
ANDROID OS
INTERNALS:
UNDERSTANDING
HOW YOUR DEVICE
STARTS

IN THIS CHAPTER:
 The penguin down below: the Linux kernel

 Bootstrapping: How your device starts

 An introduction to custom bootloader and custom
recovery processes

TO FULLY UNDERSTAND the process of rooting your device, gaining the
control and power you need to truly customize it, you need to understand a little
about how the Android operating system works—how the device goes from being
powered off to a fully functioning state. It is in this process that developers usually
exploit weaknesses to gain full access to the device. Usually some step in the boot
process allows a developer to insert a bit of code or a script, and thus access
functionality not intended by the Original Equipment Manufacturer (OEM).

1

06_9781119951384-ch01.indd 1106_9781119951384-ch01.indd 11 4/26/12 12:46 PM4/26/12 12:46 PM

CO
PYRIG

HTED
 M

ATERIA
L

12

THE PENGUIN DOWN BELOW
Android is an operating system built on the Linux kernel. Th anks to Google
and the Open Handset Alliance, Linux and its penguin mascot have found a
home on Android devices. Android is essentially a highly customized
distribution of Linux with various tweaks oriented towards mobile devices.

If you are familiar with the Linux operating system then you are going to feel
quite at home with many aspects of the Android operating system. If you are
comfortable with any other command-line operating system, such as DOS or
the Windows command line, many of your skills there will be useful as well.

Android is, at its core, an implementation of the Linux operating system.
Many of the commands you will be using in hacking an Android device are
Linux commands. However, you do not need to be a programmer to become
an Android hobbyist or enthusiast. Using the skills taught in this book, you
can become adept at exploring and altering your Android device.

Th e diff erences between your Android device and a Linux desktop computer
are many. Th e most striking diff erence is the way in which your device
bootstraps (starts) when you power it on. It is in this start-up process that the
hackers and elite developers fi nd the vulnerabilities to exploit. Because Linux
has a long history of being the go-to operating system of developers, hobbyists
and hackers, there are many programmers and professional experts working

Linux Development and Open Source
Linux began in 1991 with Linus Torvalds working to make a completely free and
open source operating system that could be used by hobbyists, academia and
hackers. His operating system has grown to be one of the most powerful and
fl exible in the world today. From a handful of unknown geeks, the developer
base has matured to include thousands of contributors every year. Some of the
fi nest names in computer science and programming work on the development
not only of Linux but also of Android.

Linux remains completely free and completely open source. This allows
companies and individuals to have access to the power of computing devices
without the complex legal and copyright concerns that come with closed source
software.

XDA Developers' Android Hacker's Toolkit

06_9781119951384-ch01.indd 1206_9781119951384-ch01.indd 12 4/26/12 12:46 PM4/26/12 12:46 PM

Chapter 1: Android OS Internals: Understanding

How Your Device Starts 13

on tools that help you with the root process. Most of the “heavy lift ing” is done
long before the average Android hacker gets access to root on his or her
device.

Although you do not need to be a Linux nerd to root and customize your
Android device, being familiar with the Linux command line, and command
lines in general, will help you feel more comfortable. For an excellent
reference to the Linux command line, check out Linux Command Line and
Shell Scripting Bible, 2nd Edition by Richard Blum (Wiley, 2011).

HOW YOUR ANDROID DEVICE
STARTS
Th e Android operating system has a complex and multistage start-up
routine. Manufacturers lock the start-up process to protect revenue and
maintain control of the device you purchase. Th e nature of the Android
start-up process allows developers and hackers to replace parts of it to
achieve full control of an Android device.

BOOTSTRAPPING

Bootstrapping (or booting) is a term that describes what a computing device
does when turned on. It “pulls itself up by its bootstraps.” When you power
on an Android device, a tiny piece of code on a memory chip initializes the
memory and CPU. Usually the bootstrap code is referred to as the boot-
loader. Th e bootloader is diff erent from device to device, although all
bootloaders do the same things: they check for hardware features and load
the fi rst part of the operating system into the device’s memory.

Th e encrypted bootloader is the beginning of all things Android, eff ectively
locking out the user from customizing the fi rmware and soft ware. Locking
the bootloader is the rough equivalent to a computer manufacturer forcing
you to use a particular version of Windows, along with a theme of their
choosing. Th e bootloader is the primary point of contention between owners
of mobile devices and the original equipment manufacturer (OEM). Many, if
not most, OEMs specifi cally do not want you to have access to that boot-
loader code. Th e reasons that OEMs do not want users to have access to this
code are varied but fall into the following categories:

06_9781119951384-ch01.indd 1306_9781119951384-ch01.indd 13 4/26/12 12:46 PM4/26/12 12:46 PM

14

 Th e cost of honoring warranties: Altering the bootloader code can
permanently disable the device. Th is is problematic for device manufac-
turers because broken devices are returned to them under warranty. It is
diffi cult to determine if a device is broken because the user did
something silly to it or if it is, in fact, defective. Th is means that the
manufacturer may have to replace a device that became defective
through no fault of the manufacturer. Replacing defective devices costs
money and those costs may be passed on to the consumer.
 Th e need to protect carrier agreements: Carriers are paid to pre-install
applications from third parties on devices. Many organizations, from
car rental companies to streaming video startups, have a mobile
application. To get exposure for their products, they pay carriers to
include those applications on your device; to ensure that exposure, the
carrier blocks the user’s ability to remove the application. Aft er all, it
simply wouldn’t do to have Blockbuster pay hundreds of thousands of
dollars to have their application on your device only to have you remove
it to make room for Angry Birds three minutes aft er you walk out of the
store. Locking the bootloader allows carriers and OEMs to declare some
applications as “system” applications. Th is removes them from typical
management tasks, such as deletion or moving them to an SD card.
 Planned obsolescence: Devices with a very long life are bad for OEMs.
Th e development and release cycle of new mobile devices has become
incredibly fast, outpacing even old standards in technology. When a
device is released, the device that will obsolete it is oft en already in
production. Android operating system updates have new features and
stability that users desire. Because OEMs depend on selling new
features and the latest Android operating system, they need consumers
to want the newest devices. Allowing consumers to update the operat-
ing system and soft ware themselves eff ectively reduces the need to
purchase the latest device from the OEM or carrier.

 In essence, planned obsolescence from the carriers and OEMs is
designed to make the consumer spend more money to get the latest
Android updates. If you can hack those updates into the perfectly good
device you purchased six months earlier, the OEMs lose money.

When you power on an Android device, the bootloader is the fi rst program
code that runs. Bootloading is typically a two-part process, utilizing a
primary and a secondary bootloader.

On most Android devices, the primary bootloader cannot be replaced. Th is
is because the primary bootloader is hardcoded into an application-specifi c
integrated circuit (ASIC) in the device. Th ese hardcoded instructions load
the secondary bootloader into memory and tell it where the memory, CPU
and operating system are located and how they can be accessed.

XDA Developers' Android Hacker's Toolkit

06_9781119951384-ch01.indd 1406_9781119951384-ch01.indd 14 4/26/12 12:46 PM4/26/12 12:46 PM

Chapter 1: Android OS Internals: Understanding

How Your Device Starts 15

ADDING A CUSTOM BOOTLOADER

A custom bootloader is a secondary bootloader that allows you to gain
access to the fi le system with more control than you can with an OEM
bootloader. Custom bootloaders open up the possibilities of replacing the
original operating system fi les with customizations as varied as a new user
interface or a supercharged kernel. Despite the manufacturer’s objections,
the hacker’s goal is to interrupt the standard bootloading process and use a
custom bootloader that enables hacking of the device.

UNDERSTANDING THE BOOTLOADER PROCESS

Your Android device follows certain steps when booting up. Th e following
steps and Figure 1-1 are simplifi ed and made generic to apply to most
Android devices.

 1. Special code in the boot read-only memory (ROM) locates the fi rst-
stage bootloader and loads it into memory. Th e boot ROM is an ASIC
that has its code permanently programmed.

 2. Th e fi rst-stage bootloader loads the second-stage bootloader aft er
initializing some memory and getting the hardware ready.

 Th e bootloader checks to see if the security fl ag is on (S-ON). If it is on,
then the bootloader will load only signed (offi cial) kernels. If the
security fl ag is off (S-OFF), then the bootloader no longer checks for
signatures. Setting S-OFF also releases other security lock downs,
making the entire fi le system writable and enabling other goodies, such
as allowing you to install a custom recovery process on the device.

 Th is is the step in which you want your custom bootloader to be loaded.
Th e holy grail of hacking a manufacturer’s handset is to load a custom
bootloader so that a custom kernel can be loaded.

Taking Responsibility for Your Hacks
It is important to note that if you choose to hack your device, you take responsi-
bility for replacing it. It is unfair and unethical to do something silly to your
device that disables it and then expect the carrier or OEM to replace it. Good
hackers go into their hacks knowing the possible outcomes and willing to take
responsibility for their own failures. When it comes to OEM and carrier ill-will
towards hackers, ensure you are part of the solution not part of the problem.
Never try to return a bricked or disabled device for replacement. Learn how to
fi x it or take responsibility and replace it.

06_9781119951384-ch01.indd 1506_9781119951384-ch01.indd 15 4/26/12 12:46 PM4/26/12 12:46 PM

16 XDA Developers' Android Hacker's Toolkit

Power on
Android device

Boot ROM loads
the first-stage
bootloader

1

2

3

4

First-stage bootloader starts
second-stage bootloader with
memory initializations

Second-stage bootloader checks
security of firmware and loads
Android OS kernel

Running Android kernel
is ready to load software
and access hardware

Figure 1-1: The Android boot process

 Fastboot (see Chapter 3) is a protocol that allows low-level commands to be
sent to a device to do such things as write fi les (such as custom bootloaders,
recoveries and ROMs) to the operating system. Most manufacturers,
therefore, disable the Fastboot protocol at the factory. Because the second-
stage bootloader is the step in the boot process where the Fastboot protocol
is enabled or disabled, this part of the code is frequently encrypted or
otherwise locked down by OEMs. Some devices, such as Nexus devices and
the Xoom, can be unlocked, allowing the Fastboot protocol to be enabled.

 3. Th e bootloader loads a Linux kernel and customizations into memory.
 At this point, the bootloader hands off control of the hardware to the

Linux kernel. Th e Linux kernel and any soft ware or fi rmware customi-
zations are usually all packaged together. On some devices, they are
called a ROM. Th e name ROM is a slight misnomer because NAND
storage is not truly read-only. Other devices require custom images (in
IMG format) to be written to memory; still others have the kernel
package written from an RUU fi le. However the kernel package is
placed on the device, the bootloader must know where it is located and
how to hand over the reins to it.

 4. Th e last step is the initialization (INIT) process. Th e INIT process is the
mother of all other processes that run on your device. It initializes all of
the processes necessary for basic hardware access and device function-
ality. It also starts up the Dalvik virtual machine processes where most
applications are executed.

Th rough this whole start-up process, the important thing for you to
understand is that most of the hoops you have to jump through when
rooting your Android are to achieve one or both of two goals:

06_9781119951384-ch01.indd 1606_9781119951384-ch01.indd 16 4/26/12 12:46 PM4/26/12 12:46 PM

Chapter 1: Android OS Internals: Understanding

How Your Device Starts 17

 to set S-OFF, thereby allowing you to load your own custom kernel
package
 to install a custom second-stage bootloader to allow you to ignore the
S-ON or S-OFF state and load your own custom kernel package.

On some devices, neither goal is achievable and you must use workarounds
to carry out device customizations. Devices with completely encrypted
bootloaders, such as the Milestone and DroidX, can still be customized to
some extent. Th e amount of customization you are able to achieve on these
devices is limited and the process is usually a little more complex.

CUSTOM RECOVERIES:
THE HOLY GRAIL
A recovery is a separate, standalone piece of code on a partition that can be
booted in order to update Android and maintain the device. Almost all
Android devices have a recovery mode into which they can be booted. One
of your goals as an Android hacker is to get a custom recovery onto your
device. Custom recoveries allow you to include many extra features,
including easy customization and backup.

A recovery allows you to do useful things such as resetting a device to
factory settings, clearing the data cache, and installing an offi cial signed
update to the Android operating system. Figure 1-2 shows the Amon Ra
recovery screen. Unfortunately, the catch is that the default recovery process
for most devices only installs updates to Android that have been signed with
the OEM’s digital signature.

If you can achieve full root and full custom recovery, you can easily change
the ROM or fi rmware package installed on your Android device and create
full fi le system backups, including backing up application data. Developers
of custom recovery processes include many options not included in the
standard Android boot process. Figure 1-3 shows the screen for the popular
ClockworkMod recovery. Th is recovery gives you the capability of fl ashing a
custom fi rmware package to your Android device very easily, as well as
backing up the fi rmware, data, and cache and storing them on your SD card.

06_9781119951384-ch01.indd 1706_9781119951384-ch01.indd 17 4/26/12 12:46 PM4/26/12 12:46 PM

18 XDA Developers' Android Hacker's Toolkit

Figure 1-2: Amon Ra recovery screen

Which custom recovery you use depends on personal taste and the compat-
ibility of your device. Th e Amon Ra and ClockworkMod recoveries each
work on some devices. Th e XDA forums are a good resource to see if your
device is supported by either of those custom recoveries. Typically, the
process of rooting a device includes installing one of these recoveries. If your
device is supported by a custom recovery, you should install it immediately
aft er rooting. You can check the developer websites for device support.

Chapter 4 includes a complete walkthrough for the ClockworkMod recovery.

06_9781119951384-ch01.indd 1806_9781119951384-ch01.indd 18 4/26/12 12:46 PM4/26/12 12:46 PM

Chapter 1: Android OS Internals: Understanding

How Your Device Starts 19

Figure 1-3: The ClockworkMod recovery screen

06_9781119951384-ch01.indd 1906_9781119951384-ch01.indd 19 4/26/12 12:46 PM4/26/12 12:46 PM

06_9781119951384-ch01.indd 2006_9781119951384-ch01.indd 20 4/26/12 12:46 PM4/26/12 12:46 PM

