
CHAPTER 1 Publishing Your App to the Google Play Store 681

0004864531.INDD 681 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

 Publishing Your App to
the Google Play Store

 F irst-time app publishing is both exciting and scary. It ’ s exciting because,
after months of development work, you ’ re fi nally doing something “real”
with your app. It ’ s scary because you ’ re exposing your app to the public.

You ’ re afraid of pressing the wrong button on the Google Play developer page and
accidentally telling the world that your app kills kittens.

 Well, you can relax about killing kittens. The Google Play developer page helps you
get things right. And if you get something wrong, you can correct it pretty quickly.
As for the excitement of publishing, there ’ s nothing quite like it.

 In this chapter, you take those courageous steps. You create a developer account
and publish your fi rst app.

 Creating a Google Play Developer Account
 Choosing Android for your app platform has some distinct advantages. To develop
for the iPhone, you pay an annual $99 fee. Over a ten-year period, that ’ s about a
thousand bucks. As an Android developer, working over the same ten-year period,
you pay $25. That ’ s all.

Chapter 1

 IN THIS CHAPTER

 » Creating a developer account

 » Prepping your code

 » Uploading your app

CO
PYRIG

HTED
 M

ATERIA
L

0004864531.INDD 682 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

682 BOOK 6 The Job Isn’t Done Until . . .

To create a Google Play developer account, visit https://play.google.com/
apps/publish/signup. On this page, you do the following:

 » Agree to the Google Play developer distribution rules.

 » Pay the $25 fee.

 » Provide your account details. These details include your name, email,
phone, and (optionally) your website URL.

If you’re working with a team, you can provide your coworkers’ email
addresses and set up each coworker’s permissions on your account.

If you plan to collect money through your app, you can set up a merchant
account. When you do so, you provide your business name, contact name,
address, phone, website URL, customer service email, and credit card
statement name. There’s also a What Do You Sell drop-down list. Do you sell
Automotive and Marine supplies? Nutrients and Supplements? Timeshares?
And what about Other? Do you sell Other?

The information that you provide when you first sign up isn’t cast in stone.
You can change this information later using the Google Play’s Settings page.

Preparing Your Code
At this point, you’re probably tired of looking at your own app. You’ve written
the basic app, tested the app, fixed the bugs, tested again, added features, done
more testing, stayed up late at night, and done even more testing. But if you plan
to publish your app, please follow this advice: After you’ve finished testing, test
some more.

Ask yourself what sequences of buttons you avoided clicking when you did your
“thorough” testing. Then muster the courage to click the buttons and use the
widgets in those strange sequences. And while you’re at it, tilt the device side-
ways, turn the device upside down, hold the device above your head, and try using
the app. If your device is a phone, interrupt the app with an incoming call.

Are you finished testing? Not yet. Have your friends test the app on their devices.
Whatever you do, don’t give them any instructions other than the instructions
you intend to publish. Better yet, don’t even give them the instructions that you
intend to publish. (Some users won’t read those instructions anyway.) Ask your
friends about their experiences running your app. If you sense that your friends
are being too polite, press them for more details.

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 683 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 683

You can “publish” your app on Google Play so that only your designated friends
can install the app. For more information, skip ahead to the section entitled
“The App Releases page.”

When you test your app, be your app’s worst enemy. Try as hard as you can to
break your app. Be overly critical. Be relentless. If your app has a bug and you
don’t find it, your users will.

Un-testing the app
When you test an app, you find features that don’t quite work. You check the
logs, and you probably add code to help you diagnose problems. As you prepare to
publish your app, remove any unnecessary diagnostic code, remove extra logging
statements, and remove any other code whose purpose is to benefit the developer
rather than the user.

In developing your app, you might have created some test data. (Is there a duck
named “Donald” in your app’s contact list?) If you’ve created test data, delete the
data from your app.

Check your project’s AndroidManifest.xml file. If the <application> element
has an android:debuggable="true" attribute, remove that attribute. (The attri-
bute’s default value is false.)

Choosing Android versions
An app’s build.gradle file specifies three SDK versions: compileSdkVersion,
minSdkVersion, and targetSdkVersion. (In case you’re wondering, Book 1,
Chapter 4 tells you all about these SDK versions.) When you create a new proj-
ect, Android Studio sets the compile and target SDK versions to the newest full
release. You shouldn’t change these values. Google released API Level 28 in August
of 2018, and by November 2019, all new apps and updates to existing apps were
required to target Level 28 or higher. This requirement will update each year with
new versions of the Android SDK.

To read about the yearly version requirements, visit https://developer.
android.com/distribute/best-practices/develop/target-sdk and https://
android-developers.googleblog.com/2019/02/expanding-target-api-
level-requirements.html.

0004864531.INDD 684 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

684 BOOK 6 The Job Isn’t Done Until . . .

Your app’s minSdkVersion is a completely different story. When you create a new
project, Android Studio asks you for a Minimum SDK version. This minSdkVersion
number is important because it shouldn’t be too low or too high.

 » If the minSdkVersion number is too low, your app isn’t using features
from newer Android versions. If your app is very simple, this is okay. But if
your app does anything that looks different in newer Android versions, your
app’s vintage look might turn users off.

 » If the minSdkVersion number is too high, Google’s Play Store won’t offer
your app to users with older devices. In fact, if your app’s minSdkVersion is
API 26, a user who visits the Play Store on an Android Nougat device doesn’t
even see your app. (You might have already encountered the INSTALL_
FAILED_OLDER_SDK error message. Android Studio can’t install an app on the
emulator that you selected because the emulator’s SDK version is lower than
the app’s minSdkVersion.)

You don’t want to eliminate users simply because they don’t have the
latest and greatest Android devices. So to reach more users, keep the
minSdkVersion from being too high. If your app doesn’t use any features
that were introduced after API Level 23, set your minSdkVersion to 23.

Try running your app on emulators with many API levels. When you run into
trouble (say, on an emulator with API Level 21) set your project’s minSdkVersion
to something higher than that troublesome level. You can change this number by
editing the build.gradle file.

When you create a new project, the Minimum SDK drop-down list comes with its
own Help Me Choose link. When you click this link, you see a chart showing the
percentage of devices running Android 8, 9, 10, and other versions. This click-
able chart describes the features in each Android version and (most important)
shows the percentage of devices that are running each version. With information
from this chart, you can choose the best compromise between the latest features
and the widest user audience.

The AndroidX libraries allow devices with older Android versions to take
advantage of newer Android features. For info, refer to Book 3, Chapter 1 and visit
https://developer.android.com/jetpack/androidx.

Setting your app’s own version
code and version name
When you create a new project, Android Studio puts some default attributes in
your build.gradle file. These attributes include the versionCode and version-
Name fields:

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 685 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 685

defaultConfig {
 ...
 versionCode 1
 versionName "1.0"
}

The version code must be an integer, and your app’s code numbers must increase
over time. For example, if your first published version has version code 42, your
second published version must have a version code higher than 42.

Users never see the version code. Instead, users see your app’s version name.
You can use any string for your app’s version name. Many developers use the
major-release.minor-release.point system. For example, a typical version
name might be "1.2.2". But there are no restrictions.

Choosing a package name
Your app’s package name should identify you or your company. If you have a
domain name, start the package name with the domain name’s parts reversed.
Your domain name can’t be example.com. But if it could be example.com, your
first app’s package name might be com.example.earnmeamillion. Every app
must have its own package name, so your second app’s package name would have
to be different. Maybe it would be com.example.secondtimeisacharm.

The Internet Engineering Task Force reserves example.com as a placeholder name.
Android Studio suggests com.example as part of a temporary package name for a
new project. You also see example.com in Internet-related documentation.

The Play Store has a few of its own restrictions on things you can use as package
names. You can read all about this by visiting https://developer.android.com/
studio/build/application-id.

Preparing Graphic Assets
for the Play Store

When you publish an app to the Play Store, you interact with the Google Play Con-
sole. The essential step in this interaction is the step in which you upload your
app’s installation file. It’s the essential step but by no means the only step. You
also answer dozens of questions about your app, and you upload many graphic
assets. This section describes those graphic assets.

0004864531.INDD 686 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

686 BOOK 6 The Job Isn’t Done Until . . .

Creating an icon
When you create a new project, Android Studio puts some default attributes in
your AndroidManifest.xml file. One of them is the android:icon attribute:

<application android:icon="@mipmap/ic-launcher"
... >

In that attribute, the name "@mipmap/ic-launcher" refers to a bunch of
ic-launcher files in various parts of your project’s res/mipmap folder. Before
publishing your app, you should replace this default icon name with your own
icon’s name.

The Play Store also requires you to submit a high-resolution icon — a high-
quality version of your app’s signature icon. The high-res icon appears here and
there on the Play Store’s pages.

Android Studio comes with a super-duper icon-building tool named Asset Studio.
Here’s a quick experiment to get you started using it:

1. In the Project tool window, right-click the res branch.

As a result, a context menu appears.

2. In the context menu, select New➪ Image Asset.

The Asset Studio window appears. The window’s Name field contains the
default name ic_launcher. (See Figure 1-1.)

3. Type something different in the window’s Name field . . . or don’t!

If you don’t, your new icon will replace Android’s default ic_launcher icon.
That way, you’ll have no trouble finding the icon when you run the app. (Of
course, the name ic-launcher might confuse other Android developers!)

4. In the Asset Type radio group, select Image.

The alternatives are Clip Art and Text.

5. To fill in the Path field, navigate to the location of an image on your
development computer.

At this point, you’ve specified your icon’s foreground layer.

6. Repeat Step 5 with the dialog box’s Background Layer tab selected.

For the Background Layer, the Asset Type radio group has only two choices:
Color and Image.

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 687 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 687

7. Press Next.

Asset Studio shows you a list of files and the directories to be created. When you
select a file in the list, you see a preview of the file’s contents. (See Figure 1-2.) If
you like what you see, move on to the next step.

8. Press Finish.

Presto! You’re back to Android Studio’s main window.

9. Run your app and look for your brand-new icon.

Nice icon! Isn’t it?

To create images for Asset Studio, you can use almost any drawing software.
You can also create icons by visiting https://romannurik.github.io/Android
AssetStudio/. In addition, you can download prepackaged icon packs from
Google’s Play Store.

FIGURE 1-1:
The Configure

Image Asset
 dialog box.

0004864531.INDD 688 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

688 BOOK 6 The Job Isn’t Done Until . . .

There’s no shortage of documentation to help you create stunning Android icons:

 » To read about the Play Store’s design specs, visit https://developer.
android.com/google-play/resources/icon-design-specifications.

 » Android’s adaptive icons look different depending on the device that’s running
your app. To find out about adaptive icons, visit https://developer.
android.com/guide/practices/ui_guidelines/icon_design_adaptive.

 » For guidelines on submitting graphic assets of any type, visit https://support.
google.com/googleplay/android-developer/answer/1078870.

Creating screenshots
Along with every app that you submit to the Play Store, you must submit at least
two screenshots. The Google Play Console has slots for phone screenshots, tablet
screenshots, TV screenshots, and wearable screenshots. Each screenshot must be
JPEG or 24-bit PNG with no alpha transparency. The minimum length for any side
is 320 pixels, and the maximum length for any side is 3,840 pixels.

FIGURE 1-2:
The Confirm Icon

Path dialog box.

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 689 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 689

You have many ways to take screenshots of your running app. When you run the
emulator, you get a camera icon on the emulator window’s side menu bar. Another
way to get a screenshot is to use Android Studio’s built-in Screen Capture facility.
Here’s how you do it:

1. Use Android Studio to run your app on an emulator or real device.

2. Look for a camera icon along the left side of the Logcat tool window.

If you don’t see the camera icon, look instead for a tiny “more stuff” icon. That
icon looks like two angle brackets (>>). When you select that icon, you see the
camera icon. (See Figure 1-3.)

3. Click the camera icon.

A new window appears. The window shows a screen capture of your device or
emulator. You can click the Save button immediately. But you can also click
Recapture or Rotate, or make other adjustments.

If Android Studio’s Screen Capture facility isn’t your thing, you have several alter-
natives. For example, you can use your operating system’s screen capture facility
to take a screenshot of a running emulator.

In Windows
1. Launch your app in the emulator.

2. Click the emulator window (so that the emulator window is the active
window).

3. While you hold down the Alt key, press the Print Screen key in the
upper-right corner of the keyboard.

Depending on your keyboard’s make and model, the key might be labeled
PrintScr, PrtSc, or some other variant of Print Screen.

FIGURE 1-3:
Getting a

screenshot.

0004864531.INDD 690 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

690 BOOK 6 The Job Isn’t Done Until . . .

4. Open an image-editing program.

If you don’t already have a favorite image-editing program, try IrfanView
(www.irfanview.com). It’s full-featured and completely free.

5. Press Ctrl-V to paste your new screenshot into the image-editing
program.

On a Mac
1. Launch your app in the emulator.

2. Press Cmd+Shift+4.

This tells the Mac that you intend to take a screenshot.

3. Press the spacebar.

This tells the Mac that the screenshot will capture a single window.

4. Click anywhere inside the emulator window.

Your computer creates the screenshot and places it on the desktop.

You can use your development computer’s screen capture facility to take a screen-
shot from a physical device. Start by searching for a program that mirrors an
Android device’s screen on your computer. After installing the program, follow
this section’s instructions for taking a screenshot in Windows or on a Mac.

In theory, you can press the Volume Down and Power buttons simultaneously to
take a screenshot. The trouble is, the exact sequence of presses and button holds
varies from one make and model to another. Check your device’s documentation
(and other sources) for more info.

Your options for creating screenshots are endless. If all else fails (and, in fact, all
else seldom fails), you can get screenshots from running emulators and devices
using your computer’s command line. Search the web for adb shell/system/
bin/screencap.

Providing other visual assets
If your app is featured on the Play Store (or rather, when your app is featured), a
feature graphic appears on your store listing page. Your feature graphic must be a
JPEG or 24-bit PNG file with no alpha transparency. Its dimensions must be 1,024
by 500 pixels.

The blog page at http://android-developers.blogspot.com/2011/10/android-
market-featured-image.html has time-tested advice on creating feature
graphics. The key is to create an eye-catching image that promotes your app

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 691 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 691

without replicating your app’s screen. You should also make sure that the image
looks good no matter what size screen displays it.

Why stop after you’ve uploaded screenshots and a feature graphic? You can
also upload a 180-by-120-pixel promo graphic and a 1,280-by-720-pixel TV
banner. If that’s not enough, you can throw in a promotional video and a 4,096-
by-4,096-pixel Daydream stereo image.

Who knows? Maybe next year you’ll be able to upload a hologram!

Creating a Publishable File
When you create an app that runs on an emulator or a device, Android Studio
packages your app in one of two ways: as an Android Package (APK) file or an
Android App Bundle (AAB) file. You can upload either kind of file to Google’s Play
Store.

 » If you upload an APK file, the Play Store copies that file to users’ devices.
The APK filename extension is .apk.

 » If you upload an AAB file, the Play Store creates custom APK files for the
users’ devices. When a user wants to install your app, the Play Store picks
and chooses the parts of the AAB that are required for that particular user’s
device. As a result, the Play Store sends a leaner APK file to the device. The
custom APK file has only the components needed by that user’s device.

In addition, the Play Store can send a reduced-feature app — one that
downloads and starts running very quickly. While the user explores the app’s
most basic features, the Play Store readies more components for download to
the device. Without any special actions on the user’s part, the app’s feature set
grows as needed. This is called Dynamic Feature Module Delivery, or Dynamic
Delivery for short. (See https://developer.android.com/guide/app-
bundle/dynamic-delivery for more details about Dynamic Delivery.)

For any large, multifaceted app, AAB files are the way to go. But you can’t
deploy an AAB file directly to a device. For a simpler app, an APK file is good
enough.

The AAB file name extension is .aab. (Big surprise, right?)

0004864531.INDD 692 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

692 BOOK 6 The Job Isn’t Done Until . . .

Differences among builds
You may not be used to using build as a noun. In geek language, the noun build
refers to a file or set of files that, in some way or another, are ready to run. When
you ask Android Studio to run your app, your computer creates a build of the app
and then deploys the build onto an AVD or a physical device.

As you develop an application, you create several different builds, each with its
own characteristics and each for its own purposes. Android’s official terminology
classifies builds in two ways: by build variant and by flavor.

 » The differences among build variants are visible to the app developer. By
default, a new Android Studio project describes two different build variants —
debug build and release build. When you create, test, and modify your app, you
run debug builds. But to publish an app to the Google Play Store, you must
create a release build.

The next section lists some important characteristics of a release build.

 » The differences among flavors are visible to the user. Android Studio
doesn’t assign flavors to a new project. The creation of flavors is up to each
app’s developer. Many apps come in two flavors: free and paid. Another
breakdown by flavors is by country: one flavor for most countries, another for
countries with special content restrictions.

To manage your app’s build variants and flavors, go to Android Studio’s main
menu bar and choose Build➪ Edit Build Types or Build➪ Edit Flavors.

What is a release build? Funny that you should ask! Here are some facts about
release builds:

 » A release build contains your digital signature. A digital signature is a
sequence of bits that only you (and no one else) can provide. If your APK or
AAB file contains your digital signature, no one can pretend to be you. (No one
can write a malicious version of your app and publish it on the Play Store site.)

When you follow this section’s instructions, you use Android Studio to
create your own digital signature. This signature lives in a directory on your
computer’s hard drive. You can’t examine this signature with an ordinary text
editor (Notepad or TextEdit, for example), but you should treat that directory
the way you treat any other confidential information. Do whatever you
normally do with data to prevent the loss of the data and to keep others from
using it.

You can read more about digital signatures in this chapter’s “Understanding
digital signatures” sidebar.

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 693 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 693

UNDERSTANDING DIGITAL SIGNATURES
When you digitally sign a file, you add a sequence of bits that only you can add. You use
sophisticated software to create the sequence and to embed the sequence in your file.
The software to create this sequence uses techniques from number theory. (Sometime
between 1777 and 1855, Carl Friedrich Gauss called number theory “the queen of math-
ematics,” and he wasn’t kidding!)

Digital signing actually involves two sequences of bits:

• A private key: A sequence that you don’t share with others.

• A public key: A sequence that you do share with others.

The private key never leaves your office, but you can display the public key on a neon
sign in Times Square. If you tell someone your private key, you’d have to . . . (well, you
know). But you can hire a pilot to write your public key with white smoke in the sky over
the Golden Gate Bridge.

To sign an app, you run software that adds a certificate to your app. A certificate is a
bunch of information that includes your private key, your public key, some information
to identify you, and some other information. Like your signature on a contract, a certifi-
cate’s private key is difficult to fake. But with the certificate’s public key, a program on
the user’s device verifies that your app is authentic.

A user gets keys from your app’s certificate. But as a developer, you store keys apart
from any certificate. You keep public and private keys in a place where your software
can retrieve them — a key store file. When you digitally sign an app, software grabs keys
from a key store file, uses the keys to create a certificate, and melds the certificate into
your build file. If you visit your user home directory, and drill down to an .android sub-
directory (starting with a dot), you probably find the debug.keystore file. When you
test an app on an emulator or on your own device, Android Studio quietly signs your
app with a simple key from this debug.keystore file. (For help finding your user home
directory, see Book 1, Chapter 2.)

A key store file contains sensitive information, so every key store file is password-
protected. Android’s debug.keystore file is password-protected. But unlike most key
store files, the debug.keystore file’s password is freely available. The password is
android. Anyone can sign any app using keys from the debug.keystore file. That’s
okay because the debug.keystore file’s keys don’t work for apps that you publish
on the Play Store (or anywhere else, for that matter). So before publishing your app,
Android Studio adds your own keys to the app.

(continued)

0004864531.INDD 694 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

694 BOOK 6 The Job Isn’t Done Until . . .

 » A release build’s code is obfuscated. Obfuscated code is confusing code.
And, when it comes to foiling malicious hackers, confusing code is good code.
If other people can make sense of your Kotlin code, they can steal it. They can
make money off your ideas, or they can add snippets to your code to rob
users’ credit card accounts.

You want developers on your team to read and understand your code with
ease, but you don’t want some outsider (like our friend Joe S. Uptonogood) to
understand your code. That’s why, when you follow this chapter’s instructions,
Android Studio creates files with obfuscated code.

You can read more about obfuscated code in this chapter’s “Don’t wait!
Obfuscate!” sidebar.

After downloading your app, a user’s software applies a public key to verify that your
app is signed properly. And what does that prove? Well, if a hacker tampers with your
app somewhere between publication and the user’s downloading, the test for proper
signing detects the tampering. “Sorry,” says Android, “I refuse to install this app.”

But what about a malicious hacker who creates a damaging app and uses Android’s
freely available tools to sign it? To the world in general, the app looks fine. Signing does-
n’t verify that an app’s developer has good intentions.

The weak link in the chain is the fact that Android apps are self-signed. When you add a
digital signature to your app, no one else signs with you.

For scenarios that require more security (scenarios not normally associated with mobile
devices), a developer can get help from a certificate authority. A certificate authority is
an organization that issues special digital signatures — signatures that the world recog-
nizes as very trustworthy. To get such a signature, you convince a certificate authority
that you’re a good person, and you pay some money to the certificate authority. Some
certificate authorities issue signatures for free. These free signatures are okay, but they
aren’t as trusted as the paid signatures, and they don’t have the same clout as the paid
signatures.

For more information about Android app signing, visit http://developer.android.
com/tools/publishing/app-signing.html.

(continued)

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 695 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 695

DON’T WAIT! OBFUSCATE!
Nestled quietly inside your project’s directory is a proguard-rules.pro file. When you
ready your project for upload to the Play Store, Android Studio creates two additional
files named proguard-android.txt and proguard-android-optimize.txt. These
three files contain configuration information for the compiler. The compiler minifies,
preverifies, and obfuscates your code.

To minify code is to make the code smaller by removing unnecessary classes, fields, and
methods. This includes classes belonging to the Kotlin and Android libraries.

Preverifying code means performing a certain kind of safety check on the code. This
safety check looks for places where the code can escape from its virtual machine and
start running wild on the rest of the device’s operating system. Code that doesn’t pass
this check gets a failing grade from the compiler.

When you obfuscate something, you make it difficult to read. You scramble stuff and
generally do the opposite of what you’re supposed to do when you write clear, main-
tainable code.

Why do this? An obfuscated program can be executed without modification by an
appropriate device. The device doesn’t need a password and doesn’t have to decrypt
anything in order to run the code. In fact, an obfuscated program contains nothing unu-
sual as far as the Android runtime (ART) is concerned. But for a person trying to reverse-
engineer your code, the obfuscation is a nightmare. That’s because the human mind
doesn’t process code mechanically. Instead, humans get the big picture; humans have
to understand things in order to work with them; humans feel stress when they work
with things that are terse, circuitous, and highly compressed.

So with obfuscated code, evil people can’t easily figure out how your code works. They
have trouble stealing your tricks, and (more important) they can’t easily add viruses to
your published code.

Before publishing on the Play Store, you must obfuscate your app’s code. Fortunately,
the steps in this chapter’s “Creating the release build” section do the obfuscation for
you. Android’s compiler turns your code into a dizzying mess for anyone trying to tinker
with it.

(In case you’re wondering, the word proguard in the configuration filenames has
nothing to do with the open source ProGuard project. In days gone by, Android used
ProGuard to obfuscate code. Android moved away from ProGuard but didn’t bother to
change the filenames.)

0004864531.INDD 696 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

696 BOOK 6 The Job Isn’t Done Until . . .

 » A release build’s code is zipaligned. Zipaligned code is easier to execute
than code that’s not zipaligned. Fortunately, when you follow this chapter’s
steps, Android Studio zipaligns your code (and does so behind your back,
without any intervention on your part).

BYTE OFF MORE THAN YOU CAN VIEW
The Android operating system (along with all other UNIX-like systems) has a mmap program.
The letters mm in mmap stand for memory-mapped input and output. The mmap program
grabs data from a file and makes the data available to applications. The mmap program
is a real workhorse, providing quick and efficient data access for many apps at once.

The nimbleness of mmap doesn’t come entirely for free. For mmap to do its work, certain
values must be stored so they start at four-byte boundaries. To understand four-byte
boundaries, think about a chunk of data in your application’s APK file. A byte is eight
bits of data (each bit being a 0 or a 1). So four bytes is 32 bits. Now imagine two values
(Value A and Value B) stored one after the other in your APK file. (See the figure in this
sidebar.) Value A consumes three bytes, and Value B consumes four bytes.

Without four-byte alignment, the computer might store the first byte of Value B imme-
diately after the last byte of Value A. If so, Value B starts on the last byte of a four-byte
group. But mmap works only when each value starts at the beginning of a four-byte
group. So Android’s zipalign program moves data, as shown in the lower half of the
figure below. Instead of using every available byte, zipalign wastes a byte in order to
make Value B easy to locate.

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 697 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 697

You can read more about zipalignment in this chapter’s “Byte off more than
you can view” sidebar.

 » Android’s build tools may reduce your release build’s file size. Maybe your
code is somewhat bloated, or your res folders have more bytes than they
need. Android Studio’s build process can take care of all that. In Android
Studio’s Project tool window, double-click the build.gradle file (the one
labeled Module). In that file, add two lines in buildTypes/release section,
like so:

 buildTypes {

 release {

 minifyEnabled true

 shrinkResources true

 proguardFiles getDefaultProguardFile(

 'proguard-android-optimize.txt'),

 'proguard-rules.pro'

 }

 }

With minifyEnabled set to true, the compiler puts your project’s code on a
diet. And with shrinkResources set to true, the compiler slims down your
res folders’ files.

If you use something called JNI, setting minifyEnabled to true can break
your code. For details and workarounds, visit https://developer.android.
com/studio/build/shrink-code.

Creating the release build
Several paragraphs leading up to this section give lengthy descriptions of the ways
release builds differ from debug builds. With all that chatter about release builds,
you’ll be surprised to find out that creating a release build isn’t very complicated.
Just follow these instructions:

1. Make the changes described in this chapter’s “Preparing Your Code”
section.

2. In Android Studio’s main menu, choose Build ➪ Generate Signed
Bundle / APK.

The first page of a dialog box appears. The box’s title is Generate Signed
Bundle or APK. (See Figure 1-4.)

0004864531.INDD 698 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

698 BOOK 6 The Job Isn’t Done Until . . .

3. Select either Android App Bundle or APK.

If you need help choosing, refer to the start of the “Creating a Publishable File”
section, earlier in this chapter.

4. Click Next.

The top of the dialog box’s next page has a drop-down list in which you select
one of your project’s modules. If your project has only one module (named
app, for example) Android Studio grays out the drop-down list. (See Figure 1-5.)

Your next task is to put something in the dialog box’s Key Store Path field.

For some good bedtime reading about key stores, see the “Understanding
digital signatures” sidebar.

At this point, it helps to understand the difference between a key store file and
a single key. A key is what you use to digitally sign your Android app. A key store
file is a place to store one or more keys. In this section’s instructions, you create
two passwords — one for the new key store file and another for the key that
you’ll be putting in the key store file. For details, see the sidebar entitled
“Understanding digital signatures.”

The Key Store Path field offers you three options: (a) Click a button to start
creating a new key store file; (b) Click a button to choose an existing key store
file (one that’s already on your computer’s hard drive); or (c) Type the full
pathname of an existing key store file in the Key Store Path field. In what
follows, you pursue the first option.

5. Click the Create New button.

A New Key Store dialog box opens. (See Figure 1-6.)

FIGURE 1-4:
Bundle or APK?

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 699 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 699

6. Click the folder icon at the rightmost end of the Key Store Path field.
(Refer to Figure 1-6.)

In the resulting dialog box, you navigate to a folder on your computer’s hard
drive. In addition, you make up a name for your new key store file.

Where do you want to put your new key store file and what do you want to
name the file? The choice is yours. One way or another, name the key store file
whatever_you_want.jks. The extension .jks stands for Java key store.

FIGURE 1-5:
A bunch of

 questions about
keys and key

stores.

FIGURE 1-6:
The New Key

Store dialog box.

0004864531.INDD 700 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

700 BOOK 6 The Job Isn’t Done Until . . .

Signing all your Android projects with the same key is generally a good idea.
Android treats the key as a kind of fingerprint, and two apps with the same
fingerprint can be trusted to communicate with one another. When two apps
have the same key, you can easily get these apps to help one another out. But
reusing a key has a potential downside. It’s the same problem you have when
you reuse a password. If your one and only key is compromised, all your apps
are compromised.

If you decide on maintaining only one key, resist the temptation to put the key
store file in your app’s project directory. When you do that, you’re hinting that
the key store belongs exclusively to your current Android project. But when you
publish more apps, you’ll want to use this key store to sign other projects’ files.

7. Do whatever you must do to confirm your choice of a key store file’s
location and name.

Click OK, or something like that.

Returning to the New Key Store dialog box, you see that the box has two
Password fields and two Confirm fields. (Refer to Figure 1-6)

8. Enter passwords in the Password and Confirm fields.

Do yourself and favor and make ’em strong passwords.

(In the lingo of For Dummies books, this is a Remember icon.) Please remember
to remember the passwords that you create when you fill in the Password and
Confirm fields. You’ll need to enter these passwords when you use this key to
sign another app.

A key store file may contain several keys, and each key has a name (an alias,
that is).

9. Type a name in the Alias field.

The alias can be any string of characters, but don’t be too creative when you
make up an alias. Avoid blank spaces and punctuation. If you ever create a
second key with a second alias, make sure that the second alias’s spelling (and
not only its capitalization) is different from the first alias’s spelling.

10. Accept the default validity period (25 years).

If you create a key on New Year’s Day in 2021, the key will expire on New Year’s
Day in 2046. Happy New Year, everybody! According to the Play Store’s rules,
your key must not expire until sometime after October 22, 2033, so 25 years
from 2021 is okay. (A recent Google search to find out how the creators of
Android decided on the date October 22, 2033 came up empty. What kind of
party will you throw when this day finally rolls around?)

11. In the Certificate section, fill in the six fields. (Refer to Figure 1-6.)

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 701 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 701

The items First and Last Name, Organizational Unit, and so on are part of the
X.500 Distinguished Name standard. The probability of two people having the
same name and working in the same unit of the same organization in the
same locality is close to zero.

When you finish, your dialog box resembles Figure 1-6.

12. Click OK.

The Generate Signed Bundle or APK dialog box from Figure 1-5 reappears.
This time, many of the box’s fields are filled in for you. (See Figure 1-7.)

You may see a check box labeled Export Encrypted Key for Enrolling Published
Apps in Google Play App Signing. If you do, make sure that the check box is
selected. (If you opted to create an APK file rather than an Android App Bundle
in Step 3, you don’t see that check box.)

When you export an encrypted key, key’s file extension is .pepk. To learn
what .pepk files are all about, see the section entitled “The App Signing page,”
later in this chapter.

13. Click Next.

One last Generate Signed Bundle or APK page appears. (See Figure 1-8.)

On this final Generate Signed Bundle or APK page, take note of the Destination
Folder. Also, be sure to select Release in the Build Variants list. If you have a
choice between V1 and V2 signature versions, select both. (To find out what the
names V1 and V2 mean, visit https://developer.android.com/about/
versions/nougat/android-7.0.html#apk_signature_v2.)

And finally . . .

FIGURE 1-7:
Filling in the fields

of Figure 1-5.

0004864531.INDD 702 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

702 BOOK 6 The Job Isn’t Done Until . . .

14. Click Finish.

Android Studio offers to open the folder containing your shiny, new AAB or
APK file. That’s great! Open the folder and stare proudly at your work.

Congratulations! You’ve created a distributable version of your app and a reusable
key store for future updates.

Running a new APK file
If you’ve created a release build and you want to try running it, don’t click the
usual Run icon in the toolbar, and don’t select Run➪ Run ‘app’. Without first per-
forming some extra steps, those things won’t work. If the file that you’ve created
is an APK file, follow these steps:

1. Make sure that you’re running at least one AVD.

If you’re not, select Tools➪ AVD Manager and get an AVD going.

2. At the top of Android Studio’s Project tool window, the word Android is
one of several drop-down list items. Change the selection from Android
to Project. (See Figure 1-9.)

For help finding the Project view, refer to Book 1, Chapter 4.

3. Expand the Project view tree to find your project’s app/release branch.

Chances are, the app/release folder has a file named app-release.apk. If it
doesn’t, look elsewhere for the app-release.apk file.

FIGURE 1-8:
The penultimate

step.

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 703 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 703

4. Drag the app-release.apk file from the Project view to the AVD screen.

When you do, Android installs your signed app on the AVD.

5. Click the app’s icon to launch the app on the AVD.

Watch your app run!

If you’re comfortable using your operating system’s command line, there’s a
quick way to make sure that your APK file has a digital signature. Look in a subdi-
rectory of Android/Sdk/build-tools for a file named apksigner.jar. Then run
the following command (all on one line that may wrap on its own):

java -jar path_to_apksigner.jar verify --print-certs path_to_build.apk

The output may be overzealous with its warnings, but you should see information
about the signature that you created.

Running the app in a new AAB file
You can’t deploy an AAB file to an Android device. Instead, you need a tool that
sifts an APK file out of the AAB file and then deploys the APK file to the device. As
of May 2020, the appropriate tool runs only from your development computer’s
command line — the Windows Command Prompt or the macOS Terminal appli-
cation. The instructions that follow are intentionally sketchy because the details
are likely to change over time. Anyway, if you’re determined, these instructions
can get you started:

1. Visit https://github.com/google/bundletool/releases and download
the latest bundletool jar file.

2. Collect all the information you need.

Table 6-1 lists the things you need to know to use bundletool.

FIGURE 1-9:
Finding the APK

file.

0004864531.INDD 704 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

704 BOOK 6 The Job Isn’t Done Until . . .

The Information You Need
This Chapter’s Nickname
for the Information

On your computer’s file system, the location of:

The java program (java.exe or simply java) JAVA_COMMAND

The bundletool jar file BUNDLETOOL_JAR

Your AAB file AAB_FILE

Your key store file KEYSTORE_JKS_FILE

Your key store’s password KEYSTORE_PASSWORD

Your key’s alias KEY_ALIAS

Your key’s password KEY_PASSWORD

A new name (ending in .apks) for the collection of
APK files that will be generated when you issue the
bundletool command

APKS_FILE

3. Launch your computer’s command-line application — the cmd app in
Windows or the Terminal app on a Mac.

4. In the command-line window, type the following command (all on one
line that wraps a few times on its own):

JAVA_COMMAND -jar BUNDLETOOL_JAR build-apks
 --bundle=AAB_FILE
 --output=APKS_FILE
 --ks=KEYSTORE_JKS_FILE
 --ks-pass=pass:KEYSTORE_PASSWORD
 --ks-key-alias=KEY_ALIAS

 --key-pass=pass:KEY_PASSWORD

If all goes well, the result is a shiny, new .apks file. That file encodes some APK
files that have been extracted from your AAB file.

The only remaining task is to deploy an APK file on your Android emulator.

5. Make sure that one (and only one) AVD is running, and that no physical
devices are connected to your computer.

Doing so keeps the next command from being a bit more complicated.

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 705 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 705

6. In the command-line window, type the following command (all on one
line that may wrap on its own):

JAVA_COMMAND -jar BUNDLETOOL_JAR install-apks --apks=APKS_FILE

This command analyzes your emulated device, decides which APK (or combi-
nation of APKs) to install on that device, and then proceeds to install your app.

7. On the emulated device, find your app’s launch icon and run the app.

Good work!

If you get stuck trying to use bundletool, visit the online reference page: https://
developer.android.com/studio/command-line/bundletool.

Another way to build and run an AAB file
If you want to test an AAB file and bundletool isn’t your cup of tea, you can fol-
low this section’s steps. With these steps, you can also fine-tune a build to target
specific release versions and specific flavors of your app. You can use one key to
sign your app’s free version and another key to sign the app’s paid version.

Here’s what you do:

1. Create a signing key by following Steps 1 through 12 in the section
entitled “Creating the release build.”

Hey! That’s most of the section’s steps, isn’t it?

2. In the Generate Signed Bundle or APK dialog box, click Cancel.

Lo and behold! You’re back to Android Studio’s main window.

3. Click the Build Variants tool button.

You can find that button along the left edge of the Android Studio window.
(See Figure 1-10.)

Clicking that button brings the Build Variants tool window out of hiding. This
tool window has an Active Build Variant drop-down list.

4. In the Active Build Variable drop-down list, select Release. (Refer to
Figure 1-10.)

Now, when you select Run➪ Run ’app’, Android Studio will try to build and run
your project’s release version. The only problem is, Android Studio won’t try to
run a signed version. Before that can happen, you have a few more steps to
follow.

0004864531.INDD 706 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

706 BOOK 6 The Job Isn’t Done Until . . .

5. In Android Studio’s main menu bar, choose File➪ Project Structure.

The Project Structure dialog box appears. (What else would you expect?)

You’re about to create something called a signing configuration. The signing
configuration says, “One way to sign a build is to use the key that was created
in Step 1.”

6. In the Project Structure dialog box, choose Modules➪ Signing Configs.

The dialog box now contains two plus sign icons — one below the word
Modules and another in the Signing Configs tab. (See Figure 1-11.)

7. Click the Signing Configs tab’s plus sign icon.

A new message box requests that you enter a signing config name.

8. In the message box, type release and then click OK.

Using the name release doesn’t automatically connect this signing configura-
tion with your project’s release build variant. Making that connection comes
later in these steps.

9. In the list near the top of the Signing Configs tab, check to make sure that
the release item is selected.

If not, select it.

10. In the body of the Signing Configs tab, fill in the information about the
signing key that you created in Step 1.

Android Studio wants the path to the key store file, the file’s password, a
particular key’s alias, and that key’s password. (See Figure 1-12.)

FIGURE 1-10:
Selecting a build

variant.

FIGURE 1-11:
Creating a signing

configuration.

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 707 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 707

11. Click Apply.

At this point, you’ve created a signing configuration. As a final step, you have to
associate that configuration with your project’s release build.

12. In the Project Structure dialog box, select Build Variants➪ Build Types.
(See Figure 1-13.)

FIGURE 1-12:
Don’t even think

about it! This
screenshot’s

passwords are
fake.

FIGURE 1-13:
 Connecting

a signing
 configuration

to a build.

0004864531.INDD 708 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

708 BOOK 6 The Job Isn’t Done Until . . .

13. In the list near the top of the Build Types tab, check to make sure that
the release item is selected.

14. Look for the Signing Config drop-down list in the Build Types tab. In that
list, select SigningConfigs.release. (Refer to Figure 1-13.)

15. Click OK.

Well, whaddya know? You’ve returned to Android Studio’s main window.

16. Check the Build Variants tool window to make sure that it’s still in
release mode.

17. In Android Studio’s toolbar, click the Run icon.

And that’s it! Your app runs in the AVD window.

Publishing Your App
To start this section’s adventure, visit https://play.google.com/apps/publish.
Look for a button or link with words like Create Application. Click that button or
link and get ready to roll.

Nothing permanent happens until you click the Rollout button. If the Rollout but-
ton makes you nervous, there’s also a friendly Save Draft button. So you can pause
your work, think about things for a while, and log on again later. For more extreme
situations (severe cases of Developer’s Remorse), there’s an Unpublish link.

Neither the Rollout nor the Unpublish requests take effect immediately. In partic-
ular, a Rollout request triggers a review of your app by the folks at the Play Store.
You must wait a few days for their final approval.

If Google’s website is anything like its May 2020 version, clicking Create Appli-
cation takes you to a place with a big navigation bar along the left side. Pages
accessible from the navigation bar include App Signing, Store Listing, Content
Rating, Pricing & Distribution, Translation Service, and many others. This section
describes a few of the pages in detail.

The App Releases page
In your visit to the Google Play Store, the grandest of all events is the uploading of
the APK file. To make this happen, select the navigation bar’s App Releases item.
That’s where you find buttons and links for uploading APK or AAB files. In partic-
ular, the page offers you a few different upload tracks.

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 709 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 709

 » Tracks intended for app testing:

• Internal track, with up to 100 testers. You supply the testers’ email
addresses. Each email address must be associated with a Google account.

• Closed (alpha) track, with up to 2,000 testers. You supply the testers’
email addresses or the names of Google Groups.

• Open (beta) track, with an unlimited number of testers. Anyone with a
compatible device can be a tester.

 » Track intended for general release: Production track, with users instead of
testers. Your app is listed on the Google Play Store.

For more information about each of the tracks, visit https://support.google.
com/googleplay/android-developer/answer/3131213.

WHAT? MORE TESTING?
When testing your app with friends and relatives, you don’t always get reliable results.
Sure, your friends are polite, but they might also know something about your app —
something that other users won’t already know. So your casual acquaintances living on
other continents should test your app, too. In fact, you should test so much that you’d
have trouble mailing your APK file to all your testers.

That’s why the Play Store allows you to publish an app with invitation-only access. After
uploading an app to the internal or closed track, you provide a list of testers — a rela-
tively small number of people who can download the app from the Play Store. When
these people use your app, the Play Store keeps track of crashes, application not
responding (ANR) occurrences, and other unwanted events. The Google Play Console
can filter its reporting of these events by Android version and device type.

If you want more testing, you can use Android’s built-in testing tools. Book 3, Chapter 2
has the details. Other popular testing frameworks include Robotium, UI Animator,
Selendroid, Testdroid, and Dynatrace.

And, if you want even more testing, you can enroll your app with a testing farm — a ser-
vice that automates the testing and tests your app on many different devices simultane-
ously. Amazon Web Services (AWS) has its own full-featured testing farm.

0004864531.INDD 710 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

710 BOOK 6 The Job Isn’t Done Until . . .

For each of these tracks, you supply an APK or AAB upload, a name for this release,
and an explanation of what’s new in this release. When you follow the steps in the
“Creating a Publishable File” section, earlier in this chapter, Android Studio cre-
ates a file named app-release.apk or app-release.aab and puts the file in your
project’s app/release subdirectory. So, when the big upload moment comes, drag
that app-release file to the Drop Your File Here box, or click the Browse button
and use your File Explorer or Finder to navigate to this app-release file.

The Store Listing page
On the Google Play Console’s Store Listing page, you describe your app to poten-
tial users. You answer many questions and upload several files. This section lists
several of the items on the page.

As you scroll down among these items, a Save Draft button stays at the bottom of
your web browser’s screen. Click the Save Draft button frequently to keep from
losing any work that you’ve done.

 » Title of your app: A great title can jump-start an app’s popularity, so make
your title something snappy.

 » Short description: You may enter up to 80 characters.

 » Full description: You may enter up to 4,000 characters.

 » Graphic assets: Refer to the section entitled “Preparing Graphic Assets for the
Play Store,”earlier in this chapter.

 » Your app’s category: Is it a game? If so, what type of game? (Choose from
Action, Adventure, Card, Puzzle, Racing, Role Playing, and many other types.) If
it’s not a game, what type of app is it? (Choose from Business, Communication,
Education, Finance, Health, and a bunch of other types.)

 » Tags to associate with your app: For some suggestions, click the Save Draft
button and then click the page’s Manage Tags button.

 » Content rating: Complete a questionnaire to determine your app’s content
rating under several standards (international and otherwise). Does your app
involve violence, sexuality, potentially offensive language, or references to illegal
drugs? Does your app involve the exchange of any personal information?

 » Your contact details: You must supply an email address, and users have access
to this address. Optionally, you can supply a website and a phone number.

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 711 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 711

 » Language translations: You specify the default language for your listing on
the Play Store. You can provide translations in other languages, or have Google
Translate furnish its own guesses. (This can accidentally lead to some fairly
amusing results.) You can also purchase translations straight from the Google
Play Console. For a very simple app, translation costs as little as $5 per target
language.

The App Signing page
The “Creating a Publishable File” section, earlier in this chapter, draws a sharp
distinction between APK files and AAB files. An APK file represents an installable
app, and an AAB file represents several APK files. You can upload either kind of
file to the Google Play Store. If you upload an APK file, the Play Store downloads
that file to users’ devices. If you upload an AAB file, the Play Store manages the
creation of your app’s actual APK files and downloads those files to users’ devices.

Whatever you send, the file must be digitally signed. So says the same “Creating a
Publishable File” section. But if you upload an AAB file and the Play Store creates
all the APK files, who signs those APK files?

The App Signing page presents you with the option of letting the Play Store add
your signature to each of the APK files. To make this happen, you can upload
the .pepk file that you create in Step 12 of the section entitled “Creating the release
build,” earlier in this chapter. Yes, you’re handing your very own digital signature
over to Google. It’s a bit like telling someone your banking PIN or your mother’s
maiden name. But in return, you’re reducing the complexity of delivering a sleek,
customized app to each of your users. If you want the benefits of Dynamic Deliv-
ery, you have to let Google manage your app signing key.

Other pages
The Google Play Console has other pages, too, and here are some of them:

 » Device catalog: On the Device catalog page, you specify which devices are
explicitly supported for running your app, and any devices that are explicitly
excluded. In May 2020, the Device catalog lists over 16,000 devices.

 » App content: On the App content page, you describe your app’s privacy
policy. You specify the app’s target age group. You tell Google if your app
contains ads.

0004864531.INDD 712 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

712 BOOK 6 The Job Isn’t Done Until . . .

 » Pricing & distribution: In which countries can your app be distributed? You
can pick and choose from more than 150 countries.

Will you charge for your app, or will it be free? For many developers, this
question requires some serious thinking so the next chapter delves deeply
into the alternatives. For now, the only thing you have to know is that changing
your mind is a one-way street. You can change an app from being paid to free,
but you can’t change an app from being free to being paid. Of course, you can
publish a new app that’s very much like the original free app, except that the
new app is a paid app.

 » In-app products: Will you sell products or offer subscriptions through your
app? For a discussion about this possibility, see the next chapter.

 » Services & APIs: A back-end service is computing done on the cloud. And why
would your app need to deal with the cloud? Maybe your game has a leader-
board, and you want to compare the scores of users around the world. To
make this comparison, you need information that’s stored outside the user’s
own device. This function, and many other functions that apps perform,
require access to a server.

Maybe you want to send data to your users using Google Cloud Messaging.
Maybe you want Google’s search engine to look for content within your
app. Maybe you want Google to handle your in-app billing. All these things
involve back-end services.

Licensing is another very commonly used back-end service. Licensing protects
your app from illegal use. For more info, see the “About app licensing” sidebar.

ABOUT APP LICENSING
If you license your app, no device can run your app unless the device checks in with a
server. The server ensures that the device has permission to run your app. Here are
some scenarios for an app (free or paid), with and without licensing:

• Best case scenario with licensing: A user buys your app and copies the .apk file
to another user’s device. The other user hasn’t paid for your app. The other user
tries to run the app but can’t run it because of the licensing restrictions.

• Worst case scenario without licensing: A user buys your app and copies the .apk
file to a file-sharing website. People download and install your .apk file and run the
code for free. (Ooo! That’s bad!)

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 713 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 713

• Worst case scenario with licensing: A user buys your app, cracks the licensing,
and copies the .apk file to a file-sharing website. People download and install the
cracked version of your .apk file and run the code for free. (That’s bad, too.)

• Best case scenario without licensing: No one ever tries to steal your app. Or, if
someone steals your app, the additional distribution of your app works to your
advantage.

All things considered, it’s best to do licensing with any paid app. Licensing is also a good
precaution with a free app (to help you maintain ownership of the app’s concept).

To enable licensing in your app, you must install the Google Play Licensing Library (also
known as LVL — the Licensing Verification Library) using the Android SDK Manager. You
must add that library to your app’s project. You must obtain the app’s licensing key (a
sequence of about 400 gibberish characters) from the Google Play Console and add the
key to your main activity. You must add additional code in your app to check a device’s
license and to respond (based on the result of the check). The additional code imple-
ments one of three possible policies:

• Strict policy: Whenever the user tries to launch your app, the device asks the
Google Play server for approval to run the app. If the user tries to launch your app
when the device has no connectivity, the user is out of luck. Life’s tough.

• Server-managed policy: The user’s device stores a copy of the user’s license. The
device uses the copy when network connectivity is unavailable. The license is obfus-
cated (so it’s tamper-resistant), and the license keeps track of trial periods, expira-
tion dates, and other stuff. This is the default policy, and it’s the policy that Google
highly recommends.

• Custom policy: Create your own policy or modify either of the preceding policies
by adding Kotlin code to your app.

This chapter’s “What? More testing?” sidebar describes how you can use the Google Play
Console to register testers for your soon-to-be-published app. You can also name some
special testers for your app’s licensing scheme. Your testers attempt to run the app
when (as they know darn well) they shouldn’t get permission. The Google Play Console
keeps track of successes and failures so that you can find out whether your licensing
scheme works correctly.

For all the details about the licensing of apps, visit http://developer.android.com/
google/play/licensing/.

0004864531.INDD 714 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

714 BOOK 6 The Job Isn’t Done Until . . .

Leave No Stone Unturned
Do lots of homework before you publish on Google’s Play Store by checking out
these resources:

 » Visit https://developer.android.com/studio/publish/preparing for a
comprehensive list of required steps.

 » Visit https://developer.android.com/docs/quality-guidelines/
core-app-quality for an exhaustive list of criteria that your app must satisfy.

 » Visit https://developer.android.com/distribute/play-policies for a
glimpse at the Play Store’s upcoming changes.

And finally . . .

 » Visit https://developer.android.com/distribute/best-practices/launch/
launch-checklist to make sure that you’re ready for your app’s big rollout.

Publishing Elsewhere
Google’s Play Store isn’t the only game in town. (It’s a very important game, but
it’s not the only game.) You can also publish on the Amazon Appstore, on several
independent websites, or on your own website.

The Amazon Appstore
This section has a few notes about publishing on Amazon Appstore. The steps
for publishing with Amazon resemble the steps for publishing with Google. Pub-
lishing on Amazon’s Appstore is less expensive than publishing on Google’s Play
Store (if you call not paying a one-time $25 developer fee “less expensive”). The
Amazon Developer Portal pages look a bit different from the Google Play Console
pages, but the basic ideas are almost all the same. Amazon’s focus is primarily on
tablets and Fire TV, but the store lists apps for phones as well.

Digital rights management
When you publish an app, you have the option of applying Amazon’s digital rights
management (DRM) to your app. This is the Amazon equivalent of Google’s Licens-
ing Verification Library. Like the DRM for Amazon Kindle books, the Appstore’s
DRM electronically grants permission to run each app on a device-by-device
basis. And like any other scheme for managing users’ privileges, the Appstore’s
DRM inspires vast waves of controversy in blogs and online forums.

Pu
bl

is
hi

ng
 Y

ou
r

A
pp

 t
o

th
e

G
oo

gl
e

Pl
ay

 S
to

re

0004864531.INDD 715 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

CHAPTER 1 Publishing Your App to the Google Play Store 715

Amazon doesn’t publish gobs of information about the workings of its DRM scheme.
But one thing is clear: Without digital rights management, any user can run your
application. With DRM, a user can replace his or her device and, by logging on to the
new device as the same Amazon user, have access to his or her rightfully purchased
apps. Users can run paid apps without having an Internet connection because when
a user buys an app, the user receives an offline token for that app. There’s no doubt
about it: When you publish a paid app, DRM is the way to go.

Amazon answers some questions about DRM in a blog post with the follow-
ing unwieldy URL: https://developer.amazon.com/public/community/post/
Tx16GPJPAW8IKLC/Amazon-Appstore-Digital-Rights-Management-simplifies-
life-for-developers-and-cus. For reference, you can also check https://
developer.amazon.com/docs/app-submission/understanding-submission.
html#about_drm.

A few other differences
Amazon’s graphic assets requirements are different from Google’s. The image
sizes are different, and the number of images that you must submit are different.
Fortunately, when you’re submitting your app and you encounter these differ-
ences, you can save your Developer Portal work, set the Developer Portal aside,
and create more images. You can find Amazon’s image requirements at https://
developer.amazon.com/docs/app-submission/asset-guidelines.html.

Amazon’s app-signing procedure is a bit different from Google’s. By default, Ama-
zon applies its own certificate to each app published on the Amazon Appstore. The
certificate is unique to your account. But otherwise, it’s a boilerplate certificate.

Then there’s the optional SKU. When you submit an app, Amazon’s Developer
Portal lets you supply a SKU. The acronym SKU stands for Stock Keeping Unit. It’s a
way that you, the seller, keep track of each kind of thing that you sell. For example,
imagine that you sell only two kinds of shirts: green ones and blue ones. When the
customer buys a shirt, the only thing the customer decides is whether to buy a green
shirt or a blue shirt. Then you might assign SKU number 000001 to your green
shirts and 000002 to your blue shirts. It’s up to you. Instead of 000001 and 000002,
you might assign 23987823 to your green shirts and 9272 to your blue shirts. Any-
way, when you submit an app, you can create your own SKU number for that app.

For a nice summary of the Amazon Appstore’s guidelines and recommendations,
visit https://developer.amazon.com/docs/app-submission/faq-submission.
html.

Other venues
Some of the lesser known Android app websites offer apps that consumers can’t
get through Google Play or Amazon Appstore. In addition, many sites offer reviews,

0004864531.INDD 716 Trim size: 7.375 in × 9.25 in July 3, 2020 5:17 AM

716 BOOK 6 The Job Isn’t Done Until . . .

ratings, and links to the Google and Amazon stores. You can search for these sites
yourself, or you can find lists of such sites. To get started, visit Android Authority
(https://www.androidauthority.com/best-app-stores-936652/) and Joy of
Android (http://joyofandroid.com/android-app-store-alternatives).

Sites differ from one another in several ways. Does the site specialize in any par-
ticular kind of app? Is the site linked to a particular brand of phone? Are the site’s
reviews more informative than those of other sites? Does the site vet its apps? Is
the site’s interface easy to use? And here’s a big one: How does a user install one
of the site’s apps?

Before there were app stores, there were websites with files that you could down-
load and install. Installing meant clicking an icon, issuing some commands, or
doing other things. That model is still alive in the desktop/laptop world. But
for mobile devices, for which installation procedures can be cumbersome, the
one-stop app store model dominates.

Some Android app sites still use the download-and-install-it-yourself model. For
a patient (or a truly determined) consumer, the install-it-yourself model is okay.
But most mobile-device owners are accustomed to the one-step app store instal-
lation process. Besides, some mobile service providers put up roadblocks to keep
users from installing unrecognized apps. On many phones, the user has to dig into
the Settings screen to enable installation of apps from unknown sources. On some
phones, that Settings option is either hidden or unavailable.

For users who know and trust your work, there’s always one oft-forgotten alter-
native. Post a link to your app’s APK file on your own website. Invite users to visit
the page with their mobile phones’ browsers and download the APK file. After
downloading the file, the user can click the download notification to have Android
install your app.

Here’s one thing to consider. To preload the Google Play Store on a device, the
device manufacturer must obtain Google’s approval. The approval comes in the
form of a certification, which asserts that the device and its software meet certain
compatibility standards. Because of the expense in meeting the standards or in
obtaining certification, some device manufacturers don’t bother to apply. Their
devices don’t have the Play Store preloaded. Many of these devices have alterna-
tive app stores preloaded on their home screens but the Play Store app is con-
spicuously absent. Some users find workarounds and manage to install the Play
Store app, but many users rely on apps from other sources. To reach these users,
you have to find alternative publishing routes. (The percentage of users who live
in this uncertified world could be very small, or it could be quite large. The stats
aren’t readily available. One way or another, these people deserve to have access
to your app.)

