
1
 WHAT ’ S IN THIS CHAPTER?

➤ A look at Kotlin syntax

➤ A brief history of Kotlin

➤ How Kotlin is like Java—and how it isn ’ t

➤ Getting set up to code and run Kotlin

➤ Your first Kotlin program

➤ Why objects are cool (and why that matters)

KOTLIN: A NEW PROGRAMMING LANGUAGE

 Kotlin, when you boil it all down, is just another programming language. If you ’ re program-
ming and writing code already, you ’ ll pick up Kotlin quickly, because it has a lot in common
with what you ’ re already doing. That ’ s even more the case if you ’ re programming in an object-
oriented language, and if you ’ re coding in Java, well, Kotlin is going to feel very familiar,
although different in some very nice ways.

 If you ’ re new to Kotlin, though, it ’ s a great first language. It ’ s very clear, it doesn ’ t have lots of
odd idioms (like, for example, Ruby or, god help us all, LISP), and it ’ s well organized. You ’ ll
pick it up fast and find yourself comfortable quite quickly.

 In fact, Kotlin is so straightforward that we ’ re going to put aside a lot of explanation and
history for now, and instead jump right into looking at some basic Kotlin code (check out
Listing 1.1).

CO
PYRIG

HTED
 M

ATERIA
L

2 ❘ CHAPTER 1 OBJECTS ALL THE WAY DOWN

 LISTING 1.1: A simple Kotlin program using classes and lists

 data class User(val firstName: String, val lastName: String)

 fun main() {
 val brian = User("Brian", "Truesby")
 val rose = User("Rose", "Bushnell")

 val attendees: MutableList<User> = mutableListOf(brian, rose)

 attendees.forEach {
 user -> println("$user is attending!")
 }
 }

 Take a minute or two to read through this code. Even if you ' ve never looked at a line of Kotlin
before, you can probably get a pretty good idea of what ' s going on. First, it defines a User class (and
in fact, a special kind of class, a data class; more on that later). Then it defines a main function, which
is pretty standard fare. Next up are two variables (or vals), each getting an instance of the User class
defined earlier. Then a list is created called attendees and filled with the two users just created. Last
up is a loop through the list, doing some printing for each.

 If you ran this code, you ' d get this rather unimpressive output:

 User(firstName=Brian, lastName=Truesby) is attending!
 User(firstName=Rose, lastName=Bushnell) is attending!

 Obviously, parts of this probably look odd to you, whether you ’ re brand new to writing code or an
experienced Java pro. On top of that, it ’ s likely you have no idea how to actually compile or run this
code. That ’ s OK, too. We ’ ll get to all of that.

 NOTE It bears repeating: You really don ’ t need to understand the code in List-
ing 1.1 . This book assumes you ’ ve programmed at least a little bit—and it ’ s true
that you ’ ll likely understand Kotlin a bit faster if you have a Java background—
but you will pick up everything you see in Listing 1.1 (and quite a bit more) just
by continuing to read and working through the code samples. Just keep going,
and you ’ ll be programming in Kotlin in no time.

 For now, though, here ’ s the point: Kotlin is really approachable, clean to read, and actually a pretty
fun language to use. With that in mind, let ’ s get some basics out of the way so you can get to writing
code, not just looking at it.

WHAT IS KOTLIN?

 Kotlin is an open-source programming language. It is, most notably, statically typed and object-
oriented. Statically typed means that variables have types when you write your code and compile

Kotlin is Object-Oriented ❘ 3

it, and those types are fixed. That also implies that Kotlin must be compiled, which is also true.
Object-oriented means it has classes and inheritance, making it a familiar language for Java and C++
developers.

 Kotlin was in fact created by a group of developers that worked on the JetBrains IDE, and it feels
very much like a natural evolution of Java. It ’ s been around in early form since 2011, but was offi-
cially released in 2016. That means it ’ s new, which is good, but also means it ’ s new, which at times
can be bad. Kotlin is modern, can run inside a Java Virtual Machine (JVM), and can even be com-
piled to JavaScript—a cool feature we ’ ll look at a little later.

 It ’ s also really important to note that Kotlin is a fantastic language for writing Android apps. In fact,
many of its enhancements to Java reflect an Android usage. That said, even if you never intended to
write a mobile app, you ’ ll find Kotlin a welcome addition to your arsenal, and well suited for server-
side programming.

 What Does Kotlin Add to Java?
 That ’ s a good question that has a long answer. In fact, we ’ ll spend most of this book answering that
in various forms. But, for most, Kotlin adds or changes a few key features when compared to Java:

 NOTE If you ’ re new to Kotlin or not coming from a Java background, feel free
to skip right on to the next section.

➤ Kotlin ditches NullPointerException (and nullable variables altogether) in almost all
situations.

➤ Kotlin supports extending functions without having to entirely override a parent class.

➤ Kotlin doesn ’ t support checked exceptions (you may not fi nd this to be an advancement, so
fair warning).

➤ Kotlin adds components of functional programming, such as extensive lambda support and
lazy evaluation.

➤ Kotlin defi nes data classes that let you skip writing basic getters and setters.

 There ’ s certainly a lot more to this list, but you can quickly see that Kotlin isn ’ t just a slightly differ-
ent version of Java. It seeks to be different and better, and in many ways, it very much is exactly that.

 KOTLIN IS OBJECT-ORIENTED

 At this point, most books and tutorials would have you put together a simple “Hello, World” pro-
gram. That ’ s all well and good, but the assumption here is that you want to get moving, and get mov-
ing quickly. For that reason, the logical place to begin with Kotlin is by creating an object.

4 ❘ CHAPTER 1 OBJECTS ALL THE WAY DOWN

 An object is simple a programmatic representation of a thing. In the best case, that thing is a real-
world object, like a car or a person or a product. For example, you could create an object to model a
person like this:

 class Person {

 /* This class literally does nothing! */

 }

 That ’ s it. You can now create a new variable of type Person like this:

 fun main() {
 val jennifer = Person()
 }

 If you put all this together into a single code listing, you ’ ll have Listing 1.2 .

 LISTING 1.2: A very useless object in Kotlin (and a main function to use it)

 class Person {

 /* This class literally does nothing! */

 }

 fun main() {
 val jennifer = Person()
 }

 Now, this is pretty lame code, honestly. It doesn ’ t do anything, but it is object-oriented. Before we can
improve it, though, you need to be able to run this good-for-almost-nothing code yourself.

 INTERLUDE: SET UP YOUR KOTLIN ENVIRONMENT

 Getting a Kotlin program to run is relatively easy, and if you ’ re an old Java hand, it ’ s actually really
easy. You ’ ll need to install a Java Virtual Machine and then a Java Development Kit (JDK). Then
you ’ ll want one of the numerous IDEs that support Kotlin. Let ’ s take a blazing-fast gallop through
that process.

 Install Kotlin (and an IDE)
 One of the easiest IDEs to use with Kotlin is IntelliJ IDEA, and starting with version 15, IntelliJ comes
bundled with Kotlin. Plus, since IntelliJ is actually from JetBrains, you ’ re getting an IDE built by the
same folks who came up with Kotlin itself.

Interlude: Set Up Your Kotlin Environment ❘ 5

 Install IntelliJ
 You can download IntelliJ from www.jetbrains.com/idea/download . This page (shown in
Figure 1.1) will then redirect you to the appropriate platform (Mac OS X for most of this book ’ s
examples). Download the free Community version to get started without any cost. Once the (rather
large) download completes, install it (see Figure 1.2), and you ’ ll get a Java Runtime Environment
(JRE) and the JDK as part of installation.

 NOTE IntelliJ is not the only IDE that works with Kotlin, and the list is actually
growing pretty quickly. Other notable options are Android Studio (developer((
.android.com/studio/preview/index.html) and Eclipse (www.eclipse.org/((
downloads). Eclipse in particular is immensely popular, but IntelliJ is still a great
choice as it shares the JetBeans heritage with Kotlin.

 FIGURE 1.1 : Download IntelliJ from the JetBrains download page.

6 ❘ CHAPTER 1 OBJECTS ALL THE WAY DOWN

 NOTE The “installation process” for IntelliJ on Mac OS X is pretty simple: just
drag the package (presented as an icon) into your Applications folder. You ’ ll then
need to go to that folder and launch IntelliJ or drag the icon into your Dock,
which is what I ’ ve done.

 For Windows, you download the executable and run it. You can then create a
shortcut on your desktop if you like.

 In both cases, you can use the JetBrains Toolbox (which comes with the
JetBrains Kotlin package) to keep your installation current and add updates
when they ’ re available.

 You ’ ll be given a pretty large number of options to get your IDE set up. For IntelliJ, you ’ ll pick a UI
theme (either is fine), a Launcher Script (I ’ d suggest you accept the default and let it create the script),
the default plugins, and a set of featured plugins. You can click through these quickly, and then your
IDE will restart. You ’ ll see a welcome screen similar to Figure 1.3 , and you should select Create
New Project.

 WARNING You may need advanced permissions to install the Launcher Script
that IntelliJ creates if you accepted the default location on Mac OS X.

 Be sure you select the Kotlin/JVM option when creating the project, as shown in Figure 1.4 .

 FIGURE 1.2 : IntelliJ comes prepackaged with a system-specific installation process.

Interlude: Set Up Your Kotlin Environment ❘ 7

 FIGURE 1.3 : You ’ ll generally be either creating a project from scratch or importing one from a code
repository, like GitHub.

 FIGURE 1.4 : IntelliJ makes getting going in Kotlin simple and prompts you on creating a new project to
include Kotlin libraries.

8 ❘ CHAPTER 1 OBJECTS ALL THE WAY DOWN

 Create Your Kotlin Program
 Once your project is up and running, create a new Kotlin file. Find the src/ folder in the left naviga-
tion pane, right-click that folder, and select New ➢ Kotlin File/Class (see Figure 1.5). You can enter
the code from Listing 1.2 , and it should look nice and pretty, as shown in Figure 1.6 (thanks IntelliJ!).

 NOTE Your IDE may not be confi gured exactly like mine. If you don ’ t see the
src/ folder, you may need to click Project on the left side of your IDE to display
the various folders, and possibly click again on the name of the project.

 NOTE From this point forward, code will typically not be shown in an IDE.
That way, you can use the IDE of your choice (or the command line), because
you should get the same results across IDEs.

 FIGURE 1.5 : Kotlin code should go in the src/ folder.

Interlude: Set Up Your Kotlin Environment ❘ 9

 Compile and Run Your Kotlin Program
 All that ’ s left now is to compile and run the program yourself. This is easy, because IntelliJ gives you
a convenient little green arrow to click when you have a Kotlin file with a main() function defined.
Just hover over the arrow and click (see Figure 1.7). You can then select Run and your filename (I
named mine “UselessPerson”). Your program will be compiled and run, with the output shown in a
new pane at the bottom of the IDE (see Figure 1.8).

 FIGURE 1.6 : IntelliJ automatically formats code and adds sensible syntax highlighting.

 FIGURE 1.7 : You can click the green Run button and select the first option to build and run your code.

10 ❘ CHAPTER 1 OBJECTS ALL THE WAY DOWN

 In this case, you shouldn ’ t get any errors, but there ’ s not any output either. We ’ ll fix that shortly.

 Fix Any Errors as They Appear
 One last note before getting back to improving that useless Person class. IntelliJ and all other IDEs
are great at giving you visual indicators when there is a problem with your code. For example, Fig-
ure 1.9 shows IntelliJ once it ’ s tried to compile the same program with an error. In this case, the open
and close parentheses are missing from line 8. You ’ ll see an orange indicator in the code editor and an
error indicating line 8 (and column 20) in the output window.

 You can then easily fix the error and rebuild.

 Install Kotlin (and Use the Command Line)
 For power users, there ’ s a tendency to want to use the command line for nearly everything. Kotlin is
no exception. Because it ’ s “mostly Java” in the sense that it runs using a JVM and JDK, you can get
pretty far without a lot of work.

 Command-Line Kotlin on Windows
 For Windows users, you ’ ll first need a JDK. You can download one from the Oracle Java download
page at www.oracle.com/technetwork/java/javase/downloads . That download has version-
specific instructions that are easy to follow.

 Once you have Java, you need to get the latest Kotlin release from GitHub. You can find that at
github.com/JetBrains/kotlin/releases/latest (that link will redirect you to the latest release).
Download the release and follow the instructions and you ’ ll be good to go.

 FIGURE 1.8 : The empty output of your program (which will soon be non-empty) displays in its own window.

Interlude: Set Up Your Kotlin Environment ❘ 11

 NOTE These instructions are intentionally a bit sparse. If you ’ re using the
command line already, you probably don ’ t need a lot of hand holding. For
almost everyone else, though, using an IDE really is the best approach. As a
bonus, you can also use IntelliJ as a proxy for the compiler, so you may just want
to save the time it would take you to mess with the command line and put it into
coding Kotlin!

 Command-Line Kotlin on Mac OS X
 The easiest path to getting Kotlin working on Mac OS X is to use one of the package managers popu-
lar on Macs: either Homebrew (brew.sh) or MacPorts (www.macports.org). Both of these make
getting Kotlin up and running trivial.

 For MacPorts, just run the following command:

 brett $ sudo port install kotlin

 This requires elevated permissions, but after it runs, you ' ll be all set.

 For Homebrew, first do an update:

 brett $ brew update

 Next up, install Kotlin:

 brett $ brew install kotlin

 FIGURE 1.9 : Good IDEs help you quickly find and fix errors.

12 ❘ CHAPTER 1 OBJECTS ALL THE WAY DOWN

Command-Line Kotlin on UNIX -Based Systems
 If you ’ re not on Mac OS X but still have a Unix flavor of operating system, you can use SDKMAN!
(sdkman.io) for installing Kotlin.

 NOTE To be accurate, Mac OS X is a Unix-based operating system, so you can
use the SDKMAN! instructions for Macs instead of Homebrew or MacPorts.

 First, get SDKMAN!:

 brett $ curl -s https://get.sdkman.io | bash

 When you ' re finished, you ' ll need to open a new terminal or shell window or source the modified file
as indicated at the end of the installation process.

 Now, install Kotlin:

 brett $ sdk install kotlin

 Verify Your Command-Line Installation
 However you ’ ve chosen to install Kotlin, when you ’ re finished, you should be able to validate your
installation with this command:

 brett $ kotlinc

 WARNING At this point, you may get prompted to install a Java runtime.
This should fi re up your system to handle this, and you can accept the prompts
without a lot of worry. Find the JDK or JRE for your system, download it, and
run it. Then come back and try out kotlinc again.

 If you have your system appropriately configured with Java, you should get back something like this:

 brett $ kotlinc

 Java HotSpot(TM) 64-Bit Server VM warning: Options -Xverify:none and -noverify were
deprecated in JDK 13 and will likely be removed in a future release.

 Welcome to Kotlin version 1.3.61 (JRE 13.0.2+8)

 Type :help for help, :quit for quit

 >>>

 This is the Kotlin REPL (Read-Eval-Print Loop), a tool for quickly evaluating Kotlin statements. We ’ ll
look at this in more detail later, but for now, exit the REPL by typing :quit .

Creating Useful Objects ❘ 13

 You can also verify your version of Kotlin with the following command:

 brett $ kotlin -version

 Kotlin version 1.3.61-release-180 (JRE 13.0.2+8)

 At this point, you ' re ready to roll!

 CREATING USEFUL OBJECTS

 With a working Kotlin environment, it ' s time to go make that Person class from Listing 1.2 some-
thing less vacuous. As mentioned earlier, objects should model real-world objects. Specifically, if an
object represents a “thing” in the world (or in formal circles you ' ll sometimes hear that objects are
“nouns”), then it should have the properties or attributes of that thing, too.

 A person ' s most fundamental property is their name, specifically a first name and last name (or
surname, if you like). These can be represented as properties of the object. Additionally, these are
required properties; you really don ' t want to create a person without a first and last name.

 For required properties, it ' s best to require those properties when creating a new instance of an
object. An instance is just a specific version of the object; so you might have multiple instances of the
Person class, each one representing a different actual person.

 WARNING As you may already be fi guring out, there ' s a lot of technical vocab-
ulary associated with classes. Unfortunately, it will get worse before it gets
better: instances and instantiation and constructors and more. Don ' t get too
worried about catching everything right away; just keep going, and you ' ll fi nd
that the vocabulary becomes second nature faster than you think. In Chapter 3 ,
you ' ll dive in deeper, and in fact, you ' ll keep revisiting and growing your class
knowledge throughout the entire book.

 Pass In Values to an Object Using Its Constructor
 An object in Kotlin can have one or more constructors. A constructor does just what it sounds like:
it constructs the object. More specifically, it ' s a special method that runs when an object is created. It
can also take in property values—like that required first and last name.

 You put the constructor right after the class definition, like this:

 class Person constructor(firstName: String, lastName: String) {

 In this case, the constructor takes in two properties: firstName and lastName , both String types.
Listing 1.3 shows the entire program in context, along with creating the Person instance by passing
in the values for firstName and lastName .

14 ❘ CHAPTER 1 OBJECTS ALL THE WAY DOWN

 WARNING You ’ ll sometimes hear properties or property values called param-
eters . That ’ s not wrong; a parameter is usually something passed to something
else; in this case, something (a fi rst name and last name) passed to something
else (a constructor). But once they ’ re assigned to the object instance, they ’ re no
longer parameters. At that point, they are properties (or more accurately, prop-
erty values) of the object. So it ’ s just easier to call that a property value from the
start.

 See? The terminology is confusing. Again, though, it will come with time. Just keep going.

 LISTING 1.3: A less useless object in Kotlin and its constructor

class Person constructor (firstName: String, lastName: String) {

/* This class still doesn ' t do much! */

 }

fun main() {
val brian = Person("Brian" , "Truesby")

 }

 Now the class takes in a few useful properties. But, as most developers know, there ’ s a tendency to
condense things in code. There ’ s a general favoring of typing less, rather than typing more. (Note that
this rarely applies to book authors!) So Listing 1.3 can be condensed; you can just drop the word
constructor and things work the same way. Listing 1.4 shows this minor condensation (and argu-
able improvement).

 LISTING 1.4: Cutting out the constructor keyword

class Person(firstName: String, lastName: String) {

/* This class still doesn ' t do much! */

 }

fun main() {
val brian = Person("Brian" , "Truesby")

 }

 Print an Object with toString ()
 This is definitely getting a little better. But the output is still empty, and the class is still basically use-
less. However, Kotlin gives you some things for free: most notably for now, every class automatically

Creating Useful Objects ❘ 15

gets a toString() method. You can run this method by creating an instance of the class (which
you ’ ve already done) and then calling that method, like this:

val brian = Person("Brian" , "Truesby")

println (brian.toString())

 Make this change to your main function. Create a new Person (give it any name you want), and then
print the object instance using println and passing into println the result of toString() .

 NOTE You may be wondering where in the world that toString() method
came from. (If not, that ’ s OK, too.) It does seem to sort of magically appear.
But it ’ s not magical it all. It ’ s actually inherited. Inheritance is closely related to
objects, and something we ’ ll talk about in a lot more detail in both Chapter 3
and Chapter 5 .

 Terminology Update: Functions and Methods
 A few specifics on terminology again. A function is a piece of code that runs. main is an example of a
function. A method is, basically, a function that ’ s attached to an object. Put another way, a method is d
also a piece of code, but it ’ s not “stranded” and self-standing, like a function is. A method is defined
on an object and can be run against a specific object instance.

 NOTE In much of the offi cial Kotlin documentation, there is not a clear distinc-
tion drawn between a function and a method. However, I ’ ve chosen to draw this
distinction because it ’ s important in general object-oriented programming, and
if you work or have familiarity with any other object-based language, you ’ ll run
across these terms. But you should realize that in “proper” Kotlin, all methods
are functions.

 That last sentence is important, so you may want to read it again. It ’ s important because it means
that a method can interact with the object instance. For example, a method might want to use the
object instance ’ s property values, like, say, a first name and last name. And with that in mind, back to
your code!

 Print an Object (and Do It with Shorthand)
 You can run the println function at any time, and you just pass it something to print. So you
could say:

println ("How are you?")

 and you ' d just get that output in your results window. You can also have it print the result from a
method, like toString() , which is what you did earlier. But there ' s another shortcut. If you pass in

16 ❘ CHAPTER 1 OBJECTS ALL THE WAY DOWN

something to println() that has a toString() method, that method is automatically run. So you
can actually trim this code:

println (brian.toString())

 down to just this:

println (brian)

 In the latter case, Kotlin sees an object passed to println() and automatically runs brian.
toString() and passes the result on for printing. In either case, you ’ ll get output that looks some-
thing like this:

 Person@7c30a502

 That ’ s not very useful, is it? It ’ s essentially an identifier for your specific instance of Person that is
useful to Kotlin internals and the JVM, but not much else. Let ’ s fix that.

 Override the toString () Method
 One of the cool things about a class method is that you can write code and define what that method
does. We haven ’ t done that yet, but it ’ s coming soon. In the meantime, though, what we have here is
slightly different: a method that we didn ’ t write code for, and that t doesn ’ t do what we want. t

 In this case, you can do something called overriding a method. This just means replacing the code of g
the method with your own code. That ’ s exactly what we want to do here.

 First, you need to tell Kotlin that you ’ re overriding a method by using the override keyword. Then
you use another keyword, fun, and then the name of the method to override, like this:

 override fun toString()

 NOTE Earlier, you learned the difference between a function and a method.
And toString() is defi nitely a method, in this case on Person . So why are you
using the fun keyword? That looks an awful lot like “function,” and that ' s, in
fact, what it stands for.

 The offi cial answer is that Kotlin essentially sees a method as a function attached
to an object. And it was easier to not use a different keyword for a standalone
function and an actual method.

 But, if that bugs you, you ' re in good company. It bugs me, too! Still, for the
purposes of Kotlin, you defi ne both functions and methods with fun .

 But toString() adds a new wrinkle: it returns a value. It returns a String to print. And you need
to tell Kotlin that this method returns something. You do that with a colon after the parentheses and
then the return type, which in this case is a String :

override fun toString(): String

Creating Useful Objects ❘ 17

 Now you can write code for the method, between curly braces, like this:

 class Person(firstName: String, lastName: String) {

 override fun toString(): String {
 return "$firstName $lastName"
 }
 }

 This looks good, and you ’ ve probably already figured out that putting a dollar sign ($) before a
variable name lets you access that variable. So this takes the firstName and lastName variables
passed into the Person constructor and prints them, right?

 Well, not exactly. If you run this code, you ’ ll actually get the errors shown in Figure 1.10 .

 What gives here? Well, it turns out to be a little tricky.

 All Data Is Not a Property Value
 You have a constructor and it takes in two pieces of data: firstName and lastName . That ’ s con-
trolled by the constructor declaration:

class Person(firstName : String, lastName : String) {

 FIGURE 1.10 : Why doesn ’ t this override of toString() work?

18 ❘ CHAPTER 1 OBJECTS ALL THE WAY DOWN

 But here ' s what is tricky: just accepting those values does not actually turn them into property values.
That ' s why you get the error in Figure 1.10 ; your Person object accepted a first and last name, but
then promptly ignored them. They aren ' t available to be used in your toString() overridden
method.

 You need to use the val keyword in front of each piece of data to turn that data into property values.
Here ' s the change you need to make:

class Person(val firstName : String, val lastName : String) {

 Specifically, by using val (or var , which we ' ll talk about shortly), you ' ve created variables, and
assigned them to the Person instance being created. That then allows those variables (or properties,
to be even more precise) to be accessed, like in your toString() method.

 Make these changes (see Listing 1.5 to make sure you ' re caught up) and then compile and run
your program.

 LISTING 1.5: Converting data to actual properties

class Person(val firstName : String, val lastName : String) {

 override fun toString(): String {
 return "$firstName $lastName"
 }
 }

fun main() {
 val brian = Person("Brian" , "Truesby")

 println (brian)
 }

 You should get a single line of output:

 Brian Truesby

 Obviously, the name will be different if you passed in different values for first and last name, but the
result is the same, and it ’ s a big deal. You ’ ve now:

➤ Created a new object

➤ Defi ned a constructor for the object

➤ Accepted two pieces of data in that constructor and stored them as properties associated
with the object instance

➤ Overridden a method and made it useful

➤ Written a main function

➤ Instantiated your custom object and passed in values

➤ Used the object to print itself out, using your overridden method

Initialize an Object and Change a Variable ❘ 19

 Not too bad for getting started! There ’ s just one more detail to work through before closing shop on
your first foray into Kotlin.

 INITIALIZE AN OBJECT AND CHANGE A VARIABLE

 Suppose you want to play around a bit with your Person class. Try this out: update your code to
match Listing 1.6 (some of this may be confusing, but you can probably figure out most of what ’ s
going on).

 LISTING 1.6: Creating a new property for a Person

class Person(val firstName : String, val lastName : String) {
val fullName : String

// Set the full name when creating an instance
init {

fullName = "$firstName $lastName"
 }

override fun toString(): String {
return fullName

 }
 }

fun main() {
// Create a new person
val brian = Person("Brian" , "Truesby")

// Create another person
val rose = Person("Rose" , "Bushnell")

println (brian)
 }

 You ’ ll see a number of new things here, but none are too surprising. First, a new variable is declared
inside the Person object: fullName . This is something you ’ ve already done in your main function.
This time, though, because you ’ re doing it inside the Person object, it automatically becomes part of
each Person instance.

 Another small change is the addition of a new Person instance in main ; this time it ’ s a variable
named rose .

 Then, there ’ s a new keyword: init . That bears further discussion.

 Initialize a Class with a Block
 In most programming languages, Java included, a constructor takes in values (as it does in your Per-
son class) and perhaps does some basic logic. Kotlin does this a bit differently; it introduces the idea
of an initializer block. It ’ s this block—identified conveniently with the init keyword—where you put
code that should run every time an object is created.

20 ❘ CHAPTER 1 OBJECTS ALL THE WAY DOWN

 This is a bit different than you may be used to: data comes in through a constructor, but it ’ s separated
from the initialization code, which is in the initializer block.

 In this case, the initializer block uses the new fullName variable and sets it using the first and last
name properties passed in through the class constructor:

 // Set the full name when creating an instance
init {

fullName = "$firstName $lastName"
 }

 Then this new variable is used in toString():

override fun toString(): String {
return fullName

 }

 WARNING As much new material as this chapter introduces, you may have just
run across the most important thing that you may learn, in the long-term sense.
By changing toString() to use fullName , rather than also using the firstName
and lastName variables directly, you are implementing a principle called DRY:
Don ’ t Repeat Yourself.

 In this case, you ’ re not repeating the combination of fi rst name and last name,
which was done already in the initializer block. You assign that combination to
a variable, and then forever more , you should use that variable instead of what it
actually references. More on this later, but take note here: this is a big deal!

 Kotlin Auto-Generates Getters and Setters
 At this point, things are going well. Part of that is all you ’ ve added, but another big help is that Kotlin
is doing a lot behind the scenes. It ’ s running code for you automatically (like that initializer block)
and letting you override methods.

 It ’ s doing something else, too: it ’ s auto-generating some extra methods on your class. Because
you made firstName and lastName property values (with that val keyword), and you defined a
fullName property, Kotlin created getters and setters for all of those properties.

 Terminology Update: Getters, Setters, Mutators, Accessors
 A getter is a method that allows you to get a value. For instance, you can add this into your main
function, and it will not only work, but print out just the first name of the brian Person instance:

// Create a new person
val brian = Person("Brian" , "Truesby")
println (brian. firstName)

 This works because you have a getter on Person for firstName . You can do the same with fullName
and lastName , too. This getter is, more formally, an accessor . It provides access to a value, in this case
a property of Person . And it ' s “free” because Kotlin creates this accessor for you.

Initialize an Object and Change a Variable ❘ 21

 Kotlin also gives you a setter, or (again, more formally) a mutator . A mutator lets you mutate a value,
which just means to change it. So you can add this into your program:

// Create a new person
val brian = Person("Brian" , "Truesby")
println (brian. firstName)

// Create another person
val rose = Person("Rose" , "Bushnell")
 rose.lastName = "Bushnell-Truesby"

 Just as you can get data through an accessor, you can update data through mutators.

 WARNING For the most part, I ’ ll be calling getters accessors, and calling setters
mutators. That ’ s not as common as “getter” or “setter,” but as a good friend and
editor of mine once told me, a setter is a hairy and somewhat fl uffy dog; a muta-
tor lets you update class data. The difference—and his colorful explanation—
has stuck with me for 20 years.

 Now, if you ’ ve gone ahead and compiled this code, you ’ ve run into yet another odd error, and that ’ s
the last thing to fix before moving on from this initial foray into objects.

 Constants Can ’ t Change (Sort of)
 Here ’ s the code causing the problem:

// Create another person
val rose = Person("Rose" , "Bushnell")
 rose.lastName = "Bushnell-Truesby"

 If you try to run this code, you ’ ll get an error like this:

 Error: Kotlin: Val cannot be reassigned

 One of the things that is fairly unique about Kotlin is its strong stance on variables. Specifically,
 Kotlin allows you to not just declare the type of a variable, but also whether that variable is a mutable
variable, or a constant variable.t

 NOTE The terminology here is a bit confusing, so take your time. Just as with
methods being declared with the fun keyword, the idea of a constant variable
takes a little getting used to.

 When you declare a variable in Kotlin, you can use the keyword val , as you ’ ve already done:

 val brian = Person("Brian", "Truesby")

22 ❘ CHAPTER 1 OBJECTS ALL THE WAY DOWN

 But you can also use the keyword var , something you haven ’ t done yet. That would look like this:t

 var brian = Person("Brian", "Truesby")

 First, in both cases, you end up with a variable; val does not stand for value, for example, but is
simply another way to declare a variable, alongside var . When you use val , you are creating a
constant variable. In Kotlin, a constant variable can be assigned a value once, and only once. That
variable is then constant and can never be changed.

 You created the lastName variable in Person with this line:

 class Person(val firstName: String, val lastName: String) {

 That defines lastName (and firstName) as a constant variable. Once it ' s passed in and assigned
when the Person instance is created, it can ' t be changed. That makes this statement illegal:

 rose.lastName = "Bushnell-Truesby"

 To clear up the odd error from earlier, what you need instead is for lastName to be a mutable
variable; you need it to be changeable after initial assignment.

 NOTE Not to beat a hairy and somewhat fl uffy dog to death, but here is another
reason to use mutator over setter; a mutator allows you to mutate a mutable
variable. This aligns the terminology much more cleanly than using “setter.”

 So change your Person constructor to use var instead of val . This indicates that firstName and
lastName can be changed:

 class Person(var firstName: String, var lastName: String) {

 Now you should be able to compile the program again, without error. In fact, once you ’ ve done that,
make a few other tweaks. You want to end up with your code looking like Listing 1.7 .

 LISTING 1.7 : Using mutable variables

class Person(var firstName : String, var lastName : String) {
 var fullName : String

 // Set the full name when creating an instance
 init {
 fullName = "$firstName $lastName"
 }

 override fun toString(): String {
 return fullName
 }
 }

Initialize an Object and Change a Variable ❘ 23

fun main() {
// Create a new person
val brian = Person("Brian" , "Truesby")
println (brian)

// Create another person
val rose = Person("Rose" , "Bushnell")
println (rose)

// Change Rose ' s last name
 rose.lastName = "Bushnell-Truesby"

println (rose)
 }

 Here, fullName has been made mutable, and there ’ s a little more printing in main . It should compile
and run without error now.

 But wait! Did you see your output? There ’ s a problem! Here ’ s what you probably get when you run
your code:

 Brian Truesby
 Rose Bushnell
 Rose Bushnell

 Despite what Meat Loaf had to say about two out of three not being bad, this is not great. Why is
Rose ’ s name in the last instance not printing with her new last name?

 Well, to solve that, it ’ s going to take another chapter, and looking a lot more closely at how Kotlin
handles data, types, and more of that automatically running code.

