]

24. a. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 1

] b. [
1 0 0 ∗
∗ 1 0 ∗
∗ ∗ 1 ∗

]

c. [
1 0 0 0
1 0 0 1
1 ∗ ∗ ∗

] d. [
1 ∗ ∗ ∗
1 0 0 1
1 0 0 1

]

In Exercises 25–26, determine the values of a for which the system
has no solutions, exactly one solution, or infinitely many solutions.
25. x + 2y − 3z = 4

3x − y + 5z = 2
4x + y + (a2 − 14)z = a+ 2
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26. x + 2y + z = 2
2x − 2y + 3z = 1
x + 2y − (a2 − 3)z = a

In Exercises 27–28, what condition, if any, must a, b, and c satisfy
for the linear system to be consistent?

27. x + 3y − z = a
x + y + 2z = b

2y − 3z = c

28. x + 3y + z = a
−x − 2y + z = b
3x + 7y − z = c

In Exercises 29–30, solve the following systems, where a, b, and c are
constants.

29. 2x + y = a
3x + 6y = b

30. x1 + x2 + x3 = a
2x1 + 2x3 = b

3x2 + 3x3 = c

31. Find two different row echelon forms of

[1 3
2 7]

This exercise shows that a matrix can have multiple row eche-
lon forms.

32. Reduce

[
2 1 3
0 −2 −29
3 4 5

]

to reduced row echelon form without introducing fractions at
any intermediate stage.

33. Show that the following nonlinear system has 18 solutions if
0 ≤ 𝛼 ≤ 2𝜋, 0 ≤ 𝛽 ≤ 2𝜋, and 0 ≤ 𝛾 ≤ 2𝜋.

sin𝛼 + 2 cos𝛽 + 3 tan𝛾 = 0
2 sin𝛼 + 5 cos𝛽 + 3 tan𝛾 = 0
− sin𝛼 − 5 cos𝛽 + 5 tan𝛾 = 0

[Hint: Begin by making the substitutions x = sin𝛼,
y = cos𝛽, and z = tan𝛾.]

34. Solve the following system of nonlinear equations for the
unknown angles𝛼, 𝛽, and 𝛾, where 0 ≤ 𝛼 ≤ 2𝜋, 0 ≤ 𝛽 ≤ 2𝜋,
and 0 ≤ 𝛾 < 𝜋.

2 sin𝛼 − cos𝛽 + 3 tan𝛾 = 3
4 sin𝛼 + 2 cos𝛽 − 2 tan𝛾 = 2
6 sin𝛼 − 3 cos𝛽 + tan𝛾 = 9

35. Solve the following system of nonlinear equations for x, y,
and z.

x2 + y2 + z2 = 6
x2 − y2 + 2z2 = 2
2x2 + y2 − z2 = 3

[Hint: Begin by making the substitutions 𝑋 = x2, 𝑌 = y2,
𝑍 = z2.]

36. Solve the following system for x, y, and z.
1
x +

2
y −

4
z = 1

2
x +

3
y +

8
z = 0

− 1
x +

9
y +

10
z = 5

37. Find the coefficients a, b, c, and d so that the curve shown in
the accompanying figure is the graph of the equation
y = ax3 + bx2 + cx+ d.

y

x

–2 6

–20

20
(0, 10) (1, 7)

(3, –11)
(4, –14)

FIGURE Ex-37

38. Find the coefficients a, b, c, and d so that the circle shown in
the accompanying figure is given by the equation
ax2 + ay2 + bx+ cy+ d = 0.

y

x

(–2, 7)

(4, –3)

(–4, 5)

FIGURE Ex-38

39. If the linear system
a1x+ b1y+ c1z = 0
a2x− b2y+ c2z = 0
a3x+ b3 y− c3z = 0

has only the trivial solution, what can be said about the solu-
tions of the following system?

a1x+ b1y+ c1z = 3
a2x− b2y+ c2z = 7
a3x+ b3 y− c3z = 11

40. a. If 𝐴 is a matrix with three rows and five columns, then
what is the maximum possible number of leading 1’s in its
reduced row echelon form?

b. If 𝐵 is a matrix with three rows and six columns, then
what is themaximumpossible number of parameters in the
general solution of the linear system with augmented
matrix 𝐵?

c. If𝐶 is amatrixwith five rows and three columns, thenwhat
is the minimum possible number of rows of zeros in any
row echelon form of 𝐶?

41. Describe all possible reduced row echelon forms of

a. [
a b c
d e 𝑓
g h i

] b.
⎡
⎢
⎢
⎢
⎣

a b c d
e 𝑓 g h
i j k l
m n p q

⎤
⎥
⎥
⎥
⎦
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42. Consider the system of equations
ax+ by = 0
cx+ dy = 0
ex+𝑓y = 0

Discuss the relative positions of the lines ax+ by = 0,
cx+ dy = 0, and ex+𝑓y = 0 when the system has only the
trivial solution and when it has nontrivial solutions.

Working with Proofs

43. a. Prove that if ad− bc ≠ 0, then the reduced row echelon
form of

[a b
c d] is [1 0

0 1]

b. Use the result in part (a) to prove that if ad− bc ≠ 0, then
the linear system

ax+ by = k
cx+ dy = l

has exactly one solution.

True-False Exercises
TF. In parts (a)–(i) determine whether the statement is true or

false, and justify your answer.
a. If a matrix is in reduced row echelon form, then it is also

in row echelon form.

b. If an elementary row operation is applied to a matrix that
is in row echelon form, the resulting matrix will still be in
row echelon form.

c. Every matrix has a unique row echelon form.

d. A homogeneous linear system in n unknowns whose cor-
responding augmentedmatrix has a reduced row echelon
form with r leading 1’s has n− r free variables.

e. All leading 1’s in amatrix in row echelon formmust occur
in different columns.

f. If every column of a matrix in row echelon form has a
leading 1, then all entries that are not leading 1’s are zero.

g. If a homogeneous linear system of n equations in n
unknowns has a corresponding augmented matrix with a
reduced row echelon form containing n leading 1’s, then
the linear system has only the trivial solution.

h. If the reduced row echelon form of the augmentedmatrix
for a linear system has a row of zeros, then the system
must have infinitely many solutions.

i. If a linear system has more unknowns than equations,
then it must have infinitely many solutions.

Working with Technology
T1. Find the reduced row echelon form of the augmented matrix

for the linear system

6x1 + x2 + 4x4 = −3
−9x1 + 2x2 + 3x3 − 8x4 = 1
7x1 − 4x3 + 5x4 = 2

Use your result to determine whether the system is consistent
and, if so, find its solution.

T2. Find values of the constants 𝐴, 𝐵, 𝐶, and 𝐷 that make the
following equation an identity (i.e., true for all values of x).

3x3 + 4x2 − 6x
(x2 + 2x+ 2)(x2 − 1) =

𝐴x+𝐵
x2 + 2x+ 2

+ 𝐶
x− 1

+ 𝐷
x+ 1

[Hint: Obtain a common denominator on the right, and then
equate corresponding coefficients of the various powers of x in
the two numerators. Students of calculus will recognize this
as a problem in partial fractions.]

1.3 Matrices and Matrix Operations
Rectangular arrays of real numbers arise in contexts other than as augmented matrices
for linear systems. In this section we will begin to study matrices as objects in their own
right by defining operations of addition, subtraction, and multiplication on them.

Matrix Notation and Terminology
In Section 1.2we used rectangular arrays of numbers, called augmentedmatrices, to abbre-
viate systems of linear equations. However, rectangular arrays of numbers occur in other
contexts as well. For example, the following rectangular array with three rows and seven
columns might describe the number of hours that a student spent studying three subjects
during a certain week:
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2 3

3

1

2

1

3

4

4

1

1

3

0

4

2

0

2

2

2

Mon.

Math

History

Language

Tues. Wed. Thurs. Fri. Sat. Sun.

0

4

If we suppress the headings, then we are left with the following rectangular array of num-
bers with three rows and seven columns, called a “matrix”:

[
2 3 2 4 1 4 2
0 3 1 4 3 2 2
4 1 3 1 0 0 2

]

More generally, we make the following definition.

Definition 1

A matrix is a rectangular array of numbers. The numbers in the array are called
the entries of the matrix.

Matrix brackets are often
omitted from 1× 1 matrices,
making it impossible to tell,
for example, whether the
symbol 4 denotes the num-
ber “four” or the matrix [4].
This rarely causes problems
because it is usually possible
to tell which is meant from
the context.

EXAMPLE 1 | Examples of Matrices

Some examples of matrices are

[
1 2
3 0

−1 4
], [2 1 0 −3],

⎡
⎢
⎢
⎣

e 𝜋 −√2
0 1

2 1
0 0 0

⎤
⎥
⎥
⎦
, [13], [4]

The size of a matrix is described in terms of the number of rows (horizontal lines)
and columns (vertical lines) it contains. For example, the first matrix in Example 1 has
three rows and two columns, so its size is 3 by 2 (written 3 × 2). In a size description, the
first number always denotes the number of rows, and the second denotes the number of
columns. The remaining matrices in Example 1 have sizes 1 × 4, 3 × 3, 2 × 1, and 1 × 1,
respectively.

A matrix with only one row, such as the second in Example 1, is called a row vector
(or a rowmatrix), and amatrix with only one column, such as the fourth in that example,
is called a column vector (or a columnmatrix). The fifth matrix in that example is both
a row vector and a column vector.

We will use capital letters to denote matrices and lowercase letters to denote numeri-
cal quantities; thus we might write

𝐴 = [2 1 7
3 4 2] or 𝐶 = [a b c

d e 𝑓]

Whendiscussingmatrices, it is common to refer to numerical quantities as scalars. Unless
stated otherwise, scalars will be real numbers; complex scalars will be considered later in
the text.
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The entry that occurs in row i and column j of a matrix𝐴will be denoted by aij. Thus
a general 3 × 4 matrix might be written as

𝐴 = [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]

and a generalm × nmatrix as

𝐴 =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n
...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

(1)

When a compact notation is desired, matrix (1) can be written as
𝐴 = [aij]m×n or 𝐴 = [aij]

the first notation being used when it is important in the discussion to know the size, and
the secondwhen the size need not be emphasized. Usually, wewill match the letter denot-
ing a matrix with the letter denoting its entries; thus, for a matrix 𝐵 we would generally
use bij for the entry in row i and column j, and for amatrix𝐶wewould use the notation cij.

The entry in row i and column j of amatrix𝐴 is also commonly denoted by the symbol
(𝐴)ij. Thus, for matrix (1) above, we have

(𝐴)ij = aij
and for the matrix

𝐴 = [2 −3
7 0]

we have (𝐴)11 = 2, (𝐴)12 = −3, (𝐴)21 = 7, and (𝐴)22 = 0.
Row and column vectors are of special importance, and it is common practice to

denote them by boldface lowercase letters rather than capital letters. For such matrices,
double subscripting of the entries is unnecessary. Thus a general 1 × n row vector a and
a generalm × 1 column vector b would be written as

a = [a1 a2 ⋅ ⋅ ⋅ an] and b =
⎡
⎢
⎢
⎢
⎣

b1
b2...
bm

⎤
⎥
⎥
⎥
⎦

Amatrix 𝐴 with n rows and n columns is called a square matrix of order n, and the
shaded entries a11, a22, . . . , ann in (2) are said to be on themain diagonal of 𝐴.

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

(2)

Operations on Matrices
So far, we have used matrices to abbreviate the work in solving systems of linear equa-
tions. For other applications, however, it is desirable to develop an “arithmetic of matri-
ces” in which matrices can be added, subtracted, and multiplied in a useful way. The
remainder of this section will be devoted to developing this arithmetic.

Definition 2

Two matrices are defined to be equal if they have the same size and their corre-
sponding entries are equal.
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EXAMPLE 2 | Equality of Matrices

Consider the matrices

𝐴 = [2 1
3 x], 𝐵 = [2 1

3 5], 𝐶 = [2 1 0
3 4 0]

If x = 5, then𝐴 = 𝐵, but for all other values of x the matrices 𝐴 and 𝐵 are not equal, since
not all of their corresponding entries are the same. There is no value of x for which 𝐴 = 𝐶
since𝐴 and 𝐶 have different sizes.

The equality of two matrices

A=[aij] and B=[bij]
of the same size can be
expressed either by writing

(A)i j=(B)i j
or by writing

ai j= bi j

Definition 3

If𝐴 and 𝐵 are matrices of the same size, then the sum𝐴 + 𝐵 is the matrix obtained
by adding the entries of 𝐵 to the corresponding entries of 𝐴, and the difference
𝐴 − 𝐵 is the matrix obtained by subtracting the entries of 𝐵 from the corresponding
entries of 𝐴. Matrices of different sizes cannot be added or subtracted.

In matrix notation, if 𝐴 = [aij] and 𝐵 = [bij] have the same size, then

(𝐴 + 𝐵)ij = (𝐴)ij + (𝐵)ij = aij + bij and (𝐴 − 𝐵)ij = (𝐴)ij − (𝐵)ij = aij − bij

EXAMPLE 3 | Addition and Subtraction

Consider the matrices

𝐴 =
⎡⎢⎢⎢
⎣

2 1 0 3
−1 0 2 4
4 −2 7 0

⎤⎥⎥⎥
⎦

, 𝐵 =
⎡⎢⎢⎢
⎣

−4 3 5 1
2 2 0 −1
3 2 −4 5

⎤⎥⎥⎥
⎦

, 𝐶 = [1 1
2 2]

Then

𝐴+𝐵 =
⎡⎢⎢⎢
⎣

−2 4 5 4
1 2 2 3
7 0 3 5

⎤⎥⎥⎥
⎦

and 𝐴−𝐵 =
⎡⎢⎢⎢
⎣

6 −2 −5 2
−3 −2 2 5
1 −4 11 −5

⎤⎥⎥⎥
⎦

The expressions𝐴+𝐶, 𝐵 +𝐶,𝐴−𝐶, and 𝐵 −𝐶 are undefined.

Definition 4

If 𝐴 is any matrix and c is any scalar, then the product c𝐴 is the matrix obtained
by multiplying each entry of the matrix 𝐴 by c. The matrix c𝐴 is said to be a scalar
multiple of 𝐴.

In matrix notation, if 𝐴 = [aij], then

(c𝐴)ij = c(𝐴)ij = caij
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EXAMPLE 4 | Scalar Multiples

For the matrices

𝐴 = [2 3 4
1 3 1], 𝐵 = [ 0 2 7

−1 3 −5], 𝐶 = [9 −6 3
3 0 12]

we have

2𝐴 = [4 6 8
2 6 2], (−1)𝐵 = [0 −2 −7

1 −3 5],
1
3𝐶 = [3 −2 1

1 0 4]

It is common practice to denote (−1)𝐵 by−𝐵.

Thus far we have defined multiplication of a matrix by a scalar but not the multi-
plication of two matrices. Since matrices are added by adding corresponding entries and
subtracted by subtracting corresponding entries, it would seem natural to definemultipli-
cation of matrices bymultiplying corresponding entries. However, it turns out that such a
definition would not be very useful. Experience has led mathematicians to the following
definition, the motivation for which will be given later in this chapter.

Definition 5

If 𝐴 is an m × r matrix and 𝐵 is an r × n matrix, then the product 𝐴𝐵 is the
m × n matrix whose entries are determined as follows: To find the entry in row i
and column j of 𝐴𝐵, single out row i from the matrix 𝐴 and column j from the
matrix 𝐵. Multiply the corresponding entries from the row and column together,
and then add the resulting products.

EXAMPLE 5 | Multiplying Matrices

Consider the matrices

𝐴 = [1 2 4
2 6 0], 𝐵 = [

4 1 4 3
0 −1 3 1
2 7 5 2

]

Since 𝐴 is a 2 × 3 matrix and 𝐵 is a 3 × 4 matrix, the product 𝐴𝐵 is a 2 × 4 matrix. To
determine, for example, the entry in row 2 and column 3 of𝐴𝐵, we single out row 2 from𝐴
and column 3 from𝐵. Then, as illustrated below, wemultiply corresponding entries together
and add up these products.

1 2 4

2 6 0

4 1 4 3

0 1 3 1

2 7 5 2
26

(2 4) (6 3) (0 5) 26

The entry in row 1 and column 4 of𝐴𝐵 is computed as follows:

1 2 4

2 6 0

4 1 4 3

0 1 3 1

2 7 5 2

13

(1 3) (2 1) (4 2) 13
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The computations for the remaining entries are

(1 ⋅ 4) + (2 ⋅ 0) + (4 ⋅ 2) = 12
(1 ⋅ 1) − (2 ⋅ 1) + (4 ⋅ 7) = 27
(1 ⋅ 4) + (2 ⋅ 3) + (4 ⋅ 5) = 30
(2 ⋅ 4) + (6 ⋅ 0) + (0 ⋅ 2) = 8
(2 ⋅ 1) − (6 ⋅ 1) + (0 ⋅ 7) = −4
(2 ⋅ 3) + (6 ⋅ 1) + (0 ⋅ 2) = 12

𝐴𝐵 = [12 27 30 13
8 −4 26 12]

The definition of matrix multiplication requires that the number of columns of the
first factor 𝐴 be the same as the number of rows of the second factor 𝐵 in order to form
the product 𝐴𝐵. If this condition is not satisfied, the product is undefined. A convenient
way to determine whether a product of two matrices is defined is to write down the size
of the first factor and, to the right of it, write down the size of the second factor. If, as in
(3), the inside numbers are the same, then the product is defined. The outside numbers
then give the size of the product.

A

m r

Inside

Outside

B

r n

AB

m n

(3)

EXAMPLE 6 | Determining Whether a Product Is Defined

Suppose that𝐴, 𝐵, and 𝐶 are matrices with the following sizes:

𝐴 𝐵 𝐶
3 × 4 4 × 7 7 × 3

Then, 𝐴𝐵 is defined and is a 3 × 7 matrix; 𝐵𝐶 is defined and is a 4 × 3 matrix; and 𝐶𝐴 is
defined and is a 7 × 4 matrix. The products𝐴𝐶, 𝐶𝐵, and 𝐵𝐴 are all undefined.

In general, if 𝐴 = [aij] is an m × r matrix and 𝐵 = [bij] is an r × n matrix, then, as
illustrated by the shading in the following display,

AB =

a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
...

ai1 ai2 · · · air
...

...
...

am1 am2 · · · amr

b11 b12 · · · b1 j · · · b1n

b21 b22 · · · b2 j · · · b2n
...

...
...

...

br1 br2 · · · br j · · · brn

(4)

the entry (𝐴𝐵)ij in row i and column j of 𝐴𝐵 is given by

(𝐴𝐵)i j = ai1b1j + ai2b2 j + ai3b3 j + ⋅ ⋅ ⋅ + airbr j (5)

Formula (5) is called the row-column rule for matrix multiplication.

Partitioned Matrices
A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal
and vertical rules between selected rows and columns. For example, the following are
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three possible partitions of a general 3 × 4 matrix 𝐴—the first is a partition of 𝐴 into four
submatrices 𝐴11, 𝐴12, 𝐴21, and 𝐴22; the second is a partition of 𝐴 into its row vectors r1,
r2, and r3; and the third is a partition of 𝐴 into its column vectors c1, c2, c3, and c4:

𝐴 = [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

] = [𝐴11 𝐴12
𝐴21 𝐴22

]

𝐴 = [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

] = [
r1
r2
r3
]

𝐴 = [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

] = [c1 c2 c3 c4]

Matrix Multiplication by Columns and by Rows
Partitioning has many uses, one of which is for finding particular rows or columns of a
matrix product 𝐴𝐵 without computing the entire product. Specifically, the following for-
mulas, whose proofs are left as exercises, show how individual column vectors of 𝐴𝐵 can
be obtained by partitioning 𝐵 into column vectors and how individual row vectors of 𝐴𝐵
can be obtained by partitioning 𝐴 into row vectors.

𝐴𝐵 = 𝐴[b1 b2 ⋅ ⋅ ⋅ bn] = [𝐴b1 𝐴b2 ⋅ ⋅ ⋅ 𝐴bn] (6)

(AB computed column by column)

𝐴𝐵 =
⎡
⎢
⎢
⎢
⎣

a1
a2...
am

⎤
⎥
⎥
⎥
⎦

𝐵 =
⎡
⎢
⎢
⎢
⎣

a1𝐵
a2𝐵...
am𝐵

⎤
⎥
⎥
⎥
⎦

(7)

(AB computed row by row)

In words, these formulas state that

jth column vector of 𝐴𝐵 = 𝐴[ jth column vector of 𝐵] (8)

ith row vector of 𝐴𝐵 = [ith row vector of 𝐴]𝐵 (9)

Historical Note

Gotthold Eisenstein
(1823–1852)

The concept of matrix multiplication is due to the Ger-
man mathematician Gotthold Eisenstein, who introduced the
idea around 1844 to simplify the process of making substi-
tutions in linear systems. The idea was then expanded on
and formalized by Arthur Cayley (see p. 36) in his Memoir
on the Theory of Matrices that was published in 1858.
Eisensteinwas a pupil ofGauss,who rankedhimas the equal of
Isaac Newton and Archimedes. However, Eisenstein, suffering
from bad health his entire life, died at age 30, so his potential
was never realized.

[Image: University of St Andrews/Wikipedia]
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EXAMPLE 7 | Example 5 Revisited

If𝐴 and𝐵 are the matrices in Example 5, then from (8) the second column vector of𝐴𝐵 can
be obtained by the computation

[1 2 4
2 6 0] [

1
−1
7
] = [ 27−4]

�

Second column
of 𝐵

�
Second column
of𝐴𝐵

and from (9) the first row vector of𝐴𝐵 can be obtained by the computation

1 2 4

4 1 4 3

0 1 3 1

2 7 5 2

12 27 30 13

First row of A First row of AB

[ ][ ]

Matrix Products as Linear Combinations
The following definition provides yet another way of thinking about matrix multipli-
cation.

Definition 6

If 𝐴1, 𝐴2, . . . , 𝐴r are matrices of the same size, and if c1, c2, . . . , cr are scalars, then
an expression of the form

c1𝐴1 + c2𝐴2 + ⋅ ⋅ ⋅ + cr𝐴r

is called a linear combination of 𝐴1, 𝐴2, . . . , 𝐴r with coefficients c1, c2, . . . , cr.

To see how matrix products can be viewed as linear combinations, let 𝐴 be anm × n
matrix and x an n × 1 column vector, say

𝐴 =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

and x =
⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

Then

𝐴x =
⎡
⎢
⎢
⎢
⎣

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn...

...
...

am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn

⎤
⎥
⎥
⎥
⎦

= x1
⎡
⎢
⎢
⎢
⎣

a11
a21...
am1

⎤
⎥
⎥
⎥
⎦

+ x2
⎡
⎢
⎢
⎢
⎣

a12
a22...
am2

⎤
⎥
⎥
⎥
⎦

+ ⋅ ⋅ ⋅ + xn
⎡
⎢
⎢
⎢
⎣

a1n
a2n...
amn

⎤
⎥
⎥
⎥
⎦
(10)

This proves the following theorem.
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Theorem 1.3.1

If 𝐴 is an m × n matrix, and if x is an n × 1 column vector, then the product 𝐴x
can be expressed as a linear combination of the column vectors of 𝐴 in which the
coefficients are the entries of x.

EXAMPLE 8 | Matrix Products as Linear Combinations

The matrix product

[
−1 3 2
1 2 −3
2 1 −2

][
2

−1
3
] = [

1
−9
−3

]

can be written as the following linear combination of column vectors:

2[
−1
1
2
] − 1[

3
2
1
] + 3[

2
−3
−2

] = [
1

−9
−3

]

EXAMPLE 9 | Columns of a Product AB as Linear
Combinations

We showed in Example 5 that

𝐴𝐵 = [
1 2 4
2 6 0

] [
4 1 4 3
0 −1 3 1
2 7 5 2

] = [
12 27 30 13
8 −4 26 12

]

It follows from Formula (6) and Theorem 1.3.1 that the jth column vector of 𝐴𝐵 can be
expressed as a linear combination of the column vectors of 𝐴 in which the coefficients in
the linear combination are the entries from the jth column of 𝐵. The computations are as
follows:

[
12
8
] = 4 [

1
2
] + 0 [

2
6
] + 2 [

4
0
]

[
27
−4] = [

1
2
] − [

2
6
] + 7 [

4
0
]

[
30
26
] = 4 [

1
2
] + 3 [

2
6
] + 5 [

4
0
]

[
13
12
] = 3 [

1
2
] + [

2
6
] + 2 [

4
0]

Column-Row Expansion
Partitioning provides yet another way to viewmatrix multiplication. Specifically, suppose
that an m × r matrix 𝐴 is partitioned into its r column vectors c1, c2, . . . , cr (each of size
m × 1) and an r × nmatrix 𝐵 is partitioned into its r row vectors r1, r2, . . . , rr (each of size
1 × n). Each term in the sum

c1r1 + c2r2 + ⋅ ⋅ ⋅ + crrr
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has size m × n so the sum itself is an m × n matrix. We leave it as an exercise for you to
verify that the entry in row i and column j of the sum is given by the expression on the
right side of Formula (5), from which it follows that

𝐴𝐵 = c1r1 + c2r2 + ⋅ ⋅ ⋅ + crrr (11)

We call (11) the column-row expansion of 𝐴𝐵.

EXAMPLE 10 | Column-Row Expansion

Find the column-row expansion of the product

𝐴𝐵 = [
1 3
2 −1] [

2 0 4
−3 5 1

] (12)

Solution The column vectors of𝐴 and the row vectors of 𝐵 are, respectively,

c1 = [
1
2
], c2 = [

3
−1]

; r1 = [2 0 4], r2 = [−3 5 1]

Thus, it follows from (11) that the column-row expansion of𝐴𝐵 is

𝐴𝐵 = [
1
2
] [2 0 4] + [

3
−1] [

−3 5 1]

= [
2 0 4
4 0 8

] + [
−9 15 3
3 −5 −1]

(13)

As a check, we leave it for you to confirm that the product in (12) and the sum in (13) both
yield

𝐴𝐵 = [
−7 15 7
7 −5 7

]

Summarizing Matrix Multiplication
Putting it all together, we have given five different ways to compute amatrix product, each
of which has its own use:

1. Entry by entry (Definition 5)
2. Row-column method (Formula (5))
3. Column by column (Formula (6))
4. Row by row (Formula (7))
5. Column-row expansion (Formula (11))

Matrix Form of a Linear System
Matrix multiplication has an important application to systems of linear equations. Con-
sider a system ofm linear equations in n unknowns:

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = b1
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = b2...

...
...

...
am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn = bm
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Since two matrices are equal if and only if their corresponding entries are equal, we can
replace them equations in this system by the single matrix equation

⎡
⎢
⎢
⎢
⎣

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn...

...
...

am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

b1
b2...
bm

⎤
⎥
⎥
⎥
⎦

Them × 1 matrix on the left side of this equation can be written as a product to give

⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

b1
b2...
bm

⎤
⎥
⎥
⎥
⎦

If we designate thesematrices by𝐴, x, and b, respectively, thenwe can replace the original
system ofm equations in n unknowns by the single matrix equation

𝐴x = b

The matrix 𝐴 in this equation is called the coefficient matrix of the system. The aug-
mented matrix for the system is obtained by adjoining b to A as the last column; thus the The vertical partition line

in the augmented matrix
[A ∣ b] is optional, but is a
useful way of visually sepa-
rating the coefficient matrix
A from the column vector b.

augmented matrix is

[𝐴 ∣ b] =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n b1
a21 a22 ⋅ ⋅ ⋅ a2n b2...

...
...

...
am1 am2 ⋅ ⋅ ⋅ amn bm

⎤
⎥
⎥
⎥
⎦

Transpose of a Matrix
We conclude this section by defining two matrix operations that have no analogs in the
arithmetic of real numbers.

Definition 7

If 𝐴 is any m × nmatrix, then the transpose of A, denoted by 𝐴𝑇 , is defined to be
the n ×mmatrix that results by interchanging the rows and columns of 𝐴; that is,
the first column of 𝐴𝑇 is the first row of 𝐴, the second column of 𝐴𝑇 is the second
row of 𝐴, and so forth.

EXAMPLE 11 | Some Transposes

The following are some examples of matrices and their transposes.

𝐴 = [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

], 𝐵 = [
2 3
1 4
5 6

], 𝐶 = [1 3 5], 𝐷 = [4]

𝐴𝑇 =
⎡
⎢
⎢
⎢
⎣

a11 a21 a31
a12 a22 a32
a13 a23 a33
a14 a24 a34

⎤
⎥
⎥
⎥
⎦

, 𝐵𝑇 = [2 1 5
3 4 6], 𝐶𝑇 = [

1
3
5
], 𝐷𝑇 = [4]
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Observe that not only are the columns of 𝐴𝑇 the rows of 𝐴, but the rows of 𝐴𝑇 are the
columns of𝐴. Thus the entry in row i and column j of𝐴𝑇 is the entry in row j and column i
of𝐴; that is,

(𝐴𝑇)i j = (𝐴)j i (14)

Note the reversal of the subscripts.
In the special case where 𝐴 is a square matrix, the transpose of 𝐴 can be obtained by

interchanging entries that are symmetrically positioned about the main diagonal. In (15) we
see that𝐴𝑇 can also be obtained by “reflecting”𝐴 about its main diagonal.

(15)A

1 2 4

3 7 0

5 8 6

1 2 4

3 7 0

5 8 6

AT

1 3 5

2 7 8

4 0 6

Interchange entries that are
symmetrically positioned
about the main diagonal.

Trace of a Matrix

Definition 8

If 𝐴 is a square matrix, then the trace of A, denoted by tr(𝐴), is defined to be the
sum of the entries on the main diagonal of𝐴. The trace of𝐴 is undefined if𝐴 is not
a square matrix.

Historical Note

James Sylvester
(1814–1897)

Arthur Cayley
(1821–1895)

The term matrix was first used by the English mathematician James Sylvester, who defined
the term in 1850 to be an “oblong arrangement of terms.” Sylvester communicated his work
on matrices to a fellow English mathematician and lawyer named Arthur Cayley, who then
introduced some of the basic operations on matrices in a book entitledMemoir on the Theory
of Matrices that was published in 1858. As a matter of interest, Sylvester, who was Jewish,
did not get his college degree because he refused to sign a required oath to the Church of
England. He was appointed to a chair at the University of Virginia in the United States but
resigned after swatting a student with a stick because he was reading a newspaper in class.
Sylvester, thinking he had killed the student, fled back to England on the first available ship.
Fortunately, the student was not dead, just in shock!

[Images: © Bettmann/CORBIS (Sylvester); Wikipedia Commons (Cayley)]
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EXAMPLE 12 | Trace

The following are examples of matrices and their traces.

𝐴 = [
a11 a12 a13
a21 a22 a23
a31 a32 a33

], 𝐵 =
⎡
⎢
⎢
⎢
⎣

−1 2 7 0
3 5 −8 4
1 2 7 −3
4 −2 1 0

⎤
⎥
⎥
⎥
⎦

tr(𝐴) = a11 + a22 + a33 tr(𝐵) = −1+ 5+ 7+ 0 = 11

In the exercises you will have some practice working with the transpose and trace
operations.

Exercise Set 1.3

In Exercises 1–2, suppose that𝐴, 𝐵, 𝐶,𝐷, and 𝐸 are matrices with
the following sizes:

𝐴 𝐵 𝐶 𝐷 𝐸
(4 × 5) (4 × 5) (5 × 2) (4 × 2) (5 × 4)

In each part, determine whether the given matrix expression is
defined. For those that are defined, give the size of the resulting
matrix.

1. a. 𝐵𝐴 b. 𝐴𝐵𝑇 c. 𝐴𝐶 +𝐷

d. 𝐸(𝐴𝐶) e. 𝐴− 3𝐸𝑇 f. 𝐸(5𝐵 +𝐴)

2. a. 𝐶𝐷𝑇 b. 𝐷𝐶 c. 𝐵𝐶 − 3𝐷

d. 𝐷𝑇(𝐵𝐸) e. 𝐵𝑇𝐷 +𝐸𝐷 f. 𝐵𝐴𝑇 +𝐷

In Exercises 3–6, use the followingmatrices to compute the indicated
expression if it is defined.

𝐴 = [
3 0

−1 2
1 1

], 𝐵 = [4 −1
0 2], 𝐶 = [1 4 2

3 1 5],

𝐷 = [
1 5 2

−1 0 1
3 2 4

], 𝐸 = [
6 1 3

−1 1 2
4 1 3

]

3. a. 𝐷 +𝐸 b. 𝐷 −𝐸 c. 5𝐴

d. −7𝐶 e. 2𝐵 −𝐶 f. 4𝐸 − 2𝐷

g. −3(𝐷 + 2𝐸) h. 𝐴−𝐴 i. tr(𝐷)

j. tr(𝐷 − 3𝐸) k. 4 tr(7𝐵) l. tr(𝐴)

4. a. 2𝐴𝑇 +𝐶 b. 𝐷𝑇 −𝐸𝑇 c. (𝐷 − 𝐸)𝑇

d. 𝐵𝑇 + 5𝐶𝑇 e. 1
2𝐶𝑇 − 1

4𝐴 f. 𝐵 −𝐵𝑇

g. 2𝐸𝑇 − 3𝐷𝑇 h. (2𝐸𝑇 − 3𝐷𝑇)𝑇 i. (𝐶𝐷)𝐸

j. 𝐶(𝐵𝐴) k. tr(𝐷𝐸𝑇) l. tr(𝐵𝐶)

5. a. 𝐴𝐵 b. 𝐵𝐴 c. (3𝐸)𝐷

d. (𝐴𝐵)𝐶 e. 𝐴(𝐵𝐶) f. 𝐶𝐶𝑇

g. (𝐷𝐴)𝑇 h. (𝐶𝑇𝐵)𝐴𝑇 i. tr(𝐷𝐷𝑇)

j. tr(4𝐸𝑇 −𝐷) k. tr(𝐶𝑇𝐴𝑇 + 2𝐸𝑇) l. tr((𝐸𝐶𝑇)𝑇𝐴)

6. a. (2𝐷𝑇 −𝐸)𝐴 b. (4𝐵)𝐶 + 2𝐵

c. (−𝐴𝐶)𝑇 + 5𝐷𝑇 d. (𝐵𝐴𝑇 − 2𝐶)𝑇

e. 𝐵𝑇(𝐶𝐶𝑇 −𝐴𝑇𝐴) f. 𝐷𝑇𝐸𝑇 − (𝐸𝐷)𝑇

In Exercises 7–8, use the following matrices and either the row
method or the column method, as appropriate, to find the indicated
row or column.

𝐴 = [
3 −2 7
6 5 4
0 4 9

] and 𝐵 = [
6 −2 4
0 1 3
7 7 5

]

7. a. the first row of𝐴𝐵 b. the third row of𝐴𝐵

c. the second column of𝐴𝐵 d. the first column of 𝐵𝐴

e. the third row of𝐴𝐴 f. the third column of𝐴𝐴

8. a. the first column of𝐴𝐵 b. the third column of 𝐵𝐵

c. the second row of 𝐵𝐵 d. the first column of𝐴𝐴

e. the third column of𝐴𝐵 f. the first row of 𝐵𝐴

In Exercises 9–10, use matrices𝐴 and 𝐵 from Exercises 7–8.

9. a. Express each column vector of𝐴𝐴 as a linear combination
of the column vectors of𝐴.

b. Express each column vector of 𝐵𝐵 as a linear combination
of the column vectors of 𝐵.
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10. a. Express each column vector of𝐴𝐵 as a linear combination
of the column vectors of𝐴.

b. Express each column vector of 𝐵𝐴 as a linear combination
of the column vectors of 𝐵.

In each part of Exercises 11–12, findmatrices𝐴,x, andb that express
the given linear system as a single matrix equation 𝐴x = b, and
write out this matrix equation.
11. a. 2x1 − 3x2 + 5x3 = 7

9x1 − x2 + x3 = −1
x1 + 5x2 + 4x3 = 0

b. 4x1 − 3x3 + x4 = 1
5x1 + x2 − 8x4 = 3
2x1 − 5x2 + 9x3 − x4 = 0

3x2 − x3 + 7x4 = 2

12. a. x1 − 2x2 + 3x3 = −3
2x1 + x2 = 0

− 3x2 + 4x3 = 1
x1 + x3 = 5

b. 3x1 + 3x2 + 3x3 = −3
−x1 − 5x2 − 2x3 = 3

− 4x2 + x3 = 0

In each part of Exercises 13–14, express thematrix equation as a sys-
tem of linear equations.

13. a. [
5 6 −7

−1 −2 3
0 4 −1

][
x1
x2
x3
] = [

2
0
3
]

b. [
1 1 1
2 3 0
5 −3 −6

][
x
y
z
] = [

2
2

−9
]

14. a. [
3 −1 2
4 3 7

−2 1 5
][

x1
x2
x3
] = [

2
−1
4
]

b.
⎡
⎢
⎢
⎢
⎣

3 −2 0 1
5 0 2 −2
3 1 4 7

−2 5 1 6

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑤
x
y
z

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
0
0
0

⎤
⎥
⎥
⎥
⎦

In Exercises 15–16, find all values of k, if any, that satisfy the
equation.

15. [k 1 1] [
1 1 0
1 0 2
0 2 −3

][
k
1
1
] = 0

16. [2 2 k] [
1 2 0
2 0 3
0 3 1

][
2
2
k
] = 0

In Exercises 17–20, use the column-row expansion of𝐴𝐵 to express
this product as a sum of matrix products.

17. 𝐴 = [
4 −3
2 −1]

, 𝐵 = [
0 1 2

−2 3 1
]

18. 𝐴 = [
0 −2
4 −3]

, 𝐵 = [
1 4 1

−3 0 2
]

19. 𝐴 = [
1 2 3
4 5 6

], 𝐵 =
⎡
⎢
⎢
⎣

1 2
3 4
5 6

⎤
⎥
⎥
⎦

20. 𝐴 = [
0 4 2
1 −2 5

], 𝐵 =
⎡
⎢
⎢
⎣

2 −1
4 0
1 −1

⎤
⎥
⎥
⎦

21. For the linear system in Example 5 of Section 1.2, express the
general solution that we obtained in that example as a linear
combination of column vectors that contain only numerical
entries. [Suggestion: Rewrite the general solution as a single
column vector, then write that column vector as a sum of col-
umn vectors each of which contains at most one parameter,
and then factor out the parameters.]

22. Follow the directions of Exercise 21 for the linear system in
Example 6 of Section 1.2.

In Exercises 23–24, solve the matrix equation for a, b, c, and d.

23. [ a 3
−1 a+ b] = [ 4 d− 2c

d+ 2c −2 ]

24. [ a− b b+ a
3d+ c 2d− c] = [8 1

7 6]

25. a. Show that if 𝐴 has a row of zeros and 𝐵 is any matrix for
which𝐴𝐵 is defined, then𝐴𝐵 also has a row of zeros.

b. Find a similar result involving a column of zeros.

26. In each part, find a 6 × 6 matrix [ai j] that satisfies the stated
condition. Make your answers as general as possible by using
letters rather than specific numbers for the nonzero entries.

a. ai j = 0 if i ≠ j b. aij = 0 if i > j

c. ai j = 0 if i < j d. aij = 0 if |i− j| > 1

In Exercises 27–28, how many 3× 3 matrices 𝐴 can you find for
which the equation is satisfied for all choices of x, y, and z?

27. 𝐴[
x
y
z
] = [

x+ y
x− y
0

] 28. 𝐴[
x
y
z
] = [

xy
0
0
]

29. Amatrix𝐵 is said to be a square root of amatrix𝐴 if𝐵𝐵 = 𝐴.

a. Find two square roots of𝐴 = [2 2
2 2].

b. How many different square roots can you find of

𝐴 = [5 0
0 9] ?

c. Do you think that every 2 × 2matrix has at least one square
root? Explain your reasoning.

30. Let 0 denote a 2 × 2 matrix, each of whose entries is zero.
a. Is there a 2 × 2matrix𝐴 such that𝐴 ≠ 0 and𝐴𝐴 = 0? Jus-

tify your answer.

b. Is there a 2 × 2 matrix 𝐴 such that 𝐴 ≠ 0 and 𝐴𝐴 = 𝐴?
Justify your answer.

31. Establish Formula (11) by using Formula (5) to show that

(𝐴𝐵)i j = (c1r1 + c2r2 + ⋅ ⋅ ⋅ + crrr)ij
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32. Find a 4 × 4 matrix 𝐴 = [ai j] whose entries satisfy the stated
condition.

a. aij = i+ j b. ai j = i j−1

c. aij = { 1 if |i− j| > 1
−1 if |i− j| ≤ 1

33. Suppose that type I items cost $1 each, type II items cost $2
each, and type III items cost $3 each. Also, suppose that the
accompanying table describes the number of items of each
type purchased during the first four months of the year.

TABLE Ex-33

Type I Type II Type III

Jan. 3 4 3

Feb. 5 6 0

Mar. 2 9 4

Apr. 1 1 7

What information is represented by the following product?

⎡
⎢
⎢
⎢
⎣

3 4 3
5 6 0
2 9 4
1 1 7

⎤
⎥
⎥
⎥
⎦

[
1
2
3
]

34. The accompanying table shows a record of May and June unit
sales for a clothing store. Let𝑀 denote the 4 × 3matrix ofMay
sales and 𝐽 the 4 × 3 matrix of June sales.
a. What does the matrix𝑀 + 𝐽 represent?
b. What does the matrix𝑀 − 𝐽 represent?
c. Find a column vector x for which𝑀x provides a list of the

number of shirts, jeans, suits, and raincoats sold in May.

d. Find a rowvector y forwhich y𝑀 provides a list of the num-
ber of small, medium, and large items sold in May.

e. Using the matrices x and y that you found in parts (c) and
(d), what does y𝑀x represent?

TABLE Ex-34

May Sales

Small Medium Large

Shirts 45 60 75

Jeans 30 30 40

Suits 12 65 45

Raincoats 15 40 35

June Sales

Small Medium Large

Shirts 30 33 40

Jeans 21 23 25

Suits 9 12 11

Raincoats 8 10 9

Working with Proofs

35. Prove: If𝐴 and 𝐵 are n × nmatrices, then

tr(𝐴 + 𝐵) = tr(𝐴) + tr(𝐵)

36. a. Prove: If 𝐴𝐵 and 𝐵𝐴 are both defined, then 𝐴𝐵 and 𝐵𝐴
are square matrices.

b. Prove: If𝐴 is anm × nmatrix and𝐴(𝐵𝐴) is defined, then
𝐵 is an n ×mmatrix.

True-False Exercises
TF. In parts (a)–(o) determine whether the statement is true or

false, and justify your answer.

a. The matrix [1 2 3
4 5 6] has no main diagonal.

b. Anm × nmatrix hasm column vectors and n row vectors.

c. If𝐴 and 𝐵 are 2 × 2 matrices, then𝐴𝐵 = 𝐵𝐴.

d. The ith row vector of a matrix product 𝐴𝐵 can be com-
puted by multiplying𝐴 by the ith row vector of 𝐵.

e. For every matrix𝐴, it is true that (𝐴𝑇)𝑇 = 𝐴.

f. If𝐴 and 𝐵 are square matrices of the same order, then

tr(𝐴𝐵) = tr(𝐴)tr(𝐵)

g. If𝐴 and 𝐵 are square matrices of the same order, then

(𝐴𝐵)𝑇 = 𝐴𝑇𝐵𝑇

h. For every square matrix𝐴, it is true that tr(𝐴𝑇) = tr(𝐴).

i. If 𝐴 is a 6 × 4 matrix and 𝐵 is an m × n matrix such that
𝐵𝑇𝐴𝑇 is a 2 × 6 matrix, thenm = 4 and n = 2.

j. If𝐴 is an n × nmatrix and c is a scalar, then
tr(c𝐴) = c tr(𝐴).

k. If 𝐴, 𝐵, and 𝐶 are matrices of the same size such that
𝐴−𝐶 = 𝐵 −𝐶, then𝐴 = 𝐵.

l. If𝐴,𝐵, and𝐶 are square matrices of the same order such
that𝐴𝐶 = 𝐵𝐶, then𝐴 = 𝐵.

m. If𝐴𝐵 +𝐵𝐴 is defined, then𝐴 and𝐵 are squarematrices
of the same size.

n. If𝐵 has a column of zeros, then so does𝐴𝐵 if this product
is defined.

o. If𝐵 has a column of zeros, then so does𝐵𝐴 if this product
is defined.

Working with Technology
T1. a. Compute the product 𝐴𝐵 of the matrices in Example 5,

and compare your answer to that in the text.

b. Use your technology utility to extract the columns of 𝐴
and the rows of 𝐵, and then calculate the product 𝐴𝐵 by
a column-row expansion.
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T2. Suppose that a manufacturer uses Type I items at $1.35 each,
Type II items at $2.15 each, and Type III items at $3.95
each. Suppose also that the accompanying table describes the
purchases of those items (in thousands of units) for the first
quarter of the year. Find a matrix product, the computation
of which produces a matrix that lists the manufacturer’s
expenditure in each month of the first quarter. Compute that
product.

Type I Type II Type III

Jan. 3.1 4.2 3.5

Feb. 5.1 6.8 0

Mar. 2.2 9.5 4.0

Apr. 1.0 1.0 7.4

1.4 Inverses; Algebraic Properties
of Matrices

In this section we will discuss some of the algebraic properties of matrix operations. We
will see that many of the basic rules of arithmetic for real numbers hold for matrices, but
we will also see that some do not.

Properties of Matrix Addition and Scalar Multiplication
The following theorem lists the basic algebraic properties of the matrix operations.

Theorem 1.4.1

Properties of Matrix Arithmetic
Assuming that the sizes of the matrices are such that the indicated operations can
be performed, the following rules of matrix arithmetic are valid.
(a) 𝐴 + 𝐵 = 𝐵 + 𝐴 [Commutative law for matrix addition]

(b) 𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶 [Associative law for matrix addition]

(c) 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶 [Associative law for matrix multiplication]

(d) 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 [Left distributive law]

(e) (𝐵 + 𝐶)𝐴 = 𝐵𝐴 + 𝐶𝐴 [Right distributive law]

(𝑓) 𝐴(𝐵 − 𝐶) = 𝐴𝐵 − 𝐴𝐶
(g) (𝐵 − 𝐶)𝐴 = 𝐵𝐴 − 𝐶𝐴
(h) a(𝐵 + 𝐶) = a𝐵 + a𝐶
(i) a(𝐵 − 𝐶) = a𝐵 − a𝐶
( j) (a + b)𝐶 = a𝐶 + b𝐶
(k) (a − b)𝐶 = a𝐶 − b𝐶
(l) a(b𝐶) = (ab)𝐶
(m) a(𝐵𝐶) = (a𝐵)𝐶 = 𝐵(a𝐶)

To prove any of the equalities in this theorem one must show that the matrix on the left
side has the same size as that on the right and that the corresponding entries on the two
sides are the same. Most of the proofs follow the same pattern, so we will prove part (d)
as a sample. The proof of the associative law for multiplication is more complicated than
the rest and is outlined in the exercises.
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Proof (d) Wemust show that𝐴(𝐵 + 𝐶) and𝐴𝐵 + 𝐴𝐶 have the same size and that corre-
sponding entries are equal. To form 𝐴(𝐵 + 𝐶), the matrices 𝐵 and 𝐶 must have the same
size, say m × n, and the matrix 𝐴 must then have m columns, so its size must be of the
form r ×m. This makes𝐴(𝐵 + 𝐶) an r × nmatrix. It follows that𝐴𝐵 + 𝐴𝐶 is also an r × n
matrix and, consequently, 𝐴(𝐵 + 𝐶) and 𝐴𝐵 + 𝐴𝐶 have the same size.

Suppose that 𝐴 = [aij], 𝐵 = [bij], and 𝐶 = [cij]. We want to show that corresponding
entries of 𝐴(𝐵 + 𝐶) and 𝐴𝐵 + 𝐴𝐶 are equal; that is,

(𝐴(𝐵 + 𝐶))ij = (𝐴𝐵 + 𝐴𝐶)ij
for all values of i and j. But from the definitions of matrix addition and matrix multiplica-

There are three basic ways
to prove that two matrices
of the same size are equal—
prove that corresponding
entries are the same, prove
that corresponding row vec-
tors are the same, or prove
that corresponding column
vectors are the same.

tion, we have
(𝐴(𝐵 + 𝐶))ij = ai1(b1j + c1j) + ai2(b2j + c2j) + ⋅ ⋅ ⋅ + aim(bmj + cmj)

= (ai1b1j + ai2b2j + ⋅ ⋅ ⋅ + aimbmj) + (ai1c1j + ai2c2j + ⋅ ⋅ ⋅ + aimcmj)
= (𝐴𝐵)ij + (𝐴𝐶)ij = (𝐴𝐵 + 𝐴𝐶)ij

Remark Although the operations of matrix addition and matrix multiplication were
defined for pairs of matrices, associative laws (b) and (c) enable us to denote sums and
products of threematrices as𝐴 + 𝐵 + 𝐶 and𝐴𝐵𝐶 without inserting any parentheses. This
is justified by the fact that no matter how parentheses are inserted, the associative laws
guarantee that the same end result will be obtained. In general, given any sum or any prod-
uct ofmatrices, pairs of parentheses can be inserted or deleted anywherewithin the expression
without affecting the end result.

EXAMPLE 1 | Associativity of Matrix Multiplication

As an illustration of the associative law for matrix multiplication, consider

𝐴 = [
1 2
3 4
0 1

], 𝐵 = [4 3
2 1], 𝐶 = [1 0

2 3]

Then

𝐴𝐵 = [
1 2
3 4
0 1

] [4 3
2 1] = [

8 5
20 13
2 1

] and 𝐵𝐶 = [4 3
2 1] [

1 0
2 3] = [10 9

4 3]

Thus

(𝐴𝐵)𝐶 = [
8 5
20 13
2 1

] [1 0
2 3] = [

18 15
46 39
4 3

]

and

𝐴(𝐵𝐶) = [
1 2
3 4
0 1

] [10 9
4 3] = [

18 15
46 39
4 3

]

so (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶), as guaranteed by Theorem 1.4.1(c).

Properties of Matrix Multiplication
Do not let Theorem 1.4.1 lull you into believing that all laws of real arithmetic carry over
to matrix arithmetic. For example, you know that in real arithmetic it is always true that
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ab = ba, which is called the commutative law for multiplication. In matrix arithmetic,
however, the equality of 𝐴𝐵 and 𝐵𝐴 can fail for three possible reasons:

1. 𝐴𝐵 may be defined and 𝐵𝐴may not (for example, if 𝐴 is 2 × 3 and 𝐵 is 3 × 4).
2. 𝐴𝐵 and 𝐵𝐴may both be defined, but they may have different sizes (for example, if 𝐴

is 2 × 3 and 𝐵 is 3 × 2).
3. 𝐴𝐵 and 𝐵𝐴 may both be defined and have the same size, but the two products may

be different (as illustrated in the next example).

EXAMPLE 2 | Order Matters in Matrix Multiplication

Consider the matrices
𝐴 = [−1 0

2 3] and 𝐵 = [1 2
3 0]

Multiplying gives

𝐴𝐵 = [−1 −2
11 4] and 𝐵𝐴 = [ 3 6

−3 0]

Thus,𝐴𝐵 ≠ 𝐵𝐴.

Because, as this example shows, it is not generally true that𝐴𝐵 = 𝐵𝐴, we say thatmatrix
multiplication is not commutative. This does not preclude the possibility of equality in
certain cases—it is just not true in general. In those special cases where there is equality
we say that 𝐴 and 𝐵 commute.

Zero Matrices
Amatrix whose entries are all zero is called a zero matrix. Some examples are

[0 0
0 0], [

0 0 0
0 0 0
0 0 0

], [0 0 0 0
0 0 0 0],

⎡
⎢
⎢
⎢
⎣

0
0
0
0

⎤
⎥
⎥
⎥
⎦

, [0]

We will denote a zero matrix by 0 unless it is important to specify its size, in which case
we will denote them × n zero matrix by 0m×n.

It should be evident that if 𝐴 and 0 are matrices with the same size, then
𝐴 + 0 = 0 + 𝐴 = 𝐴

Thus, 0 plays the same role in this matrix equation that the number 0 plays in the numer-
ical equation a + 0 = 0 + a = a.

The following theorem lists the basic properties of zero matrices. Since the results
should be self-evident, we will omit the formal proofs.

Theorem 1.4.2

Properties of Zero Matrices
If c is a scalar, and if the sizes of the matrices are such that the operations can be
perfomed, then:
(a) 𝐴 + 0 = 0 + 𝐴 = 𝐴
(b) 𝐴 − 0 = 𝐴
(c) 𝐴 − 𝐴 = 𝐴 + (−𝐴) = 0
(d) 0𝐴 = 0
(e) If c𝐴 = 0, then c = 0 or 𝐴 = 0.
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Sincewe know that the commutative lawof real arithmetic is not valid inmatrix arith-
metic, it should not be surprising that there are other rules that fail as well. For example,
consider the following two laws of real arithmetic:

• If ab = ac and a ≠ 0, then b = c. [The cancellation law]

• If ab = 0, then at least one of the factors on the left is 0.

The next two examples show that these laws are not true in matrix arithmetic.

EXAMPLE 3 | Failure of the Cancellation Law

Consider the matrices

𝐴 = [0 1
0 2], 𝐵 = [1 1

3 4], 𝐶 = [2 5
3 4]

We leave it for you to confirm that

𝐴𝐵 = 𝐴𝐶 = [3 4
6 8]

Although 𝐴 ≠ 0, canceling 𝐴 from both sides of the equation 𝐴𝐵 = 𝐴𝐶 would lead to the
incorrect conclusion that 𝐵 = 𝐶. Thus, the cancellation law does not hold, in general, for
matrix multiplication (though there may be particular cases where it is true).

EXAMPLE 4 | A Zero Product with Nonzero Factors

Here are two matrices for which𝐴𝐵 = 0, but𝐴 ≠ 0 and 𝐵 ≠ 0:

𝐴 = [0 1
0 2], 𝐵 = [3 7

0 0]

Identity Matrices
A square matrix with 1’s on the main diagonal and zeros elsewhere is called an identity
matrix. Some examples are

[1], [1 0
0 1], [

1 0 0
0 1 0
0 0 1

],
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

An identity matrix is denoted by the letter 𝐼. If it is important to emphasize the size, we
will write 𝐼n for the n × n identity matrix.

To explain the role of identity matrices in matrix arithmetic, let us consider the effect
of multiplying a general 2 × 3matrix𝐴 on each side by an identity matrix. Multiplying on
the right by the 3 × 3 identity matrix yields

𝐴𝐼3 = [a11 a12 a13
a21 a22 a23

] [
1 0 0
0 1 0
0 0 1

] = [a11 a12 a13
a21 a22 a23

] = 𝐴
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and multiplying on the left by the 2 × 2 identity matrix yields

𝐼2𝐴 = [1 0
0 1] [

a11 a12 a13
a21 a22 a23

] = [a11 a12 a13
a21 a22 a23

] = 𝐴

The same result holds in general; that is, if 𝐴 is anym × nmatrix, then

𝐴𝐼n = 𝐴 and 𝐼m𝐴 = 𝐴

Thus, the identity matrices play the same role in matrix arithmetic that the number 1
plays in the numerical equation a ⋅ 1 = 1 ⋅ a = a.

As the next theorem shows, identity matrices arise naturally as reduced row echelon
forms of squarematrices.

Theorem 1.4.3

If 𝑅 is the reduced row echelon form of an n × nmatrix𝐴, then either 𝑅 has at least
one row of zeros or 𝑅 is the identity matrix 𝐼n.

Proof Suppose that the reduced row echelon form of 𝐴 is

𝑅 =
⎡
⎢
⎢
⎢
⎣

r11 r12 ⋅ ⋅ ⋅ r1n
r21 r22 ⋅ ⋅ ⋅ r2n
...

...
...

rn1 rn2 ⋅ ⋅ ⋅ rnn

⎤
⎥
⎥
⎥
⎦

Either the last row in this matrix consists entirely of zeros or it does not. If not, the matrix
contains no zero rows, and consequently each of the n rows has a leading entry of 1. Since
these leading 1’s occur progressively farther to the right as wemove down thematrix, each
of these 1’s must occur on the main diagonal. Since the other entries in the same column
as one of these 1’s are zero, 𝑅 must be 𝐼n. Thus, either 𝑅 has a row of zeros or 𝑅 = 𝐼n.

Inverse of a Matrix
In real arithmetic every nonzero number a has a reciprocal a−1(= 1/a) with the property

a ⋅ a−1 = a−1 ⋅ a = 1

The number a−1 is sometimes called the multiplicative inverse of a. Our next objective is
to develop an analog of this result for matrix arithmetic. For this purpose we make the
following definition.

Definition 1

If 𝐴 is a square matrix, and if there exists a matrix 𝐵 of the same size for which
𝐴𝐵 = 𝐵𝐴 = 𝐼, then 𝐴 is said to be invertible (or nonsingular) and 𝐵 is called an
inverse of 𝐴. If no such matrix 𝐵 exists, then 𝐴 is said to be singular.

The relationship 𝐴𝐵 = 𝐵𝐴 = 𝐼 is not changed by interchanging 𝐴 and 𝐵, so if 𝐴 is
invertible and 𝐵 is an inverse of 𝐴, then it is also true that 𝐵 is invertible, and 𝐴 is an
inverse of 𝐵. Thus, when 𝐴𝐵 = 𝐵𝐴 = 𝐼 we say that 𝐴 and 𝐵 are inverses of one another.
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EXAMPLE 5 | An Invertible Matrix

Let
𝐴 = [ 2 −5

−1 3] and 𝐵 = [3 5
1 2]

Then
𝐴𝐵 = [ 2 −5

−1 3] [
3 5
1 2] = [1 0

0 1] = 𝐼

𝐵𝐴 = [3 5
1 2] [

2 −5
−1 3] = [1 0

0 1] = 𝐼

Thus,𝐴 and 𝐵 are invertible and each is an inverse of the other.

EXAMPLE 6 | A Class of Singular Matrices

A square matrix with a row or column of zeros is singular. To help understand why this is so,
consider the matrix

𝐴 =
⎡⎢⎢⎢
⎣

1 4 0
2 5 0
3 6 0

⎤⎥⎥⎥
⎦

To prove that𝐴 is singular we must show that there is no 3 × 3 matrix 𝐵 such that

𝐴𝐵 = 𝐵𝐴 = 𝐼
For this purpose let c1, c2, 0 be the column vectors of𝐴. Thus, for any 3 × 3 matrix𝐵 we can
express the product 𝐵𝐴 as

𝐵𝐴 = 𝐵[c1 c2 0] = [𝐵c1 𝐵c2 0] [Formula (6) of Section 1.3]

The column of zeros shows that 𝐵𝐴 ≠ 𝐼 and hence that𝐴 is singular.

As in Example 6, we will
frequently denote a zero
matrix with one row or one
column by a boldface zero.

Properties of Inverses
It is reasonable to ask whether an invertible matrix can have more than one inverse. The
next theorem shows that the answer is no—an invertible matrix has exactly one inverse.

Theorem 1.4.4

If 𝐵 and 𝐶 are both inverses of the matrix 𝐴, then 𝐵 = 𝐶.

Proof Since 𝐵 is an inverse of 𝐴, we have 𝐵𝐴 = 𝐼.Multiplying both sides on the right by
𝐶 gives (𝐵𝐴)𝐶 = 𝐼𝐶 = 𝐶. But it is also true that (𝐵𝐴)𝐶 = 𝐵(𝐴𝐶) = 𝐵𝐼 = 𝐵, so 𝐶 = 𝐵.

As a consequence of this important result, we can now speak of “the” inverse of an

Warning The symbol A−1

should not be interpreted as
1/A. Division by matrices is
not a defined operation.

invertible matrix. If 𝐴 is invertible, then its inverse will be denoted by the symbol 𝐴−1.
Thus,

𝐴𝐴−1 = 𝐼 and 𝐴−1𝐴 = 𝐼 (1)

The inverse of 𝐴 plays much the same role in matrix arithmetic that the reciprocal a−1
plays in the numerical relationships aa−1 = 1 and a−1a = 1.
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In the next sectionwewill develop amethod for computing the inverse of an invertible
matrix of any size. For nowwe give the following theorem that specifies conditions under
which a 2 × 2 matrix is invertible and provides a simple formula for its inverse.

Theorem 1.4.5

The matrix
𝐴 = [a b

c d]

is invertible if and only if ad − bc ≠ 0, in which case the inverse is given by the
formula

𝐴−1 = 1
ad − bc [

d −b
−c a] (2)

We will omit the proof, because we will study a more general version of this theorem

The quantity ad− bc in
Theorem 1.4.5 is called the
determinant of the 2× 2
matrix A and is denoted by

det(A) = ad− bc

or alternatively by

|||
a b
c d

||| = ad− bc

later. For now, you should at least confirm the validity of Formula (2) by showing that
𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼.det(A) =               = ad – bc

a    b

c    d

FIGURE 1.4.1
Remark Figure 1.4.1 illustrates that the determinant of a 2 × 2 matrix 𝐴 is the product
of the entries on its main diagonal minus the product of the entries off its main diagonal.

Historical Note

The formula for 𝐴−1 given in Theorem 1.4.5 first appeared (in a more general form) in
Arthur Cayley’s 1858Memoir on the Theory of Matrices. The more general result that Cay-
ley discovered will be studied later.

EXAMPLE 7 | Calculating the Inverse of a 2 × 2 Matrix

In each part, determine whether the matrix is invertible. If so, find its inverse.

(a) 𝐴 = [6 1
5 2] (b) 𝐴 = [−1 2

3 −6]

Solution (a) The determinant of 𝐴 is det(𝐴) = (6)(2) − (1)(5) = 7, which is nonzero.
Thus,𝐴 is invertible, and its inverse is

𝐴−1 = 1
7
[ 2 −1
−5 6] = [

2
7 − 1

7

− 5
7

6
7
]

We leave it for you to confirm that𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼.
Solution (b) The matrix is not invertible since det(𝐴) = (−1)(−6) − (2)(3) = 0.

EXAMPLE 8 | Solution of a Linear System by Matrix Inversion

A problem that arises in many applications is to solve a pair of equations of the form

u = ax+ by
v = cx+ dy
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for x and y in terms ofu and v.One approach is to treat this as a linear systemof two equations
in the unknowns x and y and use Gauss–Jordan elimination to solve for x and y. However,
because the coefficients of the unknowns are literal rather than numerical, that procedure
is a little clumsy. As an alternative approach, let us replace the two equations by the single
matrix equation

[u
v
] = [ax+ by

cx+ dy]

which we can rewrite as
[u
v
] = [a b

c d] [
x
y]

If we assume that the 2 × 2 matrix is invertible (i.e., ad− bc ≠ 0), then we can multiply
through on the left by the inverse and rewrite the equation as

[a b
c d]

−1

[u
v
] = [a b

c d]
−1

[a b
c d] [

x
y]

which simplifies to

[a b
c d]

−1

[u
v
] = [xy]

Using Theorem 1.4.5, we can rewrite this equation as

1
ad− bc

[ d −b
−c a] [

u
v
] = [xy]

from which we obtain
x = du− bv

ad− bc
, y = av− cu

ad− bc

The next theorem is concerned with inverses of matrix products.

Theorem 1.4.6

If 𝐴 and 𝐵 are invertible matrices with the same size, then 𝐴𝐵 is invertible and
(𝐴𝐵)−1 = 𝐵−1𝐴−1

Proof We can establish the invertibility and obtain the stated formula at the same time
by showing that

(𝐴𝐵)(𝐵−1𝐴−1) = (𝐵−1𝐴−1)(𝐴𝐵) = 𝐼
But

(𝐴𝐵)(𝐵−1𝐴−1) = 𝐴(𝐵𝐵−1)𝐴−1 = 𝐴𝐼𝐴−1 = 𝐴𝐴−1 = 𝐼
and similarly, (𝐵−1𝐴−1)(𝐴𝐵) = 𝐼.

Although we will not prove it, this result can be extended to three or more factors:

A product of any number of invertible matrices is invertible, and the inverse of the
product is the product of the inverses in the reverse order.

EXAMPLE 9 | The Inverse of a Product

Consider the matrices
𝐴 = [1 2

1 3], 𝐵 = [3 2
2 2]
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We leave it for you to show that

𝐴𝐵 = [7 6
9 8], (𝐴𝐵)−1 = [

4 −3
− 9

2
7
2
]

and also that

𝐴−1 = [ 3 −2
−1 1], 𝐵−1 = [

1 −1
−1 3

2
], 𝐵−1𝐴−1 = [

1 −1
−1 3

2
] [ 3 −2
−1 1] = [

4 −3
− 9

2
7
2
]

Thus, (𝐴𝐵)−1 = 𝐵−1𝐴−1 as guaranteed by Theorem 1.4.6.

If a product of matrices is
singular, then at least one of
the factors must be singular.
Why?

Powers of a Matrix
If 𝐴 is a squarematrix, then we define the nonnegative integer powers of 𝐴 to be

𝐴0 = 𝐼 and 𝐴n = 𝐴𝐴 ⋅ ⋅ ⋅ 𝐴 [n factors]

and if 𝐴 is invertible, then we define the negative integer powers of 𝐴 to be

𝐴−n = (𝐴−1)n = 𝐴−1𝐴−1 ⋅ ⋅ ⋅ 𝐴−1 [n factors]

Because these definitions parallel those for real numbers, the usual laws of nonnegative
exponents hold; for example,

𝐴r𝐴s = 𝐴r+s and (𝐴r)s = 𝐴rs

In addition, we have the following properties of negative exponents.

Theorem 1.4.7

If 𝐴 is invertible and n is a nonnegative integer, then:
(a) 𝐴−1 is invertible and (𝐴−1)−1 = 𝐴.
(b) 𝐴n is invertible and (𝐴n)−1 = 𝐴−n = (𝐴−1)n.
(c) k𝐴 is invertible for any nonzero scalar k, and (k𝐴)−1 = k−1𝐴−1.

We will prove part (c) and leave the proofs of parts (a) and (b) as exercises.

Proof (c) Properties (m) and (l) of Theorem 1.4.1 imply that
(k𝐴)(k−1𝐴−1) = k−1(k𝐴)𝐴−1 = (k−1k)𝐴𝐴−1 = (1)𝐼 = 𝐼

and similarly, (k−1𝐴−1)(k𝐴) = 𝐼. Thus, k𝐴 is invertible and (k𝐴)−1 = k−1𝐴−1.

EXAMPLE 10 | Properties of Exponents

Let𝐴 and𝐴−1 be the matrices in Example 9; that is,

𝐴 = [1 2
1 3] and 𝐴−1 = [ 3 −2

−1 1]

Then
𝐴−3 = (𝐴−1)3 = [ 3 −2

−1 1] [
3 −2

−1 1] [
3 −2

−1 1] = [ 41 −30
−15 11]
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Also,

𝐴3 = [1 2
1 3] [

1 2
1 3] [

1 2
1 3] = [11 30

15 41]

so, as expected from Theorem 1.4.7(b),

(𝐴3)−1 = 1
(11)(41) − (30)(15) [

41 −30
−15 11] = [ 41 −30

−15 11] = (𝐴−1)3

EXAMPLE 11 | The Square of a Matrix Sum

In real arithmetic, where we have a commutative law for multiplication, we can write

(a+ b)2 = a2 + ab+ ba+ b2 = a2 + ab+ ab+ b2 = a2 + 2ab+ b2

However, in matrix arithmetic, where we have no commutative law for multiplication, the
best we can do is to write

(𝐴 + 𝐵)2 = 𝐴2 +𝐴𝐵 +𝐵𝐴+𝐵2

It is only in the special case where𝐴 and 𝐵 commute (i.e.,𝐴𝐵 = 𝐵𝐴) that we can go a step
further and write

(𝐴 + 𝐵)2 = 𝐴2 + 2𝐴𝐵 +𝐵2

Matrix Polynomials
If 𝐴 is a square matrix, say n × n, and if

p(x) = a0 + a1x + a2x2 + ⋅ ⋅ ⋅ + amxm

is any polynomial, then we define the n × nmatrix p(𝐴) to be
p(𝐴) = a0𝐼 + a1𝐴 + a2𝐴2 + ⋅ ⋅ ⋅ + am𝐴m (3)

where 𝐼 is the n × n identity matrix; that is, p(𝐴) is obtained by substituting 𝐴 for x and
replacing the constant term a0 by the matrix a0𝐼. An expression of form (3) is called a
matrix polynomial in A.

EXAMPLE 12 | AMatrix Polynomial

Find p(𝐴) for
p(x) = x2 − 2x− 5 and 𝐴 = [−1 2

1 3]

Solution

p(𝐴) = 𝐴2 − 2𝐴− 5𝐼

= [−1 2
1 3]

2

− 2 [
−1 2
1 3] − 5 [

1 0
0 1]

= [3 4
2 11] − [−2 4

2 6] − [5 0
0 5] = [0 0

0 0]

or more briefly, p(𝐴) = 0.
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Remark It follows from the fact that 𝐴r𝐴s = 𝐴r+s = 𝐴s+r = 𝐴s𝐴r that powers of a square
matrix commute, and since a matrix polynomial in 𝐴 is built up from powers of 𝐴, any
twomatrix polynomials in𝐴 also commute; that is, for any polynomials p1 and p2 we have

p1(𝐴)p2(𝐴) = p2(𝐴)p1(𝐴) (4)

Properties of the Transpose
The following theorem lists the main properties of the transpose.

Theorem 1.4.8

If the sizes of the matrices are such that the stated operations can be performed,
then:
(a) (𝐴𝑇)𝑇 = 𝐴
(b) (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇
(c) (𝐴 − 𝐵)𝑇 = 𝐴𝑇 − 𝐵𝑇
(d) (k𝐴)𝑇 = k𝐴𝑇

(e) (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

If you keep in mind that transposing a matrix interchanges its rows and columns, then
you should have little trouble visualizing the results in parts (a)–(d ). For example, part
(a) states the obvious fact that interchanging rows and columns twice leaves a matrix
unchanged; and part (b) states that adding two matrices and then interchanging the rows
and columns produces the same result as interchanging the rows and columns before
adding. We will omit the formal proofs. Part (e) is less obvious, but for brevity we will
omit its proof as well. The result in that part can be extended to three or more factors and
restated as:

The transpose of a product of any number of matrices is the product of the transposes
in the reverse order.

The following theorem establishes a relationship between the inverse of a matrix and
the inverse of its transpose.

Theorem 1.4.9

If 𝐴 is an invertible matrix, then 𝐴𝑇 is also invertible and

(𝐴𝑇)−1 = (𝐴−1)𝑇

Proof We can establish the invertibility and obtain the formula at the same time by show-
ing that

𝐴𝑇(𝐴−1)𝑇 = (𝐴−1)𝑇𝐴𝑇 = 𝐼
But from part (e) of Theorem 1.4.8 and the fact that 𝐼𝑇 = 𝐼, we have

𝐴𝑇(𝐴−1)𝑇 = (𝐴−1𝐴)𝑇 = 𝐼𝑇 = 𝐼
(𝐴−1)𝑇𝐴𝑇 = (𝐴𝐴−1)𝑇 = 𝐼𝑇 = 𝐼

which completes the proof.
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EXAMPLE 13 | Inverse of a Transpose

Consider a general 2 × 2 invertible matrix and its transpose:

𝐴 = [a b
c d] and 𝐴𝑇 = [a c

b d]

Since 𝐴 is invertible, its determinant ad− bc is nonzero. But the determinant of 𝐴𝑇 is also
ad− bc (verify), so𝐴𝑇 is also invertible. It follows from Theorem 1.4.5 that

(𝐴𝑇)−1 =
⎡
⎢
⎢
⎣

d
ad− bc

− c
ad− bc

− b
ad− bc

a
ad− bc

⎤
⎥
⎥
⎦

which is the same matrix that results if𝐴−1 is transposed (verify). Thus,

(𝐴𝑇)−1 = (𝐴−1)𝑇

as guaranteed by Theorem 1.4.9.

Exercise Set 1.4

In Exercises 1–2, verify that the followingmatrices and scalars satisfy
the stated properties of Theorem 1.4.1.

𝐴 = [3 −1
2 4], 𝐵 = [0 2

1 −4],

𝐶 = [ 4 1
−3 −2], a = 4, b = −7

1. a. The associative law for matrix addition.

b. The associative law for matrix multiplication.

c. The left distributive law.
d. (a+ b)𝐶 = a𝐶 + b𝐶

2. a. a(𝐵𝐶) = (a𝐵)𝐶 = 𝐵(a𝐶)

b. 𝐴(𝐵 −𝐶) = 𝐴𝐵 −𝐴𝐶 c. (𝐵 + 𝐶)𝐴 = 𝐵𝐴+𝐶𝐴
d. a(b𝐶) = (ab)𝐶

In Exercises 3–4, verify that the matrices and scalars in Exercise 1
satisfy the stated properties.

3. a. (𝐴𝑇)𝑇 = 𝐴 b. (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

4. a. (𝐴 + 𝐵)𝑇 = 𝐴𝑇 +𝐵𝑇 b. (a𝐶)𝑇 = a𝐶𝑇

In Exercises 5–8, use Theorem 1.4.5 to compute the inverse of the
matrix.

5. 𝐴 = [2 −3
4 4] 6. 𝐵 = [3 1

5 2]

7. 𝐶 = [2 0
0 3] 8. 𝐷 = [ 6 4

−2 −1]

9. Find the inverse of

[
1
2 (ex + e−x) 1

2 (ex − e−x)
1
2 (ex − e−x) 1

2 (ex + e−x)
]

10. Find the inverse of

[ cos𝜃 sin𝜃
− sin𝜃 cos𝜃]

In Exercises 11–14, verify that the equations are valid for the matri-
ces in Exercises 5–8.
11. (𝐴𝑇)−1 = (𝐴−1)𝑇 12. (𝐴−1)−1 = 𝐴

13. (𝐴𝐵𝐶)−1 = 𝐶−1𝐵−1𝐴−1 14. (𝐴𝐵𝐶)𝑇 = 𝐶𝑇𝐵𝑇𝐴𝑇

In Exercises 15–18, use the given information to find𝐴.

15. (7𝐴)−1 = [−3 7
1 −2] 16. (5𝐴𝑇)−1 = [−3 −1

5 2]

17. (𝐼 + 2𝐴)−1 = [−1 2
4 5] 18. 𝐴−1 = [2 −1

3 5]

In Exercises 19–20, compute the following using the given matrix𝐴.

a. 𝐴3 b. 𝐴−3 c. 𝐴2 − 2𝐴+ 𝐼

19. 𝐴 = [3 1
2 1] 20. 𝐴 = [2 0

4 1]

In Exercises 21–22, compute p(𝐴) for the given matrix 𝐴 and the
following polynomials.

a. p(x) = x− 2

b. p(x) = 2x2 − x+ 1

c. p(x) = x3 − 2x+ 1
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21. 𝐴 = [3 1
2 1] 22. 𝐴 = [2 0

4 1]

In Exercises 23–24, let

𝐴 = [
a b
c d

], 𝐵 = [
0 1
0 0

], 𝐶 = [
0 0
1 0

]

23. Find all values of a, b, c, and d (if any) for which the matrices
𝐴 and 𝐵 commute.

24. Find all values of a, b, c, and d (if any) for which the matrices
𝐴 and 𝐶 commute.

In Exercises 25–28, use the method of Example 8 to find the unique
solution of the given linear system.

25. 3x1 − 2x2 = −1
4x1 + 5x2 = 3

26. −x1 + 5x2 = 4
−x1 − 3x2 = 1

27. 6x1 + x2 = 0
4x1 − 3x2 = −2

28. 2x1 − 2x2 = 4
x1 + 4x2 = 4

If a polynomial p(x) can be factored as a product of lower degree
polynomials, say

p(x) = p1(x)p2(x)

and if𝐴 is a square matrix, then it can be proved that

p(𝐴) = p1(𝐴)p2(𝐴)
In Exercises 29–30, verify this statement for the stated matrix𝐴 and
polynomials

p(x) = x2 − 9, p1(x) = x+ 3, p2(x) = x− 3

29. The matrix𝐴 in Exercise 21.

30. An arbitrary square matrix𝐴.

31. a. Give an example of two 2 × 2 matrices such that

(𝐴 + 𝐵)(𝐴 − 𝐵) ≠ 𝐴2 −𝐵2

b. State a valid formula for multiplying out

(𝐴 + 𝐵)(𝐴 − 𝐵)

c. What condition can you impose on𝐴 and𝐵 that will allow
you to write (𝐴 + 𝐵)(𝐴 − 𝐵) = 𝐴2 −𝐵2?

32. Thenumerical equation a2 = 1 has exactly two solutions. Find
at least eight solutions of the matrix equation 𝐴2 = 𝐼3. [Hint:
Look for solutions in which all entries off the main diagonal
are zero.]

33. a. Show that if a square matrix 𝐴 satisfies the equation
𝐴2 + 2𝐴+ 𝐼 = 0, then 𝐴 must be invertible. What is the
inverse?

b. Show that if p(x) is a polynomial with a nonzero constant
term, and if𝐴 is a square matrix for which p(𝐴) = 0, then
𝐴 is invertible.

34. Is it possible for 𝐴3 to be an identity matrix without 𝐴 being
invertible? Explain.

35. Can a matrix with a row of zeros or a column of zeros have an
inverse? Explain.

36. Can amatrix with two identical rows or two identical columns
have an inverse? Explain.

In Exercises 37–38, determine whether𝐴 is invertible, and if so, find
the inverse. [Hint: Solve 𝐴𝑋 = 𝐼 for 𝑋 by equating corresponding
entries on the two sides.]

37. 𝐴 = [
1 0 1
1 1 0
0 1 1

] 38. 𝐴 = [
1 1 1
1 0 0
0 1 1

]

In Exercises 39–40, simplify the expression assuming that 𝐴, 𝐵, 𝐶,
and𝐷 are invertible.
39. (𝐴𝐵)−1(𝐴𝐶−1)(𝐷−1𝐶−1)−1𝐷−1

40. (𝐴𝐶−1)−1(𝐴𝐶−1)(𝐴𝐶−1)−1𝐴𝐷−1

41. Show that if 𝑅 is a 1 × nmatrix and𝐶 is an n × 1 matrix, then
𝑅𝐶 = tr(𝐶𝑅).

42. If𝐴 is a square matrix and n is a positive integer, is it true that
(𝐴n)𝑇 = (𝐴𝑇)n? Justify your answer.

43. a. Show that if𝐴 is invertible and𝐴𝐵 = 𝐴𝐶, then 𝐵 = 𝐶.
b. Explain why part (a) and Example 3 do not contradict one

another.

44. Show that if 𝐴 is invertible and k is any nonzero scalar, then
(k𝐴)n = kn𝐴n for all integer values of n.

45. a. Show that if 𝐴, 𝐵, and 𝐴+𝐵 are invertible matrices with
the same size, then

𝐴(𝐴−1 +𝐵−1)𝐵(𝐴 + 𝐵)−1 = 𝐼
b. What does the result in part (a) tell you about the matrix

𝐴−1 +𝐵−1?

46. A square matrix𝐴 is said to be idempotent if𝐴2 = 𝐴.
a. Show that if𝐴 is idempotent, then so is 𝐼 − 𝐴.
b. Show that if𝐴 is idempotent, then 2𝐴− 𝐼 is invertible and

is its own inverse.

47. Show that if 𝐴 is a square matrix such that 𝐴k = 0 for some
positive integer k, then the matrix 𝐼 − 𝐴 is invertible and

(𝐼 − 𝐴)−1 = 𝐼 +𝐴+𝐴2 + ⋅ ⋅ ⋅ + 𝐴k−1

48. Show that the matrix

𝐴 = [
a b
c d

]

satisfies the equation
𝐴2 − (a+ d)𝐴 + (ad− bc)𝐼 = 0

49. Assuming that all matrices are n×n and invertible, solve
for𝐷.

𝐶𝑇𝐵−1𝐴2𝐵𝐴𝐶−1𝐷𝐴−2𝐵𝑇𝐶−2 = 𝐶𝑇

50. Assuming that all matrices are n × n and invertible, solve
for𝐷.

𝐴𝐵𝐶𝑇𝐷𝐵𝐴𝑇𝐶 = 𝐴𝐵𝑇

Working with Proofs

In Exercises 51–58, prove the stated result.

51. Theorem 1.4.1(a) 52. Theorem 1.4.1(b)

53. Theorem 1.4.1( f ) 54. Theorem 1.4.1(c)
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55. Theorem 1.4.2(c) 56. Theorem 1.4.2(b)

57. Theorem 1.4.8(d) 58. Theorem 1.4.8(e)

True-False Exercises
TF. In parts (a)–(k) determine whether the statement is true or

false, and justify your answer.
a. Two n × nmatrices,𝐴 and 𝐵, are inverses of one another

if and only if𝐴𝐵 = 𝐵𝐴 = 0.

b. For all square matrices𝐴 and𝐵 of the same size, it is true
that (𝐴 + 𝐵)2 = 𝐴2 + 2𝐴𝐵 +𝐵2.

c. For all square matrices𝐴 and𝐵 of the same size, it is true
that𝐴2 −𝐵2 = (𝐴− 𝐵)(𝐴+ 𝐵).

d. If 𝐴 and 𝐵 are invertible matrices of the same size, then
𝐴𝐵 is invertible and (𝐴𝐵)−1 = 𝐴−1𝐵−1.

e. If 𝐴 and 𝐵 are matrices such that 𝐴𝐵 is defined, then it
is true that (𝐴𝐵)𝑇 = 𝐴𝑇𝐵𝑇.

f. The matrix

𝐴 = [a b
c d]

is invertible if and only if ad− bc ≠ 0.

g. If 𝐴 and 𝐵 are matrices of the same size and k is a con-
stant, then (k𝐴+𝐵)𝑇 = k𝐴𝑇 +𝐵𝑇.

h. If𝐴 is an invertible matrix, then so is𝐴𝑇.

i. If p(x) = a0 + a1x+ a2x2 + ⋅ ⋅ ⋅ + amxm and 𝐼 is an iden-
tity matrix, then p(𝐼) = a0 + a1 + a2 + ⋅ ⋅ ⋅ + am.

j. A square matrix containing a row or column of zeros can-
not be invertible.

k. The sum of two invertible matrices of the same size must
be invertible.

Working with Technology
T1. Let𝐴 be the matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

0 1
2

1
3

1
4 0 1

5
1
6

1
7 0

⎤
⎥
⎥
⎥
⎦

Discuss the behavior of 𝐴k as k increases indefinitely, that is,
as k→∞.

T2. In each part use your technology utility to make a conjecture
about the form of𝐴n for positive integer powers of n.

a. 𝐴 = [
a 1
0 a

] b. 𝐴 = [
cos𝜃 sin𝜃

− sin𝜃 cos𝜃]

T3. The Fibonacci sequence (named for the Italian mathemati-
cian Leonardo Fibonacci 1170–1250) is

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

the terms of which are commonly denoted as

𝐹0, 𝐹1, 𝐹2, 𝐹3, . . . , 𝐹n, . . .

After the initial terms 𝐹0 = 0 and 𝐹1 = 1, each term is the
sum of the previous two; that is,

𝐹n = 𝐹n−1 +𝐹n−2

Confirm that if

𝑄 = [
𝐹2 𝐹1

𝐹1 𝐹0
] = [

1 1
1 0

]

then

𝑄n = [
𝐹n+1 𝐹n

𝐹n 𝐹0
]

1.5 Elementary Matrices and a Method for
Finding A−1

In this section we will develop an algorithm for finding the inverse of a matrix, and we
will discuss some of the basic properties of invertible matrices.

Elementary Matrices
In Section 1.1 we defined three elementary row operations on a matrix 𝐴:

1. Multiply a row by a nonzero constant c.
2. Interchange two rows.
3. Add a constant c times one row to another.
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It should be evident that if we let 𝐵 be the matrix that results from𝐴 by performing one of
the operations in this list, then the matrix 𝐴 can be recovered from 𝐵 by performing the
corresponding operation in the following list:

1. Multiply the same row by 1/c.
2. Interchange the same two rows.
3. If 𝐵 resulted by adding c times row ri of 𝐴 to row rj, then add −c times rj to ri.

It follows that if 𝐵 is obtained from𝐴 by performing a sequence of elementary row opera-
tions, then there is a second sequence of elementary row operations, which when applied
to 𝐵 recovers 𝐴. Accordingly, we make the following definition.

Definition 1

Matrices𝐴 and𝐵 are said to be rowequivalent if either (hence each) can be obtained
from the other by a sequence of elementary row operations.

Our next goal is to show how matrix multiplication can be used to carry out an ele-
mentary row operation.

Definition 2

A matrix 𝐸 is called an elementary matrix if it can be obtained from an identity
matrix by performing a single elementary row operation.

EXAMPLE 1 | Elementary Matrices and Row Operations

Listed below are four elementary matrices and the operations that produce them.

[1 0
0 −3]

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡⎢⎢⎢
⎣

1 0 3
0 1 0
0 0 1

⎤⎥⎥⎥
⎦

⎡⎢⎢⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥
⎦

�

Multiply the
second row of
𝐼2 by−3.

�

Interchange the
second and fourth
rows of 𝐼4.

�

Add 3 times
the third row of
𝐼3 to the first row.

�

Multiply the
first row of
𝐼3 by 1.

The following theorem, whose proof is left as an exercise, shows that when amatrix𝐴
is multiplied on the left by an elementary matrix 𝐸, the effect is to perform an elementary
row operation on 𝐴.

Theorem 1.5.1 will be a
useful tool for developing
new results about matrices,
but as a practical matter
it is usually preferable to
perform row operations
directly.

Theorem 1.5.1

Row Operations by Matrix Multiplication
If the elementary matrix 𝐸 results from performing a certain row operation on 𝐼m
and if 𝐴 is an m × n matrix, then the product 𝐸𝐴 is the matrix that results when
this same row operation is performed on 𝐴.
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EXAMPLE 2 | Using Elementary Matrices

Consider the matrix

𝐴 = [
1 0 2 3
2 −1 3 6
1 4 4 0

]

and consider the elementary matrix

𝐸 = [
1 0 0
0 1 0
3 0 1

]

which results from adding 3 times the first row of 𝐼3 to the third row. The product 𝐸𝐴 is

𝐸𝐴 = [
1 0 2 3
2 −1 3 6
4 4 10 9

]

which is precisely the matrix that results when we add 3 times the first row of 𝐴 to the
third row.

Weknow from the discussion at the beginning of this section that if𝐸 is an elementary
matrix that results from performing an elementary row operation on an identity matrix
𝐼, then there is a second elementary row operation, which when applied to 𝐸 produces 𝐼
back again. Table 1 lists these operations. The operations on the right side of the table are
called the inverse operations of the corresponding operations on the left.

TABLE 1

Row Operation on I Row Operation on E
That Produces E That Reproduces I

Multiply row i by c ≠ 0 Multiply row i by 1/c

Interchange rows i and j Interchange rows i and j

Add c times row i to row j Add−c times row i to row j

EXAMPLE 3 | Row Operations and Inverse Row Operations

In each of the following, an elementary row operation is applied to the 2 × 2 identity matrix
to obtain an elementary matrix 𝐸, then 𝐸 is restored to the identity matrix by applying the
inverse row operation.

[1 0
0 1] ⟶ [1 0

0 7] ⟶ [1 0
0 1]

�

Multiply the second
row by 7.

�

Multiply the second

row by 17 .
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[1 0
0 1] ⟶ [0 1

1 0] ⟶ [1 0
0 1]

�

Interchange the first
and second rows.

�

Interchange the first
and second rows.

[1 0
0 1] ⟶ [1 5

0 1] ⟶ [1 0
0 1]

�

Add 5 times the
second row to
the first.

�

Add−5 times the
second row to the
first.

The next theorem is a key result about invertibility of elementary matrices. It will be
a building block for many results that follow.

Theorem 1.5.2

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Proof If 𝐸 is an elementary matrix, then 𝐸 results by performing some row operation on
𝐼. Let 𝐸0 be the matrix that results when the inverse of that operation is performed on 𝐼.
Applying Theorem 1.5.1 and using the fact that inverse row operations cancel the effect
of each other, it follows that

𝐸0𝐸 = 𝐼 and 𝐸𝐸0 = 𝐼

Thus, the elementary matrix 𝐸0 is the inverse of 𝐸.

Equivalence Theorem
One of our objectives as we progress through this text is to show how seemingly diverse
ideas in linear algebra are related. The following theorem, which relates results we have
obtained about invertibility of matrices, homogeneous linear systems, reduced row ech-
elon forms, and elementary matrices, is our first step in that direction. As we study new
topics, more statements will be added to this theorem.

Theorem 1.5.3

Equivalent Statements
If𝐴 is an n × nmatrix, then the following statements are equivalent, that is, all true
or all false.
(a) 𝐴 is invertible.
(b) 𝐴x = 0 has only the trivial solution.
(c) The reduced row echelon form of 𝐴 is 𝐼n.
(d) 𝐴 is expressible as a product of elementary matrices.



November 12, 2018 13:09 C01 Sheet number 57 Page number 57 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

1.5 Elementary Matrices and a Method for Finding A−1 57

Proof We will prove the equivalence by establishing the chain of implications: The following figure
illustrates that the sequence
of implications

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a)
implies that

(d) ⇒ (c) ⇒ (b) ⇒ (a)
and hence that

(a) ⇔ (b) ⇔ (c) ⇔ (d)
(see Appendix A).

(a)

(c)

(d) (b)

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a).

(a)⇒ (b) Assume 𝐴 is invertible and let x0 be any solution of 𝐴x = 0. Multiplying both
sides of this equation by 𝐴−1 gives

(𝐴−1𝐴)x0 = 𝐴−10
from which it follows that x0 = 0, so 𝐴x = 0 has only the trivial solution.

(b)⇒ (c) Let 𝐴x = 0 be the matrix form of the system
a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = 0
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = 0
...

...
...

...
an1x1 + an2x2 + ⋅ ⋅ ⋅ + annxn = 0

(1)

and assume that the system has only the trivial solution. If we solve by Gauss–Jordan
elimination, then the system of equations corresponding to the reduced row echelon form
of the augmented matrix will be

x1 = 0
x2 = 0. . .

xn = 0

(2)

Thus, the augmented matrix

⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n 0
a21 a22 ⋅ ⋅ ⋅ a2n 0
...

...
...

...
an1 an2 ⋅ ⋅ ⋅ ann 0

⎤
⎥
⎥
⎥
⎦

for (1) can be reduced to the augmented matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋅ ⋅ ⋅ 0 0
0 1 0 ⋅ ⋅ ⋅ 0 0
0 0 1 ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

0 0 0 ⋅ ⋅ ⋅ 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

for (2) by a sequence of elementary row operations. If we disregard the last column (all
zeros) in each of these matrices, we can conclude that the reduced row echelon form of𝐴
is 𝐼n.

(c)⇒ (d) Assume that the reduced row echelon form of𝐴 is 𝐼n, so that𝐴 can be reduced
to 𝐼n by a finite sequence of elementary row operations. By Theorem 1.5.1, each of these
operations can be accomplished by multiplying on the left by an appropriate elementary
matrix. Thus we can find elementary matrices 𝐸1, 𝐸2, . . . , 𝐸k such that

𝐸k ⋅ ⋅ ⋅ 𝐸2𝐸1𝐴 = 𝐼n (3)
By Theorem 1.5.2, 𝐸1, 𝐸2, . . . , 𝐸k are invertible. Multiplying both sides of Equation (3) on
the left successively by 𝐸−1k , . . . , 𝐸−12 , 𝐸−11 we obtain

𝐴 = 𝐸−11 𝐸−12 ⋅ ⋅ ⋅ 𝐸−1k 𝐼n = 𝐸−11 𝐸−12 ⋅ ⋅ ⋅ 𝐸−1k (4)
By Theorem 1.5.2, this equation expresses 𝐴 as a product of elementary matrices.

(d)⇒ (a) If 𝐴 is a product of elementary matrices, then from Theorems 1.4.6 and 1.5.2,
the matrix 𝐴 is a product of invertible matrices and hence is invertible.
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AMethod for Inverting Matrices
As a first application of Theorem1.5.3, wewill develop a procedure (or algorithm) that can
be used to tell whether a givenmatrix is invertible, and if so, produce its inverse. To derive
this algorithm, assume for the moment, that 𝐴 is an invertible n × nmatrix. In Equation
(3), the elementary matrices execute a sequence of row operations that reduce 𝐴 to 𝐼n. If
we multiply both sides of this equation on the right by 𝐴−1 and simplify, we obtain

𝐴−1 = 𝐸k ⋅ ⋅ ⋅ 𝐸2𝐸1𝐼n

But this equation tells us that the same sequence of row operations that reduces𝐴 to 𝐼n will
transform 𝐼n to 𝐴−1. Thus, we have established the following result.

Inversion Algorithm To find the inverse of an invertible matrix 𝐴, find a sequence of
elementary row operations that reduces𝐴 to the identity and then perform that same
sequence of operations on 𝐼n to obtain 𝐴−1.

A simple method for carrying out this procedure is given in the following example.

EXAMPLE 4 | Using Row Operations to Find A−1

Find the inverse of

𝐴 = [
1 2 3
2 5 3
1 0 8

]

Solution Wewant to reduce𝐴 to the identitymatrix by rowoperations and simultaneously
apply these operations to 𝐼 to produce 𝐴−1. To accomplish this we will adjoin the identity
matrix to the right side of𝐴, thereby producing a partitioned matrix of the form

[𝐴 ∣ 𝐼]
Then we will apply row operations to this matrix until the left side is reduced to 𝐼; these
operations will convert the right side to𝐴−1, so the final matrix will have the form

[𝐼 ∣ 𝐴−1]
The computations are as follows:

⎡
⎢
⎢
⎣

1 2 3 1 0 0
2 5 3 0 1 0
1 0 8 0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 2 3 1 0 0
0 1 −3 −2 1 0
0 −2 5 −1 0 1

⎤
⎥
⎥
⎦

We added−2 times the first
row to the second and−1 times
the first row to the third.

⎡
⎢
⎢
⎣

1 2 3 1 0 0
0 1 −3 −2 1 0
0 0 −1 −5 2 1

⎤
⎥
⎥
⎦

We added 2 times the
second row to the third.

⎡
⎢
⎢
⎣

1 2 3 1 0 0
0 1 −3 −2 1 0
0 0 1 5 −2 −1

⎤
⎥
⎥
⎦

We multiplied the
third row by−1.
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⎡
⎢
⎢
⎣

1 2 0 −14 6 3
0 1 0 13 −5 −3
0 0 1 5 −2 −1

⎤
⎥
⎥
⎦

We added 3 times the third
row to the second and−3 times
the third row to the first.

⎡
⎢
⎢
⎣

1 0 0 −40 16 9
0 1 0 13 −5 −3
0 0 1 5 −2 −1

⎤
⎥
⎥
⎦

We added−2 times the
second row to the first.

Thus,

𝐴−1 = [
−40 16 9
13 −5 −3
5 −2 −1

]

Often it will not be known in advance if a given n × nmatrix𝐴 is invertible. However,
if it is not, then by parts (a) and (c) of Theorem 1.5.3 it will be impossible to reduce 𝐴 to
𝐼n by elementary row operations. This will be signaled by a row of zeros appearing on the
left side of the partition at some stage of the inversion algorithm. If this occurs, then you
can stop the computations and conclude that 𝐴 is not invertible.

EXAMPLE 5 | Showing That a Matrix Is Not Invertible

Consider the matrix

𝐴 = [
1 6 4
2 4 −1

−1 2 5
]

Applying the procedure of Example 4 yields

[
1 6 4 1 0 0
2 4 −1 0 1 0

−1 2 5 0 0 1
]

[
1 6 4 1 0 0
0 −8 −9 −2 1 0
0 8 9 1 0 1

] We added−2 times the first
row to the second and added
the first row to the third.

[
1 6 4 1 0 0
0 −8 −9 −2 1 0
0 0 0 −1 1 1

] We added the second
row to the third.

Since we have obtained a row of zeros on the left side,𝐴 is not invertible.

EXAMPLE 6 | Analyzing Homogeneous Systems

Use Theorem 1.5.3 to determine whether the given homogeneous system has nontrivial
solutions.
(a) x1 + 2x2 + 3x3 = 0

2x1 + 5x2 + 3x3 = 0
x1 + 8x3 = 0

(b) x1 + 6x2 + 4x3 = 0
2x1 + 4x2 − x3 = 0
−x1 + 2x2 + 5x3 = 0

Solution From parts (a) and (b) of Theorem 1.5.3 a homogeneous linear system has only
the trivial solution if and only if its coefficient matrix is invertible. From Examples 4 and 5
the coefficient matrix of system (a) is invertible and that of system (b) is not. Thus, system
(a) has only the trivial solution while system (b) has nontrivial solutions.
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Exercise Set 1.5

In Exercises 1–2, determine whether the given matrix is elementary.

1. a. [
1 0

−5 1] b. [
−5 1
1 0]

c. [
1 1 0
0 0 1
0 0 0

] d.
⎡
⎢
⎢
⎢
⎣

2 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

2. a. [
1 0
0 √3

] b. [
0 0 1
0 1 0
1 0 0

]

c. [
1 0 0
0 1 9
0 0 1

] d. [
−1 0 0
0 0 1
0 1 0

]

In Exercises 3–4, find a row operation and the corresponding ele-
mentary matrix that will restore the given elementary matrix to the
identity matrix.

3. a. [
1 −3
0 1] b. [

−7 0 0
0 1 0
0 0 1

]

c. [
1 0 0
0 1 0

−5 0 1
] d.

⎡
⎢
⎢
⎢
⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

4. a. [
1 0

−3 1] b. [
1 0 0
0 1 0
0 0 3

]

c.
⎡
⎢
⎢
⎢
⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤
⎥
⎥
⎥
⎦

d.
⎡
⎢
⎢
⎢
⎣

1 0 − 1
7 0

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

In Exercises 5–6 an elementary matrix 𝐸 and a matrix𝐴 are given.
Identify the row operation corresponding to 𝐸 and verify that the
product 𝐸𝐴 results from applying the row operation to𝐴.

5. a. 𝐸 = [0 1
1 0], 𝐴 = [−1 −2 5 −1

3 −6 −6 −6]

b. 𝐸 = [
1 0 0
0 1 0
0 −3 1

], 𝐴 = [
2 −1 0 −4 −4
1 −3 −1 5 3
2 0 1 3 −1

]

c. 𝐸 = [
1 0 4
0 1 0
0 0 1

], 𝐴 = [
1 4
2 5
3 6

]

6. a. 𝐸 = [−6 0
0 1], 𝐴 = [−1 −2 5 −1

3 −6 −6 −6]

b. 𝐸 = [
1 0 0

−4 1 0
0 0 1

], 𝐴 = [
2 −1 0 −4 −4
1 −3 −1 5 3
2 0 1 3 −1

]

c. 𝐸 = [
1 0 0
0 5 0
0 0 1

], 𝐴 = [
1 4
2 5
3 6

]

In Exercises 7–8, use the following matrices and find an elementary
matrix 𝐸 that satisfies the stated equation.

𝐴 = [
3 4 1
2 −7 −1
8 1 5

], 𝐵 = [
8 1 5
2 −7 −1
3 4 1

]

𝐶 = [
3 4 1
2 −7 −1
2 −7 3

], 𝐷 = [
8 1 5

−6 21 3
3 4 1

]

𝐹 = [
8 1 5
8 1 1
3 4 1

]

7. a. 𝐸𝐴 = 𝐵 b. 𝐸𝐵 = 𝐴

c. 𝐸𝐴 = 𝐶 d. 𝐸𝐶 = 𝐴

8. a. 𝐸𝐵 = 𝐷 b. 𝐸𝐷 = 𝐵

c. 𝐸𝐵 = 𝐹 d. 𝐸𝐹 = 𝐵

In Exercises 9–10, first use Theorem 1.4.5 and then use the inversion
algorithm to find𝐴−1, if it exists.

9. a. 𝐴 = [1 4
2 7] b. 𝐴 = [

2 −4
−4 8

]

10. a. 𝐴 = [1 −5
3 −16] b. 𝐴 = [

6 4
−3 −2]

In Exercises 11–12, use the inversion algorithm to find the inverse of
the matrix (if the inverse exists).

11. a.
⎡
⎢
⎢
⎣

1 2 3
2 5 3
1 0 8

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

−1 3 −4
2 4 1

−4 2 −9

⎤
⎥
⎥
⎦

12. a.
⎡
⎢
⎢
⎢
⎣

1
5

1
5 − 2

5
1
5

1
5

1
10

1
5 − 4

5
1
10

⎤
⎥
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎢
⎣

1
5

1
5 − 2

5
2
5 − 3

5 − 3
10

1
5 − 4

5
1
10

⎤
⎥
⎥
⎥
⎦

In Exercises 13–18, use the inversion algorithm to find the inverse of
the matrix (if the inverse exists).

13. [
1 0 1
0 1 1
1 1 0

] 14.
⎡
⎢
⎢
⎣

√2 3√2 0
−4√2 √2 0
0 0 1

⎤
⎥
⎥
⎦

15. [
2 6 6
2 7 6
2 7 7

] 16.
⎡
⎢
⎢
⎢
⎣

1 0 0 0
1 3 0 0
1 3 5 0
1 3 5 7

⎤
⎥
⎥
⎥
⎦



November 12, 2018 13:09 C01 Sheet number 61 Page number 61 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

1.5 Elementary Matrices and a Method for Finding A−1 61

17.
⎡
⎢
⎢
⎢
⎣

2 −4 0 0
1 2 12 0
0 0 2 0
0 −1 −4 −5

⎤
⎥
⎥
⎥
⎦

18.
⎡
⎢
⎢
⎢
⎣

0 0 2 0
1 0 0 1
0 −1 3 0
2 1 5 −3

⎤
⎥
⎥
⎥
⎦

In Exercises 19–20, find the inverse of each of the following 4× 4
matrices, where k1, k2, k3, k4, and k are all nonzero.

19. a.
⎡
⎢
⎢
⎢
⎣

k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

⎤
⎥
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎢
⎣

k 1 0 0
0 1 0 0
0 0 k 1
0 0 0 1

⎤
⎥
⎥
⎥
⎦

20. a.
⎡
⎢
⎢
⎢
⎣

0 0 0 k1
0 0 k2 0
0 k3 0 0
k4 0 0 0

⎤
⎥
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎢
⎣

k 0 0 0
1 k 0 0
0 1 k 0
0 0 1 k

⎤
⎥
⎥
⎥
⎦

In Exercises 21–22, find all values of c, if any, for which the given
matrix is invertible.

21. [
c c c
1 c c
1 1 c

] 22. [
c 1 0
1 c 1
0 1 c

]

In Exercises 23–26, express the matrix and its inverse as products of
elementary matrices.

23. [−3 1
2 2] 24. [ 1 0

−5 2]

25. [
1 0 −2
0 4 3
0 0 1

] 26. [
1 1 0
1 1 1
0 1 1

]

In Exercises 27–28, show that the matrices 𝐴 and 𝐵 are row equiv-
alent by finding a sequence of elementary row operations that pro-
duces 𝐵 from 𝐴, and then use that result to find a matrix 𝐶 such
that𝐶𝐴 = 𝐵.

27. 𝐴 = [
1 2 3
1 4 1
2 1 9

], 𝐵 = [
1 0 5
0 2 −2
1 1 4

]

28. 𝐴 = [
2 1 0

−1 1 0
3 0 −1

], 𝐵 = [
6 9 4

−5 −1 0
−1 −2 −1

]

29. Show that if

𝐴 = [
1 0 0
0 1 0
a b c

]

is an elementary matrix, then at least one entry in the third
row must be zero.

30. Show that

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 a 0 0 0
b 0 c 0 0
0 d 0 e 0
0 0 𝑓 0 g
0 0 0 h 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

is not invertible for any values of the entries.

Working with Proofs
31. Prove that if 𝐴 and 𝐵 are m × n matrices, then 𝐴 and 𝐵 are

row equivalent if and only if 𝐴 and 𝐵 have the same reduced
row echelon form.

32. Prove that if𝐴 is an invertible matrix and 𝐵 is row equivalent
to𝐴, then 𝐵 is also invertible.

33. Prove that if 𝐵 is obtained from 𝐴 by performing a sequence
of elementary row operations, then there is a second sequence
of elementary row operations, whichwhen applied to𝐵 recov-
ers𝐴.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. The product of two elementary matrices of the same size

must be an elementary matrix.

b. Every elementary matrix is invertible.

c. If 𝐴 and 𝐵 are row equivalent, and if 𝐵 and 𝐶 are row
equivalent, then𝐴 and 𝐶 are row equivalent.

d. If𝐴 is an n × nmatrix that is not invertible, then the lin-
ear system𝐴x = 0 has infinitely many solutions.

e. If 𝐴 is an n × n matrix that is not invertible, then the
matrix obtained by interchanging two rows of 𝐴 cannot
be invertible.

f. If 𝐴 is invertible and a multiple of the first row of 𝐴
is added to the second row, then the resulting matrix is
invertible.

g. An expression of an invertible matrix 𝐴 as a product of
elementary matrices is unique.

Working with Technology
T1. It can be proved that if the partitioned matrix

[
𝐴 𝐵
𝐶 𝐷]

is invertible, then its inverse is

[
𝐴−1 +𝐴−1𝐵(𝐷 −𝐶𝐴−1𝐵)−1𝐶𝐴−1 −𝐴−1𝐵(𝐷 −𝐶𝐴−1𝐵)−1

−(𝐷 −𝐶𝐴−1𝐵)−1𝐶𝐴−1 (𝐷 − 𝐶𝐴−1𝐵)−1
]

provided that all of the inverses on the right side exist. Use
this result to find the inverse of the matrix

⎡⎢⎢⎢⎢
⎣

1 2 1 0
0 −1 0 1
0 0 2 0
0 0 3 3

⎤⎥⎥⎥⎥
⎦
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1.6 More on Linear Systems and
Invertible Matrices

In this section we will show how the inverse of a matrix can be used to solve a linear
system, and we will develop some more results about invertible matrices.

Number of Solutions of a Linear System
In Section 1.1 we made the statement (based on Figures 1.1.1 and 1.1.2) that every linear
system either has no solutions, has exactly one solution, or has infinitely many solutions.
We are now in a position to prove this fundamental result.

Theorem 1.6.1

A system of linear equations has zero, one, or infinitely many solutions. There are
no other possibilities.

Proof If𝐴x = b is a system of linear equations, exactly one of the following is true: (a) the
systemhas no solutions, (b) the systemhas exactly one solution, or (c) the systemhasmore
than one solution. The proof will be complete if we can show that the systemhas infinitely
many solutions in case (c).

Assume that 𝐴x = b has more than one solution, and let x0 = x1 − x2, where x1 and
x2 are any two distinct solutions. Because x1 and x2 are distinct, the matrix x0 is nonzero;
moreover,

𝐴x0 = 𝐴(x1 − x2) = 𝐴x1 − 𝐴x2 = b − b = 0
If we now let k be any scalar, then

𝐴(x1 + kx0) = 𝐴x1 + 𝐴(kx0) = 𝐴x1 + k(𝐴x0)
= b + k0 = b + 0 = b

But this says that x1 + kx0 is a solution of 𝐴x = b. Since x0 is nonzero and there are
infinitely many choices for k, the system 𝐴x = b has infinitely many solutions.

Solving Linear Systems by Matrix Inversion
Thus far we have studied two procedures for solving linear systems—Gauss–Jordan
elimination andGaussian elimination. The following theorem provides an actual formula
for the solution of a linear system of n equations in n unknowns in the case where the
coefficient matrix is invertible.

Theorem 1.6.2

If 𝐴 is an invertible n × nmatrix, then for every n × 1 matrix b, the system of equa-
tions 𝐴x = b has exactly one solution, namely, x = 𝐴−1b.

Proof Since 𝐴(𝐴−1b) = b, it follows that x = 𝐴−1b is a solution of 𝐴x = b. To show that
this is the only solution, we will assume that x0 is an arbitrary solution and then show
that x0 must be the solution 𝐴−1b.

If x0 is any solution of 𝐴x = b, then 𝐴x0 = b. Multiplying both sides of this equa-
tion by 𝐴−1, we obtain x0 = 𝐴−1b.
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EXAMPLE 1 | Solution of a Linear System Using A−1

Consider the system of linear equations

x1 + 2x2 + 3x3 = 5
2x1 + 5x2 + 3x3 = 3
x1 + 8x3 = 17

In matrix form this system can be written as𝐴x = b, where

𝐴 = [
1 2 3
2 5 3
1 0 8

], x = [
x1
x2
x3
], b = [

5
3
17
]

In Example 4 of the preceding section, we showed that𝐴 is invertible and

𝐴−1 = [
−40 16 9
13 −5 −3
5 −2 −1

]

By Theorem 1.6.2, the solution of the system is

x = 𝐴−1b = [
−40 16 9
13 −5 −3
5 −2 −1

][
5
3
17
] = [

1
−1
2
]

or x1 = 1, x2 = −1, x3 = 2.

Keep in mind that the
method of Example 1
applies only when the sys-
tem has as many equations
as unknowns and the coeffi-
cient matrix is invertible.

Linear Systems with a Common Coefficient Matrix
Frequently, one is concerned with solving a sequence of systems

𝐴x = b1, 𝐴x = b2, 𝐴x = b3, . . . , 𝐴x = bk
each of which has the same square coefficient matrix 𝐴. If 𝐴 is invertible, then the
solutions

x1 = 𝐴−1b1, x2 = 𝐴−1b2, x3 = 𝐴−1b3, . . . , xk = 𝐴−1bk
can be obtained with one matrix inversion and kmatrix multiplications. An efficient way
to do this is to form the partitioned matrix

[𝐴 ∣ b1 ∣ b2 ∣ ⋅ ⋅ ⋅ ∣ bk] (1)

inwhich the coefficientmatrix𝐴 is “augmented” by all k of thematricesb1,b2, . . . ,bk, and
then reduce (1) to reduced row echelon form by Gauss–Jordan elimination. In this way
we can solve all k systems at once. This method has the added advantage that it applies
even when 𝐴 is not invertible.

EXAMPLE 2 | Solving Two Linear Systems at Once

Solve the systems

(a) x1 + 2x2 + 3x3 = 4
2x1 + 5x2 + 3x3 = 5
x1 + 8x3 = 9

(b) x1 + 2x2 + 3x3 = 1
2x1 + 5x2 + 3x3 = 6
x1 + 8x3 = −6
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Solution The two systems have the same coefficient matrix. If we augment this coefficient
matrix with the columns of constants on the right sides of these systems, we obtain

[
1 2 3 4 1
2 5 3 5 6
1 0 8 9 −6

]

Reducing this matrix to reduced row echelon form yields (verify)

[
1 0 0 1 2
0 1 0 0 1
0 0 1 1 −1

]

It follows from the last two columns that the solution of system (a) is x1 = 1, x2 = 0, x3 = 1
and the solution of system (b) is x1 = 2, x2 = 1, x3 = −1.

Properties of Invertible Matrices
Up to now, to show that an n × n matrix 𝐴 is invertible, it has been necessary to find an
n × nmatrix 𝐵 such that

𝐴𝐵 = 𝐼 and 𝐵𝐴 = 𝐼
The next theorem shows that if we can produce an n × nmatrix 𝐵 satisfying either condi-
tion, then the other condition will hold automatically.

Theorem 1.6.3

Let 𝐴 be a square matrix.
(a) If 𝐵 is a square matrix satisfying 𝐵𝐴 = 𝐼, then 𝐵 = 𝐴−1.
(b) If 𝐵 is a square matrix satisfying 𝐴𝐵 = 𝐼, then 𝐵 = 𝐴−1.

We will prove part (a) and leave part (b) as an exercise.

Proof (a) Assume that 𝐵𝐴 = 𝐼. If we can show that𝐴 is invertible, the proof can be com-
pleted by multiplying 𝐵𝐴 = 𝐼 on both sides by 𝐴−1 to obtain

𝐵𝐴𝐴−1 = 𝐼𝐴−1 or 𝐵𝐼 = 𝐼𝐴−1 or 𝐵 = 𝐴−1

To show that𝐴 is invertible, it suffices to show that the system𝐴x = 0 has only the trivial
solution (see Theorem 1.5.3). Let x0 be any solution of this system. If we multiply both
sides of 𝐴x0 = 0 on the left by 𝐵, we obtain 𝐵𝐴x0 = 𝐵0 or 𝐼x0 = 0 or x0 = 0. Thus, the
system of equations 𝐴x = 0 has only the trivial solution.

Equivalence Theorem
We are now in a position to add two more statements to the four given in Theorem 1.5.3.

Theorem 1.6.4

Equivalent Statements
If 𝐴 is an n × nmatrix, then the following are equivalent.
(a) 𝐴 is invertible.
(b) 𝐴x = 0 has only the trivial solution.
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(c) The reduced row echelon form of 𝐴 is 𝐼n.
(d) 𝐴 is expressible as a product of elementary matrices.
(e) 𝐴x = b is consistent for every n × 1 matrix b.
(𝑓) 𝐴x = b has exactly one solution for every n × 1 matrix b.

Proof Since we proved in Theorem 1.5.3 that (a), (b), (c), and (d) are equivalent, it will
be sufficient to prove that (a)⇒ ( f )⇒ (e)⇒ (a).

(a)⇒ ( f ) This was already proved in Theorem 1.6.2.

(f )⇒ (e) This is almost self-evident, for if𝐴x = b has exactly one solution for every n × 1
matrix b, then 𝐴x = b is consistent for every n × 1 matrix b.

(e)⇒ (a) If the system 𝐴x = b is consistent for every n × 1 matrix b, then, in particular,
this is so for the systems

𝐴x =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐴x =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, . . . , 𝐴x =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Let x1, x2, . . . , xn be solutions of the respective systems, and let us form an n × nmatrix 𝐶
having these solutions as columns. Thus 𝐶 has the form

𝐶 = [x1 ∣ x2 ∣ ⋅ ⋅ ⋅ ∣ xn]
As discussed in Section 1.3, the successive columns of the product 𝐴𝐶 will be

𝐴x1, 𝐴x2, . . . , 𝐴xn
[see Formula (8) of Section 1.3]. Thus,

𝐴𝐶 = [𝐴x1 ∣ 𝐴x2 ∣ ⋅ ⋅ ⋅ ∣ 𝐴xn] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋅ ⋅ ⋅ 0
0 1 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐼

By part (b) of Theorem 1.6.3, it follows that C=A−1. Thus, 𝐴 is invertible.

It follows from the equiv-
alency of parts (e) and ( f )
that if you can show that
𝐴x = b has at least one
solution for every n× 1
matrix b, then you can
conclude that it has exactly
one solution for every n× 1
matrix b.

We know from earlier work that invertible matrix factors produce an invertible prod-
uct. Conversely, the following theorem shows that if the product of square matrices is
invertible, then the factors themselves must be invertible.

Theorem 1.6.5

Let 𝐴 and 𝐵 be square matrices of the same size. If 𝐴𝐵 is invertible, then 𝐴 and 𝐵
must also be invertible.
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Proof We will show first that 𝐵 is invertible by showing that the homogeneous system
𝐵x = 0 has only the trivial solution. If we assume that x0 is any solution of this system,
then

(𝐴𝐵)x0 = 𝐴(𝐵x0) = 𝐴0 = 0

so x0 = 0 by parts (a) and (b) of Theorem 1.6.4 applied to the invertible matrix 𝐴𝐵. Thus,
𝐵x = 0 has only the trivial solution, which implies that 𝐵 is invertible. But this in turn
implies that 𝐴 is invertible since 𝐴 can be expressed as

𝐴 = 𝐴(𝐵𝐵−1) = (𝐴𝐵)𝐵−1

which is a product of two invertible matrices. This completes the proof.

In our later work the following fundamental problemwill occur frequently in various
contexts.

A Fundamental Problem Let𝐴 be a fixedm × nmatrix. Find allm × 1 matrices b such
that the system of equations 𝐴x = b is consistent.

If𝐴 is an invertiblematrix, Theorem 1.6.2 completely solves this problem by asserting
that for every m × 1 matrix b, the linear system𝐴x = b has the unique solution x = 𝐴−1b.
If𝐴 is not square, or if𝐴 is square but not invertible, then Theorem 1.6.2 does not apply. In
these cases bmust usually satisfy certain conditions in order for 𝐴x = b to be consistent.
The following example illustrates how themethods of Section 1.2 can be used to determine
such conditions.

EXAMPLE 3 | Determining Consistency by Elimination

What conditions must b1, b2, and b3 satisfy in order for the system of equations

x1 + x2 + 2x3 = b1
x1 + x3 = b2
2x1 + x2 + 3x3 = b3

to be consistent?

Solution The augmented matrix is

[
1 1 2 b1
1 0 1 b2
2 1 3 b3

]

which can be reduced to row echelon form as follows:

[
1 1 2 b1
0 −1 −1 b2 − b1
0 −1 −1 b3 − 2b1

] −1 times the first row was added
to the second and−2 times the
first row was added to the third.

[
1 1 2 b1
0 1 1 b1 − b2
0 −1 −1 b3 − 2b1

] The second row was
multiplied by−1.

[
1 1 2 b1
0 1 1 b1 − b2
0 0 0 b3 − b2 − b1

] The second row was added
to the third.
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It is now evident from the third row in the matrix that the system has a solution if and only
if b1, b2, and b3 satisfy the condition

b3 − b2 − b1 = 0 or b3 = b1 + b2
To express this condition another way,𝐴x = b is consistent if and only if b is a matrix of the
form

b = [
b1
b2

b1 + b2
]

where b1 and b2 are arbitrary.

EXAMPLE 4 | Determining Consistency by Elimination

What conditions must b1, b2, and b3 satisfy in order for the system of equations

x1 + 2x2 + 3x3 = b1
2x1 + 5x2 + 3x3 = b2
x1 + 8x3 = b3

to be consistent?

Solution The augmented matrix is

[
1 2 3 b1
2 5 3 b2
1 0 8 b3

]

Reducing this to reduced row echelon form yields (verify)

[
1 0 0 −40b1 + 16b2 + 9b3
0 1 0 13b1 − 5b2 − 3b3
0 0 1 5b1 − 2b2 − b3

] (2)

In this case there are no restrictions on b1, b2, and b3, so the system has the unique solution

x1 = −40b1 + 16b2 + 9b3, x2 = 13b1 − 5b2 − 3b3, x3 = 5b1 − 2b2 − b3 (3)

for all values of b1, b2, and b3.

What does the result in
Example 4 tell you about
the coefficient matrix of the
system?

Exercise Set 1.6

In Exercises 1–8, solve the system by inverting the coefficient matrix
and using Theorem 1.6.2.
1. x1 + x2 = 2

5x1 + 6x2 = 9
2. 4x1 − 3x2 = −3

2x1 − 5x2 = 9

3. x1 + 3x2 + x3 = 4
2x1 + 2x2 + x3 = −1
2x1 + 3x2 + x3 = 3

4. 5x1 + 3x2 + 2x3 = 4
3x1 + 3x2 + 2x3 = 2

x2 + x3 = 5

5. x + y + z = 5
x + y − 4z = 10

−4x + y + z = 0

6. − x − 2y − 3z = 0
𝑤 + x + 4y + 4z = 7
𝑤 + 3x + 7y + 9z = 4

−𝑤 − 2x − 4y − 6z = 6

7. 3x1 + 5x2 = b1
x1 + 2x2 = b2

8. x1 + 2x2 + 3x3 = b1
2x1 + 5x2 + 5x3 = b2
3x1 + 5x2 + 8x3 = b3

In Exercises 9–12, solve the linear systems. Using the given values for
the b’s solve the systems together by reducing an appropriate aug-
mented matrix to reduced row echelon form.
9. x1 − 5x2 = b1

3x1 + 2x2 = b2
i. b1 = 1, b2 = 4 ii. b1 = −2, b2 = 5

10. −x1 + 4x2 + x3 = b1
x1 + 9x2 − 2x3 = b2
6x1 + 4x2 − 8x3 = b3
i. b1 = 0, b2 = 1, b3 = 0 ii. b1 = −3, b2 = 4, b3 = −5
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11. 4x1 − 7x2 = b1
x1 + 2x2 = b2
i. b1 = 0, b2 = 1 ii. b1 = −4, b2 = 6

iii. b1 = −1, b2 = 3 iv. b1 = −5, b2 = 1

12. x1 + 3x2 + 5x3 = b1
−x1 − 2x2 = b2
2x1 + 5x2 + 4x3 = b3
i. b1 = 1, b2 = 0, b3 = −1
ii. b1 = 0, b2 = 1, b3 = 1
iii. b1 = −1, b2 = −1, b3 = 0

In Exercises 13–17, determine conditions on the bi’s, if any, in order
to guarantee that the linear system is consistent.

13. x1 + 3x2 = b1
−2x1 + x2 = b2

14. 6x1 − 4x2 = b1
3x1 − 2x2 = b2

15. x1 − 2x2 + 5x3 = b1
4x1 − 5x2 + 8x3 = b2

−3x1 + 3x2 − 3x3 = b3

16. x1 − 2x2 − x3 = b1
−4x1 + 5x2 + 2x3 = b2
−4x1 + 7x2 + 4x3 = b3

17. x1 − x2 + 3x3 + 2x4 = b1
−2x1 + x2 + 5x3 + x4 = b2
−3x1 + 2x2 + 2x3 − x4 = b3
4x1 − 3x2 + x3 + 3x4 = b4

18. Consider the matrices

𝐴 = [
2 1 2
2 2 −2
3 1 1

] and x = [
x1
x2
x3
]

a. Show that the equation 𝐴x = x can be rewritten as
(𝐴 − 𝐼)x = 0 and use this result to solve𝐴x = x for x.

b. Solve𝐴x = 4x.

In Exercises 19–20, solve the matrix equation for𝑋.

19. [
1 −1 1
2 3 0
0 2 −1

]𝑋 = [
2 −1 5 7 8
4 0 −3 0 1
3 5 −7 2 1

]

20. [
−2 0 1
0 −1 −1
1 1 −4

]𝑋 = [
4 3 2 1
6 7 8 9
1 3 7 9

]

Working with Proofs

21. Let𝐴x = 0 be a homogeneous system of n linear equations in
n unknowns that has only the trivial solution. Prove that if k
is any positive integer, then the system 𝐴kx = 0 also has only
the trivial solution.

22. Let 𝐴x = 0 be a homogeneous system of n linear equations
in n unknowns, and let 𝑄 be an invertible n × n matrix.
Prove that 𝐴x = 0 has only the trivial solution if and only if
(𝑄𝐴)x = 0 has only the trivial solution.

23. Let 𝐴x = b be any consistent system of linear equations, and
let x1 be a fixed solution. Prove that every solution to the sys-

tem can be written in the form x = x1 + x0, where x0 is a solu-
tion to 𝐴x = 0. Prove also that every matrix of this form is a
solution.

24. Use part (a) of Theorem 1.6.3 to prove part (b).

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. It is impossible for a system of linear equations to have

exactly two solutions.

b. If 𝐴 is a square matrix, and if the linear system 𝐴x = b
has a unique solution, then the linear system𝐴x = c also
must have a unique solution.

c. If 𝐴 and 𝐵 are n × n matrices such that 𝐴𝐵 = 𝐼n, then
𝐵𝐴 = 𝐼n.

d. If 𝐴 and 𝐵 are row equivalent matrices, then the linear
systems𝐴x = 0 and 𝐵x = 0 have the same solution set.

e. Let 𝐴 be an n × n matrix and 𝑆 is an n × n invertible
matrix. If x is a solution to the system (𝑆−1𝐴𝑆)x = b,
then 𝑆x is a solution to the system𝐴y = 𝑆b.

f. Let𝐴 be an n × nmatrix. The linear system𝐴x = 4x has
a unique solution if and only if 𝐴− 4𝐼 is an invertible
matrix.

g. Let𝐴 and𝐵 be n × nmatrices. If𝐴 or𝐵 (or both) are not
invertible, then neither is𝐴𝐵.

Working with Technology
T1. Colors in print media, on computer monitors, and on tele-

vision screens are implemented using what are called “color
models.” For example, in theRGBmodel, colors are created by
mixing percentages of red (R), green (G), and blue (B), and in
the YIQ model (used in TV broadcasting), colors are created
by mixing percentages of luminescence (Y) with percentages
of a chrominance factor (I) and a chrominance factor (Q). The
conversion from the RGB model to the YIQ model is accom-
plished by the matrix equation

⎡
⎢
⎢
⎣

Y
I
Q

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

.299 .587 .114

.596 −.275 −.321

.212 −.523 .311

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

R
G
B

⎤
⎥
⎥
⎦

What matrix would you use to convert the YIQ model to the
RGB model?

T2. Let

𝐴 =
⎡
⎢
⎢
⎣

1 −2 2
4 5 1
0 3 −1

⎤
⎥
⎥
⎦
, 𝐵1 =

⎡
⎢
⎢
⎣

0
1
7

⎤
⎥
⎥
⎦
, 𝐵2 =

⎡
⎢
⎢
⎣

11
5
3

⎤
⎥
⎥
⎦
, 𝐵3 =

⎡
⎢
⎢
⎣

1
−4
2

⎤
⎥
⎥
⎦

Solve the linear systems 𝐴x = 𝐵1,𝐴x = 𝐵2,𝐴x = 𝐵3 using
the method of Example 2.
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1.7 Diagonal, Triangular, and
Symmetric Matrices

In this section we will discuss matrices that have various special forms. These matrices
arise in a wide variety of applications and will play an important role in our subsequent
work.

Diagonal Matrices
A squarematrix inwhich all the entries off themain diagonal are zero is called a diagonal
matrix. Here are some examples:

[2 0
0 −5], [

1 0 0
0 1 0
0 0 1

],
⎡
⎢
⎢
⎢
⎣

6 0 0 0
0 −4 0 0
0 0 0 0
0 0 0 8

⎤
⎥
⎥
⎥
⎦

, [0 0
0 0]

A general n × n diagonal matrix 𝐷 can be written as

𝐷 =
⎡
⎢
⎢
⎢
⎣

d1 0 ⋅ ⋅ ⋅ 0
0 d2 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ dn

⎤
⎥
⎥
⎥
⎦

(1)

A diagonal matrix is invertible if and only if all of its diagonal entries are nonzero; in this
case the inverse of (1) is

𝐷−1 =
⎡
⎢
⎢
⎢
⎣

1/d1 0 ⋅ ⋅ ⋅ 0
0 1/d2 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ 1/dn

⎤
⎥
⎥
⎥
⎦

(2)

We leave it for you to confirm that 𝐷𝐷−1 = 𝐷−1𝐷 = 𝐼m.
Powers of diagonal matrices are easy to compute; we also leave it for you to verify that

if 𝐷 is the diagonal matrix (1) and k is a positive integer, then

𝐷k =
⎡
⎢
⎢
⎢
⎢
⎣

dk1 0 ⋅ ⋅ ⋅ 0
0 dk2 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ dkn

⎤
⎥
⎥
⎥
⎥
⎦

(3)

EXAMPLE 1 | Inverses and Powers of Diagonal Matrices

If

𝐴 = [
1 0 0
0 −3 0
0 0 2

]

then

𝐴−1 =
⎡
⎢
⎢
⎣

1 0 0
0 − 1

3 0
0 0 1

2

⎤
⎥
⎥
⎦
, 𝐴5 = [

1 0 0
0 −243 0
0 0 32

], 𝐴−5 =
⎡
⎢
⎢
⎣

1 0 0
0 − 1

243 0
0 0 1

32

⎤
⎥
⎥
⎦
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Matrix products that involve diagonal factors are especially easy to compute. For
example,

[
d1 0 0
0 d2 0
0 0 d3

][
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

] = [
d1a11 d1a12 d1a13 d1a14
d2a21 d2a22 d2a23 d2a24
d3a31 d3a32 d3a33 d3a34

]

⎡
⎢
⎢
⎢
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

⎤
⎥
⎥
⎥
⎦

[
d1 0 0
0 d2 0
0 0 d3

] =
⎡
⎢
⎢
⎢
⎣

d1a11 d2a12 d3a13
d1a21 d2a22 d3a23
d1a31 d2a32 d3a33
d1a41 d2a42 d3a43

⎤
⎥
⎥
⎥
⎦

Inwords, tomultiply amatrix𝐴 on the left by a diagonalmatrix𝐷,multiply successive
rows of 𝐴 by the successive diagonal entries of 𝐷, and to multiply 𝐴 on the right by 𝐷,
multiply successive columns of 𝐴 by the successive diagonal entries of 𝐷.

Triangular Matrices
A square matrix in which all the entries above the main diagonal are zero is called lower
triangular, and a squarematrix in which all the entries below themain diagonal are zero
is called upper triangular. A matrix that is either upper triangular or lower triangular is
called triangular.

EXAMPLE 2 | Upper and Lower Triangular Matrices

a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

a11 0 0 0

a21 a22 0 0

a31 a32 a33 0

a41 a42 a43 a44

A general 4 × 4 upper
triangular matrix

A general 4 × 4 lower
triangular matrix

Remark Observe that diagonal matrices are both upper triangular and lower triangu-
lar since they have zeros below and above the main diagonal. Observe also that a square
matrix in row echelon form is upper triangular since it has zeros below themain diagonal.

Properties of Triangular Matrices
Example 2 illustrates the following four facts about triangular matrices that we will state
without formal proof:

• A square matrix𝐴 = [aij] is upper triangular if and only if all entries below the main

i > j

i < j

FIGURE 1.7.1

diagonal are zero; that is, aij = 0 if i > j (Figure 1.7.1).
• A square matrix 𝐴 = [aij] is lower triangular if and only if all entries above the main
diagonal are zero; that is, aij = 0 if i < j (Figure 1.7.1).

• A square matrix 𝐴 = [aij] is upper triangular if and only if the ith row starts with at
least i − 1 zeros for every i.

• A square matrix 𝐴 = [aij] is lower triangular if and only if the jth column starts with
at least j − 1 zeros for every j.
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The following theorem lists some of the basic properties of triangular matrices.

Theorem 1.7.1

(a) The transpose of a lower triangular matrix is upper triangular, and the trans-
pose of an upper triangular matrix is lower triangular.

(b) The product of lower triangular matrices is lower triangular, and the product
of upper triangular matrices is upper triangular.

(c) A triangularmatrix is invertible if and only if its diagonal entries are all nonzero.
(d) The inverse of an invertible lower triangular matrix is lower triangular, and the

inverse of an invertible upper triangular matrix is upper triangular.

Part (a) is evident from the fact that transposing a square matrix can be accomplished by
reflecting the entries about the main diagonal; we omit the formal proof. We will prove
(b), but we will defer the proofs of (c) and (d) to the next chapter, where we will have the
tools to prove those results more efficiently.

Proof (b) We will prove the result for lower triangular matrices; the proof for upper tri-
angular matrices is similar. Let𝐴 = [aij] and 𝐵 = [bij] be lower triangular n × nmatrices,
and let 𝐶 = [cij] be the product 𝐶 = 𝐴𝐵. We can prove that 𝐶 is lower triangular by show-
ing that cij = 0 for i < j. But from the definition of matrix multiplication,

cij = ai1b1j + ai2b2j + ⋅ ⋅ ⋅ + ainbnj
If we assume that i < j, then the terms in this expression can be grouped as follows:

cij = ai1b1j + ai2b2j + ⋅ ⋅ ⋅ + ai ( j−1)b( j−1) j⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
Terms in which the row
number of b is less than
the column number of b

+ ai jbj j + ⋅ ⋅ ⋅ + ainbnj⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
Terms in which the row
number of a is less than
the column number of a

In the first grouping all of the b factors are zero since 𝐵 is lower triangular, and in the
second grouping all of the a factors are zero since 𝐴 is lower triangular. Thus, cij = 0,
which is what we wanted to prove.

Remark Observe that in
this example the diagonal
entries of AB and BA are
the same and are the prod-
ucts of the corresponding
diagonal entries of A and B.
Also observe that the diag-
onal entries of A−1 are the
reciprocals of the diagonal
entries of A. In the exercises
we ask you to show that this
happens whenever upper or
lower triangular matrices
are multiplied or inverted.

EXAMPLE 3 | Computations with Triangular Matrices

Consider the upper triangular matrices

𝐴 =
⎡⎢⎢⎢
⎣

1 3 −1
0 2 4
0 0 5

⎤⎥⎥⎥
⎦

, 𝐵 =
⎡⎢⎢⎢
⎣

3 −2 2
0 0 −1
0 0 1

⎤⎥⎥⎥
⎦

It follows from part (c) of Theorem 1.7.1 that the matrix 𝐴 is invertible but the matrix 𝐵 is
not. Moreover, the theorem also tells us that𝐴−1,𝐴𝐵, and𝐵𝐴must be upper triangular. We
leave it for you to confirm these three statements by showing that

𝐴−1 =
⎡
⎢
⎢
⎢
⎣

1 − 3
2

7
5

0 1
2 − 2

5
0 0 1

5

⎤
⎥
⎥
⎥
⎦

, 𝐴𝐵 =
⎡⎢⎢⎢
⎣

3 −2 −2
0 0 2
0 0 5

⎤⎥⎥⎥
⎦

, 𝐵𝐴 =
⎡⎢⎢⎢
⎣

3 5 −1
0 0 −5
0 0 5

⎤⎥⎥⎥
⎦
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Symmetric Matrices

Definition 1

A square matrix 𝐴 is said to be symmetric if 𝐴 = 𝐴𝑇 .

EXAMPLE 4 | Symmetric Matrices

The following matrices are symmetric since each is equal to its own transpose (verify).

[ 7 −3
−3 5],

⎡⎢⎢⎢
⎣

1 4 5
4 −3 0
5 0 7

⎤⎥⎥⎥
⎦

,
⎡
⎢
⎢
⎢
⎢
⎣

d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

⎤
⎥
⎥
⎥
⎥
⎦

It is easy to recognize
a symmetric matrix by
inspection: The entries on
the main diagonal have
no restrictions, but mirror
images of entries across
the main diagonal must
be equal. Here is a picture
using the second matrix in
Example 4:

1 4 5

4 3 0

5 0 7

Remark It follows from Formula (14) of Section 1.3 that a square matrix 𝐴 is symmetric
if and only if

(𝐴)ij = (𝐴)ji (4)

for all values of i and j.

The following theorem lists themain algebraic properties of symmetric matrices. The
proofs are direct consequences of Theorem 1.4.8 and are omitted.

Theorem 1.7.2

If 𝐴 and 𝐵 are symmetric matrices with the same size, and if k is any scalar, then:
(a) 𝐴𝑇 is symmetric.
(b) 𝐴 + 𝐵 and 𝐴 − 𝐵 are symmetric.
(c) k𝐴 is symmetric.

It is not true, in general, that the product of symmetric matrices is symmetric. To see
why this is so, let𝐴 and 𝐵 be symmetric matrices with the same size. Then it follows from
part (e) of Theorem 1.4.8 and the symmetry of 𝐴 and 𝐵 that

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 = 𝐵𝐴

Thus, (𝐴𝐵)𝑇 = 𝐴𝐵 if and only if 𝐴𝐵 = 𝐵𝐴, that is, if and only if 𝐴 and 𝐵 commute. In
summary, we have the following result.

Theorem 1.7.3

The product of two symmetric matrices is symmetric if and only if the matrices
commute.
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EXAMPLE 5 | Products of Symmetric Matrices

The first of the following equations shows a product of symmetric matrices that is not sym-
metric, and the second shows a product of symmetric matrices that is symmetric. We con-
clude that the factors in the first equation do not commute, but those in the second equation
do. We leave it for you to verify that this is so.

[1 2
2 3] [

−4 1
1 0] = [−2 1

−5 2]

[1 2
2 3] [

−4 3
3 −1] = [2 1

1 3]

Invertibility of Symmetric Matrices
In general, a symmetric matrix need not be invertible. For example, a diagonal matrix
with a zero on the main diagonal is symmetric but not invertible. However, the following
theorem shows that if a symmetric matrix happens to be invertible, then its inverse must
also be symmetric.

Theorem 1.7.4

If 𝐴 is an invertible symmetric matrix, then 𝐴−1 is symmetric.

Proof Assume that 𝐴 is symmetric and invertible. From Theorem 1.4.9 and the fact that
𝐴 = 𝐴𝑇 , we have

(𝐴−1)𝑇 = (𝐴𝑇)−1 = 𝐴−1

which proves that 𝐴−1 is symmetric.

Later in this text, we will obtain general conditions on 𝐴 under which 𝐴𝐴𝑇 and 𝐴𝑇𝐴
are invertible.However, in the special casewhere𝐴 is square, we have the following result.

Theorem 1.7.5

If 𝐴 is an invertible matrix, then 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are also invertible.

Proof Since𝐴 is invertible, so is𝐴𝑇 by Theorem 1.4.9. Thus𝐴𝐴𝑇 and𝐴𝑇𝐴 are invertible,
since they are the products of invertible matrices.

Products AAT and ATA are Symmetric
Matrix products of the form 𝐴𝐴𝑇 and 𝐴𝑇𝐴 arise in a variety of applications. If 𝐴 is an
m × nmatrix, then 𝐴𝑇 is an n ×mmatrix, so the products 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are both square
matrices—the matrix𝐴𝐴𝑇 has sizem ×m, and the matrix𝐴𝑇𝐴 has size n × n. Such prod-
ucts are always symmetric since

(𝐴𝐴𝑇)𝑇 = (𝐴𝑇)𝑇𝐴𝑇 = 𝐴𝐴𝑇 and (𝐴𝑇𝐴)𝑇 = 𝐴𝑇(𝐴𝑇)𝑇 = 𝐴𝑇𝐴
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EXAMPLE 6 | The Product of a Matrix and Its Transpose
Is Symmetric

Let𝐴 be the 2 × 3 matrix

𝐴 = [1 −2 4
3 0 −5]

Then

𝐴𝑇𝐴 = [
1 3

−2 0
4 −5

] [1 −2 4
3 0 −5] = [

10 −2 −11
−2 4 −8
−11 −8 41

]

𝐴𝐴𝑇 = [1 −2 4
3 0 −5] [

1 3
−2 0
4 −5

] = [ 21 −17
−17 34]

Observe that𝐴𝑇𝐴 and𝐴𝐴𝑇 are symmetric as expected.

Exercise Set 1.7

In Exercises 1–2, classify the matrix as upper triangular, lower tri-
angular, or diagonal, and decide by inspection whether the matrix
is invertible. Recall that a diagonal matrix is both upper and lower
triangular, so there may be more than one answer in some parts.

1. a. [
2 1
0 3

] b. [
0 0
4 0

]

c.
⎡
⎢
⎢
⎣

−1 0 0
0 2 0
0 0 1

5

⎤
⎥
⎥
⎦

d.
⎡
⎢
⎢
⎣

3 −2 7
0 0 3
0 0 8

⎤
⎥
⎥
⎦

2. a. [
4 0
1 7

] b. [
0 −3
0 0

]

c.
⎡
⎢
⎢
⎣

4 0 0
0 3

5 0
0 0 −2

⎤
⎥
⎥
⎦

d.
⎡
⎢
⎢
⎣

3 0 0
3 1 0
7 0 0

⎤
⎥
⎥
⎦

In Exercises 3–6, find the product by inspection.

3. [
3 0 0
0 −1 0
0 0 2

] [
2 1

−4 1
2 5

]

4. [ 1 2 −5
−3 −1 0] [

−4 0 0
0 3 0
0 0 2

]

5. [
5 0 0
0 2 0
0 0 −3

] [
−3 2 0 4 −4
1 −5 3 0 3

−6 2 2 2 2
]

6. [
2 0 0
0 −1 0
0 0 4

][
4 −1 3
1 2 0

−5 1 −2
][

−3 0 0
0 5 0
0 0 2

]

In Exercises 7–10, find𝐴2,𝐴−2, and𝐴−k (where k is any integer) by
inspection.

7. 𝐴 = [1 0
0 −2] 8. 𝐴 = [

−6 0 0
0 3 0
0 0 5

]

9. 𝐴 =
⎡
⎢
⎢
⎣

1
2 0 0
0 1

3 0
0 0 1

4

⎤
⎥
⎥
⎦

10. 𝐴 =
⎡
⎢
⎢
⎢
⎣

−2 0 0 0
0 −4 0 0
0 0 −3 0
0 0 0 2

⎤
⎥
⎥
⎥
⎦

In Exercises 11–12, compute the product by inspection.

11.
⎡
⎢
⎢
⎣

1 0 0
0 0 0
0 0 3

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

2 0 0
0 5 0
0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 0 0
0 2 0
0 0 1

⎤
⎥
⎥
⎦

12.
⎡
⎢
⎢
⎣

−1 0 0
0 2 0
0 0 4

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

3 0 0
0 5 0
0 0 7

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

5 0 0
0 −2 0
0 0 3

⎤
⎥
⎥
⎦

In Exercises 13–14, compute the indicated quantity.

13. [
1 0
0 −1]

39

14. [
1 0
0 −1]

1000

In Exercises 15–16, use what you have learned in this section
about multiplying by diagonal matrices to compute the product by
inspection.
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15. a.
⎡
⎢
⎢
⎣

a 0 0
0 b 0
0 0 c

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

u 𝑣
𝑤 x
y z

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

r s t
u 𝑣 𝑤
x y z

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

a 0 0
0 b 0
0 0 c

⎤
⎥
⎥
⎦

16. a.
⎡
⎢
⎢
⎣

u 𝑣
𝑤 x
y z

⎤
⎥
⎥
⎦
[
a 0
0 b

] b.
⎡
⎢
⎢
⎣

a 0 0
0 b 0
0 0 c

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

r s t
u 𝑣 𝑤
x y z

⎤
⎥
⎥
⎦

In Exercises 17–18, create a symmetric matrix by substituting appro-
priate numbers for the ×’s.

17. a. [
2 −1
× 3

] b.
⎡⎢⎢⎢⎢
⎣

1 × × ×
3 1 × ×
7 −8 0 ×
2 −3 9 0

⎤⎥⎥⎥⎥
⎦

18. a. [
0 ×
3 0

] b.
⎡⎢⎢⎢⎢
⎣

1 7 −3 2
× 4 5 −7
× × 1 −6
× × × 3

⎤⎥⎥⎥⎥
⎦

In Exercises 19–22, determine by inspection whether the matrix is
invertible.

19. [
0 6 −1
0 7 −4
0 0 −2

] 20. [
−1 2 4
0 3 0
0 0 5

]

21.
⎡
⎢
⎢
⎢
⎣

1 0 0 0
2 −5 0 0
4 −3 4 0
1 −2 1 3

⎤
⎥
⎥
⎥
⎦

22.
⎡
⎢
⎢
⎢
⎣

2 0 0 0
−3 −1 0 0
−4 −6 0 0
0 3 8 −5

⎤
⎥
⎥
⎥
⎦

In Exercises 23–24, find the diagonal entries of𝐴𝐵 by inspection.

23. 𝐴 = [
3 2 6
0 1 −2
0 0 −1

], 𝐵 = [
−1 2 7
0 5 3
0 0 6

]

24. 𝐴 = [
4 0 0

−2 0 0
−3 0 7

], 𝐵 = [
6 0 0
1 5 0
3 2 6

]

In Exercises 25–26, find all values of the unknown constant(s) for
which𝐴 is symmetric.

25. 𝐴 = [
4 −3

a+ 5 −1]

26. 𝐴 = [
2 a− 2b+ 2c 2a+ b+ c
3 5 a+ c
0 −2 7

]

In Exercises 27–28, find all values of x for which 𝐴 is invertible.

27. 𝐴 = [
x− 1 x2 x4

0 x+ 2 x3

0 0 x− 4
]

28. 𝐴 =
⎡
⎢
⎢
⎢
⎣

x− 1
2 0 0

x x− 1
3 0

x2 x3 x+ 1
4

⎤
⎥
⎥
⎥
⎦

29. If 𝐴 is an invertible upper triangular or lower triangular
matrix, what can you say about the diagonal entries of𝐴−1?

30. Show that if𝐴 is a symmetric n × nmatrix and𝐵 is any n ×m
matrix, then the following products are symmetric:

𝐵𝑇𝐵, 𝐵𝐵𝑇, 𝐵𝑇𝐴𝐵

In Exercises 31–32, find a diagonal matrix𝐴 that satisfies the given
condition.

31. 𝐴5 = [
1 0 0
0 −1 0
0 0 −1

] 32. 𝐴−2 = [
9 0 0
0 4 0
0 0 1

]

33. Verify Theorem 1.7.1(b) for the matrix product𝐴𝐵 and Theo-
rem 1.7.1(d) for the matrix𝐴, where

𝐴 = [
−1 2 5
0 1 3
0 0 −4

], 𝐵 = [
2 −8 0
0 2 1
0 0 3

]

34. Let𝐴 be an n × n symmetric matrix.
a. Show that𝐴2 is symmetric.

b. Show that 2𝐴2 − 3𝐴+ 𝐼 is symmetric.

35. Verify Theorem 1.7.4 for the given matrix𝐴.

a. 𝐴 = [ 2 −1
−1 3] b. 𝐴 = [

1 −2 3
−2 1 −7
3 −7 4

]

36. Find all 3 × 3 diagonal matrices𝐴 that satisfy
𝐴2 − 3𝐴− 4𝐼 = 0.

37. Let𝐴 = [ai j] be ann × nmatrix. Determinewhether𝐴 is sym-
metric.
a. ai j = i2 + j2 b. ai j = i2 − j2

c. ai j = 2i+ 2j d. ai j = 2i2 + 2j3

38. On the basis of your experience with Exercise 37, devise a gen-
eral test that can be applied to a formula for aij to determine
whether𝐴 = [ai j] is symmetric.

39. Find an upper triangular matrix that satisfies

𝐴3 = [1 30
0 −8]

40. If the n × nmatrix𝐴 can be expressed as𝐴 = 𝐿𝑈, where 𝐿 is
a lower triangularmatrix and𝑈 is an upper triangularmatrix,
then the linear system 𝐴x = b can be expressed as 𝐿𝑈x = b
and can be solved in two steps:
Step 1. Let𝑈x = y, so that 𝐿𝑈x = b can be expressed as

𝐿y = b. Solve this system.
Step 2. Solve the system𝑈x = y for x.
In each part, use this two-step method to solve the given
system.

a. [
1 0 0

−2 3 0
2 4 1

][
2 −1 3
0 1 2
0 0 4

][
x1
x2
x3
] = [

1
−2
0
]

b. [
2 0 0
4 1 0

−3 −2 3
][

3 −5 2
0 4 1
0 0 2

][
x1
x2
x3
] = [

4
−5
2
]
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In the text we defined a matrix𝐴 to be symmetric if𝐴𝑇 = 𝐴. Anal-
ogously, a matrix 𝐴 is said to be skew-symmetric if 𝐴𝑇 = −𝐴.
Exercises 41–45 are concerned with matrices of this type.
41. Fill in the missing entries (marked with ×) so the matrix 𝐴 is

skew-symmetric.

a. 𝐴 = [
× × 4
0 × ×
× −1 ×

] b. 𝐴 = [
× 0 ×
× × −4
8 × ×

]

42. Find all values of a, b, c, and d for which𝐴 is skew-symmetric.

𝐴 = [
0 2a− 3b+ c 3a− 5b+ 5c

−2 0 5a− 8b+ 6c
−3 −5 d

]

43. We showed in the text that the product of symmetric matrices
is symmetric if and only if the matrices commute. Is the prod-
uct of commuting skew-symmetric matrices skew-symmetric?
Explain.

Working with Proofs

44. Prove that every square matrix𝐴 can be expressed as the sum
of a symmetric matrix and a skew-symmetric matrix. [Hint:
Note the identity𝐴 = 1

2 (𝐴 +𝐴𝑇) + 1
2 (𝐴 −𝐴𝑇).]

45. Prove the following facts about skew-symmetric matrices.
a. If 𝐴 is an invertible skew-symmetric matrix, then 𝐴−1 is

skew-symmetric.

b. If 𝐴 and 𝐵 are skew-symmetric matrices, then so are 𝐴𝑇,
𝐴+𝐵,𝐴−𝐵, and k𝐴 for any scalar k.

46. Prove: If the matrices 𝐴 and 𝐵 are both upper triangular or
both lower triangular, then the diagonal entries of both 𝐴𝐵
and 𝐵𝐴 are the products of the diagonal entries of𝐴 and 𝐵.

47. Prove: If𝐴𝑇𝐴 = 𝐴, then𝐴 is symmetric and𝐴 = 𝐴2.

True-False Exercises
TF. In parts (a)–(m) determine whether the statement is true or

false, and justify your answer.
a. The transpose of a diagonal matrix is a diagonal matrix.

b. The transpose of an upper triangular matrix is an upper
triangular matrix.

c. The sum of an upper triangular matrix and a lower trian-
gular matrix is a diagonal matrix.

d. All entries of a symmetric matrix are determined by the
entries occurring on and above the main diagonal.

e. All entries of an upper triangular matrix are determined
by the entries occurring on and above the main diagonal.

f. The inverse of an invertible lower triangular matrix is an
upper triangular matrix.

g. A diagonal matrix is invertible if and only if all of its diag-
onal entries are positive.

h. The sum of a diagonal matrix and a lower triangular
matrix is a lower triangular matrix.

i. A matrix that is both symmetric and upper triangular
must be a diagonal matrix.

j. If𝐴 and𝐵 are n × nmatrices such that𝐴+𝐵 is symmet-
ric, then𝐴 and 𝐵 are symmetric.

k. If 𝐴 and 𝐵 are n × n matrices such that 𝐴+𝐵 is upper
triangular, then𝐴 and 𝐵 are upper triangular.

l. If𝐴2 is a symmetricmatrix, then𝐴 is a symmetricmatrix.

m. If k𝐴 is a symmetric matrix for some k ≠ 0, then 𝐴 is a
symmetric matrix.

Working with Technology
T1. Starting with the formula stated in Exercise T1 of Section 1.5,

derive a formula for the inverse of the “block diagonal”matrix

[
𝐷1 0
0 𝐷2

]

in which𝐷1 and𝐷2 are invertible, and use your result to com-
pute the inverse of the matrix

𝑀 =
⎡⎢⎢⎢⎢
⎣

1.24 2.37 0 0
3.08 −1.01 0 0
0 0 2.76 4.92
0 0 3.23 5.54

⎤⎥⎥⎥⎥
⎦

1.8 Introduction to Linear Transformations
Up to now we have treated matrices simply as rectangular arrays of numbers and have
been concerned primarily with developing algebraic properties of those arrays. In this
section we will view matrices in a completely different way. Here we will be concerned
with how matrices can be used to transform or “map” one vector into another by matrix
multiplication. This will be the foundation for much of our work in subsequent sections.

Recall that in Section 1.1 we defined an “ordered n-tuple” to be a sequence of n real num-
bers, and we observed that a solution of a linear system in n unknowns, say

x1 = s1, x2 = s2, . . . , xn = sn
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can be expressed as the ordered n-tuple
(s1, s2, . . . , sn) (1)

Recall also that if n = 2, then the n-tuple is called an “ordered pair,” and if n = 3, it is
called an “ordered triple.” For two ordered n-tuples to be regarded as the same, they must
list the same numbers in the same order. Thus, for example, (1, 2) and (2, 1) are different
ordered pairs.

The set of all ordered n-tuples of real numbers is denoted by the symbol 𝑅n. The ele- The term “vector” is used in
various ways in mathemat-
ics, physics, engineering,
and other applications. The
idea of viewing n-tuples as
vectors will be discussed in
more detail in Chapter 3,
at which point we will also
explain how this idea relates
to a more familiar notion of
a vector.

ments of 𝑅n are called vectors and are denoted in boldface type, such as a, b, v,w, and x.
When convenient, ordered n-tuples can be denoted in matrix notation as column vectors.
For example, the matrix

⎡
⎢
⎢
⎢
⎣

s1
s2...
sn

⎤
⎥
⎥
⎥
⎦

(2)

can be used as an alternative to (1).We call (1) the comma-delimited form of a vector and
(2) the column-vector form. For each i = 1, 2, . . . ,n, let ei denote the vector in 𝑅n with a
1 in the ith position and zeros elsewhere. In column form these vectors are

e1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, e2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, . . . , en =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

We call the vectors e1, e2, . . . , en the standard basis vectors for 𝑅n. For example, the
vectors

e1 = [
1
0
0
], e2 = [

0
1
0
], e3 = [

0
0
1
]

are the standard basis vectors for 𝑅3.
The vectors e1, e2, . . . , en in 𝑅n are termed “basis vectors” because all other vectors in

𝑅n are expressible in exactly one way as a linear combination of them. For example, if

x =
⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

then we can express x as
x = x1e1 + x2e2 + ⋅ ⋅ ⋅ + xnen

Functions and Transformations
Recall that a function is a rule that associates with each element of a set 𝐴 one and only
one element in a set 𝐵. If 𝑓 associates the element b with the element a, then we write

b = 𝑓(a)
and we say that b is the image of a under 𝑓 or that 𝑓(a) is the value of 𝑓 at a. The set 𝐴 is
called the domain of 𝑓 and the set 𝐵 the codomain of 𝑓 (Figure 1.8.1). The subset of the

a
b = f(a)

f

Domain
A

Codomain
B

FIGURE 1.8.1

codomain that consists of all images of elements in the domain is called the range of 𝑓.
Inmany applications the domain and codomain of a function are sets of real numbers,

but in this text we will be concerned with functions for which the domain is 𝑅n and the
codomain is 𝑅m for some positive integers m and n. In this setting it is common to use
italicized capital letters for functions, the letter 𝑇 being typical.
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Definition 1

If 𝑇 is a function with domain 𝑅n and codomain 𝑅m, then we say that 𝑇 is a trans-
formation from𝑅n to𝑅m or that𝑇maps from𝑅n to𝑅m, whichwe denote bywriting

𝑇∶𝑅n → 𝑅m

In the special case wherem = n, a transformation is sometimes called an operator
on 𝑅n.

Matrix Transformations
In this section we will be concerned with the class of transformations from 𝑅n to 𝑅m that
arise from linear systems. Specifically, suppose thatwe have the systemof linear equations

w1 = a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn
w2 = a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn...

...
...

...
wm = am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn

(3)

which we can write in matrix notation as

⎡
⎢
⎢
⎢
⎣

w1
w2...
wm

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

(4)

or more briefly as

w = 𝐴x (5)

Up to nowwe have been viewing (5) as a compact way of writing system (3). Another way
to view this formula is as a transformation that maps a vector x in 𝑅n into a vector w in
𝑅m by multiplying x on the left by 𝐴. We call this a matrix transformation (or matrix
operator in the special case wherem = n). We denote it by

𝑇𝐴 ∶𝑅n → 𝑅m
(see Figure 1.8.2). This notation is useful when it is important to make the domain and

x

TA : R
n → Rm

TA(x)

TA

Rn Rm

FIGURE 1.8.2

codomain clear. The subscript on 𝑇𝐴 serves as a reminder that the transformation results
frommultiplying vectors in 𝑅n by thematrix𝐴. In situations where specifying the domain
and codomain is not essential, we will express (5) as

w = 𝑇𝐴(x) (6)
We call the transformation𝑇𝐴multiplicationbyA. On occasionwewill find it convenient
to express (6) in the schematic form

x
𝑇𝐴⟶ w (7)

which is read “𝑇𝐴 maps x intow.”

EXAMPLE 1 | AMatrix Transformation from R4 to R3

The transformation from 𝑅4 to 𝑅3 defined by the equations

𝑤1 = 2x1 − 3x2 + x3 − 5x4
𝑤2 = 4x1 + x2 − 2x3 + x4
𝑤3 = 5x1 − x2 + 4x3

(8)
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can be expressed in matrix form as

[
𝑤1

𝑤2

𝑤3

] = [
2 −3 1 −5
4 1 −2 1
5 −1 4 0

]
⎡
⎢
⎢
⎢
⎣

x1
x2
x3
x4

⎤
⎥
⎥
⎥
⎦

from which we see that the transformation can be interpreted as multiplication by

𝐴 = [
2 −3 1 −5
4 1 −2 1
5 −1 4 0

] (9)

Although the image under the transformation 𝑇𝐴 of any vector

x =
⎡
⎢
⎢
⎢
⎣

x1
x2
x3
x4

⎤
⎥
⎥
⎥
⎦

in𝑅4 could be computed directly from the defining equations in (8), we will find it preferable
to use the matrix in (9). For example, if

x =
⎡
⎢
⎢
⎢
⎣

1
−3
0
2

⎤
⎥
⎥
⎥
⎦

then it follows from (9) that

𝑇𝐴(x) = 𝐴x = [
2 −3 1 −5
4 1 −2 1
5 −1 4 0

]
⎡
⎢
⎢
⎢
⎣

1
−3
0
2

⎤
⎥
⎥
⎥
⎦

= [
1
3
8
]

EXAMPLE 2 | Zero Transformations

If 0 is them × n zero matrix, then
𝑇0(x) = 0x = 0

so multiplication by zero maps every vector in 𝑅n into the zero vector in 𝑅m. We call 𝑇0 the
zero transformation from 𝑅n to 𝑅m.

EXAMPLE 3 | Identity Operators

If 𝐼 is the n × n identity matrix, then
𝑇𝐼(x) = 𝐼x = x

so multiplication by 𝐼 maps every vector in 𝑅n to itself. We call 𝑇𝐼 the identity operator on
𝑅n.
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Properties of Matrix Transformations
The following theorem lists four basic properties of matrix transformations that follow
from properties of matrix multiplication.

Theorem 1.8.1

For every matrix𝐴 the matrix transformation 𝑇𝐴 ∶𝑅n→𝑅m has the following prop-
erties for all vectors u and v and for every scalar k:
(a) 𝑇𝐴(0) = 0
(b) 𝑇𝐴(ku) = k𝑇𝐴(u) [Homogeneity property]

(c) 𝑇𝐴(u + v) = 𝑇𝐴(u) + 𝑇𝐴(v) [Additivity property]

(d) 𝑇𝐴(u − v) = 𝑇𝐴(u) − 𝑇𝐴(v)

Proof All four parts are restatements from the transformation viewpoint of the following
properties of matrix arithmetic given in Theorem 1.4.1:

𝐴0 = 0, 𝐴(ku) = k(𝐴u), 𝐴(u + v) = 𝐴u + 𝐴v, 𝐴(u − v) = 𝐴u − 𝐴v

It follows from parts (b) and (c) of Theorem 1.8.1 that a matrix transformationmaps a
linear combination of vectors in 𝑅n into the corresponding linear combination of vectors
in 𝑅m in the sense that

𝑇𝐴(k1u1 + k2u2 + ⋅ ⋅ ⋅ + krur) = k1𝑇𝐴(u1) + k2𝑇𝐴(u2) + ⋅ ⋅ ⋅ + kr𝑇𝐴(ur) (10)

Matrix transformations are not the only kinds of transformations. For example, if
w1 = x21 + x22
w2 = x1x2

(11)

then there are no constants a, b, c, and d for which

[
w1

w2
] = [

a b
c d

] [
x1
x2
] = [

x21 + x22
x1x2

]

so that the equations in (11) do not define a matrix transformation from 𝑅2 to 𝑅2.
This leads us to the following two questions.

Question 1. Are there algebraic properties of a transformation 𝑇∶ 𝑅n→𝑅m that can be
used to determine whether 𝑇 is a matrix transformation?
Question 2. If we discover that a transformation 𝑇∶ 𝑅n → 𝑅m is a matrix transforma-
tion, how can we find a matrix 𝐴 for which 𝑇 = 𝑇𝐴?

The following theorem and its proof will provide the answers.

Theorem 1.8.2

𝑇∶𝑅n→𝑅m is amatrix transformation if and only if the following relationships hold
for all vectors u and v in 𝑅n and for every scalar k:
(i) 𝑇(u + v) = 𝑇(u) + 𝑇(v) [Additivity property]

(ii) 𝑇(ku) = k𝑇(u) [Homogeneity property]
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Proof If 𝑇 is a matrix transformation, then properties (i) and (ii) follow respectively from
parts (c) and (b) of Theorem 1.8.1.

Conversely, assume that properties (i) and (ii) hold. We must show that there exists
anm × nmatrix 𝐴 such that

𝑇(x) = 𝐴x
for every vector x in 𝑅n. Recall that the derivation of Formula (10) used only the additivity
and homogeneity properties of 𝑇𝐴. Since we are assuming that 𝑇 has those properties, it
must be true that

𝑇(k1u1 + k2u2 + ⋅ ⋅ ⋅ + krur) = k1𝑇(u1) + k2𝑇(u2) + ⋅ ⋅ ⋅ + kr𝑇(ur) (12)
for all scalars k1, k2, . . . , kr and all vectors u1,u2, . . . ,ur in 𝑅n. Let 𝐴 be the matrix

𝐴 = [𝑇(e1) ∣ 𝑇(e2) ∣ ⋅ ⋅ ⋅ ∣ 𝑇(en)] (13)
where e1, e2, . . . , en are the standard basis vectors for 𝑅n. It follows from Theorem 1.3.1
that 𝐴x is a linear combination of the columns of 𝐴 in which the successive coefficients
are the entries x1, x2, . . . , xn of x. That is,

𝐴x = x1𝑇(e1) + x2𝑇(e2) + ⋅ ⋅ ⋅ + xn𝑇(en)
Using Formula (10) we can rewrite this as

𝐴x = 𝑇(x1e1 + x2e2 + ⋅ ⋅ ⋅ + xnen) = 𝑇(x)
which completes the proof.

The two properties listed in Theorem 1.8.2 are called linearity conditions, and a
transformation that satisfies these conditions is called a linear transformation. Using
this terminology Theorem 1.8.2 can be restated as follows.

Theorem 1.8.3

Every linear transformation from 𝑅n to 𝑅m is a matrix transformation and con-
versely every matrix transformation from 𝑅n to 𝑅m is a linear transformation.

Briefly stated, this theorem tells us that for transformations from 𝑅n to 𝑅m the terms “lin-
ear transformation” and “matrix transformation” are synonymous.

Depending on whether n-tuples and m-tuples are regarded as vectors or points, the
geometric effect of a matrix transformation 𝑇𝐴∶ 𝑅n→𝑅m is to map each vector (point) in
𝑅n into a vector (point) in 𝑅m (Figure 1.8.3).

x
TA(x)

Rn Rm

x TA(x)

Rn Rm

0
0

TA maps points to points.TA maps vectors to vectors.

FIGURE 1.8.3

The following theorem states that if two matrix transformations from 𝑅n to 𝑅m have
the same image for each point of 𝑅n, then the matrices themselves must be the same.

Theorem 1.8.4

If 𝑇𝐴∶ 𝑅n→𝑅m and 𝑇𝐵 ∶ 𝑅n→𝑅m are matrix transformations, and if 𝑇𝐴(x) = 𝑇𝐵(x)
for every vector x in 𝑅n, then 𝐴 = 𝐵.
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Proof To say that 𝑇𝐴(x) = 𝑇𝐵(x) for every vector in 𝑅n is the same as saying that

𝐴x = 𝐵x

for every vector x in 𝑅n. This will be true, in particular, if x is any of the standard basis
vectors e1, e2, . . . , en for 𝑅n; that is,

𝐴ej = 𝐵ej ( j = 1, 2, . . . ,n) (14)

Since every entry of ej is 0 except for the jth, which is 1, it follows from Theorem 1.3.1
that 𝐴ej is the jth column of 𝐴 and 𝐵ej is the jth column of 𝐵. Thus, (14) implies that
corresponding columns of 𝐴 and 𝐵 are the same, and hence that 𝐴 = 𝐵.

Theorem1.8.4 is significant because it tells us that there is a one-to-one correspondence
betweenm × nmatrices andmatrix transformations from 𝑅n to 𝑅m in the sense that every
m × n matrix 𝐴 produces exactly one matrix transformation (multiplication by 𝐴) and
every matrix transformation from 𝑅n to 𝑅m arises from exactly onem × nmatrix; we call
that matrix the standard matrix for the transformation.

A Procedure for Finding Standard Matrices
In the course of proving Theorem 1.8.2 we showed in Formula (13) that if e1, e2, . . . , en are
the standard basis vectors for 𝑅n (in column form), then the standard matrix for a linear
transformation 𝑇∶ 𝑅n → 𝑅m is given by the formula

𝐴 = [𝑇(e1) ∣ 𝑇(e2) ∣ ⋅ ⋅ ⋅ ∣ 𝑇(en)] (15)

This formula reveals a key property of linear transformations from 𝑅n to 𝑅m, namely, that
they are completely determined by their actions on the standard basis vectors for 𝑅n. It
also suggests the following procedure that can be used to find the standard matrix for
such transformations.

Finding the Standard Matrix for a Matrix Transformation
Step 1. Find the images of the standard basis vectors e1, e2, . . . , en for 𝑅n.

Step 2. Construct thematrix that has the images obtained in Step 1 as its successive columns.
This matrix is the standard matrix for the transformation.

EXAMPLE 4 | Finding a Standard Matrix

Find the standardmatrix𝐴 for the linear transformation𝑇∶ 𝑅2 → 𝑅3 defined by the formula

𝑇([x1
x2
]) =

⎡
⎢
⎢
⎣

2x1+ x2
x1− 3x2

−x1+ x2

⎤
⎥
⎥
⎦

(16)
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Solution We leave it for you to verify that

𝑇(e1) = 𝑇([1
0
]) =

⎡
⎢
⎢
⎣

2
1

−1

⎤
⎥
⎥
⎦

and 𝑇(e2) = 𝑇([0
1
]) =

⎡
⎢
⎢
⎣

1
−3
1

⎤
⎥
⎥
⎦

Thus, it follows from Formulas (15) and (16) that the standard matrix is

𝐴 = [𝑇(e1) ∣ 𝑇(e2)] =
⎡
⎢
⎢
⎣

2 1
1 −3

−1 1

⎤
⎥
⎥
⎦

As a check, observe that

𝐴[x1x2
] = [

2 1
1 −3

−1 1
] [x1x2

] = [
2x1+ x2
x1− 3x2

−x1+ x2
]

which shows that multiplication by𝐴 produces the same result as the transformation𝑇 (see
Equation (16)).

EXAMPLE 5 | Computing with Standard Matrices

For the linear transformation in Example 4, use the standardmatrix𝐴 obtained in that exam-
ple to find

𝑇([1
4
])

Solution The transformation is multiplication by𝐴, so

𝑇([1
4
]) =

⎡
⎢
⎢
⎣

2 1
1 −3

−1 1

⎤
⎥
⎥
⎦
[
1
4
] =

⎡
⎢
⎢
⎣

6
−11

3

⎤
⎥
⎥
⎦

Although we could have
obtained the result in Exam-
ple 5 by substituting values
for the variables in (13),
the method used in that
example is preferable for
large-scale problems in that
matrix multiplication is
better suited for computer
computations.

For transformation problems posed in comma-delimited form, a good procedure is to
rewrite the problem in column-vector form and use the methods previously illustrated.

EXAMPLE 6 | Finding a Standard Matrix

Rewrite the transformation 𝑇(x1, x2) = (3x1 + x2, 2x1 − 4x2) in column-vector form and
find its standard matrix.

Solution
𝑇([x1

x2
]) = [

3x1+ x2
2x1− 4x2

] = [
3 1
2 −4] [

x1
x2
]

Thus, the standard matrix is

[
3 1
2 −4]
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EXAMPLE 7 |

Find the standard matrix𝐴 for the linear transformation 𝑇∶ 𝑅2 → 𝑅2 for which

𝑇([−11]) = [−55], 𝑇([
2

−1]) = [ 7
−6] (17)

Solution Our objective is to find the images of the standard basis vectors and then use For-
mula (15) to obtain the standard matrix. To start, we will rewrite the standard basis
vectors as linear combinations of

[−11] and [ 2
−1]

This leads to the vector equations

[10] = c1[
−1
1] + c2[

2
−1] and [01] = k1[

−1
1] + k2[

2
−1] (18)

which we can rewrite as

[−1 2
1 −1][

c1
c2
] = [10] and [−1 2

1 −1][
k1
k2
] = [01]

As these systems have the same coefficient matrix, we can solve both at once using the
method in Example 2 of Section 1.6. We leave it for you to do this and to show that

c1 = 1, c2 = 1, k1 = 2, k2 = 1

Substituting these values in (18) and using the linearity properties of 𝑇, we obtain

𝑇([10]) = 𝑇([−11])+𝑇([ 2
−1]) = [−55] + [ 7

−6] = [ 2
−1]

𝑇([01]) = 2𝑇([−11])+𝑇([ 2
−1]) = [−1010] + [ 7

−6] = [−34]

Thus, it follows from Formula (15) that the standard matrix for 𝑇 is

𝐴 = [ 2 −3
−1 4]

You can check this result using multiplication by𝐴 to verify (17).

Remark This section is but a first step in the study of linear transformations, which is
one of the major themes in this text. We will delve deeper into this topic in Chapter 4, at
which point we will have more background and a richer source of examples to work with.

There are many ways to transform the vector spaces 𝑅2 and 𝑅3, some of the most
important of which can be accomplished by matrix transformations. For example, rota-
tions about the origin, reflections about lines and planes through the origin, and projec-
tions onto lines and planes through the origin can all be accomplished using a matrix
operator with an appropriate 2 × 2 or 3 × 3 matrix.

Reflection Operators
Some of the most basic matrix operators on 𝑅2 and 𝑅3 are those that map each point into
its symmetric image about a fixed line or a fixed plane that contains the origin; these are
called reflection operators.Table 1 shows the standardmatrices for the reflections about
the coordinate axes and the line y = x in 𝑅2, and Table 2 shows the standard matrices for
the reflections about the coordinate planes in 𝑅3. In each case the standard matrix was
obtained by finding the images of the standard basis vectors, converting those images
to column vectors, and then using those column vectors as successive columns of the
standard matrix.



November 12, 2018 13:09 C01 Sheet number 85 Page number 85 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

1.8 Introduction to Linear Transformations 85

TABLE 1

Operator Illustration Images of e𝟏 and e𝟐 Standard Matrix

Reflection about
the x-axis
𝑇(x, y) = (x,−y)

𝑇(e1) = 𝑇(1, 0) = (1, 0)
𝑇(e2) = 𝑇(0, 1) = (0,−1) [1 0

0 −1]

T(x)

x

(x, y)

(x, –y)

x

y

Reflection about
the y-axis
𝑇(x, y) = (−x, y)

𝑇(e1) = 𝑇(1, 0) = (−1, 0)
𝑇(e2) = 𝑇(0, 1) = (0, 1) [−1 0

0 1]

T(x) x

(x, y)(–x, y)

x

y

Reflection about
the line y = x
𝑇(x, y) = (y, x)

𝑇(e1) = 𝑇(1, 0) = (0, 1)
𝑇(e2) = 𝑇(0, 1) = (1, 0) [0 1

1 0]T(x)

x (x, y)

(y, x)
y = x

x

y

TABLE 2

Operator Illustration Images of e𝟏, e𝟐, e𝟑 Standard Matrix

Reflection about
the xy-plane
𝑇(x, y, z) = (x, y,−z)

𝑇(e1) = 𝑇(1, 0, 0) = (1, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0, 1, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0,−1) [

1 0 0
0 1 0
0 0 −1

]

y

(x, y, z)

(x, y, –z)

z

x T(x)

x

Reflection about
the xz-plane
𝑇(x, y, z) = (x,−y, z)

𝑇(e1) = 𝑇(1, 0, 0) = (1, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0,−1, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0, 1)

[
1 0 0
0 −1 0
0 0 1

]

y

(x, y, z)(x, –y, z)

z

x

T(x) x

Reflection about
the yz-plane
𝑇(x, y, z) = (−x, y, z)

𝑇(e1) = 𝑇(1, 0, 0) = (−1, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0, 1, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0, 1)

[
−1 0 0
0 1 0
0 0 1

]

y(x, y, z)

(–x, y, z)

z

x

T(x)

x

Projection Operators
Matrix operators on 𝑅2 and 𝑅3 that map each point into its orthogonal projection onto a
fixed line or plane through the origin are called projection operators (or more precisely,
orthogonal projection operators). Table 3 shows the standard matrices for the orthogo-
nal projections onto the coordinate axes in 𝑅2, and Table 4 shows the standard matrices
for the orthogonal projections onto the coordinate planes in 𝑅3.
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TABLE 3

Operator Illustration Images of e𝟏 and e𝟐 Standard Matrix

Orthogonal projection
onto the x-axis
𝑇(x, y) = (x, 0)

𝑇(e1) = 𝑇(1, 0) = (1, 0)
𝑇(e2) = 𝑇(0, 1) = (0, 0) [1 0

0 0]

T(x)

x

(x, y)

(x, 0) x

y

Orthogonal projection
onto the y-axis
𝑇(x, y) = (0, y)

𝑇(e1) = 𝑇(1, 0) = (0, 0)
𝑇(e2) = 𝑇(0, 1) = (0, 1) [0 0

0 1]

x

(x, y)(0, y)

x

y

T(x)

TABLE 4

Operator Illustration Images of e𝟏, e𝟐, e𝟑 Standard Matrix

Orthogonal projection
onto the xy-plane
𝑇(x, y, z) = (x, y, 0)

𝑇(e1) = 𝑇(1, 0, 0) = (1, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0, 1, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0, 0)

[
1 0 0
0 1 0
0 0 0

]

y

(x, y, z)

(x, y, 0)

z

x
T(x)

x

Orthogonal projection
onto the xz-plane
𝑇(x, y, z) = (x, 0, z)

𝑇(e1) = 𝑇(1, 0, 0) = (1, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0, 0, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0, 1)

[
1 0 0
0 0 0
0 0 1

]

y

(x, y, z)(x, 0, z)

z

x

T(x)
x

Orthogonal projection
onto the yz-plane
𝑇(x, y, z) = (0, y, z)

𝑇(e1) = 𝑇(1, 0, 0) = (0, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0, 1, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0, 1)

[
0 0 0
0 1 0
0 0 1

]

y

(x, y, z)

(0, y, z)
z

x

T(x)

x

Matrix multiplication is really not needed to accomplish the reflections and projec-
tions in these tables, as the results are evident geometrically. For example, although the
computation

[
1 0 0
0 0 0
0 0 1

][
x
y
z
] = [

x
0
z
]

shows that the orthogonal projection of (x, y, z) onto the xz-plane is (x, 0, z), that result
is evident from the illustration in Table 4. However, in the next section and subsequently
we will study more complicated matrix transformations in which the end results are not
evident and matrix multiplication is essential.

Rotation Operators
Matrix operators on 𝑅2 that move points along arcs of circles centered at the origin are
called rotation operators. Let us consider how to find the standard matrix for the rota-
tion operator 𝑇∶ 𝑅2→𝑅2 that moves points counterclockwise about the origin through a
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positive angle 𝜃. Figure 1.8.4 shows a typical vector x in 𝑅2 and its image 𝑇(x) under such

x

y T(x)

θ

x

FIGURE 1.8.4

a rotation. As illustrated in Figure 1.8.5, the images of the standard basis vectors e1 and
e2 under a rotation through an angle 𝜃 are

𝑇(e1) = 𝑇(1, 0) = (cos 𝜃, sin 𝜃) and 𝑇(e2) = 𝑇(0, 1) = (− sin 𝜃, cos 𝜃)

so it follows from Formula (15) that the standard matrix for 𝑇 is

𝐴 = [𝑇(e1) ∣ 𝑇(e2)] = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃]

e1

e2
(–sin θ, cos θ)

(cos θ, sin θ)

x

y

T

T1
1

θ

θ

FIGURE 1.8.5

In keeping with common usage we will denote this matrix as

𝑅𝜃 = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃] (19)

and call it the rotation matrix for 𝑅2. These ideas are summarized in Table 5.

In the plane, counterclock-
wise angles are positive
and clockwise angles are
negative. The rotation
matrix for a clockwise
rotation of−𝜃 radians can
be obtained by replacing
𝜃 by−𝜃 in (19). After
simplification this yields

R−𝜃 = [ cos𝜃 sin𝜃
−sin𝜃 cos𝜃]

TABLE 5

Operator Illustration Images of e𝟏 and e𝟐 Standard Matrix

Counterclockwise
rotation about the
origin through an
angle 𝜃

 ( 1,  2)

 (x, y)

x

w

y

xθ

𝑇(e1) = 𝑇(1, 0) = (cos𝜃, sin𝜃)
𝑇(e2) = 𝑇(0, 1) = (− sin𝜃, cos𝜃) [cos𝜃 − sin𝜃

sin𝜃 cos𝜃]

EXAMPLE 8 | A Rotation Matrix

Find the image of x = (1, 1) under a rotation of 𝜋/6 radians (= 30∘) about the origin.
Solution It follows from (19) with 𝜃 = 𝜋/6 that

𝑅𝜋/6x = [
√3
2 − 1

2

1
2

√3
2

] [11] = [
√3−1
2

1+√3
2

] ≈ [0.371.37]

or in comma-delimited notation, 𝑅𝜋/6(1, 1) ≈ (0.37, 1.37).

Concluding Remark
Rotations in𝑅3 are substantiallymore complicated than those in𝑅2 andwill be considered
later in this text.
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Exercise Set 1.8

In Exercises 1–2, find the domain and codomain of the transforma-
tion 𝑇𝐴(x) = 𝐴x.

1. a. 𝐴 has size 3 × 2. b. 𝐴 has size 2 × 3.
c. 𝐴 has size 3 × 3. d. 𝐴 has size 1 × 6.

2. a. 𝐴 has size 4 × 5. b. 𝐴 has size 5 × 4.
c. 𝐴 has size 4 × 4. d. 𝐴 has size 3 × 1.

In Exercises 3–4, find the domain and codomain of the transforma-
tion defined by the equations.

3. a. 𝑤1 = 4x1 + 5x2
𝑤2 = x1 − 8x2

b. 𝑤1 = 5x1 − 7x2
𝑤2 = 6x1 + x2
𝑤3 = 2x1 + 3x2

4. a. 𝑤1 = x1 − 4x2 + 8x3
𝑤2 = −x1 + 4x2 + 2x3
𝑤3 = −3x1 + 2x2 − 5x3

b. 𝑤1 = 2x1 + 7x2 − 4x3
𝑤2 = 4x1 − 3x2 + 2x3

In Exercises 5–6, find the domain and codomain of the transforma-
tion defined by the matrix product.

5. a. [
3 1 2
6 7 1] [

x1
x2
x3
] b. [

2 −1
4 3
2 −5

] [x1x2
]

6. a. [
6 3

−1 7] [
x1
x2
] b. [

2 1 −6
3 7 −4
1 0 3

][
x1
x2
x3
]

In Exercises 7–8, find the domain and codomain of the transforma-
tion 𝑇 defined by the formula.

7. a. 𝑇(x1, x2) = (2x1 − x2, x1 + x2)
b. 𝑇(x1, x2, x3) = (4x1 + x2, x1 + x2)

8. a. 𝑇(x1, x2, x3, x4) = (x1, x2)
b. 𝑇(x1, x2, x3) = (x1, x2 − x3, x2)

In Exercises 9–10, find the domain and codomain of the transforma-
tion 𝑇 defined by the formula.

9. 𝑇([x1x2
]) = [

4x1
x1 − x2
3x2

] 10. 𝑇([
x1
x2
x3
]) =

⎡
⎢
⎢
⎢
⎣

x1
x2

x1 − x3
0

⎤
⎥
⎥
⎥
⎦

In Exercises 11–12, find the standard matrix for the transformation
defined by the equations.

11. a. 𝑤1 = 2x1 − 3x2 + x3
𝑤2 = 3x1 + 5x2 − x3

b. 𝑤1 = 7x1 + 2x2 − 8x3
𝑤2 = − x2 + 5x3
𝑤3 = 4x1 + 7x2 − x3

12. a. 𝑤1 = −x1 + x2
𝑤2 = 3x1 − 2x2
𝑤3 = 5x1 − 7x2

b. 𝑤1 = x1
𝑤2 = x1 + x2
𝑤3 = x1 + x2 + x3
𝑤4 = x1 + x2 + x3 + x4

13. Find the standard matrix for the transformation 𝑇 defined by
the formula.

a. 𝑇(x1, x2) = (x2,−x1, x1 + 3x2, x1 − x2)
b. 𝑇(x1, x2, x3, x4) = (7x1 + 2x2 − x3 + x4, x2 + x3,−x1)
c. 𝑇(x1, x2, x3) = (0, 0, 0, 0, 0)
d. 𝑇(x1, x2, x3, x4) = (x4, x1, x3, x2, x1 − x3)

14. Find the standard matrix for the operator 𝑇 defined by the
formula.

a. 𝑇(x1, x2) = (2x1 − x2, x1 + x2)
b. 𝑇(x1, x2) = (x1, x2)
c. 𝑇(x1, x2, x3) = (x1 + 2x2 + x3, x1 + 5x2, x3)
d. 𝑇(x1, x2, x3) = (4x1, 7x2,−8x3)

15. Find the standard matrix for the operator𝑇∶ 𝑅3→𝑅3 defined
by

𝑤1 = 3x1 + 5x2 − x3
𝑤2 = 4x1 − x2 + x3
𝑤3 = 3x1 + 2x2 − x3

and then compute 𝑇(−1, 2, 4) by directly substituting in the
equations and then by matrix multiplication.

16. Find the standard matrix for the transformation 𝑇∶ 𝑅4 → 𝑅2

defined by
𝑤1 = 2x1 + 3x2 − 5x3 − x4
𝑤2 = x1 − 5x2 + 2x3 − 3x4

and then compute𝑇(1,−1, 2, 4) by directly substituting in the
equations and then by matrix multiplication.

In Exercises 17–18, find the standard matrix for the transformation
and use it to compute𝑇(x). Check your result by substituting directly
in the formula for 𝑇.
17. a. 𝑇(x1, x2) = (−x1 + x2, x2); x = (−1, 4)

b. 𝑇(x1, x2, x3) = (2x1 − x2 + x3, x2 + x3, 0);
x = (2, 1,−3)

18. a. 𝑇(x1, x2) = (2x1 − x2, x1 + x2); x = (−2, 2)
b. 𝑇(x1, x2, x3) = (x1, x2 − x3, x2); x = (1, 0, 5)

In Exercises 19–20, find 𝑇𝐴(x), and express your answer in matrix
form.

19. a. 𝐴 = [1 2
3 4]; x = [ 3

−2]

b. 𝐴 = [−1 2 0
3 1 5]; x = [

−1
1
3
]

20. a. 𝐴 = [
−2 1 4
3 5 7
6 0 −1

]; x = [
x1
x2
x3
]

b. 𝐴 = [
−1 1
2 4
7 8

]; x = [x1x2
]
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In Exercises 21–22, use Theorem 1.8.2 to show that 𝑇 is a matrix
transformation.
21. a. 𝑇(x, y) = (2x+ y, x− y)

b. 𝑇(x1, x2, x3) = (x1, x3, x1 + x2)

22. a. 𝑇(x, y, z) = (x+ y, y+ z, x)
b. 𝑇(x1, x2) = (x2, x1)

In Exercises 23–24, use Theorem 1.8.2 to show that𝑇 is not a matrix
transformation.
23. a. 𝑇(x, y) = (x2, y)

b. 𝑇(x, y, z) = (x, y, xz)

24. a. 𝑇(x, y) = (x, y+ 1)
b. 𝑇(x1, x2, x3) = (x1, x2, √x3)

25. A function of the form 𝑓(x) = mx+ b is commonly called a
“linear function” because the graph of y = mx+ b is a line. Is
𝑓 a matrix transformation on 𝑅?

26. Show that𝑇(x, y) = (0, 0) defines amatrix operator on𝑅2 but
𝑇(x, y) = (1, 1) does not.

In Exercises 27–28, the images of the standard basis vectors for 𝑅3

are given for a linear transformation 𝑇∶ 𝑅3 → 𝑅3. Find the stan-
dard matrix for the transformation, and find 𝑇(x).

27. 𝑇(e1) = [
1
3
0
], 𝑇(e2) = [

0
0
1
], 𝑇(e3) = [

4
−3
−1

] ; x = [
2
1
0
]

28. 𝑇(e1) = [
2
1
3
], 𝑇(e2) = [

−3
−1
0
], 𝑇(e3) = [

1
0
2
] ; x = [

3
2
1
]

29. Use matrix multiplication to find the reflection of (−1, 2)
about the
a. x-axis. b. y-axis. c. line y = x.

30. Use matrix multiplication to find the reflection of (a, b) about
the
a. x-axis. b. y-axis. c. line y = x.

31. Use matrix multiplication to find the reflection of (2,−5, 3)
about the
a. xy-plane. b. xz-plane. c. yz-plane.

32. Use matrix multiplication to find the reflection of (a, b, c)
about the
a. xy-plane. b. xz-plane. c. yz-plane.

33. Use matrix multiplication to find the orthogonal projection of
(2,−5) onto the
a. x-axis. b. y-axis.

34. Use matrix multiplication to find the orthogonal projection of
(a, b) onto the
a. x-axis. b. y-axis.

35. Use matrix multiplication to find the orthogonal projection of
(−2, 1, 3) onto the
a. xy-plane. b. xz-plane. c. yz-plane.

36. Use matrix multiplication to find the orthogonal projection of
(a, b, c) onto the
a. xy-plane. b. xz-plane. c. yz-plane.

37. Use matrix multiplication to find the image of the vector
(3,−4)when it is rotated about the origin through an angle of
a. 𝜃 = 30∘. b. 𝜃 = −60∘.

c. 𝜃 = 45∘. d. 𝜃 = 90∘.

38. Use matrix multiplication to find the image of the nonzero
vector v = (𝑣1, 𝑣2)when it is rotated about the origin through
a. a positive angle 𝛼. b. a negative angle−𝛼.

39. Let 𝑇∶ 𝑅2 → 𝑅2 be a linear operator for which the images
of the standard basis vectors for 𝑅2 are 𝑇(e1) = (a, b) and
𝑇(e2) = (c, d). Find 𝑇(1, 1).

40. Let 𝑇𝐴∶ 𝑅2 → 𝑅2 be multiplication by

𝐴 = [
a b
c d]

and let e1 and e2 be the standard basis vectors for 𝑅2. Find the
following vectors by inspection.

a. 𝑇𝐴(ke1) b. 𝑇𝐴(ke1 + le2)
41. Let 𝑇𝐴∶ 𝑅3→𝑅3 be multiplication by

𝐴 = [
−1 3 0
2 1 2
4 5 −3

]

and let e1, e2, and e3 be the standard basis vectors for 𝑅3. Find
the following vectors by inspection.

a. 𝑇𝐴(e1), 𝑇𝐴(e2), and 𝑇𝐴(e3)

b. 𝑇𝐴(e1 + e2 + e3) c. 𝑇𝐴(7e3)
42. For each orthogonal projection operator in Table 4 use the

standard matrix to compute 𝑇(1, 2, 3), and convince yourself
that your result makes sense geometrically.

43. For each reflection operator in Table 2 use the standardmatrix
to compute 𝑇(1, 2, 3), and convince yourself that your result
makes sense geometrically.

44. If multiplication by 𝐴 rotates a vector x in the xy-plane
through an angle 𝜃, what is the effect of multiplying x by
𝐴𝑇? Explain your reasoning.

45. Find the standard matrix 𝐴 for the linear transformation
𝑇∶ 𝑅2 → 𝑅2 for which

𝑇([11]) = [ 1
−2], 𝑇([

2
3]) = [−25]

46. Find the standard matrix 𝐴 for the linear transformation
𝑇∶ 𝑅3 → 𝑅3 for which

𝑇([
1
0
2
]) = [

2
−3
10
], 𝑇([

1
1
1
]) = [

1
3
8
], 𝑇([

−3
−1
2
]) = [

−5
−11

7
]

47. Let x0 be a nonzero column vector in 𝑅2, and suppose that
𝑇∶ 𝑅2→𝑅2 is the transformation defined by the formula
𝑇(x) = x0 +𝑅𝜃x, where 𝑅𝜃 is the standard matrix of the
rotation of 𝑅2 about the origin through the angle 𝜃. Give a
geometric description of this transformation. Is it a matrix
transformation? Explain.
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48. In each part of the accompanying figure, find the standard
matrix for the pictured operator.

z

y

x

(x , y, z)

(x , z, y)

z

y

x
(x , y, z)

(z, y, x)

z

y

x

(x , y, z)

(y, x , z)

(a) (b) (c)

FIGURE Ex-48

49. In a sentence, describe the geometric effect of multiplying a
vector x by the matrix

𝐴 = [cos
2 𝜃 − sin2 𝜃 −2 sin𝜃 cos𝜃

2 sin𝜃 cos𝜃 cos2 𝜃 − sin2 𝜃]

Working with Proofs

50. a. Prove: If 𝑇∶ 𝑅n→𝑅m is a matrix transformation, then
𝑇(0) = 0; that is, 𝑇 maps the zero vector in 𝑅n into the
zero vector in 𝑅m.

b. The converse of this is not true. Find an example of a map-
ping 𝑇∶ 𝑅n → 𝑅m for which 𝑇(𝟎) = 𝟎 but which is not a
matrix transformation.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. If𝐴 is a 2 × 3 matrix, then the domain of the transforma-

tion 𝑇𝐴 is 𝑅2.

b. If 𝐴 is an m × n matrix, then the codomain of the trans-
formation 𝑇𝐴 is 𝑅n.

c. There is at least one linear transformation 𝑇∶ 𝑅n → 𝑅m

for which 𝑇(2x) = 4𝑇(x) for some vector x in 𝑅n.

d. There are linear transformations from 𝑅n to 𝑅m that are
not matrix transformations.

e. If𝑇𝐴∶ 𝑅n → 𝑅n and if𝑇𝐴(x) = 0 for every vector x in𝑅n,
then𝐴 is the n × n zero matrix.

f. There is only one matrix transformation 𝑇∶ 𝑅n → 𝑅m

such that 𝑇(−x) = −𝑇(x) for every vector x in 𝑅n.

g. If b is a nonzero vector in 𝑅n, then 𝑇(x) = x+ b is a
matrix operator on 𝑅n.

1.9 Compositions ofMatrix Transformations

In this sectionwewill discuss the analogs ofmatrixmultiplication andmatrix inversion for
matrix transformations, and we illustrate those ideas with familiar geometric operations
such as rotations, reflections, and projections in the plane. One of the by-products of our
work on compositions will be an explanation of whymatrix multiplication was defined in
such an unusual way.

Compositions of Matrix Transformations
Simply stated, the “composition” of matrix transformations is the process of first applying
a matrix transformation to a vector and then applying another matrix transformation to
the image vector. For example, suppose that 𝑇𝐴 is a matrix transformation from 𝑅n to 𝑅k
and 𝑇𝐵 is a matrix transformation from 𝑅k to 𝑅m. If x is a vector in 𝑅n, then 𝑇𝐴 maps
this vector into a vector 𝑇𝐴(x) in 𝑅k, and 𝑇𝐵 , in turn, maps that vector into the vector
𝑇𝐵(𝑇𝐴(x)) in 𝑅m. This process creates a transformation directly from 𝑅n to 𝑅m that we
call the composition of 𝑻𝑩 with 𝑻𝑨 and which we denote by the symbol

𝑇𝐵 ∘ 𝑇𝐴
which is read “𝑇𝐵 circle 𝑇𝐴.” As illustrated in Figure 1.9.1, the transformation 𝑇𝐴 in the
formula is performed first; that is,

(𝑇𝐵 ∘ 𝑇𝐴)(x) = 𝑇𝐵(𝑇𝐴(x)) (1)
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Rn Rk Rmx TA(x)

TA TB

TB ° TA

TB(TA(x))

FIGURE 1.9.1

In the introduction to this section we promised to explain why matrix multiplication
was defined in such an unusual way. The following theorem does that by showing that
our definition of matrix multiplication is precisely what is required to ensure that the
composition of twomatrix transformations has the same effect as the transformation that
results when the underlying matrices are multiplied.

Theorem 1.9.1

If 𝑇𝐴∶ 𝑅n→𝑅k and 𝑇𝐵∶ 𝑅k→𝑅m are matrix transformations, then 𝑇𝐵 ∘ 𝑇𝐴 is also
a matrix transformation and

𝑇𝐵 ∘ 𝑇𝐴 = 𝑇𝐵𝐴 (2)

Proof First we will show that 𝑇𝐵 ∘ 𝑇𝐴 is a linear transformation, thereby establishing
that it is a matrix transformation by Theorem 1.8.3. Then we will show that the standard
matrix for this transformation is BA to complete the proof.

To prove that 𝑇𝐵 ∘ 𝑇𝐴 is linear wemust show that it has the additivity and homogene-
ity properties stated in Theorem 1.8.2. For this purpose, let x and y be vectors in 𝑅n and
observe that

(𝑇𝐵 ∘ 𝑇𝐴)(x + y) =𝑇𝐵(𝑇𝐴(x + y))
=𝑇𝐵(𝑇𝐴(x) + 𝑇𝐴(y)) [because TA is linear]
=𝑇𝐵(𝑇𝐴(x)) + 𝑇𝐵(𝑇𝐴(y)) [because TB is linear]
= (𝑇𝐵 ∘ 𝑇𝐴)(x) + (𝑇𝐵 ∘ 𝑇𝐴)(y)

which proves additivity. Moreover,
(𝑇𝐵 ∘ 𝑇𝐴)(kx) =𝑇𝐵(𝑇𝐴(kx))

=𝑇𝐵(k𝑇𝐴(x)) [because TA is linear]
= k𝑇𝐵(𝑇𝐴(x)) [because TB is linear]
= k(𝑇𝐵 ∘ 𝑇𝐴)(x)

which proves homogeneity and establishes that 𝑇𝐵 ∘ 𝑇𝐴 is a matrix transformation. Thus,
there is anm × nmatrix 𝐶 such that

𝑇𝐵 ∘ 𝑇𝐴 = 𝑇𝐶 (3)
To find the appropriate matrix 𝐶 that satisfies equation (3), observe that

𝑇𝐶(x) = (𝑇𝐵 ∘ 𝑇𝐴)(x) = 𝑇𝐵(𝑇𝐴(x)) = 𝑇𝐵(𝐴x) = 𝐵(𝐴x) = (𝐵𝐴)x = 𝑇𝐵𝐴(x)
It now follows from Theorem 1.8.4 that 𝐶 = BA.

EXAMPLE 1 | The Standard Matrix for a Composition

Let 𝑇1∶ 𝑅3→𝑅2 and 𝑇2∶ 𝑅2→𝑅3 be the linear transformations given by

𝑇1(x, y, z) = (x+ 2y, x+ 2z− y)
and

𝑇2(x, y) = (3x+ y, x, x− 2y)
Find the standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2.

Solution The standard basis vectors for𝑅3 are e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).
From which it follows that

𝑇1(e1) = (1, 1), 𝑇1(e2) = (2,−1) and 𝑇1(e3) = (0, 2)
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Thus
𝐴 = [1 2 0

1 −1 2]

is the standard matrix for 𝑇1. Similarly, the standard basis vectors for 𝑅2 are e1= (1, 0) and
e2= (0, 1), so

𝑇2(e1) = (3, 1, 1) and 𝑇2(e2) = (1, 0, 2)
Thus

𝐵 = [
3 1
1 0
1 −2

]

is the standard matrix for 𝑇2. Applying equation (3), the standard matrix for 𝑇2 ∘ 𝑇1 is

𝐵𝐴 = [
3 1
1 0
1 −2

] [1 2 0
1 −1 2] = [

4 5 2
1 2 0

−1 4 −4
]

and the standard matrix for 𝑇1 ∘ 𝑇2 is

𝐴𝐵 = [1 2 0
1 −1 2] [

3 1
1 0
1 −2

] = [5 1
4 −3]

Commutativity of Matrix Transformations
Since it is not generally true that AB = BA, it is also not generally true that 𝑇𝐴𝐵 = 𝑇𝐵𝐴, so
in general

𝑇𝐴 ∘ 𝑇𝐵 ≠ 𝑇𝐵 ∘ 𝑇𝐴
Thus, composition of matrix transformations is not commutative. In those special cases
where equality holds, we say that 𝑇𝐴 and 𝑇𝐵 commute. Note, for example, that the linear
transformations in Example 1 do not commute, since AB ≠ BA.

EXAMPLE 2 | Composition Is Not Commutative

Let𝑇𝐴∶ 𝑅2→𝑅2 be the reflection about the line y = x, and let𝑇𝐵∶ 𝑅2→𝑅2 be the orthogonal
projection onto the y-axis. Figure 1.9.2 illustrates graphically that𝑇𝐴 ∘ 𝑇𝐵 and𝑇𝐵 ∘ 𝑇𝐴 have
different effects on a vector x. This same conclusion can be reached by showing that the
standard matrices for 𝑇𝐴 and 𝑇𝐵 do not commute:

𝐴𝐵 = [0 1
1 0] [

0 0
0 1] = [0 1

0 0]

𝐵𝐴 = [0 0
0 1] [

0 1
1 0] = [0 0

1 0]

so𝐴𝐵 ≠ 𝐵𝐴.

y

x

TA(x)

x

y = x
TB(TA(x))

y

x

TB(x)

TA(TB(x))

x

y = x

TB ° TA TA ° TB

FIGURE 1.9.2
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EXAMPLE 3 | Composition of Rotations Is Commutative

It is evident geometrically that the effect of rotating a vector about the origin through an
angle𝜃1 and then rotating the resulting vector through an angle 𝜃2 has the same effect as first
rotating through the angle 𝜃2 and then rotating through the angle 𝜃1 since in both cases the
original vector has been rotated through a total angle of 𝜃 = 𝜃1+𝜃2=𝜃2 + 𝜃1. This suggests
that the matrix transformations 𝑇𝐴1 ∶ 𝑅2 → 𝑅2 and 𝑇𝐴2 ∶ 𝑅2 → 𝑅2 that rotate vectors about
the origin through the angles 𝜃1 and 𝜃2, respectively, should commute; that is

𝑇𝐴1 ∘𝑇𝐴2 = 𝑇𝐴2 ∘𝑇𝐴1

or equivalently
𝑇𝐴!𝐴2 = 𝑇𝐴2𝐴1

To verify that this is so, we need only show that 𝐴1𝐴2 = 𝐴2𝐴1. But from Table 5 of Section
1.8 we know that

𝐴1 = [cos𝜃1 − sin𝜃1
sin𝜃1 cos𝜃1

] and 𝐴2 = [cos𝜃2 − sin𝜃2
sin𝜃2 cos𝜃2

]

so (with the help of some basic trigonometric identities) it follows that

𝐴1𝐴2 = [cos𝜃1 − sin𝜃1
sin𝜃1 cos𝜃1

][cos𝜃2 − sin𝜃2
sin𝜃2 cos𝜃2

]

= [cos𝜃1 cos𝜃2 − sin𝜃1 sin𝜃2 −(cos𝜃1 sin𝜃2 + sin𝜃1 cos𝜃2)
sin𝜃1 cos𝜃2 + cos𝜃1 sin𝜃2 − sin𝜃1 sin𝜃2 + cos𝜃1 cos𝜃2

]

= [cos(𝜃1 + 𝜃2) − sin(𝜃1 + 𝜃2)
sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2)

] = [cos(𝜃2 + 𝜃1) − sin(𝜃2 + 𝜃1)
sin(𝜃2 + 𝜃1) cos(𝜃2 + 𝜃1)

]

= 𝐴2𝐴1

Using the notation R𝜃 for
a rotation of R2 about the
origin through an angle 𝜃,
the computation in Example
3 shows that

R𝜃1R𝜃2 = R𝜃1+𝜃2

EXAMPLE 4 | Composition of Two Reflections

Let 𝑇1 ∶ 𝑅2 → 𝑅2 be the reflection about the y-axis, and let 𝑇2 ∶ 𝑅2 → 𝑅2 be the reflec-
tion about the x-axis. In this case 𝑇1 ∘ 𝑇2 and 𝑇2 ∘ 𝑇1 are the same; both map every vec-
tor x = (x, y) into its negative −x = (−x,−y) (as evidenced by the following computation
and Figure 1.9.3):

(𝑇1 ∘ 𝑇2)(x, y) = 𝑇1(x,−y) = (−x,−y)
(𝑇2 ∘ 𝑇1)(x, y) = 𝑇2(−x, y) = (−x,−y)

The equality of 𝑇1 ∘ 𝑇2 and 𝑇2 ∘ 𝑇1 can also be deduced by showing that the standard matri-
ces for 𝑇1 and 𝑇2 commute. For this purpose let the standard matrices for these transforma-
tions be𝐴1 and𝐴2, respectively. Then it follows from Table 1 of Section 1.8 that

𝐴1𝐴2 = [−1 0
0 1][

1 0
0 −1] = [−1 0

0 −1]

𝐴2𝐴1 = [1 0
0 −1][

−1 0
0 1] = [−1 0

0 −1]

We see from Figure 1.9.3 that the composition 𝑇 1𝑇 2(x)=𝑇 2𝑇 1(x) has the net effect of
rotating the vector x through an angle of 𝜋/2 (= 180∘), thereby reflecting that vector
through the origin into the vector −x. We call the linear operator 𝑇(x)=−x the reflec-
tion about the origin.
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Compositions can be defined for anyfinite succession ofmatrix transformationswhose
domains and ranges have the appropriate dimensions. For example, to extend Formula (3)
to three factors, consider the matrix transformations

𝑇𝐴∶ 𝑅n → 𝑅k, 𝑇𝐵 ∶ 𝑅k → 𝑅l, 𝑇𝐶 ∶ 𝑅l → 𝑅m

We define the composition (𝑇𝐶 ∘ 𝑇𝐵 ∘ 𝑇𝐴)∶ 𝑅n → 𝑅m by
(𝑇𝐶 ∘ 𝑇𝐵 ∘ 𝑇𝐴)(x) = 𝑇𝐶(𝑇𝐵(𝑇𝐴(x)))

As above, it can be shown that this is a matrix transformation whose standard matrix is
CBA and that

𝑇𝐶 ∘ 𝑇𝐵 ∘ 𝑇𝐴 = 𝑇𝐶𝐵𝐴 (4)

EXAMPLE 5 | Composition of Three Matrix Transformations

Find the image of a vector

x = [xy]

under the matrix transformation that first rotates x about the origin through an angle of
𝜋/6, then reflects the resulting vector about the line y = x, and then projects that vector
orthogonally onto the y-axis.

Solution Let𝐴, 𝐵, and𝐶 be the standard matrices for the rotation, the reflection, and the
orthogonal projection, respectively. Then fromTables 1, 3, and 5 of Section 1.8 thesematrices
are

𝐴 = [cos(𝜋/6) − sin(𝜋/6)
sin(𝜋/6) cos(𝜋/6)], 𝐵 = [0 1

1 0], 𝐶 = [0 0
0 1]

The three transformations in the stated succession can be viewed as the composition

𝑇𝐶 ∘ 𝑇𝐵 ∘ 𝑇𝐴 = 𝑇𝐶𝐵𝐴

whose standard matrix is

𝐶𝐵𝐴 = [0 0
0 1][

0 1
1 0][

cos(𝜋/6) − sin(𝜋/6)
sin(𝜋/6) cos(𝜋/6)]

= [0 0
1 0][

cos(𝜋/6) − sin(𝜋/6)
sin(𝜋/6) cos(𝜋/6)]

= [ 0 0
cos(𝜋/6) − sin(𝜋/6)]

Thus, the image of the vector x expressed as a column vector is

[ 0 0
cos(𝜋/6) − sin(𝜋/6)][

x
y] = [ 0 0

√3/2 −1/2][
x
y] = [ 0

(√3/2)x− (1/2)y]
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Invertibility of Matrix Operators
If 𝑇𝐴∶ 𝑅n → 𝑅n is a matrix operator whose standard matrix 𝐴 is invertible, then we say
that 𝑇𝐴 is invertible, and we define the inverse of 𝑇𝐴 as

𝑇−1
𝐴 = 𝑇𝐴−1 (5)

or restated in words, the inverse of multiplication by A is multiplication by the inverse of A.
Thus, by definition, the standard matrix for 𝑇−1

𝐴 is 𝐴−1, from which it follows that

𝑇−1
𝐴 ∘ 𝑇𝐴 = 𝑇𝐴−1 ∘ 𝑇𝐴 = 𝑇𝐴−1𝐴 = 𝑇𝐼

It follows from this that for any vector x in 𝑅n

(𝑇−1
𝐴 ∘ 𝑇𝐴) (x) = 𝑇𝐼 (x) = 𝐼x = x

and similarly that (𝑇𝐴 ∘ 𝑇−1
𝐴 ) (x) = x. Thus, when 𝑇𝐴 and 𝑇−1

𝐴 are composed in either
order they cancel out the effect of one another (Figure 1.9.4).

Rn

TA–1

TA

x
TA(x)

Rn

FIGURE 1.9.4

EXAMPLE 6 | Inverse of a Rotation Operator

Let 𝑇∶ 𝑅2 → 𝑅2 be the operator that rotates each vector in 𝑅2 through the angle 𝜃, so the
standard matrix for 𝑇 is

𝑅𝜃 = [cos𝜃 − sin𝜃
sin𝜃 cos𝜃]

It is evident geometrically that to undo the effect of 𝑇, one must rotate each vector in 𝑅2

through the angle −𝜃. But this is precisely what 𝑇−1 does, since it follows from (5) and
Theorem 1.4.5 that the standard matrix for this transformation is

𝑅−1
𝜃 = [ cos𝜃 sin𝜃

− sin𝜃 cos𝜃] = [cos(−𝜃) − sin(−𝜃)
sin(−𝜃) cos(−𝜃)] = 𝑅−𝜃

EXAMPLE 7 | Inverse Transformations from Linear Equations

Consider the operator 𝑇∶ 𝑅2 → 𝑅2 defined by the equations

w1 = 2x1 + x2
w2 = 3x1 + 4x2

Find 𝑇−1(𝑤1,𝑤2).
Solution The matrix form of these equations is

[w1
w2
] = [2 1

3 4][
x1
x2
]
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so the standard matrix for 𝑇 is
𝐴 = [2 1

3 4]

This matrix is invertible, and the standard matrix for 𝑇−1 is

𝐴−1 = [
4
5 − 1

5
− 3

5
2
5
]

Thus

𝐴−1[w1
w2
] = [

4
5 − 1

5
− 3

5
2
5
][w1
w2
] = [

4
5w1 − 1

5w2

− 3
5w1 + 2

5w2
]

from which we conclude that

𝑇−1(w1,w2) = ( 45w1 − 1
5w2,− 3

5w1 + 2
5w2)

Since not everymatrix has an inverse, it should not be surprising that the same is true
for matrix transformations. As a simple example, consider a transformation 𝑇∶𝑅2 → 𝑅2
that projects a vector x orthogonally onto either the x-axis or the y-axis. You can see in
Table 3 of Section 1.8 that the standard matrices for these transformations are not invert-
ible, so in neither case does an invertible matrix 𝐴 exist to satisfy Equation (5).

Exercise Set 1.9

In Exercises 1–4, determine whether the operators 𝑇1 and 𝑇2 com-
mute; that is, whether 𝑇1 ∘ 𝑇2 = 𝑇2 ∘ 𝑇1.

1. a. 𝑇1 ∶ 𝑅2 → 𝑅2 is the reflection about the line y = x, and
𝑇2 ∶ 𝑅2 → 𝑅2 is the orthogonal projection onto the x-axis.

b. 𝑇1 ∶ 𝑅2 → 𝑅2 is the reflection about the x-axis, and
𝑇2 ∶ 𝑅2 → 𝑅2 is the reflection about the line y = x.

2. a. 𝑇1 ∶ 𝑅2 → 𝑅2 is the orthogonal projection onto the x-axis,
and 𝑇2 ∶ 𝑅2 → 𝑅2 is the orthogonal projection onto the
y-axis.

b. 𝑇1 ∶ 𝑅2 → 𝑅2 is the rotation about the origin through an
angle of 𝜋/4, and 𝑇2 ∶ 𝑅2 → 𝑅2 is the reflection about the
y-axis.

3. 𝑇1 ∶ 𝑅3 → 𝑅3 is the reflection about the xy-plane and
𝑇2 ∶ 𝑅3 → 𝑅3 is the orthogonal projection onto the yz-plane.

4. 𝑇1 ∶ 𝑅3 → 𝑅3 is the reflection about the xy-plane and
𝑇2 ∶ 𝑅3 → 𝑅3 is given by the formula 𝑇(x, y, z) = (2x, 3y, z).

In Exercises 5–6, let 𝑇𝐴 and 𝑇𝐵 be the operators whose standard
matrices are given. Find the standard matrices for 𝑇𝐵 ∘ 𝑇𝐴 and
𝑇𝐴 ∘ 𝑇𝐵.

5. 𝐴 = [1 −2
4 1], 𝐵 = [2 −3

5 0]

6. 𝐴 = [
6 3 −1
2 0 1
4 −3 6

], 𝐵 =
⎡⎢⎢
⎣

4 0 4
−1 5 2
2 −3 8

⎤⎥⎥
⎦

7. Find the standard matrix for the stated composition in 𝑅2.

a. A rotation of 90∘, followed by a reflection about the line
y = x.

b. An orthogonal projection onto the y-axis, followed by a 45∘
degree rotation about the origin.

c. A reflection about the x-axis, followed by a rotation about
the origin of 60∘.

8. Find the standard matrix for the stated composition in 𝑅2.

a. A rotation about the origin of 60∘, followed by an orthog-
onal projection onto the x-axis, followed by a reflection
about the line y = x.

b. An orthogonal projection onto the x-axis, followed by a
rotation about the origin of 45∘, followed by a reflection
about the y-axis.

c. A rotation about the origin of 15∘, followed by a rotation
about the origin of 105∘, followed by a rotation about the
origin of 60∘.

9. Find the standard matrix for the stated composition in 𝑅3.

a. A reflection about the yz-plane, followed by an orthogonal
projection onto the xz-plane.

b. A reflection about the xy-plane, followed by an orthogonal
projection onto the xy-plane.

c. An orthogonal projection onto the xy-plane, followed by a
reflection about the yz-plane.
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10. Find the standard matrix for the stated composition in 𝑅3.

a. A reflection about the xy-plane, followed by an orthogonal
projection onto the xz-plane, followed by the transforma-
tion that sends each vector x to the vector−x.

b. A reflection about the xy-plane, followed by a reflection
about the xz-plane, followed by an orthogonal projection
onto the yz-plane.

c. Anorthogonal projection onto the yz-plane, followedby the
transformation thatmaps each vector x to the vector 2x, fol-
lowed by a reflection about the xy-plane.

11. Let 𝑇1(x1, x2) = (x1 + x2, x1 − x2) and
𝑇2(x1, x2) = (3x1, 2x1 + 4x2).
a. Find the standard matrices for 𝑇1 and 𝑇2.
b. Find the standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2.
c. Use the matrices obtained in part (b) to find formulas for

𝑇1(𝑇2(x1, x2)) and 𝑇2(𝑇1(x1, x2)).

12. Let 𝑇1(x1, x2, x3) = (4x1,−2x1 + x2,−x1 − 3x2) and
𝑇2(x1, x2, x3) = (x1 + 2x2,−x3, 4x1 − x3).
a. Find the standard matrices for 𝑇1 and 𝑇2.
b. Find the standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2.
c. Use the matrices obtained in part (b) to find formulas for

𝑇1(𝑇2(x1, x2, x3)) and 𝑇2(𝑇1(x1, x2, x3)).

13. Let 𝑇1(x1, x2) = (x1 − x2, 2x2 − x1, 3x1) and
𝑇2(x1, x2, x3) = (4x2, x1 + 2x2).
a. Find the standard matrices for 𝑇1 and 𝑇2.

b. Find the standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2.

c. Use the matrices obtained in part (b) to find formulas for
𝑇1(𝑇2(x1, x2, x3)) and 𝑇2(𝑇1(x1, x2)).

14. Let 𝑇1(x1, x2, x3, x4) = (x1 + 2x2 + 3x3, x2 − x4) and
𝑇2(x1, x2) = (−x1, 0, x1 + x2, 3x2).
a. Find the standard matrices for 𝑇1 and 𝑇2.

b. Find the standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2.

c. Use the matrices obtained in part (b) to find formulas for
𝑇1(𝑇2(x1, x2)) and 𝑇2(𝑇1(x1, x2, x3, x4)).

15. Let 𝑇1 ∶ 𝑅2 → 𝑅4 and 𝑇2 ∶ 𝑅4 → 𝑅3 be given by:
𝑇1(x, y) = (y, x, x+ y, x− y)
𝑇2(x, y, z,𝑤)= (x+𝑤, y+𝑤, z+𝑤).
a. Find the standard matrices for 𝑇1 and 𝑇2.

b. Find the standard matrices for 𝑇2 ∘ 𝑇1.

c. Explain why 𝑇1 ∘ 𝑇2 is not defined.

d. Use the matrix found in part (b) to find a formula for
(𝑇2 ∘ 𝑇1)(x, y).

16. Let 𝑇1 ∶ 𝑅2 → 𝑅3 and 𝑇2 ∶ 𝑅3 → 𝑅4 be given by:
𝑇1(x, y) = (x+ 2y, 0, 2x+ y)
𝑇2(x, y, z) = (3z, x− y, 3z, y− x).
a. Find the standard matrices for 𝑇1 and 𝑇2.

b. Find the standard matrices for 𝑇2 ∘ 𝑇1.

c. Explain why 𝑇1 ∘ 𝑇2 is not defined.

d. Use the matrix found in part (b) to find a formula for
(𝑇2 ∘ 𝑇1)(x, y).

In Exercises 17–18, express the equations in matrix form, and then
use Theorem 1.5.3(c) to determine whether the operator defined by
the equations is invertible.

17. a. w1 = 8x1 + 4x2
w2 = 2x1 + x2

b. w1 = −x1 + 3x2 + 2x3
w2 = 2x1 + 4x3
w3 = x1 + 3x2 + 6x3

18. a. w1 = 2x1 − 3x2
w2 = 5x1 + x2

b. w1 = x1 + 2x2 + 3x3
w2 = 2x1 + 5x2 + 3x3
w3 = x1 + 8x3

19. Determine whether the matrix operator 𝑇∶ 𝑅2→𝑅2 defined
by the equations is invertible; if so, find the standard matrix
for the inverse operator, and find 𝑇−1(w1,w2).

a. w1 = x1 + 2x2
w2 = −x1 + x2

b. w1 = 4x1 − 6x2
w2 = −2x1 + 3x2

20. Determine whether the matrix operator 𝑇∶ 𝑅3→𝑅3 defined
by the equations is invertible; if so, find the standard matrix
for the inverse operator, and find 𝑇−1(w1,w2,w3).

a. w1 = x1 − 2x2 + 2x3
w2 = 2x1 + x2 + x3
w3 = x1 + x2

b. w1 = x1 − 3x2 + 4x3
w2 = −x1 + x2 + x3
w3 = − 2x2 + 5x3

In Exercises 21–22, determine whether the matrix operator is invert-
ible. If so, describe in words the effect of its inverse.
21. a. Reflection about the x-axis in 𝑅2.

b. A 60∘ rotation about the origin in 𝑅2.

c. Orthogonal projection onto the x-axis in 𝑅2.

22. a. Reflection about the line y = x.

b. Orthogonal projection onto the y-axis.
c. Reflection about the origin.

In Exercises 23–24, determinewhether𝑇𝐴 is invertible. If so, compute
𝑇−1
𝐴 (x).

23. a. 𝐴 = [1 2
1 1]; x = [12] b. 𝐴 = [1 1

1 1]; x = [12]

24. a. 𝐴 = [
1 2 0
1 1 1
2 3 1

]; x = [
1
2
3
]

b. 𝐴 = [
1 1 0
0 1 1
1 0 1

]; x = [
1
2
3
]

25. Let 𝑇𝐴∶ 𝑅2 → 𝑅2 be multiplication by

𝐴 = [ 0 −1
−1 0]

a. What is the geometric effect of applying this transformation
to a vector x in 𝑅2?

b. Express the operator 𝑇𝐴 as a composition of two linear
operators on 𝑅2.

26. Let 𝑇𝐴∶ 𝑅2 → 𝑅2 be multiplication by

𝐴 = [cos
2 𝜃 − sin2 𝜃 −2 sin𝜃 cos𝜃

2 sin𝜃 cos𝜃 cos2 𝜃 − sin2 𝜃]
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a. What is the geometric effect of applying this transformation
to a vector x in 𝑅2?

b. Express the operator 𝑇𝐴 as a composition of two linear
operators on 𝑅2.

Working with Proofs

27. Prove that the matrix transformations 𝑇𝐴 and 𝑇𝐵 commute if
and only if the matrices𝐴 and 𝐵 commute.

28. Let 𝑇𝐴 and 𝑇𝐵 be matrix operators on 𝑅n. Prove that 𝑇𝐴 ∘ 𝑇𝐵
is invertible if and only if both 𝑇𝐴 and 𝑇𝐵 are invertible.

29. Prove that the matrix operator 𝑇𝐴 on 𝑅n is invertible if and
only if for every b in 𝑅n there exists a unique vector x in 𝑅n

such that 𝑇𝐴(x) = b.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. If 𝑇𝐴 and 𝑇𝐵 are matrix operators on 𝑅n, then

𝑇𝐴(𝑇𝐵(x)) = 𝑇𝐵(𝑇𝐴(x)) for every vector x in 𝑅n.

b. If 𝑇𝐴 and 𝑇𝐵 are matrix operators on 𝑅n and x is a vector
in 𝑅n, then 𝑇𝐵 ∘ 𝑇𝐴(x)=BAx

c. A composition of two rotation operators about the origin
of 𝑅2 is another rotation about the origin.

d. A composition of two reflection operators in𝑅2 is another
reflection operator.

e. The inverse transformation for a reflection in𝑅2 about the
line y = x is the reflection about the line y = x.

f. The inverse transformation for a 90∘ rotation about the
origin in 𝑅2 is a 90∘ rotation about the origin.

g. The inverse transformation for a reflection about the ori-
gin in 𝑅2 is a reflection about the origin.

Working with Technology
T1. a. Find the standard matrix for the linear operator on𝑅2 that

performs a counterclockwise rotation of 47∘ about the ori-
gin, followed by a reflection about the y-axis, followed by
a counterclockwise rotation of 33∘ about the origin.

b. Find the image of the point (1, 1) under the operator in
part (a).

1.10 Applications of Linear Systems
In this section we will discuss some brief applications of linear systems. These are but
a small sample of the wide variety of real-world problems to which our study of linear
systems is applicable.

Network Analysis
The concept of a network appears in a variety of applications. Loosely stated, a network is
a set of branches through which something “flows.” For example, the branches might be
electrical wires through which electricity flows, pipes through which water or oil flows,
traffic lanes through which vehicular traffic flows, or economic linkages through which
money flows, to name a few possibilities.

In most networks, the branches meet at points, called nodes or junctions, where the
flowdivides. For example, in an electrical network, nodes occurwhere three ormorewires
join, in a traffic network they occur at street intersections, and in a financial network they
occur at banking centers where incoming money is distributed to individuals or other
institutions.

In the study of networks, there is generally some numerical measure of the rate at
which the medium flows through a branch. For example, the flow rate of electricity is
oftenmeasured in amperes, the flow rate ofwater or oil in gallons perminute, the flow rate
of traffic in vehicles per hour, and the flow rate of European currency in millions of Euros
per day. We will restrict our attention to networks in which there is flow conservation at
each node, by which we mean that the rate of flow into any node is equal to the rate of flow
out of that node. This ensures that the flow medium does not build up at the nodes and
block the free movement of the medium through the network.
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Acommonproblem innetwork analysis is to use knownflow rates in certain branches
to find the flow rates in all of the branches. Here is an example.

EXAMPLE 1 | Network Analysis Using Linear Systems

Figure 1.10.1 shows a network with four nodes in which the flow rate and direction of flow
in certain branches are known. Find the flow rates and directions of flow in the remaining
branches.

Solution As illustrated in Figure 1.10.2, we have assigned arbitrary directions to the
unknown flow rates x1, x2, and x3. We need not be concerned if some of the directions are
incorrect, since an incorrect direction will be signaled by a negative value for the flow rate
when we solve for the unknowns.

It follows from the conservation of flow at node𝐴 that

x1 + x2 = 30

Similarly, at the other nodes we have

x2 + x3 = 35 (node 𝐵)
x3 + 15 = 60 (node 𝐶)
x1 + 15 = 55 (node𝐷)

These four conditions produce the linear system

x1 + x2 = 30
x2 + x3 = 35

x3 = 45
x1 = 40

which we can now try to solve for the unknown flow rates. In this particular case the system
is sufficiently simple that it can be solved by inspection (work from the bottom up). We leave
it for you to confirm that the solution is

x1 = 40, x2 = −10, x3 = 45

The fact that x2 is negative tells us that the direction assigned to that flow in Figure 1.10.2 is
incorrect; that is, the flow in that branch is into node𝐴.

35

30

55

60

15

FIGURE 1.10.1

35

30

55

60

15

x1x2

x3

B

A

D

C

FIGURE 1.10.2

EXAMPLE 2 | Design of Traffic Patterns

The network in Figure 1.10.3a shows a proposed plan for the traffic flow around a new park
that will house the Liberty Bell in Philadelphia, Pennsylvania. The plan calls for a comput-
erized traffic light at the north exit on Fifth Street, and the diagram indicates the average
number of vehicles per hour that are expected to flow in and out of the streets that border
the complex. All streets are one-way.
(a) Howmany vehicles per hour should the traffic light let through to ensure that the aver-

age number of vehicles per hour flowing into the complex is the same as the average
number of vehicles flowing out?

(b) Assuming that the traffic light has been set to balance the total flow in and out of the
complex, what can you say about the average number of vehicles per hour that will flow
along the streets that border the complex?
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Solution (a) If, as indicated in Figure 1.10.3b, we let x denote the number of vehicles per
hour that the traffic light must let through, then the total number of vehicles per hour that
flow in and out of the complex will be

Flowing in: 500+ 400+ 600+ 200 = 1700
Flowing out: x+ 700+ 400

Equating the flows in and out shows that the traffic light should let x = 600 vehicles per hour
pass through.

Solution (b) To avoid traffic congestion, the flow in must equal the flow out at each inter-
section. For this to happen, the following conditions must be satisfied:

Intersection Flow In Flow Out
𝐴 400+ 600 = x1 + x2
𝐵 x2 + x3 = 400+ x
𝐶 500+ 200 = x3 + x4
𝐷 x1 + x4 = 700

Thus, with x = 600, as computed in part (a), we obtain the following linear system:

x1 + x2 = 1000
x2 + x3 = 1000

x3 + x4 = 700
x1 + x4 = 700

We leave it for you to show that the system has infinitely many solutions and that these are
given by the parametric equations

x1 = 700− t, x2 = 300+ t, x3 = 700− t, x4 = t (1)

However, the parameter t is not completely arbitrary here, since there are physical constraints
to be considered. For example, the average flow rates must be nonnegative since we have
assumed the streets to be one-way, and a negative flow rate would indicate a flow in the
wrong direction. This being the case, we see from (1) that t can be any real number that
satisfies 0 ≤ t ≤ 700, which implies that the average flow rates along the streets will fall in
the ranges

0 ≤ x1 ≤ 700, 300 ≤ x2 ≤ 1000, 0 ≤ x3 ≤ 700, 0 ≤ x4 ≤ 700
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FIGURE 1.10.3

Electrical Circuits
Next we will show how network analysis can be used to analyze electrical circuits con-
sisting of batteries and resistors. A battery is a source of electric energy, and a resistor,
such as a lightbulb, is an element that dissipates electric energy. Figure 1.10.4 shows a

+ –

Switch

FIGURE 1.10.4

schematic diagram of a circuit with one battery (represented by the symbol ), one resis-
tor (represented by the symbol ), and a switch. The battery has a positive pole (+)
and a negative pole (−). When the switch is closed, electrical current is considered to
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flow from the positive pole of the battery, through the resistor, and back to the negative
pole (indicated by the arrowhead in the figure).

Electrical current, which is a flow of electrons through wires, behaves much like the
flow of water through pipes. A battery acts like a pump that creates “electrical pressure” to
increase theflow rate of electrons, and a resistor acts like a restriction in a pipe that reduces
the flow rate of electrons. The technical term for electrical pressure is electrical potential;
it is commonlymeasured in volts (V). The degree to which a resistor reduces the electrical
potential is called its resistance and is commonlymeasured in ohms (Ω). The rate of flow
of electrons in awire is called current and is commonlymeasured in amperes (also called
amps) (A). The precise effect of a resistor is given by the following law:

Ohm’s Law If a current of 𝐼 amperes passes through a resistor with a resistance of 𝑅
ohms, then there is a resulting drop of𝐸 volts in electrical potential that is the product
of the current and resistance; that is,

𝐸 = 𝐼𝑅

A typical electrical network will have multiple batteries and resistors joined by some
configuration of wires. A point at which three or more wires in a network are joined is
called a node (or junction point). A branch is a wire connecting two nodes, and a closed
loop is a succession of connected branches that begin and end at the same node. For
example, the electrical network in Figure 1.10.5 has two nodes and three closed loops—

+ – + –

FIGURE 1.10.5

two inner loops and one outer loop. As current flows through an electrical network, it
undergoes increases and decreases in electrical potential, called voltage rises and voltage
drops, respectively. The behavior of the current at the nodes and around closed loops is
governed by two fundamental laws:

Kirchhoff’s Current Law The sum of the currents flowing into any node is equal to the
sum of the currents flowing out.

Kirchhoff’sVoltageLaw In one traversal of any closed loop, the sumof the voltage rises
equals the sum of the voltage drops.

Kirchhoff’s current law is a restatement of the principle of flow conservation at a node
that was stated for general networks. Thus, for example, the currents at the top node in
Figure 1.10.6 satisfy the equation 𝐼1 = 𝐼2 + 𝐼3.

I3

I2

I1

FIGURE 1.10.6

In circuits with multiple loops and batteries there is usually no way to tell in advance
which way the currents are flowing, so the usual procedure in circuit analysis is to assign
arbitrary directions to the current flows in the branches and let the mathematical compu-
tations determinewhether the assignments are correct. In addition to assigning directions
to the current flows, Kirchhoff’s voltage law requires a direction of travel for each closed
loop. The choice is arbitrary, but for consistency we will always take this direction to be
clockwise (Figure 1.10.7). We also make the following conventions:

• A voltage drop occurs at a resistor if the direction assigned to the current through the
resistor is the same as the direction assigned to the loop, and a voltage rise occurs at

+ – + –

Clockwise closed-loop
convention with arbitrary
direction assignments to
currents in the branches

FIGURE 1.10.7

a resistor if the direction assigned to the current through the resistor is the opposite
to that assigned to the loop.

• A voltage rise occurs at a battery if the direction assigned to the loop is from − to +
through the battery, and a voltage drop occurs at a battery if the direction assigned to
the loop is from + to − through the battery.

If you follow these conventions when calculating currents, then those currents whose
directions were assigned correctly will have positive values and those whose directions
were assigned incorrectly will have negative values.
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Historical Note

The German physicist Gustav Kirchhoff was a student of Gauss.
His work on Kirchhoff’s laws, announced in 1854, was a major
advance in the calculation of currents, voltages, and resistances
of electrical circuits. Kirchhoff was severely disabled and spent
most of his life on crutches or in a wheelchair.

[Image: Courtesy of Library of Congress]

Gustav Kirchhoff
(1824–1887)

EXAMPLE 3 | A Circuit with One Closed Loop

Determine the current 𝐼 in the circuit shown in Figure 1.10.8.
Solution Since the direction assigned to the current through the resistor is the same as
the direction of the loop, there is a voltage drop at the resistor. By Ohm’s law this voltage
drop is 𝐸 = 𝐼𝑅 = 3𝐼. Also, since the direction assigned to the loop is from − to + through
the battery, there is a voltage rise of 6 volts at the battery. Thus, it follows from Kirchhoff’s
voltage law that

3𝐼 = 6
fromwhichwe conclude that the current is 𝐼 = 2A. Since 𝐼 is positive, the direction assigned
to the current flow is correct.

+
– 3 Ω6 V

I

FIGURE 1.10.8

+ – + –

5 Ω 20 Ω 10 Ω

50 V 30 V

AI1 I2

I3

B

FIGURE 1.10.9

EXAMPLE 4 | A Circuit with Three Closed Loops

Determine the currents 𝐼1, 𝐼2, and 𝐼3 in the circuit shown in Figure 1.10.9.
Solution Using the assigned directions for the currents, Kirchhoff’s current law provides
one equation for each node:

Node Current In Current Out
𝐴 𝐼1 + 𝐼2 = 𝐼3
𝐵 𝐼3 = 𝐼1 + 𝐼2

However, these equations are really the same, since both can be expressed as

𝐼1 + 𝐼2 − 𝐼3 = 0 (2)

To find unique values for the currents we will need two more equations, which we will
obtain fromKirchhoff’s voltage law.We can see from thenetwork diagram that there are three
closed loops, a left inner loop containing the 50 V battery, a right inner loop containing the
30 V battery, and an outer loop that contains both batteries. Thus, Kirchhoff’s voltage lawwill
actually produce three equations. With a clockwise traversal of the loops, the voltage rises
and drops in these loops are as follows:

Voltage Rises Voltage Drops
Left Inside Loop 50 5𝐼1 + 20𝐼3
Right Inside Loop 30+ 10𝐼2 + 20𝐼3 0
Outside Loop 30+ 50+ 10𝐼2 5𝐼1



November 12, 2018 13:09 C01 Sheet number 103 Page number 103 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

1.10 Applications of Linear Systems 103

These conditions can be rewritten as
5𝐼1 + 20𝐼3 = 50

10𝐼2 + 20𝐼3 = −30
5𝐼1 − 10𝐼2 = 80

(3)

However, the last equation is superfluous, since it is the difference of the first two. Thus, if
we combine (2) and the first two equations in (3), we obtain the following linear system of
three equations in the three unknown currents:

𝐼1 + 𝐼2 − 𝐼3 = 0
5𝐼1 + 20𝐼3 = 50

10𝐼2 + 20𝐼3 = −30
We leave it for you to show that the solution of this system in amps is 𝐼1 = 6, 𝐼2 = −5, and
𝐼3 = 1. The fact that 𝐼2 is negative tells us that the direction of this current is opposite to that
indicated in Figure 1.10.9.

Balancing Chemical Equations
Chemical compounds are represented by chemical formulas that describe the atomic
makeup of their molecules. For example, water is composed of two hydrogen atoms and
one oxygen atom, so its chemical formula is H2O; and stable oxygen is composed of two
oxygen atoms, so its chemical formula is O2.

When chemical compounds are combined under the right conditions, the atoms in
their molecules rearrange to form new compounds. For example, when methane burns,
the methane (CH4) and stable oxygen (O2) react to form carbon dioxide (CO2) and water
(H2O). This is indicated by the chemical equation

CH4 + O2 ⟶ CO2 +H2O (4)

The molecules to the left of the arrow are called the reactants and those to the right
the products. In this equation the plus signs serve to separate the molecules and are not
intended as algebraic operations. However, this equation does not tell the whole story,
since it fails to account for the proportions of molecules required for a complete reaction
(no reactants left over). For example, we can see from the right side of (4) that to pro-
duce one molecule of carbon dioxide and one molecule of water, one needs three oxygen
atoms for each carbon atom. However, from the left side of (4) we see that onemolecule of
methane and one molecule of stable oxygen have only two oxygen atoms for each carbon
atom. Thus, on the reactant side the ratio of methane to stable oxygen cannot be one-to-
one in a complete reaction.

A chemical equation is said to be balanced if for each type of atom in the reaction,
the same number of atoms appears on each side of the arrow. For example, the balanced
version of Equation (4) is

CH4 + 2O2 ⟶ CO2 + 2H2O (5)

bywhichwemean that onemethanemolecule combineswith two stable oxygenmolecules
to produce one carbon dioxide molecule and two water molecules. In theory, one could
multiply this equation through by any positive integer. For example, multiplying through
by 2 yields the balanced chemical equation

2CH4 + 4O2 ⟶ 2CO2 + 4H2O

However, the standard convention is to use the smallest positive integers that will balance
the equation.

Equation (4) is sufficiently simple that it could have been balanced by trial and error,
but for more complicated chemical equations we will need a systematic method. There
are various methods that can be used, but we will give one that uses systems of linear
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equations. To illustrate themethod let us reexamineEquation (4). To balance this equation
we must find positive integers, x1, x2, x3, and x4 such that

x1 (CH4) + x2 (O2)⟶ x3 (CO2) + x4 (H2O) (6)

For each of the atoms in the equation, the number of atoms on the left must be equal to
the number of atoms on the right. Expressing this in tabular form we have

Left Side Right Side
Carbon x1 = x3
Hydrogen 4x1 = 2x4
Oxygen 2x2 = 2x3 + x4

from which we obtain the homogeneous linear system

x1 − x3 = 0
4x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0

The augmented matrix for this system is

[
1 0 −1 0 0
4 0 0 −2 0
0 2 −2 −1 0

]

We leave it for you to show that the reduced row echelon form of this matrix is

⎡⎢⎢⎢
⎣

1 0 0 − 1
2 0

0 1 0 −1 0
0 0 1 − 1

2 0

⎤⎥⎥⎥
⎦

from which we conclude that the general solution of the system is

x1 = t/2, x2 = t, x3 = t/2, x4 = t

where t is arbitrary. The smallest positive integer values for the unknowns occur when
we let t = 2, so the equation can be balanced by letting x1 = 1, x2 = 2, x3 = 1, x4 = 2. This
agreeswith our earlier conclusions, since substituting these values intoEquation (6) yields
Equation (5).

EXAMPLE 5 | Balancing Chemical Equations Using
Linear Systems

Balance the chemical equation

HCl + Na3PO4 ⟶ H3PO4 + NaCl
[hydrochloric acid] + [sodium phosphate]⟶ [phosphoric acid] + [sodium chloride]

Solution Let x1, x2, x3, and x4 be positive integers that balance the equation
x1 (HCl)+ x2 (Na3PO4)⟶ x3 (H3PO4)+ x4 (NaCl) (7)
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Equating the number of atoms of each type on the two sides yields

1x1 = 3x3 Hydrogen (H)
1x1 = 1x4 Chlorine (Cl)
3x2 = 1x4 Sodium (Na)
1x2 = 1x3 Phosphorus (P)
4x2 = 4x3 Oxygen (O)

from which we obtain the homogeneous linear system

x1 − 3x3 = 0
x1 − x4 = 0

3x2 − x4 = 0
x2 − x3 = 0
4x2 − 4x3 = 0

We leave it for you to show that the reduced row echelon form of the augmented matrix for
this system is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 −1 0
0 1 0 − 1

3 0

0 0 1 − 1
3 0

0 0 0 0 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

from which we conclude that the general solution of the system is

x1 = t, x2 = t/3, x3 = t/3, x4 = t

where t is arbitrary. To obtain the smallest positive integers that balance the equation, we let
t = 3, in which case we obtain x1 = 3, x2 = 1, x3 = 1, and x4 = 3. Substituting these values
in (7) produces the balanced equation

3HCl+Na3PO4 ⟶ H3PO4 + 3NaCl

Polynomial Interpolation
An important problem in various applications is to find a polynomial whose graph passes
through a specified set of points in the plane; this is called an interpolating polynomial
for the points. The simplest example of such a problem is to find a linear polynomial

p(x) = ax + b (8)
whose graph passes through two known distinct points, (x1, y1) and (x2, y2), in the xy-
plane (Figure 1.10.10). Youhave probably encountered variousmethods in analytic geom-
etry for finding the equation of a line through two points, but here we will give a method
based on linear systems that can be adapted to general polynomial interpolation.

The graph of (8) is the line y = ax + b, and for this line to pass through the points

x

y

(x2, y2)

(x1, y1)

y = ax + b

FIGURE 1.10.10(x1, y1) and (x2, y2), we must have
y1 = ax1 + b and y2 = ax2 + b

Therefore, the unknown coefficients a and b can be obtained by solving the linear system
ax1 + b = y1
ax2 + b = y2

We don’t need any fancy methods to solve this system—the value of a can be obtained by
subtracting the equations to eliminate b, and then the value of a can be substituted into
either equation to find b. We leave it as an exercise for you to find a and b and then show
that they can be expressed in the form

a = y2 − y1
x2 − x1

and b = y1x2 − y2x1
x2 − x1

(9)
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provided x1 ≠ x2. Thus, for example, the line y = ax + b that passes through the points

(2, 1) and (5, 4)
can be obtained by taking (x1, y1) = (2, 1) and (x2, y2) = (5, 4), in which case (9) yields

a = 4 − 1
5 − 2 = 1 and b = (1)(5) − (4)(2)

5 − 2 = −1

Therefore, the equation of the line is

y = x − 1

(Figure 1.10.11).

y = x – 1

x

y

(2, 1)

(5, 4)

FIGURE 1.10.11 Now let us consider the more general problem of finding a polynomial whose graph
passes through n points with distinct x-coordinates

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn) (10)

Since there are n conditions to be satisfied, intuition suggests that we should begin by
looking for a polynomial of the form

p(x) = a0 + a1x + a2x2 + ⋅ ⋅ ⋅ + an−1xn−1 (11)

since a polynomial of this form has n coefficients that are at our disposal to satisfy the n
conditions. However, wewant to allow for cases where the points may lie on a line or have
some other configuration that would make it possible to use a polynomial whose degree
is less than n − 1; thus, we allow for the possibility that an−1 and other coefficients in (11)
may be zero.

The following theorem, which we will not prove, is the basic result on polynomial
interpolation.

Theorem 1.10.1

Polynomial Interpolation
Given any n points in the xy-plane that have distinct x-coordinates, there is a unique
polynomial of degree n − 1 or less whose graph passes through those points.

Let us now consider howwemight go about finding the interpolating polynomial (11)
whose graph passes through the points in (10). Since the graph of this polynomial is the
graph of the equation

y = a0 + a1x + a2x2 + ⋅ ⋅ ⋅ + an−1xn−1 (12)

it follows that the coordinates of the points must satisfy
a0 + a1x1 + a2x21 + ⋅ ⋅ ⋅ + an−1xn−11 = y1
a0 + a1x2 + a2x22 + ⋅ ⋅ ⋅ + an−1xn−12 = y2...

...
...

...
...

a0 + a1xn + a2x2n + ⋅ ⋅ ⋅ + an−1xn−1n = yn

(13)

In these equations the values of x’s and y’s are assumed to be known, sowe can view this as
a linear system in the unknowns a0, a1, . . . , an−1. From this point of view the augmented
matrix for the system is

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 x1 x21 ⋅ ⋅ ⋅ xn−11 y1
1 x2 x22 ⋅ ⋅ ⋅ xn−12 y2...

...
...

...
...

1 xn x2n ⋅ ⋅ ⋅ xn−1n yn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(14)

and hence the interpolating polynomial can be found by reducing this matrix to reduced
row echelon form, say by Gauss-Jordan elimination, as in the following example.
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EXAMPLE 6 | Polynomial Interpolation by
Gauss–Jordan Elimination

Find a cubic polynomial whose graph passes through the points

(1, 3), (2,−2), (3,−5), (4, 0)
Solution Since there are four points, we will use an interpolating polynomial of degree
n = 3. Denote this polynomial by

p(x) = a0 + a1x+ a2x2 + a3x3

and denote the x- and y-coordinates of the given points by

x1 = 1, x2 = 2, x3 = 3, x4 = 4 and y1 = 3, y2 = −2, y3 = −5, y4 = 0

Thus, it follows from (14) that the augmented matrix for the linear system in the unknowns
a0, a1, a2, and a3 is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x1 x21 x31 y1
1 x2 x22 x32 y2
1 x3 x23 x33 y3
1 x4 x24 x34 y4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 1 1 1 3
1 2 4 8 −2
1 3 9 27 −5
1 4 16 64 0

⎤
⎥
⎥
⎥
⎦

We leave it for you to confirm that the reduced row echelon form of this matrix is

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 4
0 1 0 0 3
0 0 1 0 −5
0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎦

from which it follows that a0 = 4, a1 = 3, a2 = −5, a3 = 1. Thus, the interpolating polyno-
mial is

p(x) = 4+ 3x− 5x2 + x3

The graph of this polynomial and the given points are shown in Figure 1.10.12.
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FIGURE 1.10.12

Remark Later wewill give amore efficientmethod for finding interpolating polynomials
that is better suited for problems in which the number of data points is large.
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0.5
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y

p(x)

sin (πx2/2)

FIGURE 1.10.13

CALCULUS REQUIREDEXAMPLE 7 | Approximate Integration

There is no way to evaluate the integral

∫
1

0
sin (𝜋x

2

2 )dx

directly since there is noway to express an antiderivative of the integrand in terms of elemen-
tary functions. This integral could be approximated by Simpson’s rule or some comparable
method, but an alternative approach is to approximate the integrand by an interpolating
polynomial and integrate the approximating polynomial. For example, let us consider the
five points

x0 = 0, x1 = 0.25, x2 = 0.5, x3 = 0.75, x4 = 1
that divide the interval [0, 1] into four equally spaced subintervals (Figure 1.10.13). The
values of

𝑓(x) = sin (𝜋x
2

2 )
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at these points are approximately

𝑓(0) = 0, 𝑓(0.25) = 0.098017, 𝑓(0.5) = 0.382683,
𝑓(0.75) = 0.77301, 𝑓(1) = 1

The interpolating polynomial is (verify)

p(x) = 0.098796x+ 0.762356x2 + 2.14429x3 − 2.00544x4 (15)

and
∫

1

0
p(x) dx ≈ 0.438501 (16)

As shown in Figure 1.10.13, the graphs of 𝑓 and p match very closely over the interval
[0, 1], so the approximation is quite good.

Exercise Set 1.10

1. The accompanying figure shows a network in which the flow
rate and direction of flow in certain branches are known.
Find the flow rates and directions of flow in the remaining
branches.

30

50

60

40

50

FIGURE Ex-1

2. The accompanying figure shows known flow rates of hydro-
carbons into and out of a network of pipes at an oil refinery.

a. Set up a linear system whose solution provides the
unknown flow rates.

b. Solve the system for the unknown flow rates.

c. Find the flow rates and directions of flow if x4 = 50 and
x6 = 0.

200
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x6
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FIGURE Ex-2

3. The accompanying figure shows a network of one-way streets
with traffic flowing in the directions indicated. The flow rates
along the streets are measured as the average number of vehi-
cles per hour.

a. Set up a linear system whose solution provides the
unknown flow rates.

b. Solve the system for the unknown flow rates.

c. If the flow along the road from𝐴 to 𝐵 must be reduced for
construction, what is the minimum flow that is required to
keep traffic flowing on all roads?
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FIGURE Ex-3

4. The accompanying figure shows a network of one-way streets
with traffic flowing in the directions indicated. The flow rates
along the streets are measured as the average number of vehi-
cles per hour.

a. Set up a linear system whose solution provides the
unknown flow rates.

b. Solve the system for the unknown flow rates.

c. Is it possible to close the road from𝐴 to 𝐵 for construction
and keep traffic flowing on the other streets? Explain.
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FIGURE Ex-4
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In Exercises 5–8, analyze the given electrical circuits by finding the
unknown currents.

5.
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In Exercises 9–12, write a balanced equation for the given chemical
reaction.

9. C3H8 + O2 → CO2 +H2O [propane combustion]

10. C6H12O6 → CO2 + C2H5OH [fermentation of sugar]

11. CH3COF+H2O→ CH3COOH+HF

12. CO2 +H2O→ C6H12O6 + O2 [photosynthesis]

13. Find the quadratic polynomial whose graph passes through
the points (1, 1), (2, 2), and (3, 5).

14. Find the quadratic polynomial whose graph passes through
the points (0, 0), (−1, 1), and (1, 1).

15. Find the cubic polynomial whose graph passes through the
points (−1,−1), (0, 1), (1, 3), (4,−1).

16. The accompanying figure shows the graph of a cubic polyno-
mial. Find the polynomial.
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FIGURE Ex-16

17. a. Find an equation that represents the family of all second-
degree polynomials that pass through the points (0, 1)
and (1, 2). [Hint: The equation will involve one arbitrary
parameter that produces the members of the family when
varied.]

b. By hand, or with the help of a graphing utility, sketch four
curves in the family.

18. In this section we have selected only a few applications of lin-
ear systems. Using the Internet as a search tool, try to find
somemore real-world applications of such systems. Select one
that is of interest to you and write a paragraph about it.

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.
a. In any network, the sum of the flows out of a node must

equal the sum of the flows into a node.

b. When a current passes through a resistor, there is an
increase in the electrical potential in a circuit.

c. Kirchhoff’s current law states that the sum of the currents
flowing into a node equals the sumof the currents flowing
out of the node.

d. Achemical equation is called balanced if the total number
of atoms on each side of the equation is the same.

e. Given any n points in the xy-plane, there is a unique
polynomial of degree n− 1 or less whose graph passes
through those points.

Working with Technology
T1. The following table shows the lifting force on an aircraft wing

measured in a wind tunnel at various wind velocities. Model
the datawith an interpolating polynomial of degree 5, and use
that polynomial to estimate the lifting force at 2000 ft/s.

Velocity
(100 ft/s) 1 2 4 8 16 32

Lifting Force
(100 lb) 0 3.12 15.86 33.7 81.5 123.0
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T2. (Calculus required)Use themethod of Example 7 to approx-
imate the integral

∫
1

0
ex

2
dx

by subdividing the interval of integration into five equal parts
and using an interpolating polynomial to approximate the
integrand. Compare your answer to that obtained using the
numerical integration capability of your technology utility.

T3. Use the method of Example 5 to balance the chemical
equation

Fe2O3 + Al→ Al2O3 + Fe
(Fe = iron,Al = aluminum,O = oxygen)

T4. Determine the currents in the accompanying circuit.

+ –

–+

3 Ω

2 Ω

470 Ω

12 V

20 V

I2

I1

I2

I1

I3I3

1.11 Leontief Input-Output Models
In 1973 the economist Wassily Leontief was awarded the Nobel prize for his work on eco-
nomic modeling in which he used matrix methods to study the relationships among dif-
ferent sectors in an economy. In this section we will discuss some of the ideas developed
by Leontief.

Inputs and Outputs in an Economy
One way to analyze an economy is to divide it into sectors and study how the sectors
interact with one another. For example, a simple economy might be divided into three
sectors—manufacturing, agriculture, and utilities. Typically, a sector will produce certain
outputs but will require inputs from the other sectors and itself. For example, the agri-
cultural sector may produce wheat as an output but will require inputs of farmmachinery
from the manufacturing sector, electrical power from the utilities sector, and food from
its own sector to feed its workers. Thus, we can imagine an economy to be a network
in which inputs and outputs flow in and out of the sectors; the study of such flows is
called input-output analysis. Inputs and outputs are commonly measured in monetary
units (dollars or millions of dollars, for example), but other units of measurement are also
possible.

The flows between sectors of a real economy are not always obvious. For example,

Manufacturing Agriculture

Utilities

Open
Sector

FIGURE 1.11.1

in World War II the United States had a demand for 50,000 new airplanes that required
the construction of many new aluminum manufacturing plants. This produced an unex-
pectedly large demand for certain copper electrical components, which in turn produced
a copper shortage. The problem was eventually resolved by using silver borrowed from
Fort Knox as a copper substitute. In all likelihood modern input-output analysis would
have anticipated the copper shortage.

Most sectors of an economywill produce outputs, but theremay exist sectors that con-
sume outputs without producing anything themselves (the consumer market, for exam-
ple). Those sectors that do not produce outputs are called open sectors. Economies with
no open sectors are called closed economies, and economies with one or more open sec-
tors are called open economies (Figure 1.11.1). In this section we will be concerned with
economies with one open sector, and our primary goal will be to determine the output
levels that are required for the productive sectors to sustain themselves and satisfy the
demand of the open sector.

Leontief Model of an Open Economy
Let us consider a simple open economywith one open sector and three product-producing
sectors: manufacturing, agriculture, and utilities. Assume that inputs and outputs are
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measured in dollars and that the inputs required by the productive sectors to produce
one dollar’s worth of output are in accordance with Table 1.

TABLE 1

Pr
ov
id
er

Input Required per Dollar Output

Manufacturing Agriculture Utilities

Manufacturing $ 0.50 $ 0.10 $ 0.10

Agriculture $ 0.20 $ 0.50 $ 0.30

Utilities $ 0.10 $ 0.30 $ 0.40

Usually, one would suppress the labeling and express this matrix as

𝐶 = [
0.5 0.1 0.1
0.2 0.5 0.3
0.1 0.3 0.4

] (1)

This is called the consumption matrix (or sometimes the technology matrix) for the
economy. The column vectors

c1 = [
0.5
0.2
0.1

], c2 = [
0.1
0.5
0.3

], c3 = [
0.1
0.3
0.4

]

in 𝐶 list the inputs required by the manufacturing, agricultural, and utilities sectors,
respectively, to produce $1.00 worth of output. These are called the consumption vectors
of the sectors. For example, c1 tells us that to produce $1.00 worth of output the manu-
facturing sector needs $0.50 worth of manufacturing output, $0.20 worth of agricultural
output, and $0.10 worth of utilities output.

Continuing with the above example, suppose that the open sector wants the economy

What is the economic sig-
nificance of the row sums of
the consumption matrix?

to supply it manufactured goods, agricultural products, and utilities with dollar values:
d1 dollars of manufactured goods
d2 dollars of agricultural products
d3 dollars of utilities

The column vector d that has these numbers as successive components is called the out-
side demand vector. Since the product-producing sectors consume some of their own
output, the dollar value of their output must cover their own needs plus the outside
demand. Suppose that the dollar values required to do this are

x1 dollars of manufactured goods
x2 dollars of agricultural products
x3 dollars of utilities

Historical Note

Wassily Leontief
(1906–1999)

It is somewhat ironic that it was the Russian-bornWassily Leon-
tief who won the Nobel prize in 1973 for pioneering the modern
methods for analyzing free-market economies. Leontief was a
precocious student who entered the University of Leningrad at
age 15. Bothered by the intellectual restrictions of the Soviet sys-
tem, hewas put in jail for anti-Communist activities, after which
he headed for the University of Berlin, receiving his Ph.D. there
in 1928. He came to the United States in 1931, where he held
professorships at Harvard and then New York University.

[Image: © Bettmann/CORBIS]
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The column vector x that has these numbers as successive components is called the pro-
duction vector for the economy. For the economy with consumption matrix (1), that por-
tion of the production vector x that will be consumed by the three productive sectors is

x1 [
0.5
0.2
0.1

] + x2 [
0.1
0.5
0.3

] + x3 [
0.1
0.3
0.4

] = [
0.5 0.1 0.1
0.2 0.5 0.3
0.1 0.3 0.4

] [
x1
x2
x3
] = 𝐶x

Fractions
consumed by
manufacturing

Fractions
consumed by
agriculture

Fractions
consumed
by utilities

The vector 𝐶x is called the intermediate demand vector for the economy. Once the
intermediate demand is met, the portion of the production that is left to satisfy the out-
side demand is x − 𝐶x. Thus, if the outside demand vector is d, then x must satisfy the
equation

x − 𝐶x = d
Amount
produced

Intermediate
demand

Outside
demand

which we will find convenient to rewrite as

(𝐼 − 𝐶)x = d (2)

The matrix 𝐼 − 𝐶 is called the Leontief matrix and (2) is called the Leontief equation.

EXAMPLE 1 | Satisfying Outside Demand

Consider the economy described in Table 1. Suppose that the open sector has a demand for
$7900 worth of manufacturing products, $3950 worth of agricultural products, and $1975
worth of utilities.
(a) Can the economy meet this demand?
(b) If so, find a production vector x that will meet it exactly.

Solution The consumption matrix, production vector, and outside demand vector are

𝐶 = [
0.5 0.1 0.1
0.2 0.5 0.3
0.1 0.3 0.4

], x = [
x1
x2
x3
], d = [

7900
3950
1975

] (3)

To meet the outside demand, the vector xmust satisfy the Leontief equation (2), so the prob-
lem reduces to solving the linear system

[
0.5 −0.1 −0.1

−0.2 0.5 −0.3
−0.1 −0.3 0.6

] [
x1
x2
x3
] = [

7900
3950
1975

]

𝐼 − 𝐶 x d

(4)

(if consistent). We leave it for you to show that the reduced row echelon form of the aug-
mented matrix for this system is

[
1 0 0 27,500
0 1 0 33,750
0 0 1 24,750

]

This tells us that (4) is consistent, and the economy can satisfy the demand of the open sector
exactly by producing $27,500 worth of manufacturing output, $33,750 worth of agricultural
output, and $24,750 worth of utilities output.
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Productive Open Economies
In the preceding discussionwe considered an open economywith three product-producing
sectors; the same ideas apply to an open economy with n product-producing sectors. In
this case, the consumption matrix, production vector, and outside demand vector have
the form

𝐶 =
⎡
⎢
⎢
⎢
⎣

c11 c12 ⋅ ⋅ ⋅ c1n
c21 c22 ⋅ ⋅ ⋅ c2n...

...
...

cn1 cn2 ⋅ ⋅ ⋅ cnn

⎤
⎥
⎥
⎥
⎦

, x =
⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

, d =
⎡
⎢
⎢
⎢
⎣

d1
d2...
dn

⎤
⎥
⎥
⎥
⎦

where all entries are nonnegative and
cij = the monetary value of the output of the ith sector that is needed by the jth

sector to produce one unit of output
xi = the monetary value of the output of the ith sector
di = the monetary value of the output of the ith sector that is required to meet

the demand of the open sector

Remark Note that the jth column vector of 𝐶 contains the monetary values that the jth
sector requires of the other sectors to produce one monetary unit of output, and the ith
row vector of𝐶 contains themonetary values required of the ith sector by the other sectors
for each of them to produce one monetary unit of output.

As discussed in our example above, a production vector x that meets the demand d
of the outside sector must satisfy the Leontief equation

(𝐼 − 𝐶)x = d
If the matrix 𝐼 − 𝐶 is invertible, then this equation has the unique solution

x = (𝐼 − 𝐶)−1d (5)

for every demand vector d. However, for x to be a valid production vector it must have
nonnegative entries, so the problem of importance in economics is to determine condi-
tions under which the Leontief equation has a solution with nonnegative entries.

It is evident from the form of (5) that if 𝐼 − 𝐶 is invertible, and if (𝐼 − 𝐶)−1 has non-
negative entries, then for every demand vector d the corresponding x will also have non-
negative entries, and hence will be a valid production vector for the economy. Economies
for which (𝐼 − 𝐶)−1 has nonnegative entries are said to be productive. Such economies
are desirable because demand can always be met by some level of production. The follow-
ing theorem, whose proof can be found in many books on economics, gives conditions
under which open economies are productive.

Theorem 1.11.1

If 𝐶 is the consumption matrix for an open economy, and if all of the column sums
are less than 1, then the matrix 𝐼 − 𝐶 is invertible, the entries of (𝐼 − 𝐶)−1 are
nonnegative, and the economy is productive.

Remark The jth column sum of 𝐶 represents the total dollar value of input that the jth
sector requires to produce $1 of output, so if the jth column sum is less than 1, then the jth
sector requires less than $1 of input to produce $1 of output; in this case we say that the
jth sector is profitable. Thus, Theorem 1.11.1 states that if all product-producing sectors
of an open economy are profitable, then the economy is productive. In the exercises we
will ask you to show that an open economy is productive if all of the row sums of 𝐶 are
less than 1 (Exercise 11). Thus, an open economy is productive if either all of the column
sums or all of the row sums of 𝐶 are less than 1.
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EXAMPLE 2 | An Open Economy Whose Sectors
Are All Profitable

The column sums of the consumption matrix 𝐶 in (1) are less than 1, so (𝐼 − 𝐶)−1 exists
and has nonnegative entries. Use a calculating utility to confirm this, and use this inverse to
solve Equation (4) in Example 1.

Solution We leave it for you to show that

(𝐼 − 𝐶)−1 ≈ [
2.65823 1.13924 1.01266
1.89873 3.67089 2.15190
1.39241 2.02532 2.91139

]

This matrix has nonnegative entries, and

x = (𝐼 − 𝐶)−1d ≈ [
2.65823 1.13924 1.01266
1.89873 3.67089 2.15190
1.39241 2.02532 2.91139

] [
7900
3950
1975

] ≈ [
27,500
33,750
24,750

]

which is consistent with the solution in Example 1.

Exercise Set 1.11

1. An automobile mechanic (𝑀) and a body shop (𝐵) use each
other’s services. For each $1.00 of business that𝑀 does, it uses
$0.50 of its own services and $0.25 of𝐵’s services, and for each
$1.00 of business that 𝐵 does it uses $0.10 of its own services
and $0.25 of𝑀’s services.

a. Construct a consumption matrix for this economy.
b. How much must 𝑀 and 𝐵 each produce to provide cus-

tomers with $7000 worth of mechanical work and $14,000
worth of body work?

2. A simple economy produces food (𝐹) and housing (𝐻). The
production of $1.00 worth of food requires $0.30 worth of food
and $0.10worth of housing, and the production of $1.00 worth
of housing requires $0.20 worth of food and $0.60 worth of
housing.

a. Construct a consumption matrix for this economy.
b. What dollar value of food and housing must be produced

for the economy to provide consumers $130,000 worth of
food and $130,000 worth of housing?

3. Consider the open economy described by the accompany-
ing table, where the input is in dollars needed for $1.00 of
output.

a. Find the consumption matrix for the economy.
b. Suppose that the open sector has a demand for $1930worth

of housing, $3860 worth of food, and $5790 worth of utili-
ties. Use row reduction to find a production vector that will
meet this demand exactly.

TABLE Ex-3

Pr
ov
id
er

Input Required per Dollar Output

Housing Food Utilities

Housing $ 0.10 $ 0.60 $ 0.40

Food $ 0.30 $ 0.20 $ 0.30

Utilities $ 0.40 $ 0.10 $ 0.20

4. A company produces Web design, software, and networking
services. View the company as an open economy described by
the accompanying table, where input is in dollars needed for
$1.00 of output.

a. Find the consumption matrix for the company.
b. Suppose that the customers (the open sector) have a

demand for $5400 worth of Web design, $2700 worth of
software, and $900 worth of networking. Use row reduc-
tion to find a production vector that will meet this demand
exactly.

TABLE Ex-4

Pr
ov
id
er

Input Required per Dollar Output

Web Design Software Networking

Web Design $ 0.40 $ 0.20 $ 0.45

Software $ 0.30 $ 0.35 $ 0.30

Networking $ 0.15 $ 0.10 $ 0.20
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In Exercises 5–6, use matrix inversion to find the production vector
x that meets the demand d for the consumption matrix𝐶.

5. 𝐶 = [0.1 0.3
0.5 0.4] ; d = [5060]

6. 𝐶 = [0.3 0.1
0.3 0.7] ; d = [2214]

7. Consider an open economy with consumption matrix

𝐶 = [
1
2 0

0 1
]

a. Show that the economy can meet a demand of d1 = 2 units
from the first sector and d2 = 0 units from the second sec-
tor, but it cannot meet a demand of d1 = 2 units from the
first sector and d2 = 1 unit from the second sector.

b. Give both a mathematical and an economic explanation of
the result in part (a).

8. Consider an open economy with consumption matrix

𝐶 =
⎡
⎢
⎢
⎢
⎣

1
2

1
4

1
4

1
2

1
8

1
4

1
2

1
4

1
8

⎤
⎥
⎥
⎥
⎦

If the open sector demands the same dollar value from each
product-producing sector, which such sectormust produce the
greatest dollar value to meet the demand?

9. Consider an open economy with consumption matrix

𝐶 = [c11 c12
c21 0 ]

Show that the Leontief equation x−𝐶x = d has a unique
solution for every demand vector d if c21c12 < 1− c11.

Working with Proofs

10. a. Consider an open economy with a consumption matrix
𝐶 whose column sums are less than 1, and let x be the
production vector that satisfies an outside demand d; that
is, (𝐼 − 𝐶)−1d = x. Let dj be the demand vector that is
obtained by increasing the jth entry of d by 1 and leaving

the other entries fixed. Prove that the production vector xj
that meets this demand is

xj = x+ jth column vector of (𝐼 − 𝐶)−1

b. In words, what is the economic significance of the jth col-
umn vector of (𝐼 − 𝐶)−1? [Hint: Look at xj − x.]

11. Prove: If 𝐶 is an n × n matrix whose entries are nonnegative
and whose row sums are less than 1, then 𝐼 − 𝐶 is invertible
and has nonnegative entries. [Hint: (𝐴𝑇)−1 = (𝐴−1)𝑇 for any
invertible matrix𝐴.]

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.
a. Sectors of an economy that produce outputs are called

open sectors.

b. Aclosed economy is an economy that has no open sectors.

c. The rows of a consumption matrix represent the outputs
in a sector of an economy.

d. If the column sums of the consumptionmatrix are all less
than 1, then the Leontief matrix is invertible.

e. The Leontief equation relates the production vector for an
economy to the outside demand vector.

Working with Technology
T1. The following table describes an open economy with

three sectors in which the table entries are the dollar
inputs required to produce one dollar of output. The out-
side demand during a 1-week period if $50,000 of coal,
$75,000 of electricity, and $1,250,000 of manufacturing.
Determine whether the economy can meet the demand.

Pr
ov
id
er

Input Required per Dollar Output

Electricity Coal Manufacturing

Electricity $ 0.1 $ 0.25 $ 0.2

Coal $ 0.3 $ 0.4 $ 0.5

Manufacturing $ 0.1 $ 0.15 $ 0.1

Chapter 1 Supplementary Exercises
In Exercises 1–4 the given matrix represents an augmented matrix
for a linear system. Write the corresponding set of linear equations
for the system, and use Gaussian elimination to solve the linear sys-
tem. Introduce free parameters as necessary.

1. [3 −1 0 4 1
2 0 3 3 −1] 2.

⎡
⎢
⎢
⎢
⎣

1 4 −1
−2 −8 2
3 12 −3
0 0 0

⎤
⎥
⎥
⎥
⎦

3. [
2 −4 1 6

−4 0 3 −1
0 1 −1 3

] 4. [
3 1 −2

−9 −3 6
6 2 1

]

5. Use Gauss–Jordan elimination to solve for x′ and y′ in terms
of x and y.

x = 3
5x

′ − 4
5y

′

y = 4
5x

′ + 3
5y

′
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6. Use Gauss–Jordan elimination to solve for x′ and y′ in terms
of x and y.

x = x′ cos𝜃 − y′ sin𝜃
y = x′ sin𝜃 + y′ cos𝜃

7. Find positive integers that satisfy
x + y + z = 9
x + 5y + 10z = 44

8. Abox containing pennies, nickels, and dimes has 13 coinswith
a total value of 83 cents. How many coins of each type are in
the box? Is the economy productive?

9. Let

[
a 0 b 2
a a 4 4
0 a 2 b

]

be the augmentedmatrix for a linear system. Find for what val-
ues of a and b the system has

a. a unique solution.
b. a one-parameter solution.

c. a two-parameter solution. d. no solution.

10. For which value(s) of a does the following system have zero
solutions? One solution? Infinitely many solutions?

x1 + x2 + x3 = 4
x3 = 2

(a2 − 4)x3 = a− 2

11. Find a matrix𝐾 such that𝐴𝐾𝐵 = 𝐶 given that

𝐴 = [
1 4

−2 3
1 −2

], 𝐵 = [2 0 0
0 1 −1],

𝐶 = [
8 6 −6
6 −1 1

−4 0 0
]

12. How should the coefficients a, b, and c be chosen so that the
system

ax + by − 3z = −3
−2x − by + cz = −1
ax + 3y − cz = −3

has the solution x = 1, y = −1, and z = 2?

13. In each part, solve the matrix equation for𝑋.

a. 𝑋 [
−1 0 1
1 1 0
3 1 −1

] = [ 1 2 0
−3 1 5]

b. 𝑋 [1 −1 2
3 0 1] = [−5 −1 0

6 −3 7]

c. [
3 1

−1 2]𝑋 −𝑋 [1 4
2 0] = [2 −2

5 4]

14. Let𝐴 be a square matrix.

a. Show that (𝐼 − 𝐴)−1 = 𝐼 +𝐴+𝐴2 +𝐴3 if𝐴4 = 0.

b. Show that
(𝐼 − 𝐴)−1 = 𝐼 +𝐴+𝐴2 + ⋅ ⋅ ⋅ + 𝐴n

if𝐴n+1 = 0.

15. Find values of a, b, and c such that the graph of the polynomial
p(x) = ax2 + bx+ c passes through the points (1, 2), (−1, 6),
and (2, 3).

16. (Calculus required) Find values of a, b, and c such that the
graph of p(x) = ax2 + bx+ c passes through the point (−1, 0)
and has a horizontal tangent at (2,−9).

17. Let 𝐽n be the n × nmatrix each of whose entries is 1. Show that
if n > 1, then

(𝐼 − 𝐽n)−1 = 𝐼 − 1
n− 1

𝐽n

18. Show that if a square matrix𝐴 satisfies
𝐴3 + 4𝐴2 − 2𝐴+ 7𝐼 = 0

then so does𝐴𝑇.

19. Prove: If 𝐵 is invertible, then 𝐴𝐵−1 = 𝐵−1𝐴 if and only if
𝐴𝐵 = 𝐵𝐴.

20. Prove: If 𝐴 is invertible, then 𝐴+𝐵 and 𝐼 + 𝐵𝐴−1 are both
invertible or both not invertible.

21. Prove: If 𝐴 is an m × n matrix and 𝐵 is the n × 1 matrix each
of whose entries is 1/n, then

𝐴𝐵 =
⎡
⎢
⎢
⎢
⎣

r1
r2...
rm

⎤
⎥
⎥
⎥
⎦

where ri is the average of the entries in the ith row of𝐴.

22. (Calculus required) If the entries of the matrix

𝐶 =
⎡
⎢
⎢
⎢
⎣

c11(x) c12(x) ⋅ ⋅ ⋅ c1n(x)
c21(x) c22(x) ⋅ ⋅ ⋅ c2n(x)...

...
...

cm1(x) cm2(x) ⋅ ⋅ ⋅ cmn(x)

⎤
⎥
⎥
⎥
⎦

are differentiable functions of x, then we define

d𝐶
dx

=
⎡
⎢
⎢
⎢
⎢
⎣

c′11(x) c′12(x) ⋅ ⋅ ⋅ c′1n(x)
c′21(x) c′22(x) ⋅ ⋅ ⋅ c′2n(x)...

...
...

c′m1(x) c′m2(x) ⋅ ⋅ ⋅ c′mn(x)

⎤
⎥
⎥
⎥
⎥
⎦

Show that if the entries in𝐴 and𝐵 are differentiable functions
of x and the sizes of the matrices are such that the stated oper-
ations can be performed, then

a. d
dx
(k𝐴) = k

d𝐴
dx

b. d
dx
(𝐴 + 𝐵) = d𝐴

dx
+ d𝐵

dx

c. d
dx
(𝐴𝐵) = d𝐴

dx
𝐵 +𝐴d𝐵

dx
23. (Calculus required) Use part (c) of Exercise 22 to show that

d𝐴−1

dx
= −𝐴−1 d𝐴

dx
𝐴−1

State all the assumptions you make in obtaining this formula.
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24. Assuming that the stated inverses exist, prove the following
equalities.

a. (𝐶−1 +𝐷−1)−1 = 𝐶(𝐶 +𝐷)−1𝐷
b. (𝐼 + 𝐶𝐷)−1𝐶 = 𝐶(𝐼 + 𝐷𝐶)−1

c. (𝐶 +𝐷𝐷𝑇)−1𝐷 = 𝐶−1𝐷(𝐼 +𝐷𝑇𝐶−1𝐷)−1

Partitioned matrices can be multiplied by the row-column rule just
as if the matrix entries were numbers provided that the sizes of all
matrices are such that the necessary operations can be performed.
Thus, for example, if𝐴 is partitioned into a 2× 2 matrix and 𝐵 into
a 2× 1 matrix, then

𝐴𝐵 = [
𝐴11 𝐴12

𝐴21 𝐴22
] [
𝐵1

𝐵2
] = [

𝐴11𝐵1 +𝐴12𝐵2

𝐴21𝐵1 +𝐴22𝐵2
] (*)

provided that the sizes are such that𝐴𝐵, the two sums, and the four
products are all defined.

25. Let𝐴 and 𝐵 be the following partitioned matrices.

𝐴 =
⎡⎢⎢⎢
⎣

1 0 2 1 4
4 1 0 3 −1

0 −3 4 2 −2

⎤⎥⎥⎥
⎦

= [
𝐴11 𝐴12

𝐴21 𝐴22
]

𝐵 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 0
2 1
4 −1

0 3
2 5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [
𝐵1

𝐵2
]

a. Confirm that the sizes of all matrices are such that the prod-
uct𝐴𝐵 can be obtained using Formula (∗).

b. Confirm that the result obtained using Formula (∗) agrees
with that obtained using ordinary matrix multiplication.

26. Suppose that an invertible matrix𝐴 is partitioned as

𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
]

Show that

𝐴−1 = [
𝐵11 𝐵12

𝐵21 𝐵22
]

where

𝐵11 = (𝐴11 −𝐴12𝐴−1
22𝐴21)−1, 𝐵12 = −𝐵11𝐴12𝐴−1

22

𝐵21 = −𝐴−1
22𝐴21𝐵11, 𝐵22 = (𝐴22 −𝐴21𝐴−1

11𝐴12)−1

provided all the inverses in these formulas exist.

27. In the special case where matrix𝐴21 in Exercise 26 is zero, the
matrix𝐴 simplifies to

𝐴 = [
𝐴11 𝐴12

0 𝐴22
]

which is said to be in block upper triangular form. Use the
result of Exercise 26 to show that in this case

𝐴−1 = [
𝐴−1

11 −𝐴−1
11𝐴12𝐴−1

22

0 𝐴−1
22

]

28. A linear system whose coefficient matrix has a pivot position
in every row must be consistent. Explain why this must be so.

29. What can you say about the consistency or inconsistency of a
linear system of three equations in five unknowns whose coef-
ficient matrix has three pivot columns?




