
CHAPTER 1 Introducing Graph Databases 3

0004915568.INDD 3 Trim size: 5.5 in × 8.5 in August 25, 2020 3:02 PM

Chapter 1

 IN THIS CHAPTER

» Introducing graph database basics

» Following the graph learning curve

 Introducing Graph
Databases

 S ince the turn of the century, an explosion of new database
technologies has ended the prior dominance of relational
systems. These various new kinds of databases distinguished

themselves with the umbrella term NoSQL. While the terminology
is debatable, NoSQL technology really is diff erent from the rela-
tional world. Instead of storing data in rows in tables, databases
store nested documents, key-value pairs, or columnar form data.

 There are good reasons for the emergence of new data models.
Document databases optimize for ease of storage and retrieval
with a fi le cabinet metaphor of document-in, document-out.
Column store databases optimize for scale and the ability to scan
many records rapidly. In optimizing for their use cases though,
the new databases opted for simplistic data models. For example,
understanding how two records are related is part of the relational
model via joins, but no equivalent mechanism exists in document,
key-value, or column store databases.

 In this chapter, you discover the fundamental building blocks of
graphs and how to use them to create sophisticated, high-fi delity
data models.

CO
PYRIG

HTED
 M

ATERIA
L

4 Graph Databases For Dummies, Neo4j Special Edition

0004915568.INDD 5	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM0004915568.INDD 4	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM

Exploring Graph Database Basics
A graph database uses highly inter-linked data structures built
from nodes, relationships, and properties. In turn, these graph
structures support sophisticated, semantically rich queries at
scale.

Graph databases turn NoSQL thinking on its head: Relationships
between data are just as important as the data itself. A graph
database builds a network of interconnected entities to represent
its domain. Like relational databases, you can query that model
to gain insight, but unlike relational databases, the data model
is intuitive. Using graph data models doesn’t require a semester
of classes on normalization and years of system administration
experience on how to denormalize relational data for perfor-
mance. Instead, with a handful of simple tools, you can build
expressive and understandable data models that are highly per-
formant. In this section, you explore the new data model basics.

Understanding who uses graph
databases and why
Graph databases are general-purpose data technology. They can
be used by a wide variety of domains from healthcare to finance,
and energy to disaster response. The key to understanding when
to use a graph database is the value of links. If your data is con-
nected, whether it supports an online mobile app or an offline
machine learning framework, then a graph is going to be a good
choice.

Conversely if your data is bulk storage, blob storage, time-
series, or logs, then a graph may not be the best choice because
there aren’t many links between the data to exploit. Graphs are
general-purpose, but they are not the only useful data model.
Graphs are broadly useful, and we give you a range of examples
throughout this book.

Seeing the benefits of graph databases
Graphs bring several benefits across the whole life cycle of a sys-
tem. For the production lifetime of a system, graphs offer superior
querying of complex models, enabling business to ask pertinent
questions with high performance. This alone is enough to put

CHAPTER 1 Introducing Graph Databases 5

0004915568.INDD 5	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM0004915568.INDD 4	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM

graphs on your to-do list. But graphs also offer ease of develop-
ment, where combining simple patterns allows you to build large
sophisticated networks that represent your problem domain in
high-fidelity.

Explaining Labeled Property Graphs
The most widely used model for graph databases is the labeled
property graph model. To experts, this shorthand is useful to dis-
tinguish between this model and other more mathematically
inclined models, such as hypergraphs. But if you aren’t an expert,
this description may need a little unpacking.

The fundamental components of the labeled property graph model
are nodes and relationships (you may also know these as vertices
and edges) and constraints.

In the labeled property graph model, we use naming conventions
to distinguish elements at a glance. When reading this chapter or
others, the following helps describe the naming conventions:

»» Node labels are PascalCase. Every word starts with an
uppercase letter with no spaces.

»» Relationships are SNAKE_CASE_ALL_CAPS. Replace all the
spaces with an underlined character and convert all the
letters to capitals.

»» Properties on nodes and relationships are snake_case.
Replace all spaces with an underlined character and
lowercase all the words.

Defining nodes
A node typically represents some entity, such as a person, prod-
uct, electrical junction, mouse click, or patient diagnosis. You can
optionally add labels to a node, which indicates the node’s role
in the graph. For example, you could label a node representing
a corporate customer as Business and Customer, while labeling a
private individual as a Person and Customer. With these labels, you
can easily find all customers, all individual customers, or all busi-
ness customers and use them as starting points in graph queries.
We cover graph queries more in Chapter 4.

6 Graph Databases For Dummies, Neo4j Special Edition

0004915568.INDD 7	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM0004915568.INDD 6	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM

You can add data properties to nodes. For example, you could add
first_name and last_name properties to a node labeled Person or
add an invoice_address property to a node labeled Business.

Explaining relationships
To link nodes together, you use relationships. Relationships
are singly-typed, directed, and can optionally have properties
attached to them. The type of a relationship provides a predicate
(for example, MANAGES) while the direction of the relationship
shows the subject and object (for example, Rosa manages Karl,
not the other way around).

Any number of relationships of any type, in any direction can
be attached to a node. Some nodes are sparsely connected, some
densely. This distribution is quite normal, and the model allows
for infinite variation.

Enforcing constraints
After you have the basic structures in place, you may want to
structure how the graph evolves. By declaring constraints, you
can ask the database to enforce that certain properties must be
present for certain node labels or relationship types — for exam-
ple, that first_name and last_name must be present on nodes with
Person labels or a power_rating must be present on POWER_LINE
relationships. You can also ask the database to ensure that fields
are unique when adding a Social Security Number (SSN) to Person
nodes, for example.

Unlike traditional databases where an up-front schema is required,
we like to take the approach that data should grow organically
where it can, and be constrained where it must. Constraints act as
a schema for parts of the graph that require stronger governance,
while other parts of the graph can change in a less constrained
way. We call it less-schema rather than schema-less. This approach
gives both flexibility and good governance.

If your query violates a constraint, it will be rolled back, keeping
the data consistent.

CHAPTER 1 Introducing Graph Databases 7

0004915568.INDD 7	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM0004915568.INDD 6	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM

Building a Sample Graph
In the preceding section, “Explaining labeled property graphs,”
we laid out the basic parts of graphs for you. In this section, you
can put those tools and knowledge to work and build a simple
graph. The example we provide is of an atomic family, which con-
sists of two parents and their offspring.

Figure 1-1 shows you three nodes labeled Person. Inside the nodes,
you see first_name and last_name properties for Alice, Bob, and
Charlotte.

FIGURE 1-1: A graph showing a family with its home and vehicles.

8 Graph Databases For Dummies, Neo4j Special Edition

0004915568.INDD 9	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM0004915568.INDD 8	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM

You may infer some relationship between the three people in
Figure 1-1 by their common last names, but the relationships
between them make it explicit. Charlotte has two outgoing rela-
tionships: MOTHER joins her to Alice, and FATHER joins her to Bob.
Those relationships are read as Charlotte’s MOTHER is Alice, and
Charlotte’s FATHER is Bob.

If you read from a node along an outgoing relationship to another
node, you get a sensible sentence. A good spot-check to see if the
model is sound is that the nodes and relationships make logi-
cal sense. If you had made errors in this model (for example, Car
DRIVES Person), you’d know that you had some work to do.

You can see in Figure 1-1 where each family member lives by
following the outgoing LIVES_AT relationship from each. Fol-
low those lines, and you see they all live at the same address.
But what’s really useful about graphs is that you can ask the
reverse question: Who lives at this address? And you can expect
the answer in the same amount of time, which is faster when
compared to other kinds of databases.

Following lines between circles doesn’t seem sophisticated at
first glance. But it’s an example of how Neo4j, a graph database,
works. Given a starting point, the database engine chases point-
ers around the graph until it finds the answer to your queries.
Pointer chasing is a cheap and fast way of navigating data because
it avoids heavyweight joins and slow index lookups that are com-
mon in relational systems.

Pointer chasing even has its own special jargon: index-free adja-
cency. Informally, it means that it’s possible to traverse from a
node to any of its neighbors at a low, constant cost, and from
there to any of its neighbors, and so on, all at a low, constant cost
per hop. This means that query time is proportional to how much
of the graph the query traverses. Query latency — how long a query
takes to run — is decoupled from the overall size of the data.

In Figure 1-1, you also see that Alice and Bob each OWN cars and
each is the DRIVER of both their own and each-other’s vehicles.
So if Charlotte needs a ride, she can ask either Mom or Dad and be
taken in either car.

You can solve several other queries with the graph in Figure 1-1.
These queries include knowing who’s legally allowed to drive a
car, knowing where a car normally resides, and so on. You can

CHAPTER 1 Introducing Graph Databases 9

0004915568.INDD 9	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM0004915568.INDD 8	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM

scale this model up to a street, town, city, or country, as well.
Then add in schools, hospitals, businesses, and more to produce
a much bigger and richer graph, all by repeating the same simple
idioms.

Climbing the Graph Learning Curve
In a graph database, nodes can be connected by any number and
type of relationship in any direction. You can use as many or as
few as needed to model the domain accurately. There is no nor-
malized form to which you must adhere: If many paths between
two nodes exist, that’s quite normal, just like in real life. Many
folks, including us authors, have initially found this hard coming
from a relational background. If this model seems too loose right
now, don’t despair. We help you with some modeling patterns in
Chapter 2.

In a graph database, each node represents a single entity and each
relationship joins two specific nodes. That means if you have a lot
of products to store in the database, there will be a lot of product
nodes, and if you have a lot of customers for those products, there
will be a lot of relationships linking them together.

Initially, the instance-oriented view of data in graph databases
seems messy. After all, a relational database collects all similar
data items into their own tables and permits joins between those
tables. This seems to keep complexity down, in principle. But
graph databases also have abstractions that can help minimize
complexity.

For example, labels are similar to tables or views, grouping
together similar entities. Nodes are like rows where individual
properties are grouped together. Relationships dictate which joins
are legal — not at the table level like in the relational model, but
at a finer granularity. So you can say that Product nodes are linked
to Customer nodes via BOUGHT and LIKED relationships.

Entity-relationship diagrams from the relational world often
make good design diagrams for labeled nodes and their connec-
tions in a graph model. If you can draw an Entity Relationship
Diagram (ERD) to model a relational database, you can create a
graph data model.

10 Graph Databases For Dummies, Neo4j Special Edition

0004915568.INDD 10	 Trim size: 5.5 in × 8.5 in� August 25, 2020 3:02 PM

In practice, graphs are simpler than relational models. Over time,
thinking in graphs becomes quite natural. We found that over-
whelmingly the hardest part is letting go of relational modeling
and trusting that a network of nodes and relationships can be
even better.

Too good to be true? We don’t think so. Head to Chapter 2 to find
out how to build graph models.

GOING ALL-IN ON GRAPHS
Graphs are simple to build and highly expressive, so we think you
should be using them everywhere. Well, perhaps eventually, but in
today’s environment, there are places where other databases are a
better choice. That might seem strange coming from graph aficiona-
dos, but we think graphs follow the 80-20 rule. They’re great for 80
percent of tasks because they’re a general-purpose database, and
they’re not directly helpful for 20 percent of the tasks that have spe-
cialized needs.

But sometimes graphs can be helpful for that 20 percent, too. As an
example, imagine you have a bulk storage system. It may be a data
lake or perhaps an object store like Amazon’s S3. These storage sys-
tems work for storing large amounts of items, but they’re not great
systems for reasoning about data. The data model simply doesn’t
care about connections; it cares about volume.

In this case, graph databases can be used as the index over the bulk
store. The graph can be used to link together related items to provide
curated views of the underlying items. You don’t have any more of
those intensive batch processing jobs needed just to find linkage
between records; just search paths in the graph in real time, and then
go down to bulk storage to pick out only those records you need.
Adding graphs to bulk storage systems adds value.

