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Structural Stability

1.1 Introduction

Structures fail mainly either due to material failure or because of buckling or structural
instability. Material failures are governed by the material strength that may be the ultimate
strength or the yield point strength of the material. The failure due to structural instabil-
ity depends on the structural geometry, size, and its stiffness. It does not depend on the
strength of the material. It is important to understand the failure due to structural instability,
because using a higher strength material will not prevent this type of failure. More and more
structures are failing because of stability problems because of the present trend to use high
strength materials and large structures. The increase in size increases the slenderness ratio
of the members of a structure, and these members reach their stability limit before their
material strength. A look at different design codes makes it clear that in many situations
the maximum force a system can support is governed by structural instability than by
material strength.

An interesting question to ask is, if the material strength is not exceeded, then why does the
member fail?. The answer may be that all systems take the path of least resistance when they
deform, a basic law of nature. For slender members, it is easier to bend than to shorten under
a compressive force resulting in the buckling of the member before it fails by exceeding its
material strength. For short members it is easier to shorten than to bend under a compressive
force. In practice, there is always a tendency of a slender member to bend sideways even if
the intended force is an axial compression. This tendency is due to small accidental eccentric-
ity, unintended lateral disturbing force, imperfections, or other irregularities in the member.
For small compressive forces the internal resistance of a member to bending exceeds external
action forcing it to bend. As the external forces increase, a limiting load is reached where their
overturning effect to bend exceeds the internal resistance to bending of the member. As a result,
more and more bending of the system called buckling occurs. The maximum compressive force
at which the member can remain in equilibrium in the straight configuration without bending
is called the buckling load. A system is called stable if small disturbances cause small defor-
mations of the system configuration. Displaced shape equilibrium and the energy methods are
the two most commonly used procedures to solve the buckling loads problem and to study the
stability of equilibrium.
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2 1 Structural Stability

(a) (b) (c)

Figure 1.1 Types of equilibrium: (a) stable; (b) unstable; (c) neutral.

1.2 General Concepts

Concepts of stability can be explained by considering the equilibrium of a ball resting on three
different surfaces [1] shown in Figure 1.1. The ball on the concave surface in Figure 1.1a is
in stable equilibrium because any small displacement will increase the potential energy of the
ball. The component of the self-weight parallel to the sliding surface will bring the ball back
to its original equilibrium position. In Figure 1.1b, the ball rests on a convex surface, a small
displacement from its equilibrium position will decrease the potential energy of the ball. The
parallel component of the self-weight will slide the ball further from its initial configuration,
and the equilibrium is unstable. If the ball is displaced on the flat surface, the potential energy
of the ball remains the same, and the ball assumes a new equilibrium position. Thus, poten-
tial energy, Π, is a minimum for stable equilibrium, whereas it is a maximum for the unstable
equilibrium position, and the potential energy remains the same for the position of neutral
equilibrium. Energy methods are based on these concepts for solving the structural stability
problems. If ΔΠ> 0, the displaced configuration is stable, whereas for ΔΠ< 0, the displaced
shape is in unstable equilibrium, the transition ΔΠ = 0, which is the position of neutral equi-
librium gives critical load at which the system becomes unstable by energy method.

Also, since we are studying the state of equilibrium in the slightly displaced position of the
body, the equilibrium equations are written based on the displaced shape of the body in the
displaced shape equilibrium method. Both methods can be used to formulate the equilibrium
equations and calculate the critical loads. However, the displaced equilibrium approach does
not give the nature of equilibrium when the critical load is reached. To answer that question,
the second variation of potential energy 𝛿2Π is to be considered. The potential energy may be
expanded into a Taylor series about the equilibrium state and written as

ΔΠ = 𝛿Π + 𝛿2Π + 𝛿3Π + ----- (1.1a)
where

𝛿Π =
n∑

i=1

𝜕
∏
𝜕qi

𝛿qi (1.1b)

𝛿2Π = 1
2!

n∑
i=1

n∑
j=1

𝜕2 ∏
𝜕qi𝜕qj

𝛿qi𝛿qj (1.1c)

𝛿3Π = 1
3!

n∑
i=1

n∑
j=1

n∑
k=1

𝜕3 ∏
𝜕qi𝜕qj𝜕qk

𝛿qi𝛿qj𝛿qk (1.1d)

𝛿Π, 𝛿2Π, and 𝛿3Π are called the first, second and third derivatives respectively of the potential
energy Π. The critical load Pcr is obtained from the conditions of equilibrium given by 𝛿Π = 0
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for any 𝛿qi, or
𝜕
∏
𝜕qi

= 0 for each i [2]. The equilibrium state is stable if ΔΠ> 0. Therefore, the

equilibrium state is stable for 𝛿2Π> 0, and is unstable for 𝛿2Π< 0.
Because energy is quadratic, it can also be written as

2
∏

=
n∑

i=1

n∑
j=1

Kijqiqj = qTKq (1.1e)

where
q = column vector of the generalized displacements

qT = transpose of the column vector
K = square matrix (n × n) with elements Kij

For elastic structures, matrix K represents the stiffness matrix of the structure with regard to its
generalized displacements, and Π is the potential energy. The stiffness elements are given by

Kij =
𝜕2 ∏
𝜕qi𝜕qj

=
𝜕2 ∏
𝜕qj𝜕qi

= Kji (1.1f)

That shows the stiffness matrix is symmetric. The second variation of the potential energy from
Eq. (1.1c) is

2𝛿2∏ =
n∑

i=1

n∑
j=1

Kij𝛿qi𝛿qj (1.1g)

For 𝛿2Π> 0, the matrix with elements Kij will be positive definite. A real symmetric matrix is
positive definite if and only if all its principal minors are positive, that is,

D1 = K11 > 0, D2 =
[

K11 K12
K21 K22

]
> 0, ------------Dn =

⎡⎢⎢⎢⎣
K11 − − K1n
− − − −
− − − −

Kn1 − − Knn

⎤⎥⎥⎥⎦ > 0 (1.1h)

or

D1 = K11 > 0, |D2| = ||||K11 K12
K21 K22

|||| > 0, -----------Dn =

||||||||
K11 − − K1n
− − − −
− − − −

Kn1 − − Knn

|||||||| > 0 (1.1i)

When systems are subjected to compressive forces three types of instabilities can occur:
(i) bifurcation of equilibrium; (ii) maximum or limit load instabilities; and (iii) Finite distur-
bance instability.

1.2.1 Bifurcation of Equilibrium

Equilibrium paths are shown as load displacement plots in Figure 1.2. The equilibrium path
starting from the unloaded configuration is called the fundamental or primary path. At a certain
load the equilibrium path can continue to be the fundamental path or it could change to an
alternate configuration if there is a small lateral perturbation. This alternate path is called
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Figure 1.2 Bifurcation equilibrium paths: (a) Symmetric stable bifurcation; (b) Symmetric unstable bifurcation;
(c) Asymmetric bifurcation.

the secondary or post-buckling path [3]. The point of intersection between the primary and
secondary paths is called the point of bifurcation, and the load corresponding to this point is
called the critical load. In Figures 1.2a and 1.2b, the secondary paths are symmetrical. In the
symmetric bifurcation the post-buckling load deflection behavior remains the same irrespective
of the direction in which the structure bends. It is a stable bifurcation in Figure 1.2a because the
load increases with deflection after buckling, axially loaded columns and thin plates subjected
to in-plane forces exhibit this behavior. The load decreases below the critical as the deflection
increases in the post-buckling stage in Figure 1.2b, and the structure has an unstable bifurcation
at the critical load. Guyed towers exhibit this behavior because some of the cables come under
compression and are unable to sustain the external forces. If the post-buckling load deflection
diagram is affected by the direction of buckling, then the bifurcation is asymmetric as shown
in Figure 1.2c. Some framed structures show this kind of behavior.

1.2.2 Limit Load Instability

This type of instability is also called snap-through buckling. In this type of buckling, the primary
path is nonlinear and once the load reaches a maximum, the point P in Figure 1.3a jumps to Q
on another branch of the curve. The load at point P is the critical load in this type of instability.
The structure snaps through to a nonadjacent equilibrium position represented by point Q.
Spherical caps and shallow arches exhibit this behavior.

1.2.3 Finite Disturbance Instability

This type of instability occurs in cylindrical shells under the action of axial forces shown in
Figure 1.3b. The load capacity of the structure drops suddenly at the critical load in Figure 1.3c.
The structure takes a non-cylindrical shape after the critical load. The structure continues to
take more axial compression in Figure 1.3c after taking another equilibrium configuration. In
this type of instability, a finite disturbance of the cylinder or imperfection in the cylinder will
lower the critical load considerably and the structure will change equilibrium configuration
upon reaching the ideal critical load.
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Figure 1.3 Post-buckling equilibrium paths: (a) Limit load instability; (b) Cylindrical shell under axial compression;
(c) Finite difference instability.

1.3 Rigid Bar Columns

Columns consisting of rigid bars supported by springs and acted on by axial compression are
studied by the displaced shape equilibrium, or by energy methods. At first, the small deflection
analysis is considered. The study of rigid bar columns provides a good background on the nature
of stability problems and the different methods used to solve them because these systems have
limited degrees of freedom.

1.3.1 Rigid Bar Supported by a Translational Spring

1.3.1.1 The Displaced Shape Equilibrium Method
Consider a perfect rigid vertical column supported by a hinge at the bottom and a linear spring
of stiffness “k” at the top. The bar is acted on by an axial load shown in Figure 1.4. If there
is an accidental lateral disturbance, the spring force, kL sin 𝜃, will bring it back to the vertical
position for small axial loads. In this case the restoring moment due to spring force is larger
than the overturning moment due to the force P as shown in Eq. (1.2a):

k L2 sin 𝜃 cos 𝜃 > PL sin 𝜃 (1.2a)

(b)(a)

P 

B 
B´

L 
θ 

P 

kL sin θ 

L sin θ

A kL sin θ 

P 

A

B 
C 

Figure 1.4 Rigid bar under axial force: (a) Rigid bar with axial load; (b) Free-body diagram of displaced shape.
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6 1 Structural Stability

and the vertical position of the bar is stable. The spring force will not be able to bring back the
rigid bar to its vertical position for large axial force, because the overturning moment will be
larger than the restoring moment shown below

k L2 sin 𝜃 cos 𝜃 < PL sin 𝜃 (1.2b)

and the vertical position of the bar is unstable. The minimum axial force at which the bar
becomes unstable is called the critical load. It is the force at which the equilibrium changes
from stable to unstable, and

k L2 sin 𝜃 cos 𝜃 = PL sin 𝜃

or P = kL cos 𝜃 (1.2c)

The critical load, Pcr, can be found by considering the equilibrium of the slightly displaced
position of the bar by taking moments of all forces about A in Figure 1.4b as follows:∑

MA = 0

PL sin 𝜃 − kL2 sin 𝜃 cos 𝜃 = 0
or P = kL cos 𝜃 (1.2d)

The same result is obtained from Eqs. (1.2c and 1.2d), hence the critical load can be found by
considering the equilibrium of the slightly displaced shape. For small deflections, cos𝜃 ≈ 1,
therefore,

Pcr = kL (1.2e)

1.3.1.2 The Energy Method
The first law of thermodynamics can be used to derive equations used in the energy method.
This law, which is a statement of the law of conservation of energy, can be stated as “The work
that is performed on a mechanical system by external forces plus the heat that flows into the sys-
tem from the outside equals the increase of kinetic energy plus the increase of internal energy.”

We + Q = ΔT + ΔU (1.3a)

Here, W e, is the work performed on the system by the external forces, Q is the heat that flows
into the system, ΔT is the increase of kinetic energy, and ΔU is the increase of internal energy
[4]. For an adiabatic change, Q = 0, and for a body in equilibrium, ΔT = 0. This reduces
Eq. (1.3a) to

We = ΔU (1.3b)

The change in internal energy of an elastic body is determined by the strains, and is called the
strain energy. If the system is subjected to conservative forces, W e is independent of the path the
system takes from the configuration X0 to another configuration X . In this case, the W e depends
only on the two terminal configurations, and is denoted by −V(X0, X). The function V(X0, X)
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1.3 Rigid Bar Columns 7

is called the potential energy of the external forces, and it is always measured as the change in
the potential energy, ΔV, from one configuration to another configuration of the system.

We = −ΔV (1.3c)

Equations (1.3b and 1.3c) can be combined to write

ΔV + ΔU = 0 (1.3d)

or

Δ(V + U) = 0 (1.3e)

V is the potential energy due to external forces, and U is considered the potential energy of the
internal forces. Total potential energy of the system is

Π = V + U (1.3f)

The total potential energy of a system is a minimum in the position of stable equilibrium,
whereas it is a maximum for unstable equilibrium. The critical load can be obtained by equating
the first derivative of the total potential energy equal to zero. In Figure 1.4

U = 1/2k(L sin 𝜃)2 (1.3g)
V = −P L(1 − cos 𝜃) (1.3h)
Π = −P L(1 − cos 𝜃) + 1∕2k(L sin 𝜃)2 (1.3i)
dΠ
d𝜃

= −PL sin 𝜃 + k L2 sin 𝜃 cos 𝜃 (1.3j)

Substituting dΠ
d𝜃

= 0, we get

P = kL cos 𝜃 (1.3k)

cos 𝜃 ≈ 1 for small values of 𝜃

or

Pcr = kL (1.3l)

giving the same critical load as in Eq. (1.2e). From Eq. (1.3j)
d2 ∏
d𝜃2 = −PL cos 𝜃 + kL2 cos 2𝜃 (1.3m)

For the initial position,

𝜃 = 0,
d2 ∏
d𝜃2 = −PL + kL2 (1.3n)

For P < Pcr,
d2 ∏
d𝜃2 > 0, and for P > Pcr,

d2 ∏
d𝜃2 < 0 in Eq. (1.3n). So the system is in stable equi-

librium if P<Pcr, and is in unstable equilibrium for P>Pcr, in the initial position.
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8 1 Structural Stability

1.3.2 Two Rigid Bars Connected by Rotational Springs

1.3.2.1 The Displaced Shape Equilibrium Method
Consider two rigid bars as shown in Figure 1.5. The lower bar is connected to a pin support and
a linear rotational spring of stiffness c1 at the bottom. At the top the lower bar is connected to
another bar by a linear rotational spring of stiffness c2. The upper bar is free at the top, and the
bars are subjected to an axial force of P.

Taking the equilibrium of the lower bar in Figure 1.5c, the sum of the moments of all forces
about A is equal to zero,

c1𝜃1 − c2 (𝜃2–𝜃1)–PL1 sin 𝜃1 = 0 (1.4a)

From Figure 1.5d, sum the moments of all the forces about B and equate it to zero,

c2(𝜃2–𝜃1)–PL2 sin 𝜃2 = 0 (1.4b)

sin𝜃 ≈ 𝜃 in radians for small values of 𝜃, and Eqs. (1.4a and 1.4b) can be written in the matrix
form as[

c1 + c2 − PL −c2
−c2 c2 − PL2

] {
𝜃1
𝜃2

}
=
{

0
0

}
(1.4c)

or
{[

c1 + c2 −c2
−c2 c2

]
− P

[
L1 0
0 L2

]}{
𝜃1
𝜃2

}
=
{

0
0

}
(1.4d)

L2

P

C´

L2 sinθ2

θ2 

B´ c2 (θ2–θ1) 

P 
(d)

(a)

A

B

C

c1

c2

L1

L2

P
P 

B´

c1θ1 

θ1 
L1

P 
A 

L1 sinθ1

c2 (θ2–θ1) 

(c)

(f)

(b)

B´

A

L1

L2

c1θ1

θ1

θ2–θ1

P 

P 

θ2

C´

(e)

Figure 1.5 Two rigid bars under axial load: (a) Two rigid bars with axial force; (b) Displaced shape; (c) Free body
diagram of lower bar; (d) Free body diagram of upper bar; (e) First buckling mode; (f) Second buckling mode.
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Equation (1.4d) is an eigenvalue problem. The critical loads P are the eigenvalues, and the angu-
lar displacements, 𝜃1 and 𝜃2 are given as eigenvectors. For a nontrivial solution the determinant
of the coefficient matrix is zero [5],||||c1 + c2–PL1 −c2

c2 c2 − PL2

|||| = 0 (1.4e)

or
(c1 + c2 − PL1)(c2 − PL2) − (c2)2 = 0

or

P2–P
(

c1

L1
+

c2

L2
+

c2

L1

)
+

c1c2

L1L2
= 0 (1.4f)

The solution of the quadratic Eq. (1.4f) is given by

P =

c1
L1

+ c2
L2

+ c2
L1

±
√(

c1
L1

+ c2
L2

+ c2
L1

)2
− 4

(
c1c2
L1L2

)
2

(1.4g)

If c1 = c2 = c, and L1 = L2 = L

P =
3c
L
±
√

5 c
L

2
P = 0.382 c

L
, or 2.618 c

L
(1.4h)

The corresponding eigenvectors are:{
𝜃1
𝜃2

}
=
{

1
1.618

}
and{

𝜃1
𝜃2

}
=
{

1
−0.618

}
(1.4i)

1.3.2.2 The Energy Method
The critical load for the two rigid bars shown in Figure 1.5a subjected to an axial force P can be
found by using the principle of stationery potential energy. The strain energy of the system in
the displaced shape is given by

U = 1∕2c1(𝜃1)2 + 1∕2c2(𝜃2 − 𝜃1)2 (1.5a)
The potential energy of the external force P is

V = −P
[
L1(1 − cos 𝜃1) + L2(1 − cos 𝜃2)

]
(1.5b)

Total potential energy of the system is
Π = 1/2c1(𝜃1)2 + 1/2c2(𝜃2–𝜃1)2 − P

[
L1(1 − cos 𝜃1) + L2(1 − cos 𝜃2)

]
(1.5c)

The potential energy of the system must be stationary for equilibrium. The first derivatives of
the potential energy function, Π, with respect to 𝜃1 and 𝜃2 are:

𝜕Π
𝜕𝜃1

= c1𝜃1 + c2(𝜃2 − 𝜃1)(−1) − PL1 sin 𝜃1 = 0 (1.5d)
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𝜕Π
𝜕𝜃2

= c2(𝜃2 − 𝜃1) − PL2 sin 𝜃2 = 0 (1.5e)

For small values of 𝜃, sin 𝜃 ≈ 𝜃 in radians, and Eqs. (1.5d and 1.5e) can be written in matrix
form as:[

c1 + c2 − PL1 −c2
−c2 c2 − PL2

] {
𝜃1
𝜃2

}
=
{

0
0

}
(1.5f)

Equations (1.4c and 1.5f) are the same, giving the same solution for the critical load, Pcr, by the
energy method as given before by the displaced shape equilibrium method. For c1 = c2 = c, and
L1 = L2 = L, from Eqs. (1.5d and 1.5e)

𝜕2 ∏
𝜕𝜃1

2 = c + c + −PL cos 𝜃1 (1.5g)

𝜕2 ∏
𝜕𝜃2

2 = c − PL cos 𝜃2 (1.5h)

𝜕2 ∏
𝜕𝜃1𝜕𝜃2

= −c (1.5i)

For the two degrees of freedom systems from Eq. (1.1g),

2𝛿2Π = K11𝛿q1
2 + 2K12𝛿q1𝛿q2 + K22𝛿q2

2 (1.5j)

For the initial position, 𝜃1 = 𝜃2 = 0, from Eqs. (1.1f, 1.5g, 1.5h, and 1.5i),

K11 =
𝜕2 ∏
𝜕𝜃1

2 = 2c − PL,K22 =
𝜕2 ∏
𝜕𝜃2

2 = c − PL,K12 = K21 =
𝜕2 ∏
𝜕𝜃1𝜕𝜃2

= −c (1.5k)

The two degrees of freedom system in Figure 1.5 is in stable equilibrium if 𝛿2Π> 0, or from
Eq.(1.1i) we have

D1 = K11 > 0, or 2c–PL > 0, or P <
2c
L

(1.5l)

and |D2| = ||||K11 K12
K21 K22

|||| = ||||2c − PL −c
−c c − PL

|||| > 0

or P2 − 3Pc
L

+ c2

L2 > 0

and
(

P − 0.382c
L

)(
P − 2.618c

L

)
> 0 (1.5m)

Therefore, the two degrees of freedom system is in stable equilibrium if P < Pcr =
0.382c

L
, because

the inequalities (1.5l and 1.5m) are satisfied in the initial position. It is unstable if

P > Pcr =
0.382c

L
.
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1.3.3 Three-Member Truss

1.3.3.1 The Energy Method
Consider a three-member truss where the bars AB and AC are rigid. These bars are
pin-connected at A, and the truss is simply supported at B and C as shown in Figure 1.6a.
Points B and C are connected by a linear spring of stiffness k. The bars make an initial angle
of 𝜃0 with the horizontal initially. When a vertical force of P is applied at A, the truss deforms,
and the bars make an angle of 𝜃 with the horizontal in Figure 1.6b.

The strain energy of the system after deformation is given by
U = 1/2k[ 2L(cos 𝜃– cos 𝜃0)]2 = 2kL2(cos 𝜃– cos 𝜃0)2 (1.6a)

Potential energy of the external force P is
V = −PL(sin 𝜃0– sin 𝜃) (1.6b)

Total potential energy of the system is
Π = −PL(sin 𝜃– sin 𝜃0) + 2kL2(cos 𝜃– cos 𝜃0)2

dΠ
d𝜃

= PL cos 𝜃–4kL2(cos 𝜃– cos 𝜃0) sin 𝜃 (1.6c)

By making dΠ/d𝜃 = 0, the equilibrium equation is
P

4kL
= sin 𝜃– cos 𝜃0 tan 𝜃 (1.6d)

d2Π
d𝜃2 = −PL sin 𝜃 − 4kL2[cos 2𝜃– cos 𝜃0 cos 𝜃] (1.6e)

Substitute (1.6d) into (1.6e)
d2Π
d𝜃2 = −4kL[sin 𝜃– cos 𝜃0 tan 𝜃]L sin 𝜃 − 4kL2[ cos 2𝜃– cos 𝜃0 cos 𝜃]

Simplifying the above expression gives
d2Π
d𝜃2 = 4kL2

cos 𝜃
(cos 𝜃0–cos3𝜃) (1.6f)

For stable equilibrium, d2Π
d𝜃2 > 0, or cos𝜃0 > cos3𝜃 is the desired condition.

(a)
2 L cos θ0

A

P

B C

θ0
θ0

k

(b)
2 L cos θ

θ θ

P

B C´

A´

k
L L LL

Figure 1.6 Three-member truss with rigid bars: (a) Three member truss; (b) Displaced shape.
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Therefore, at 𝜃c <𝜃 < - 𝜃c, the truss is in stable equilibrium. Where cos𝜃0 = cos3𝜃c at the crit-
ical equilibrium, and 𝜃c is the angle the rigid bars make at the critical equilibrium with the
horizontal.

For unstable equilibrium, d2Π
d𝜃2 < 0, or cos𝜃0 < cos3𝜃 is the desired condition. Therefore, when

-𝜃c <𝜃 <𝜃c, the truss is in unstable equilibrium. We can also look at the stability of the truss
with respect to the load P. At the critical equilibrium, 𝜃 = 𝜃c, now substituting ṅ in Eq. (1.6d)
gives

P
4kL

= sin 𝜃c − cos3𝜃c tan 𝜃c = sin3
𝜃c

Therefore, at P
kL

< 4 sin3
𝜃c, the equilibrium is stable and at P

kL
> 4sin3

𝜃c, the equilibrium is
unstable. From Eq. (1.6d)

P
4kL

= sin 𝜃 − cos 𝜃0 tan 𝜃

or P
kL

= 4 sin 𝜃

(
1 −

cos 𝜃0

cos 𝜃

)
or P

kL
= 0 for 𝜃 = 0, and 𝜃 = ± 𝜃0. (1.6g)

Assume the initial inclination of the truss members is 𝜃c = 200, then for critical equilibrium
cos 200 = cos3𝜃c, or 𝜃c = 11.620.

For stable equilibrium,

cos 𝜃0 > cos3𝜃, or cos 𝜃 < (cos 𝜃0)
1
3

or

𝜃 >

{
cos−1

[
cos (𝜃0)

1
3

]}
hence,

𝜃 > 𝜃c = 11.620 and 𝜃 < 𝜃c = −11.620

For unstable equilibrium, cos 𝜃0 < cos3𝜃, or cos 𝜃 > (cos 𝜃0)
1
3

or

𝜃 <

{
cos−1

[
cos (𝜃0)

1
3

]}
hence,

𝜃 < 𝜃c = 11.620 and 𝜃 > 𝜃c = −11.620

A plot of Eq. (1.6g) is shown for 𝜃0 = 200 in Figure 1.7.
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Figure 1.7 Displacement path of three-member truss.

In Figure 1.7 the stable equilibrium paths lie on the lines ABC and DEF, while the unstable
equilibrium path lie on the segment CD. As the load P increases from zero, first the stable
equilibrium path BC is followed until the critical load at point C is reached. At point C the
structure snaps through from point C to F as shown by the dashed line in Figure 1.7. This occurs
because as the load is increased infinitesimally from the peak point C, the stable equilibrium
available at that load is corresponding to point F. Therefore, there is a large deformation for
a small change in the load until the state corresponding to point F is reached. The structure
is in stable equilibrium beyond F in new configuration. The change of state from point C to F
does not occur through equilibrium paths but occurs dynamically and the structure is unstable
during this change. This type of instability is called snap through or limit point instability. If
the load P is decreased, the structure follows the path FED, and at point D snaps through to
point A. The load deflection curve in Figure 1.7 also shows that this problem is nonlinear even
at small deformations. We cannot obtain meaningful results if linearization simplification is
used for angles 𝜃 and 𝜃0, even if these angles are small.

1.3.4 Three Rigid Bars with Two Linear Springs

1.3.4.1 The Displaced Shape Equilibrium Method
Three rigid bars are shown in Figure 1.8a. the system is supported by a hinge at A and a roller
support at B. The bars are joined by pins C and D, the supports at C and D consist of two linear
springs each of stiffness k. The system is subjected to an axial force P as shown. As the force
increases, the system deflects as shown in Figure 1.8b, the vertical deflections at C and D are
𝛿1 and 𝛿2 respectively. It is a two degrees of freedom system because these two deflections are
needed to define the displaced shape. The deflections are assumed to be small.

In Figure 1.8b,
ΣMB = 0
VA(3L)–k 𝛿1(2L)–k 𝛿2(L) = 0

VA = 2
3

k𝛿1 +
1
3

k𝛿2, and
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(c) (d)
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kδ2
kδ1

δ1 δ2
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A B C D 

C´ D´VA VB
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Figure 1.8 Three rigid bars with two linear springs: (a) Three rigid bars; (b) Displaced shape; (c) Free body diagram
of AC’; (d) Free body diagram of BD’.

ΣFvertical = 0
2
3

k 𝛿1 +
1
3

k 𝛿2–k𝛿1–k 𝛿2 + VB = 0

VB = 1
3

k𝛿1 +
2
3

k 𝛿2

From Figures 1.8c and 1.8d, and small deformations
ΣMC′ = 0(2

3
k𝛿1 +

1
3

k𝛿2
)

L–P𝛿1 = 0 (1.7a)

ΣMD′ = 0(1
3

k𝛿1 +
2
3

k𝛿2
)

L − P𝛿2 = 0 (1.7b)

Equations (1.7a and 1.7b) can be written in the matrix form as[
2
3

kL–P 1
3

kL
1
3

kL 2
3

kL − P

]⎧⎪⎨⎪⎩
𝛿1

𝛿2

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (1.7c)
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For a nontrivial solution the determinant of the coefficient matrix is zero,|||||
2
3

kL–P 1
3

kL
1
3

kL 2
3

kL − P

||||| = 0 (1.7d)

The characteristic equation is

P2 − 4
3

k L P + 1
3

k2 L2 = 0 (1.7e)

The two roots of Eq. (1.7e) are P1 = 1
3

kL, and P2 = kL.
The first eigenvector is{

𝛿1
𝛿2

}
=
{

1
−1

}
for P1 = Pcr =

1
3

kL, and the deflected shape is the buckling mode as given in Figure 1.9a.
The second eigenvector is{

𝛿1
𝛿2

}
=
{

1
1

}
for P2 = kL, and the deflected shape is symmetric as shown in Fig. 1.9b.

1.3.4.2 The Energy Method
The strain energy of the system in Figure 1.8b is given by

U = 1
2

k𝛿12 + 1
2

k𝛿2
2

(1.8a)

The potential energy of the external force is

V = −P
[(

L −
(

1 − cos
𝛿1

L

)
+ L

(
1 − cos 𝛿2

L

)
+ L

[
1 − cos

𝛿2 − 𝛿1

L

]
(1.8b)

Total potential energy of the system is
Π = U + V (1.8c)

(a)
L

L Lδ1 
δ2 = –δ1

(b)

L L
L

δ1 δ2 = δ1 

Figure 1.9 Mode shapes of the three rigid bars with linear springs: (a) Asymmetrical deflected shape; (b) Symmet-
rical deflected shape.
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or

Π = 1
2

k𝛿12 + 1
2

k𝛿2
2
− PL

[
3 − cos

𝛿1

L
− cos 𝛿2

L
− cos

𝛿2 − 𝛿1

L

]
(1.8d)

The first derivatives of the potential energy function, Π, with respect to 𝛿1 and 𝛿2 must be zero
for potential energy to be stationary. Therefore,

𝜕Π
𝜕𝛿1

= k𝛿1 − PL
[

1
L

sin
𝛿1

L
− 1

L
sin

𝛿2 − 𝛿1

L

]
(1.8e)

𝜕Π
𝜕𝛿1

= k𝛿2 − PL
[

1
L

sin
𝛿2

L
+ 1

L
sin

𝛿2 − 𝛿1

L

]
(1.8f)

For small angle approximation, sin
𝛿1

L
≈

𝛿1

L
, sin

𝛿2

L
≈

𝛿2

L
, and sin

𝛿2 − 𝛿1

L
≈

𝛿2 − 𝛿1

L
, therefore,

𝜕Π
𝜕𝛿1

= k𝛿1 − P
(
𝛿1

L
−

𝛿2 − 𝛿1

L

)
= 0 (1.8g)

𝜕Π
𝜕𝛿2

= k𝛿2 − P
(
𝛿2

L
+

𝛿2 − 𝛿1

L

)
= 0 (1.8h)

Equations (1.8g and 1.8h) can be written in the matrix form as:[
k − P 2

L
P
LP

L
k − P 2

L

]⎧⎪⎨⎪⎩
𝛿1

𝛿2

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (1.8i)

For a nontrivial solution the determinant of the coefficient matrix is zero,[
k − P 2

L
P
LP

L
k − P 2

L

]
= 0 (1.8j)

or

P2 − 4
3

PLk + L2

3
k2 = 0 (1.8k)

Equation (1.8k) is the same characteristic equation as Eq. (1.7e), giving the same two roots of
P1 = Pcr =

kL
3

, and P2 = kL as before by the displaced shape equilibrium method.

𝜕2 ∏
𝜕𝛿2

1
= K11 = k − 2P

L
(1.8l)

𝜕2 ∏
𝜕𝛿2

2
= K22 = k − 2P

L
(1.8m)

𝜕2 ∏
𝜕𝛿1𝜕𝛿2

= K12 = K21 = P
L

(1.8n)

The three rigid bar system in Figure 1.8 is in stable equilibrium if 𝛿2Π> 0, therefore from
Eq. (1.1i)

D1 = K11 = k − 2P
L
> 0, or P <

kL
2

(1.8o)
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and |D2| = ||||K11 K12
K21 K22

|||| = |||||k − 2P
L

P
LP

L
k − 2P

L

||||| > 0

or P2 − 4
3

PkL + k2L2

3
> 0

and
(

P − kL
3

)
(P − kL) > 0 (1.8p)

Therefore, the three bar rigid system is in stable equilibrium if P < Pcr =
kL
3

, because the

inequalities in Eqs. (1.8o and 1.8p) are satisfied. It is unstable if P > Pcr =
kL
3

.

1.4 Large Displacement Analysis

So far, the analysis has been limited to the linear, small deflection theory that applies to
infinitely small deformations from the initial stressed state of the structure. The small
deflection theory gives information about the critical load and it is also possible to determine
the state of equilibrium in the initial position by studying the second derivatives of the total
potential energy by this theory. This is sufficient for most structural engineering problems.
However, nonlinear finite displacement theory is needed to gain a full understanding of the
post-buckling behavior of a system. We can plot the post buckling equilibrium path using this
large displacement theory. It also gives us an indication of the stability of bifurcation.

1.4.1 Rigid Bar Supported by a Translational Spring

1.4.1.1 The Displaced Shape Equilibrium Method
The rigid bar given in Figure 1.4 will be considered here without making the assumption of
small deformation. The equilibrium equation is

P = kL cos 𝜃 (1.2d)

and the critical load is given by Pcr = k L. The equilibrium diagram, P
Pcr

versus 𝜃, giving the

post-buckling path is plotted in Figure 1.10 using Eqs. (1.2d and 1.2e). The initial inclination of
the column to the right or left causes a decrease in the load capacity of the column and values of
P

Pcr
continually decrease with increasing 𝜃. The post-buckling displacement path is also sym-

metric about the initial position of the column, therefore, the bifurcation is called symmetric
unstable bifurcation.

1.4.1.2 The Energy Method
This method can also be used to find the critical load and the load deflection graph as
shown in Figure 1.10. In addition, it can give the nature of equilibrium in the system ini-
tially when the applied load reaches the critical load value as well as during post-buckling.
Equations (1.3i–1.3m) can be rewritten from Figure 1.4 as

Π = −P L(1 − cos 𝜃) + 1∕2k(L sin 𝜃)2 (1.3i)
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0
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0.4

0.6

0.8

1

–π/2 –π/3 –π/6 0 π/6 π/3 π/2
Deformation

P/Pcr

Stable Unstable

θ –θ

Figure 1.10 Equilibrium path of rigid bar in Figure 1.4.

dΠ
d𝜃

= −PL sin 𝜃 + k L2 sin 𝜃 cos 𝜃 (1.3j)

dΠ
d𝜃

= 0, and we get the equilibrium equation as

P = kL cos 𝜃 (1.3k)
cos 𝜃 ≈ 1 for small values of 𝜃
or

Pcr = kL (1.3l)
d2Π
d𝜃2 = −PL cos 𝜃 + kL2 cos 2𝜃 (1.3m)

From Eq. (1.3k) and Eq. (1.3m)
d2 ∏
d𝜃2 = −kL2 cos 𝜃 + kL2 cos 2𝜃 (1.9a)

Substituting P = Pcr = kL, and 𝜃 = 0 in Eq. (1.9a),
d2 ∏
d𝜃2 = 0. This does not give us an idea

of the nature of equilibrium at the bifurcation. Therefore, to determine the initial post-critical
behavior near bifurcation we may write total potential energy, Π, as a Taylor series as follows:∏

=
∏|||𝜃=0

+
d
∏

d𝜃

|||||𝜃=0
𝜃 + 1

2!
d2 ∏
d𝜃2

|||||𝜃=0
𝜃2 + 1

3!
d3 ∏
d𝜃3

|||||𝜃=0
𝜃3 + 1

4!
d4 ∏
d𝜃4

|||||𝜃=0
𝜃4 + − − − (1.9b)

d3 ∏
d𝜃3 = PL sin 𝜃 − 2kL2 sin 2𝜃 (1.9c)

At

P = Pcr = kL, and 𝜃 = 0, d3Π
d𝜃3 = 0

d4 ∏
d𝜃4 = PL cos 𝜃 − 4kL2 cos 2𝜃 (1.9d)
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At P = Pcr = kL and 𝜃 = 0,
d4 ∏
d𝜃4 = −3kL2 (1.9e)

Therefore,

Π = −3kL2

24
𝜃4 = −1

8
kL2

𝜃4 (1.9f)

This indicates that the total potential energy, Π, is negative or it decreases with increasing 𝜃, at
the initial position, 𝜃 = 0 and P = Pcr. The bifurcation is symmetric and unstable from Eqs. (1.3k
and 1.9f), as shown in Figure 1.10.

During the post-buckling path when 𝜃 ≠ 0, Eqs. (1.3k and 1.3m) give
d2 ∏
d𝜃2 = −kL2cos2𝜃 + kL2 cos 2𝜃

or
d2 ∏
d𝜃2 = −kL2sin2

𝜃 (1.9g)

Therefore,
d2 ∏
d𝜃2 < 0 for different values of 𝜃, and the post-buckling path is unstable.

1.4.2 Rigid Bar Supported by Translational and Rotational Springs

1.4.2.1 The Displaced Shape Equilibrium Method
A rigid bar connected to a translational spring at the top and a rotational spring at the bottom
is acted on by an axial force P as shown in Figure 1.11a. The free body diagram of the deflected
system is shown in Figure 1.11b. Taking the moment of all the forces acting on the system in
Figure 1.11b about A and equating to zero, we have

PL sin 𝜃–kL sin 𝜃 (L cos 𝜃)–c𝜃 = 0 (1.10a)
or

P = kL cos 𝜃 + c
L

𝜃

sin 𝜃
(1.10b)

For small values of 𝜃, cos 𝜃 ≈ 1, sin𝜃 ≈ 𝜃, hence, the critical load is

Pcr = kL + c
L
. (1.10c)

(a) (b)

C

A

B

k

c

L

P

θ 

A
cθ

P

P

kL sinθ

kL sinθ

Figure 1.11 Rigid bar connected to translational and rotational springs: (a) Rigid bar with two springs; (b) Free
body diagram of displaced shape.
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1.4.2.2 The Energy Method
The strain energy of the system in Figure 1.11 is

U = 1
2

k(L sin 𝜃)2 + 1
2

c 𝜃2 (1.11a)

and the potential energy of the external forces is
V = −P(L − L cos 𝜃) (1.11b)

Total potential energy is given by

Π = 1
2

k(L sin 𝜃)2 + 1
2

c 𝜃2 − P (L − L cos 𝜃) (1.11c)

Taking the first derivative of the total potential energy with respect to 𝜃 and equating it to zero
gives the equilibrium equation

d
∏

d𝜃
= kL2 sin 𝜃 cos 𝜃 + c𝜃–PL sin 𝜃 = 0 (1.11d)

giving the same relation between the force P and 𝜃 as in Eq. (1.10b) and the same critical load
Pcr as before.

or
d
∏

d𝜃
= kL2

2
sin 2𝜃 + c𝜃 − PL sin 𝜃

d2 ∏
d𝜃2 = kL2 cos 2𝜃 + c − PL cos 𝜃 (1.11e)

Substituting P = Pcr = kL + c
L

, and 𝜃 = 0 in Eq. (1.11e) gives

d2 ∏
d𝜃2 = kL2 cos(𝜃) + c −

(
kL + c

L

)
L cos(𝜃) = 0

Therefore, use higher terms in the Taylor series in Eq. (1.9b) to know whether the total potential
energy is relative maximum or minimum at the bifurcation.

d3 ∏
d𝜃3 = −2kL2 sin 2𝜃 + PL sin 𝜃 (1.11f)

At the bifurcation,

P = Pcr = kL + c
L
, 𝜃 = 0,

d3 ∏
d𝜃3 = 0

and
d4 ∏
d𝜃4 = −4kL2 cos 2𝜃 + PL cos 𝜃

= −4 k L2 +
(

k L + c
L

)
L = −3k L2 + c (1.11g)

Therefore, from the Taylor series of Eq. (1.9b) we have

Π = 1
24

(−3kL2 + c)𝜃4 =
(
−kL2

8
+ c

24

)
𝜃4 (1.11h)
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Π is positive, if c
24

>
kL2

8
, or kL2

c
<

1
3

for stable equilibrium at the bifurcation. On the other

hand, Π is negative if kL2

c
>

1
3

, and the equilibrium at the bifurcation is unstable.
During the post-buckling path when 𝜃 ≠ 0, from Eqs. (1.10a and 1.11e)

d2 ∏
d𝜃2 = kL2cos2𝜃 − kL2sin2

𝜃 + c −
(

kL cos 𝜃 + c𝜃
L sin 𝜃

)
L cos 𝜃

or
d2 ∏
d𝜃2 = −kL2 sin 2𝜃 + c − c𝜃 cot 𝜃

For
d2 ∏
d𝜃2 > 0, the post-buckling path is stable, and at

d2 ∏
d𝜃2 < 0, it is unstable. Therefore,

if kL2

c
<

sin 𝜃 − 𝜃 cos 𝜃
sin3

𝜃
(1.11i)

the post-buckling path is stable, and for

kL2

c
>

sin 𝜃 − 𝜃 cos 𝜃
sin3

𝜃
(1.11j)

the post-buckling path is unstable.

At 𝜃 = 0, sin 𝜃 − 𝜃 cos 𝜃
sin3

𝜃
= 0

0
. Therefore, differentiate numerator and denominator with

respect to 𝜃, and applying Le Hospital’s rule, we get sin 𝜃 − 𝜃 cos 𝜃
sin3

𝜃
= 1

3
for 𝜃 = 0. Hence, if

kL2

c
<

1
3

, it is stable bifurcation, and for kL2

c
>

1
3

, it is unstable at 𝜃 = 0 as shown before.

Let kL2

c
= 0.35, or k L = 0.35 c

L
, and from Eq. (1.10c)

Pcr = 0.35 c
L
+ c

L
= 1.35c

L
From Eq. (1.10b)

PL
c

= kL2

c
cos 𝜃 + 𝜃

sin 𝜃
, dividing both sides of the equation by 1.35

PL
1.35c

= P
Pcr

=
0.35 cos 𝜃 + 𝜃

sin 𝜃

1.35
(1.11k)

P
Pcr

versus 𝜃 graph is plotted in Figure 1.12, and it shows that post-buckling path is unstable

at the bifurcation because kL2

c
= 0.35 >

1
3

and it continues to be unstable until kL2

c
= 0.35 <

sin 𝜃 − 𝜃 cos 𝜃
sin3

𝜃
, when it becomes stable.
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1.0005
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Figure 1.12 Displacement path of rigid bar supported by translational and rotational springs.

1.4.3 Two Rigid Bars Connected by Rotational Springs

1.4.3.1 The Energy Method
The two rigid bars of equal length L and connected by rotational springs of equal spring stiffness
c shown in Figure 1.5 are analyzed here by large displacement analysis. The first and second
derivatives of the total potential energy function, Π, from Eqs. (1.5d, 1.5e, 1.5g, 1.5h, and 1.5i)
are as follows:

𝜕Π
𝜕𝜃1

= 2c 𝜃1 − c 𝜃2 − PL sin 𝜃1 = 0 (1.12a)

𝜕Π
𝜕𝜃1

= −c𝜃1 + c𝜃2 − PL sin 𝜃2 = 0 (1.12b)

𝜕2 ∏
𝜕𝜃1

2 = 2c − PL cos 𝜃1 (1.12c)

𝜕2 ∏
𝜕𝜃2

2 = c − PL cos 𝜃2 (1.12d)

𝜕2 ∏
𝜕𝜃1𝜕𝜃2

= −c (1.12e)

Equations (1.12a and 1.12b) are equilibrium equations of the system. These are solved by elim-
inating 𝜃2. From Eq. (1.12a)

𝜃2 =
2c𝜃1 − PL sin 𝜃1

c
(1.12f)

Substituting Eq. (1.12f) in Eq. (1.12b), we get

−c𝜃1 + 2c𝜃1 − PL sin 𝜃1 − PL sin
2c𝜃1 − PL sin 𝜃1

c
= 0
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Figure 1.13 Displacement path of two rigid bars connected by rotational springs.

or
P
c
L

=
𝜃1

sin 𝜃1 + sin
(

2𝜃1 −
PL
c

sin 𝜃1

) (1.12g)

Pcr = 0.382 c
L

, from Eq. (1.5i).
Therefore,

P
Pcr

= 1
0.382

⎡⎢⎢⎢⎣
𝜃1

sin 𝜃1 + sin
(

2𝜃1 −
PL
c

sin 𝜃1

)⎤⎥⎥⎥⎦ (1.12h)

P
Pcr

vs. 𝜃1 graph is plotted in Figure 1.13, and it shows that the post-buckling path is stable.

1.5 Imperfections

So far, it has been assumed that the rigid bars considered were geometrically perfect. In general,
the columns may be imperfect, having a certain amount of deformation present in the initial
state when the springs are unrestrained at the load P = 0.

1.5.1 Rigid Bar Supported by a Rotational Spring at the Base

1.5.1.1 The Displaced Shape Equilibrium Method
Consider a rigid bar of length L supported by a rotational spring of stiffness c. The column is
initially imperfect and inclined by an angle 𝛼 as shown in Figure 1.14. From the equilibrium of
the column in the displaced position making an angle of 𝜃 with the vertical, we have

PL sin 𝜃–c (𝜃–𝛼) = 0 (1.13a)



Trim Size: 187mm x 235mm Single Column Jerath c01.tex V1 - 11/06/2020 6:52pm Page 24�

� �

�

24 1 Structural Stability

(a) (b)

θ 
α

P PL sinθ 

L 

c (θ – α)

P 

α

P 

L 

Figure 1.14 Imperfect rigid-bar column with rotational spring at the base: (a) Imperfect rigid bar; (b) Free body
diagram of displaced shape.

or

P = c(𝜃 − 𝛼)
L sin 𝜃

(1.13b)

1.5.1.2 The Energy Method
Strain energy of the imperfect column in Figure 1.14 is

U = 1
2

c(𝜃 − 𝛼)2 (1.14a)

and the potential energy of the external forces is

V = −P L (cos 𝛼– cos 𝜃) (1.14b)

The total potential energy is given by

Π = 1
2

c(𝜃 − 𝛼)2 − P L(cos 𝛼 − cos 𝜃) (1.14c)

dΠ
d𝜃

= c(𝜃 − 𝛼) − P L sin 𝜃 (1.14d)

Setting dΠ
d𝜃

= 0, we have the equilibrium condition, and P = c(𝜃 − 𝛼)
L sin 𝜃

as before. For a perfect

column and small 𝜃, Pcr =
c
L

The equilibrium diagrams, P
Pcr

versus 𝜃, are plotted in Figure 1.15 for initial imperfections

of 𝛼 = − 10, −5, 5, and 10∘ of inclination with the vertical. The points where columns change

from stable to unstable state lie on the critical curve defined by d2Π
d2𝜃

= 0.

d2Π
d𝜃2 = c − PL cos 𝜃 (1.14e)

If d2Π
d2𝜃

= 0, P = c
L cos 𝜃

, or P
Pcr

= 1
cos 𝜃

, and P
Pcr

versus 𝜃 critical curve is plotted in Figure 1.15.
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The column is stable if d2Π
d2𝜃

> 0, and it is unstable if d2Π
d2𝜃

< 0. Substituting the value of P = Pcr

from Eq. (1.13b) into Eq. (1.14e), we have

d2Π
d𝜃2 = c

[
1 − (𝜃 − 𝛼)

tan 𝜃

]
(1.14f)

So the equilibrium path is stable if tan 𝜃 > 𝜃 – 𝛼 if 𝛼 < 𝜃 <𝜋/2, and tan 𝜃 < 𝜃 – 𝛼 if –𝜋/2<𝜃 < 0.
This can also be seen from the slopes of the equilibrium curves in Figure 1.15.

P = c
L

(
𝜃 − 𝛼

sin 𝜃

)
dP
d𝜃

= c
L sin 𝜃

[
1 − 𝜃 − 𝛼

tan 𝜃

]
(1.14g)

For 𝛼 > 0 and 𝜃 > 𝛼, tan 𝜃 > 𝜃 – 𝛼; and from Eq. (1.14g), dP
d𝜃

> 0. Similarly, for 𝛼 > 0 and 𝜃 < 0,

tan 𝜃 < 𝜃 – 𝛼; and from Eq. (1.14g), dP
d𝜃

< 0. Therefore, equilibrium curves are stable when their
slope is positive in the bottom right and negative in the top left in Figure 1.15. The same way it
can be proved that for 𝛼 < 0, the equilibrium curves are stable when their slope is negative for
𝜃 < 0 in the bottom left; and the slope is positive for 𝜃 > 0 in the top right in Figure 1.15. The

results are symmetrical. For the critical state, d2Π
d2𝜃

= 0, therefore, from Eqs. (1.14f and 1.14g),
dP
d𝜃

= 0 and

tan 𝜃 = 𝜃–𝛼 (1.14h)

Deformation in radians, θ

0
0.2
0.4
0.6
0.8
1.0
1.2

1.8
1.6
1.4

π/60 π/2π/3–π/6–π/3–π/2

α = 100

α = 50

P/Pcr

α = 50

α = 100

α = –50

α = –50
α = –100

α = –100

Critical 
Curve 

Figure 1.15 Equilibrium path of the rigid bar imperfect column with rotational spring at the base.
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The zero slope point on each equilibrium curve gives the critical state. Figure 1.15 also shows
that the imperfect column can be stable at loads higher than that of the perfect column.

1.5.2 Two Rigid Bars Connected by Rotational Springs

1.5.2.1 The Displaced Shape Equilibrium Method
Consider the column shown in Figure 1.16a that has two degrees of freedom. The deflected
shape of the column is defined by the angles 𝜃1 and 𝜃2. Initially the column is imperfect shown
by the angles of inclination 𝛼1 and 𝛼2 of the two bars with the vertical.

Taking the sum of the moments about A in Figure 1.16b equal to zero,

PL sin 𝜃1 + c[(𝜃2–𝛼2)–(𝜃1–𝛼1)]–c(𝜃1–𝛼1) = 0

or

c 𝜃2 = 2c𝜃1–2c𝛼1 + c𝛼2–PL sin 𝜃1 (1.15a)

Similarly taking the sum of the moments about B in Figure 1.16c equal to zero,

PL sin 𝜃2–c[(𝜃2 − 𝛼2)–(𝜃1–𝛼1)] = 0 (1.15b)

Eliminating 𝜃2 from Eqs. (1.15a and 1.15b), we have
P
c
L

=
𝜃1 − 𝛼1

sin 𝜃1 + sin
(

2𝜃1 − 2𝛼1 + 𝛼2 −
PL
c

sin 𝜃1

) (1.15c)

1.5.2.2 The Energy Method
The strain energy of the column in Figure 1.16 is given by

U = 1
2

c(𝜃1 − 𝛼1)2 + 1
2

c[𝜃2 − 𝛼2 − (𝜃1 − 𝛼1)]2 (1.16a)

θ2

θ1

L 

L 

B 

C 

α1

α2

P

A 

(a)

α1

A

L sin θ1

P 

P 

L 

θ1

c(θ1 – α1) 

c[(θ2– α2)
– (θ1 – α1)]

B

(b)

Bc[(θ2 – α2) 
– (θ1 – α1)]

C

P 

P 

L 

L sin θ2

α2

θ2 

(c)

Figure 1.16 Imperfect column with two rigid bars and two rotational springs: (a) Displaced shape of the column;
(b) Free body diagram of the lower bar; (c) Free body diagram of the upper bar.
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V = −P[L cos 𝛼2–L cos 𝜃2 + L cos 𝛼1–L cos 𝜃1] (1.16b)
The total potential energy is Π = U +V, or

Π = 1
2

c(𝜃1 − 𝛼1)2 + 1
2

c[(𝜃2 − 𝛼2)–(𝜃1–𝛼1)]2 − P[L cos 𝛼2–L cos 𝜃2 + L cos 𝛼1–L cos 𝜃1]

By differentiating, we obtain the equilibrium conditions:
𝜕Π
𝜕𝜃1

= c(𝜃1 − 𝛼1) − c(𝜃2 − 𝛼2 − 𝜃1 + 𝛼1) − PL sin 𝜃1 = 0 (1.16c)

or c 𝜃2 = 2c𝜃1 – 2c𝛼1 + c𝛼2 – PL sin 𝜃1, same as Eq. (1.15a).
𝜕Π
𝜕𝜃2

= PL sin 𝜃2 − c[𝜃2 − 𝛼2 − (𝜃1–𝛼1)] = 0 (1.16d)

Equation (1.16d) is the same as Eq. (1.15b), therefore, eliminating 𝜃2 from above equations
will lead to the same P versus 𝜃1 relation as in Eq. (1.15c). For the column in Figure 1.16 if
it is perfect, i.e. 𝛼1 = 𝛼2 = 0, and if the displacements, 𝜃1 and 𝜃2 are small, the critical load
Pcr = 0.382 c

L
. From Eq. (1.15c) we get

P
Pcr

=
𝜃1 − 𝛼1

0.382
[
sin 𝜃1 + sin

(
2𝜃1 − 2𝛼1 + 𝛼2 −

PL
c

sin 𝜃1

)] (1.16e)

Assume
𝛼1 = 𝛼2 = 𝛼.

The equilibrium path given by Eq. (1.16e) is plotted in Figure 1.17.
Discrete systems with one or two degrees of freedom have been analyzed in this chapter. In

the analysis for stability of discrete systems, algebraic equations were developed and solved.
Differential equations are formed when the analysis of continuous systems such as beams and
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Figure 1.17 Displacement path of two imperfect rigid bars column connected by two rotational springs.
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columns is performed. The solution of these differential equations is much more difficult than
the algebraic equations. These differential equations can be converted to algebraic equations
by discretizing a structure or assuming a Fourier series expansion for its displacements. So the
analysis of discrete systems is also valuable to analyze the continuous systems. The methods
for solving stability problems learned here will be useful in later chapters.

Problems

1.1 Find the critical load Pcr for the rigid bar column in Figure P1.1 by using the equilibrium
method. The column is restricted by a rotational spring of stiffness c at the support

P 

A B
L 

c 

Figure P1.1

1.2 Solve Problem 1.1 by the energy method.

1.3 Determine the critical load Pcr for the rigid bar column in Figure P1.3 a, b by using the
equilibrium method.

(a) (b)

45o

P

k

P
k2

k1

L L

Figure P1.3

1.4 Solve Problem 1.3 by the energy method.

1.5 Analyze the stability behavior of the rigid bar system in Figure P1.5.
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c1c2 
P 

L L 

CBA

Figure P1.5

1.6 Analyze the stability behavior of the rigid bar and spring system in Figure P1.6. The col-
umn is initially imperfect and is inclined by an angle 𝛼.

45o
α 

k

P 

A 

L 

Figure P1.6
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