
Chapter 1

Software Architecture Basics

In This Chapter
▶ Understanding the basics of software architecture

▶ Finding the problem

▶ Identifying requirements

▶ Considering your software development style

The term software architecture means different things to different people.
To the developer, it means the structure of the system being built. To

the framework developer, it’s the shape of the system that is created with
the framework. To the tester, it’s the shape of what needs to be tested. For all
concerned, it’s the high-level structure of the solution to a problem that the
customer or client wants solved.

In this chapter, I explain the basics of software architecture — what it is and
how you get started. Knowing the problem that you’re solving and the impor-
tant requirements of the system are also very important, and I help you get
going with these tasks in this chapter. In Chapter 4, I explain how software
patterns fit into the picture.

Understanding Software Architecture
Every system has an architecture — some high-level structure that underlies
the whole system. Software architecture is how the pieces fit together to build
the solution to some business or technical need that your customer or client
wants solved. The architecture has a purpose.

The decisions made during the creation of the architecture are truly funda-
mental to the system because they set the stage for all the other decisions
that will come later.

05_9781119963998-ch01.indd 905_9781119963998-ch01.indd 9 12/3/12 11:59 AM12/3/12 11:59 AM

CO
PYRIG

HTED
 M

ATERIA
L

10 Part I: Introducing Software Architecture and Patterns

Some systems’ architectures are best described as a Big Ball of Mud (see
Chapter 2). These systems are hard to build and hard to maintain, and they
may not meet the customer’s needs. Tackling the development of a software
system with good software architecture will lead to a more successful result.

 To an unsophisticated customer or client, software architecture is a meaning-
less term, so don’t get hung up trying to explain how wonderful your architec-
ture is. The customer wants the finished product that solves the problem at
hand, not a description of the software that you’ll build to solve it. (For more
information on explaining software architecture to others, see Chapter 3.)

Components of software architecture
The software architecture provides the high-level view of the system you’re
building and must cover the following aspects:

 ✓ Goals and philosophy of the system: The architecture explains the
goals and describes the purpose of the system, as well as who uses it
and what problem it solves.

 ✓ Architectural assumptions and dependencies: The architecture explains
the assumption made about the environment and about the system
itself. The architecture also explains any dependencies on other systems
or on the builders of the system.

 ✓ Architecturally significant requirements: The architecture points to the
most significant requirements that shaped it.

 ✓ Packaging instructions for subsystems and components: The architec-
ture explains how the parts of the system are deployed on computing
platforms and how the parts must be combined for proper functioning. The
subsystems and components are the building blocks of the architecture.

 ✓ Critical subsystems and layers: The architecture explains the different
views and parts of the system and how they relate. It also explains the
most critical subsystems in detail.

 ✓ References to architecturally significant design elements: The architec-
ture describes the most prominent and significant parts of the design.

 ✓ Critical system interfaces: The architecture describes the interfaces of
the system, with special attention to the interfaces that are critical to
meet the system’s requirements.

 ✓ Key scenarios that describe critical behavior of the system: The archi-
tecture explains the most important scenarios that illustrate and explain
how the system will be used.

05_9781119963998-ch01.indd 1005_9781119963998-ch01.indd 10 12/3/12 11:59 AM12/3/12 11:59 AM

11 Chapter 1: Software Architecture Basics

Architecture document
All the components in the preceding section go into an architecture document,
which contains the information needed to interpret the architecture. The
document includes assumptions, key decisions that shaped the architecture,
how the parts of the architecture work together, and how the system will be
packaged. I tell you more about the architecture document in Chapter 3.

Architecture models (views)
The software architecture has several audiences, including fellow architects,
programmers, configuration managers, testers, and customers. All are inter-
ested in different information, and all look for different things within the
architecture. To make your architecture useful to all these audiences, divide
the architectural description into four different models or views:

 ✓ Logical: Maps the system onto classes and components. The logical
view is directly related to the functional requirements, which I discuss
later in this chapter. The logical view focuses on the parts of the system
that provide the functionality and that the users of the system will see
when they interact with it.

 ✓ Process: Explains how the parts of the architecture work together
and how the parts stay synchronized. It also explains how the system
is mapped onto the units of computing, like processes and threads.
Processes are groups of tasks that together make something that can
execute and perform the desired functions. The process view brings in
some nonfunctional requirements (see “Defining nonfunctional require-
ments,” later in this chapter), which aren’t directly related to visible
functions.

 ✓ Physical: Explains how the software that implements the system is
mapped onto the computing platforms. The various components of the
system, networks, processes, tasks, and objects are mapped onto the
tangible parts of the system in the physical view. This view contains
information related to the system’s nonfunctional requirements (dis-
cussed later in this chapter), such as availability, performance, and
scalability.

 ✓ Development: Explains how the software will be managed during devel-
opment. The software will be written in small pieces that individuals
or small teams can work on together. The development view highlights
these pieces and shows how they are intertwined and interdependent.
The development view reflects any limitations on the organization of the
software based on limitations in the programming language, development
environment, or development organization.

05_9781119963998-ch01.indd 1105_9781119963998-ch01.indd 11 12/3/12 11:59 AM12/3/12 11:59 AM

12 Part I: Introducing Software Architecture and Patterns

 I tell you about diagram styles to use for each of these models in Chapter 3.

These four models of the system are usually supplemented by one additional
view that describes common scenarios, tying the other views together by
showing how elements within all of them work together. (Use cases, discussed
later in this chapter, describe the scenarios.) This additional view is frequently
called the 4 + 1 model. Figure 1-1 shows how the parts relate. A good architec-
ture balances all these views so that no view contains much more detail than
any other.

Figure 1-1:
The 4 + 1

model of an
architecture.

Software development methods
and processes
Software development can be done in many ways. These different ways are
called methods or processes. Here are a few examples:

 ✓ Waterfall method: In the waterfall method, the different phases of system
development activities follow each other sequentially. The artifacts pro-
duced during development are considered to be flowing downstream
and going over a waterfall between the analysis, requirements-gathering,
development, and testing phases of development. Artifacts always move
forward, or downstream, without repeating a phase more than once.

 ✓ Unified Process: The Unified Process is a popular process in which the
various activities — such as requirements generation, development,
and testing — overlap. Instead of being associated with particular work
products and the tasks that create them, the phases in the Unified
Process follow the life of the product, from inception to elaboration to
construction and finally to transition. Within each of these phases, the
activities are iterated, always focusing on the most critical aspects.

05_9781119963998-ch01.indd 1205_9781119963998-ch01.indd 12 12/3/12 11:59 AM12/3/12 11:59 AM

13 Chapter 1: Software Architecture Basics

 ✓ Agile methods: Agile development methods are very popular today. Agile
methods are an outgrowth of the Agile Manifesto (www.agilemanifesto.
org), which declares (among other things) that there’s more value in
working software than in the documentation created by the waterfall
method and Unified Process.

 Within the category of agile methods are a variety of methods, such as
XP, Scrum, and Lean. Agile methods are also iterative, but even more
than in the Unified Process, a little bit of each activity is done during
each iteration.

All these methods are useful, and everything I tell you in this book about
developing software architecture applies to any process you use. The only
differences involve when the architecture descriptions are handed off to
people working on the other parts of the process.

Identifying the Problem to Be Solved
As you define your software architecture, the most important question you
need to ask is: “What problem am I solving?” A major reason why software
systems don’t succeed is that they don’t meet the needs of the customer or
client who requested the software. In other words, they didn’t solve the
customer’s or client’s problem.

In this section, I show you how to identify the problem so that you can
develop a solution that both solves the problem and meets your customer’s
or client’s needs.

Breaking the problem into
the four attributes
The problems that you solve with software architectures have four main
attributes:

 ✓ Function: Describes the problem to be solved

 ✓ Form: Describes the shape of the solution and how it fits into the envi-
ronment of other systems and technologies

 ✓ Economy: Describes how much it costs to build, operate, and maintain
the solution

 ✓ Time: Describes how the problem is expected to change in the future

Understanding these four attributes is critical to identifying the problem to
be solved.

05_9781119963998-ch01.indd 1305_9781119963998-ch01.indd 13 12/3/12 11:59 AM12/3/12 11:59 AM

14 Part I: Introducing Software Architecture and Patterns

 Ask the customer what he wants in a system and why he wants it. As he explains,
take notes, and map them to these problem attributes.

 Ultimately, the system described by your architecture must do what the cus-
tomer wants, at a cost the customer is willing to pay, and on a schedule that
satisfies the customer’s needs.

Developing a problem statement
A problem statement is needed to understand what to build.

To show you how to develop a problem statement, I start by walking you
through the process of creating an example payroll system. Follow these steps:

 1. Establish the goals of the problem-definition process.

 Decide how long you can spend developing the problem statement and
how much detail the problem statement needs to have.

 For a payroll system, you want to identify the constraints on the solution
(issues that will affect its form, economy, and time) and be sure that you
understand the high-level function: to get employees paid.

 2. Gather facts.

 In the fact-gathering steps, you work with the customer or client to
understand her needs, how she’s satisfying that need now, and what
computing platform she expects to be used in the solution. You also
identify the people and other systems, known as actors, that will interact
with the system. Your objective is to find out as much as you can about
the problem, the need, and the expectations on the system.

 For the example payroll system, you would gather facts about the number
of employees, how frequently they get paid, how their pay is calculated,
and what potential deductions are taken from their pay.

 3. Uncover the concepts that are essential to the solution and that will
shape your architecture.

 In this step, you look for the underlying concepts in play. You uncover
assumptions, equations, regulations, process models, usage constraints,
and other fundamental concepts.

 For the payroll system, you discover the equations used to compute an
employee’s pay and determine how irregularities from normal payment
are communicated with the system.

 4. Determine what the customer or client must have to be satisfied with
the solution.

 This step involves understanding the needs and expectations of the cus-
tomer or client based on the underlying concepts that you found in Step 3.

05_9781119963998-ch01.indd 1405_9781119963998-ch01.indd 14 12/3/12 11:59 AM12/3/12 11:59 AM

15 Chapter 1: Software Architecture Basics

What is the minimum that the customer must have to be happy with the
solution you design?

 The example payroll system needs to take in each employee’s hours
worked, to know the base rate of pay and related deductions, and to
compute payment amounts. The system also needs to print checks or in
some other way make payments to the employees.

 5. Write the problem statement.

 Based on your understanding of the problem from completing the pre-
ceding four steps, you can write a problem statement that brings in the
four attributes of function, form, economy, and time (see the preceding
section) in a way that explains it to the customer or client.

 For the example payroll system, the problem statement is “Compute and
pay employees for work done [Function] using an interactive system for
entering hours worked and for making payment through direct deposit
[Form]. The solution should be available in three months [Time] for the
price negotiated [Economy].”

Defining the important use cases
When you have a clear idea of what the problem is, you want to refine that
definition and really zoom in on what you need to do to solve the problem.
An effective way to do this is to write use cases. A use case describes what a
person should expect to accomplish when he or she uses the system. Actors —
the people or other systems that interact with the system being designed —
are the main ingredients in use cases, and I discuss them separately later in
this section.

The scenarios shown in use cases connect the different views of the architec-
ture, showing how the parts of the architecture work together to solve the
problems that you’ve identified by describing example usage scenarios.

Choosing the functionality to capture
You write a use case to explain how some of the system’s functions work
and how the system interacts with actors. Use cases can be used to explain
external functionality or what goes on inside the system. The external func-
tionality is what you want to understand at this stage of your architecture
development, so concentrate on the interactions of external actors with the
system. As you develop your architecture, using the method I explain in
Chapter 2, the internal functions of the system become clear.

Use cases can capture large functionality, such as computing weekly payroll
for all employees, or small functionality, such as validating the hours worked
by a single employee. Regardless of size, however, all use cases have discrete
goals — specific outcomes that they describe.

05_9781119963998-ch01.indd 1505_9781119963998-ch01.indd 15 12/3/12 11:59 AM12/3/12 11:59 AM

16 Part I: Introducing Software Architecture and Patterns

To see how use cases work, consider the simple payroll system from the
previous section that computes payments due and directs those payments.
Figure 1-2 shows a use-case diagram for this system and the text describing
the use case. Both parts are important. This use case has one actor — the
employee — who is interacting with the system to update the hours that he
worked.

Figure 1-2:
An example

use-case
diagram.

Use-case diagrams like the one shown in Figure 1-2 are useful for providing an
overview of how the actors interact with the system and with one another.

 Don’t try to capture all the details in a single use case. If you do, the use case
will become unwieldy.

Develop the use cases a little at a time. Start by writing a high-level use case
and then add more use cases that go into greater detail.

Identifying the actors
Use cases revolve around actors. Who are these actors? Here are a few
definitions:

 ✓ Actors perform the functions described in the use case.

 ✓ Actors play various roles: customer, user, employee, manager, payroll
clerk, and so on.

05_9781119963998-ch01.indd 1605_9781119963998-ch01.indd 16 12/3/12 11:59 AM12/3/12 11:59 AM

17 Chapter 1: Software Architecture Basics

 ✓ Actors can be involved in many use cases. Particular actors, like the
payroll clerk, can perform different functions in different use cases.

 ✓ Actors don’t need to be human; they can be other systems.

 When an actor is a system, use a different symbol in the use-case diagram
from the one you use for humans (see the next section).

 ✓ Nonhuman actors shouldn’t be internal components of the system.
Actors are people or things that interact with the system from its exte-
rior. For the purposes of use cases, the system is a black box, and you
shouldn’t include its internal functioning.

Diagramming the system
Systems have multiple use cases, so a special use-case diagram provides a
high-level view of how all the actors interact with the system and serves as a
table of contents for the individual use cases.

Figure 1-3 shows the use-case diagram for an entire payroll system. The pay-
roll system is in the center, surrounded by the actors. The bubbles represent
the named use cases.

Figure 1-3:
A use-case
diagram for

an entire
architecture.

05_9781119963998-ch01.indd 1705_9781119963998-ch01.indd 17 12/3/12 11:59 AM12/3/12 11:59 AM

18 Part I: Introducing Software Architecture and Patterns

Documenting the use cases
When you begin defining your use cases, start at the overview level by identi-
fying the most important use cases; then turn your attention to refining these
use cases. Document them by using the process that follows.

These nine steps, which describe the tasks needed to develop a use case, are
from UML 2 For Dummies, by Michael Jesse Chonoles and James A. Schardt
(Wiley):

 1. Decide which use case you’re going to document, and give it a name.

 2. Sketch a diagram that shows how your actors will interact with the
system.

 For an example, refer to Figure 1-2, earlier in this chapter.

 3. Write a short summary of the use case.

 Usually, a sentence or two is enough.

 4. Write the story of the use case.

 The story usually begins with “The actor does something.”

 5. Describe the main sequence of events that will happen after the actor
begins the use case.

 6. Write down anything that must be done before the use case starts or
that must be done after it ends.

 7. Identify the other scenarios, such as error cases or alternatives.

 8. Write the sequences of events for the alternative scenarios identified
in Step 7.

 9. Add any rules that the use case must enforce.

 You may want to add a rule that the use case is required to validate the
data input by an actor, for example.

Identifying the Requirements
When you thoroughly understand the problem to be solved, as discussed in
the preceding section, you need to translate it into detailed requirements (the
list of things that you need to include in the solution). Sometimes, you need
to be formal and write down the requirements, even numbering them and
tracking them through to the code. At other times, you don’t need to be so
formal, but you should still document the requirements. The level of detail
needed in the requirements is related to the complexity of the problem and
the solution; complex problems and solutions call for detailed requirements.

05_9781119963998-ch01.indd 1805_9781119963998-ch01.indd 18 12/3/12 11:59 AM12/3/12 11:59 AM

19 Chapter 1: Software Architecture Basics

 Architectures are created to implement and meet requirements.

You identify requirements in much the same way that you define the problem
statement (refer to “Developing a problem statement,” earlier in this chapter).
You need to talk to the customer or client and find out what he really wants
you to design and build.

Defining functional requirements
Some requirements are obvious from the customer’s needs. Perhaps the cus-
tomer wants the main user interface to be through a web browser, for example.
Or perhaps the system needs to compute a table of values following the
customer’s formula, such as “compute the amount to be paid to an employee
using hours worked and per-employee deductions as inputs.”

Requirements like these, which define something that the system must do, are
functional requirements. Functional requirements are represented and illus-
trated in use cases. When an actor interacts with the system, that interaction
is made to achieve some purpose — and that purpose is the requirement.

The functional requirements show up most often in the logical view of the
system (refer to “Architecture models [views],” earlier in this chapter),
which shows the behavior of the individual classes.

Defining nonfunctional requirements
A system has other requirements that you won’t be able to demonstrate by
clicking a widget and seeing what happens. These requirements, called non-
functional requirements, include things like the performance of the system,
how much memory it uses, and how fast it can start.

Many lists of types of nonfunctional requirements are available, but here’s
the list that I like to use:

 ✓ Changeability: The changeability requirements all relate to how well the
system can be adapted over time. The changeability-requirement family
contains several subcategories:

 • Maintainability: How easy it is to maintain the system.

 • Extensibility: How easy it is to extend the system and add new
functionality to it.

 • Restructuring: How easy it is to restructure the system to take
advantage of new technology.

 • Portability: How easy it is to move the system to a new computing
environment.

05_9781119963998-ch01.indd 1905_9781119963998-ch01.indd 19 12/3/12 11:59 AM12/3/12 11:59 AM

20 Part I: Introducing Software Architecture and Patterns

 Don’t allow the requirements to change too frequently — that can be a
recipe for disaster. Frequent changes mean that no one will know for
sure what the system is supposed to do, and they signal that the client
or customer isn’t sure what he or she really wants.

 ✓ Interoperability: The interoperability requirements describe how well
the system must work with other parts of the customer’s or client’s
computing environment.

 ✓ Performance: The performance requirements cover things like how fast
the system must be or limits on the resources it may use.

 ✓ Dependability: These requirements specify how long the system must
work, how secure it is, and how accurate it is. Dependability includes a
large number of subcategories:

 • Reliability: How accurate the results must be and how long the
system must work before it has an error.

 • Availability: The percentage of the time the system must be
available for service. Availability includes fault tolerance, which
specifies whether the system must tolerate faults and continue
operation.

 • Maintainability: What must be designed into the system to allow it
to be cared for and maintained.

 • Security: What security requirements exist for the system, what
security mechanisms must be in place, what the expectations for
confidentiality are, and the integrity of the system and its data.

 • Safety: Whether the public will be at risk of bodily harm from this
software.

 Where safety is concerned, you must look for established best practices
for architecture, design, and coding within the type of system you’re
building. I don’t talk about them in this book; you need to seek the
appropriate resources.

 ✓ Testability: The testability requirements state what the system must do
to ensure that all the requirements, both functional and nonfunctional,
can be tested.

 ✓ Reusability: The reusability requirements specify what you need to do
when designing and building the system to ensure that it can be used
again. A different kind of reusability requirements specify that a certain
amount of reuse be achieved within the design of the system or even
that certain already-built components be used in the system.

05_9781119963998-ch01.indd 2005_9781119963998-ch01.indd 20 12/3/12 11:59 AM12/3/12 11:59 AM

21 Chapter 1: Software Architecture Basics

Here are some ways that you can identify the nonfunctional requirements:

 ✓ Find out as much as you can about the problem and how others have
solved the problem.

 ✓ Extract common requirements from your reading.

 ✓ Watch how the customer uses the system that he already has, or watch
him step through the process that the system will be part of.

 ✓ Listen carefully to your customer as she explains what the system will
do and why it’s needed.

 ✓ Ask questions!

 ✓ If you’ve built similar systems in the past, draw on that experience, and
include the requirements that you’ve seen before.

 ✓ Review the problem statement with the customer so that he has the
opportunity to tell you which things are important and which things are
unnecessary. This review also helps refine your understanding of the
problem.

 You should understand the requirements that have the biggest influence on
the solution architecture first, because requirements will change. Looking at
the big requirements first helps get their changes out of the way early.

The nonfunctional requirements make their appearance in both the physical
and process views of the system (refer to “Architecture models [views],” ear-
lier in this chapter). The process view addresses how the execution is distrib-
uted around the system, which may be a requirement in itself or which may
be related to the performance or dependability requirements of the system.
The physical view of the system also shows the nonfunctional requirements

Get SMART with your requirements
With all requirements, but especially the non-
functional requirements, you should make the
requirements SMART. This acronym reminds
you that the requirements must be

 ✓ Specific: They describe a specific charac-
teristic of the system.

 ✓ Measurable: They are testable and observ-
able in some way.

 ✓ Achievable: They are realistic and can
actually be achieved.

 ✓ Relevant: They relate to the problem that
the system is supposed to solve.

 ✓ Trackable: They produce specific things
within the architecture that you’ll be able to
point to later.

05_9781119963998-ch01.indd 2105_9781119963998-ch01.indd 21 12/3/12 11:59 AM12/3/12 11:59 AM

22 Part I: Introducing Software Architecture and Patterns

because much of a system’s dependability is tied to redundancy (how the
processing is distributed to reduce the effects of single points of failure).
The physical view captures the performance and scalability nonfunctional
requirements through information about which processing elements can be
replicated to grow the system.

Reviewing the requirements
When you’re developing requirements, a variety of pitfalls can make the
requirements unusable or unhelpful. The requirements may describe the
problem that you want to solve or require the architecture that you want
to build, rather than what the customer or client really wants and needs.
Also, your requirements can omit things that the customer or client thinks
is essential to the solution. Review your requirements with the customer or
client to avoid these pitfalls.

 Here are some things you can do to make your requirements more useful:

 ✓ Try to identify and describe the implied or hidden requirements. In
the payroll-system example, an overtime multiplier needs to be used
when the hours that any employee worked in a week exceed a given
threshold.

 ✓ Validate all your assumptions. Perhaps you assumed that no one would
receive a paycheck or a related transaction for a negative payment. This
assumption may not be true, however, if wages are garnished or if many
fixed deductions occur.

 Never add your own assumptions without validating them with the
customer. Also make sure that you identify your assumptions — and
remember that they aren’t facts about the system.

 ✓ Don’t overextend assumptions. To continue the payroll-system exam-
ple, you may have assumed that everyone working more than 40 hours
per week would earn base pay times some multiplier. You shouldn’t
keep extending this assumption by assuming, say, that the multiplier is 2.
One assumption is bad enough; don’t make assumptions about your
assumptions.

 ✓ Avoid indecisive specifications. Make sure that you know whether a tax
rate, for example, is x percent or y percent and that you know when it
applies.

 ✓ Avoid inconsistent or conflicting requirements. You may have a
requirement to print paychecks and another requirement to provide
data for a direct deposit. Which requirement is the real requirement?

05_9781119963998-ch01.indd 2205_9781119963998-ch01.indd 22 12/3/12 11:59 AM12/3/12 11:59 AM

23 Chapter 1: Software Architecture Basics

 ✓ Fit the solution to the problem. As you find out more about what the
customer or client wants, you may see that the scope of the problem
statement keeps expanding, to the point that the range of possible solu-
tions is much larger than what the customer originally asked for (see
Figure 1-4). The requirements help you see what’s important and what
you should really build within this range of solutions.

Figure 1-4:
What the
customer
asked for

may be
smaller than
the solution

space.

Requirement do’s and don’ts
Here are some good ways to ensure that your
system fails:

 ✓ Don’t write any requirements.

 ✓ Don’t understand the usage scenarios.

 ✓ Don’t understand what your customer or
user really wants.

 ✓ Don’t define the acceptance criteria.

By contrast, here are a few things to do (to
make your requirements good and useful):

 ✓ Describe what the system is supposed to
do, and why. Provide enough information to
allow intelligent tradeoffs to be made.

 ✓ Refrain from defining how something is to
be implemented. That definition comes into
play when you are creating the architec-
ture and design.

 ✓ Specify technology choices only when the
technology is an important aspect of the
customer’s problem statement.

 ✓ Make sure that you have all the require-
ments you need. Major gaps in require-
ments can be critical, causing a project
and/or system architecture to fail.

05_9781119963998-ch01.indd 2305_9781119963998-ch01.indd 23 12/3/12 11:59 AM12/3/12 11:59 AM

24 Part I: Introducing Software Architecture and Patterns

Choosing a Software System Style
In Chapter 2, you get down to the business of creating the actual software
architecture. Before you do that, in the final step before diving in and design-
ing the system architecture, you need to start thinking about what kind
of style and shape the system should have. In this section, I highlight two
aspects of system style: architectural and programming.

Architectural styles
Architectural styles define the general shape of the system. In residential
housing, Cape Cod and ranch are examples of architectural styles. In soft-
ware architecture, styles include Model-View-Controller and Pipes and
Filters. I introduce software architecture styles in Part III.

In the different models of the architecture (such as the 4 + 1 model shown
in Figure 1-1, earlier in this chapter), the views are related but also indepen-
dent. You may find that you want to use a different architectural style within
each view.

Programming style
You must also consider your programming style — object-based style, pro-
cedural style, or functional style, for example. Not every problem fits into
every style of programming, so being familiar with multiple styles is essential
to understanding the style of program you should use and choosing the right
one for the problem and solution.

 I won’t try to explain the differences or influence your decision. Ample
resources about programming in any of these styles are available, including
many For Dummies books, and I’m sure that you have your own favorite styles.
Even though this book is about patterns, however, it isn’t exclusively about
object-oriented programming. Patterns aren’t always for objects. As you see in
later chapters (specifically, Chapters 8, 23, and 24), patterns are available for a
wide range of problems, not all of which relate to objects.

05_9781119963998-ch01.indd 2405_9781119963998-ch01.indd 24 12/3/12 11:59 AM12/3/12 11:59 AM

