
Chapter 1

An Introduction to the GAMS
Modeling System

1.1 Preview
In this chapter we introduce the high-level algebraic modeling language that will be used
in the rest of this book to build financial optimization models. The basic elements of the
language are given first, together with details on getting started with the language, and the
FINLIB library of models are also discussed here.

1.2 Basics of Modeling
Optimization is concerned with the representation and solution of models. Models can be
represented in a number of ways, and they can be solved using a number of methods or
algorithms. The General Algebraic Modeling System, GAMS, is a system for formulating
and solving optimization models. It consists of a language that allows a high-level, alge-
braic representation of mathematical models, and provides a set of solvers, i.e., numerical
algorithms, to solve them.

Why use algebraic modeling? Small models are easy to formulate and solve. They
have a simple structure and one can simply edit a file containing the model’s coefficients,
and then call a standard linear programming solver to solve it. In fact, in the early days
of optimization, models were solved using specialized matrix generators that provided the
necessary input files for solvers. However, as models grow larger and become more complex,
they become difficult to manage and to verify using this approach. GAMS was developed
in response to the need for powerful and flexible front-end tools to manage large, real-life
models. Large collections of data and models are only manageable when they possess
structure, and algebra provides this structure in a well-known mathematical notation.

Conceptually, a model consists of two parts: The algebraic structure and the associated
data instance. The formal linear programming model

Minimize
x∈Rn

cTx (1.1)

subject to Ax = b, (1.2)

x ≥ 0 (1.3)

CO
PYRIG

HTED
 M

ATERIA
L

2 An Introduction to the GAMS Modeling System Chap. 1

has the associated data A, b, c; see Appendix PFO-A for optimization basics. GAMS provides
an algebraic framework for defining and manipulating data as well as building the models
that use them. In addition to being concise and easily readable, the GAMS statement of a
model is machine-independent and allows interaction with a number of solvers. Hence, it
is not dependent on any particular optimizer or computer system.

The GAMS System consists of the GAMS compiler and a number of solvers. The
compiler is responsible for user-interaction, by compiling and executing user commands
given in a GAMS source file. A source file can implement a simple textbook problem, or it
can represent a large-scale system consisting of several interrelated optimization models. The
solvers are stand-alone programs that implement optimization algorithms for the different
GAMS model types. The GAMS system can be called from the command line (for instance, a
Unix prompt), or through the Integrated Development Environment (IDE), a windows-based
environment that facilitates modeling by integrating editors with the GAMS system.

Section 1.3 gives an introduction to the GAMS language and Section 1.4 is a guide to
quickly become accustomed to using GAMS. Readers who want a quick overview of GAMS
modeling may start by reading Section 2.4, which contains a complete example drawn from
financial planning.

1.3 The GAMS Language
Optimization models and their associated data are communicated to the GAMS system using
a general-purpose language with elements of both ordinary programming languages (data
declarations, control structures), and high-level modeling structures such as sets, equations,
and models.

GAMS models are typically structured with the following building blocks:

1. Sets, which form the basis for indexation and serve as building blocks for data and
model definitions.

2. Data, which are specified, either through direct statements (perhaps included in exter-
nal files), or by calculating derived data.

3. Variables and constraints, which are used to define models, equations, and an objec-
tive.

4. An output section is sometimes used where the final results are calculated and pre-
sented.

In the remainder of this section we give an introduction to the elements of the language.
In addition to the above-mentioned items, the main topics are expressions, which are used
in assignment statements and in constraint declarations, and control structures, which lend
programming language capabilities to GAMS. Readers who want to see a larger, complete
modeling exercise may skip ahead to Section 2.4, and then refer back to this section for
coverage of advanced features of the language when ready to embark on more substantial
models.

Sect. 1.3 The GAMS Language 3

1.3.1 Lexical conventions

A GAMS source file is an ordinary text file. The first character position on each line indicates
how the line should be interpreted:

* (asterisk): A comment line, ignored by GAMS.

$ (dollar sign): Indicates a compiler directive or option. A list of the most common $-controls
is given in Table 1.1. Many more exist than can be covered here; consult the User’s
Guide (see Notes and References at end of chapter) for complete information.

Any other character indicates a model source line. Customarily such lines start with a space
character.

Table 1.1: The most common $-control commands. See Section 1.3.10 for examples of the
use of $SET, $IF, $LABEL and $GOTO for conditional compilation.

Command Description

$[ON|OFF]LISTING Controls the echoing of input lines to the listing file
$[ON|OFF]SYMLIST Controls the complete listing of all symbols
$[ON|OFF]TEXT The $ONTEXT - $OFFTEXT pair encloses comment lines
$ABORT This option will issue a compilation error and abort the

compilation
$BATINCLUDE The $BATINCLUDE option inserts a text file plus arguments

used inside the include file
$CALL Passes a followed string command to the current operating

system command
$COMMENT Changes the start-of-line comment symbol
$DOLLAR Changes the current $ symbol
$ECHO The echo option allows text to be written to a file
$EOLCOM Redefines the end-of-line comment symbol
$GOTO This option will cause GAMS to search for a line starting

with $LABEL id
$IF The $IF dollar control option provides control over

conditional processing
$INCLUDE The $INCLUDE option inserts a text file
$INLINECOM Redefines the in-line comment symbols
$LABEL This option marks a line to be jumped to by a $GOTO

statement
$SET Defines control variables
$STAR This option is used to redefine the ****marker
$STITLE This option sets the subtitle in the page header of the listing

file
$TITLE This option sets the title in the page header of the listing file

4 An Introduction to the GAMS Modeling System Chap. 1

The main lexical elements of a GAMS statement are keywords, identifiers, and operators.
The example model shows keywords in all capital letters, and identifiers use a mixture of
upper and lower case, but the language is not case sensitive. Identifiers consist of letters,
digits, or the underscore character, “ ”, and must begin with a letter (in early versions of
GAMS, identifiers were limited to at most 10 characters).

The GAMS examples that follow use comments of the standard kind (“*” in position 1),
but in addition assume that text that starts with the sequence “#” to the end of the current
line is regarded as a comment. Hence, the command

$EOLCOM #

is assumed to be in effect in all examples. C++ and Java programmers might prefer to use
the more familiar

$EOLCOM //

1.3.2 Sets

The primary tool for structuring large-scale models is the set. In any nontrivial model we
will need to use data, variables, and constraints that are indexed, and sets form the basis
for such indexing.

The simplest set declarations have the form:

SET Time / 2002 * 2006 /; ALIAS (Time,t);

SET Bonds "Bonds universe" /GOVT_1 * GOVT_4/; ALIAS(Bonds,i,j);

These lines declare the two sets Time and Bonds. The set Time contains the elements
from 2002 through 2006 (the asterisk indicates filling out the intervening elements; one
could have written this: SET Time /2002, 2003, 2004, 2005, 2006/;). Similarly,
the Bonds set contains bonds named GOVT_1 through GOVT_4.

The ALIAS statement is a convenient way to declare indices to be used in connection
with sets. The code above binds the name t to the set Time, and the names i and j to the
set Bonds. These names can henceforth be used as indices into their associated sets (and
only those sets).

The text “Bonds universe” in the Bonds declaration is an explanatory text that GAMS
outputs in the listing whenever it lists the Bonds set, as a help in documentation. Such texts
can occur in all declarations and can be a great help when reading GAMS listings. They
need not be enclosed in quotation marks, but if they aren’t then they cannot contain certain
characters, which can lead to quite subtle syntax errors.

Indices and indexation

Most GAMS modeling elements (data, variables, etc.) can be indexed, with up to 10 indices.
For instance, a two-dimensional parameter F can be defined over the sets declared above as
(more on data declarations in Section 2.2.1):

PARAMETER F(Bonds, Time); # -- or:

PARAMETER F(i, t); # same thing

Sect. 1.3 The GAMS Language 5

These two declarations have identical meaning, given the ALIAS declarations of i and t,
and specify that F takes two indices belonging to (aliased to) the sets Bonds and Time,
respectively.

Indices are used, for instance in expressions, to pick out individual elements of indexed
objects. If F(t,i) is a bond’s cashflows, then the following calculates each bond’s total
cashflows:

PARAMETER Total_CF(i);

Total_CF(i) = SUM(t, F(t,i));

and stores it into the declared one-dimensional parameter. Notice that this assignment is
automatically performed for each value i in Bonds. There is more information on the
summation operation in Section 1.3.3.

Leads and lags are indices that are shifted by some constant, as in F(i,t+1) or
F(i,t-1), respectively. The lead or lag need not be 1, but may be any integral expression
whose value is known at compile time (endogenous). Leads and lags may only be used on
static sets (not dynamic sets; see below).

There are no “index errors” in GAMS: If a lead or lagged index reaches beyond the
underlying set, the result is 0; F(i,t+1) is 0 when t is the set’s last element.

It is sometimes convenient to treat sets as being circular, so that leads beyond the end
“wrap around” to the beginning and vice versa. This is indicated by using the ++ or \verb
operator: F(i++1,t) references the next bond (from i), cyclically.

Constant set elements used as indices have to be specified in quotes:

F("GOVT_1", "2002") = 20000;

The ORD and CARD set functions

The ORD function takes as an argument the name of a set (or an index aliased to a set)
and returns the ordinate value of the index relative to the set. The CARD function takes a
set name (or index) and returns the cardinality of the set, i.e., the number of elements in
the set:

P(i) $ (ORD(i) < CARD(i)) = 7; # All elements except the last

set equal to 7

P(i) $ (ORD(i) = CARD(i)) = 3; # and the last one set to 3

ORD is defined only on static, one-dimensional sets. They are not defined on constant
set elements: ORD("GOVT_4") is illegal.

Subsets and multidimensional sets

A set can be declared as a subset of another set. For instance,

SET Callable(Bonds) /GOVT_1, GOVT_3/;

specifies a subset, Callable, of the Bonds set and declares bonds GOVT_1 and GOVT_3 as
being callable bonds. Subsets can be multidimensional:

6 An Introduction to the GAMS Modeling System Chap. 1

SET Matur(i,t) / GOVT_1.2003, GOVT_2.2004,

GOVT_3.2005, GOVT_4.2006 /;

might specify the maturity years of the bonds as a subset of the cartesian product Bonds ×
Time. Note the dot-notation: GOVT_1.2003 specifies that the element (GOVT_1, 2003)

belongs to Matur.

Dynamic sets

The sets seen so far were all static. Their elements were explicitly listed as part of their
declaration. GAMS also allows dynamic sets, which are calculated during execution of
the model allowing them to change dynamically depending on some model characteris-
tics. Dynamic sets are always subsets of another set (or other sets) and do not have the
/ . . . / part in their declaration. Consider:

SET Time / 2002 * 2006 /; ALIAS (Time,t);

PARAMETER tau(t);

tau(t) = ORD(t) - 1; # Relative time: 0, 1, 2, ...

PARAMETER L(t), PV;

SET Sub(t); ALIAS (Sub, s); # Dynamic subset of Time

Sub(t) = YES $ (tau(t) >= 1); # All but the first year

L(t) $ (tau(t) < tau("2006")) = 7;# OK even with constant index

PV = SUM(s, tau(s) * L(s)); # OK even with dynamic set index

This fragment defines the set Sub as a dynamic subset of Time, and initializes it to contain
all but the first element. The expression YES $ (tau(t) >= 1) means to include element
t in Sub if the condition following the $-operator is satisfied (conditional expressions are
covered in detail in Section 1.3.3).

The ORD function is not defined on dynamic sets, but notice that a parameter such as
tau, which is declared on the static set Time, can be used with both constant arguments,
tau("2006") and with a dynamic set index, tau(Sub) or tau(s), as long as all arguments
belong to Time. This is a very useful technique to extend ORD-like mappings from dynamic,
even multi-dimensional, sets to numbers. CARD, however, is defined on dynamic (even
multidimensional) sets.

1.3.3 Expressions, functions, and operators

Data manipulations and constraint definitions require the use of expressions and assignments.
GAMS provides a rich set of operators and built-in functions for forming expressions.
Expressions are built up from numerical values, that is, floating point constants, scalars,
and parameter and table elements. Numerical values may be joined using operators; a list
of operators is given in Table 1.2. GAMS also defines a number of functions; see Table 1.3.
In addition, GAMS has a number of calendar (date/time) functions; see Table 1.4.

Sect. 1.3 The GAMS Language 7

Table 1.2: Operators in GAMS expressions, grouped
by priority. All operators accept and return
numerical values. The logical operators interpret
non-zero as true, and they return 0 or 1 for false or
true.

Operator Description

$ Conditional operator
** Exponentiation
*,/ Multiplication and division
+,- Addition and subtraction
LT, < Less than
GT, > Greater than
EQ, = Equals
LE, < = Less than or equal to
GE, > = Greater than or equal to
NE, <> Not equal to
NOT Logical Not
AND Logical And
OR Logical Or
XOR Logical Exclusive Or

Consider this simple example where some statistics of stock returns are calculated:

SET Time /t1 * t5/; ALIAS(Time, t);

SET Stock /stk1 * stk3/; ALIAS(Stock, i, j);

TABLE Return(t, i) "Return of stock i in time period t,

in percent"

stk1 stk2 stk3

t1 22 -8 4

t2 3 20 12

t3 3 -10 2

t4 -30 8 1

t5 3 -2 0 ;

PARAMETER MeanRet(i); # Each stock’s average return over time

MeanRet(i) = SUM(t, Return(t,i)) / CARD(t);

PARAMETER VarCov(i,j); # Variance-Covariance matrix of returns

VarCov(i,j) = SUM(t, (Return(t,i) - MeanRet(i)) *

(Return(t,j) - MeanRet(j))) / (CARD(t)-1);

DISPLAY MeanRet, VarCov;

8 An Introduction to the GAMS Modeling System Chap. 1

Table 1.3: Functions in GAMS. Notes: (1) non-differentiable and results in discontinuous
nonlinear programming model if used on (endogenous) variables; (2) not continuous and
illegal when used on (endogenous) variables; (3) pseudo-random, may not occur in
equation definitions; (4) takes one or more set indices as their first parameter and perform
an indexed operation; (5) takes a set or index argument.

Function Description Note

ORD Ordinate value of index 5
CARD Cardinality of set 5
SUM Summation over set 4
PROD Product over set 4
SMIN Minimum over set 4
SMAX Maximum over set 4
ERRORF(X) Integral of std. normal from −∞ to x 1
EXP(X) Exponential, ex

LOG(X) Natural log (for x > 0)
LOG10(X) Base-10 log (for x > 0)
NORMAL(X,Y) Normal distribution; mean x, std.dev y 3
UNIFORM(X,Y) Uniform distribution in [x, y] 3
ABS(X) Absolute value 1
CEIL(X) Smallest integer ≥x 2
FLOOR(X) Largest integer ≤x 2
MAPVAL(X) Mapping function (see User’s Guide) 2
MAX(X,Y, . . .) Maximum of arguments 1
MIN(X,Y, . . .) Minimum of arguments 1
MOD(X,Y) Remainder (modulo) 2
POWER(X,Y) Power; y must be an integer
ROUND(X) Rounding to nearest integer 2
ROUND(X,Y) Rounding to y decimal places 2
SIGN(X) −1, 0 or 1 depending on the sign of x 2
SQR(X) Square of x

SQRT(X) Square root
TRUNC(X) Rounding towards 0 2
ARCTAN(X) Arcus tangent, result in radians
COS(X) Cos, x in radians
SIN(X) Sin, x in radians

The first assignment statement assigns to MeanRet(i) the average return of the three
stocks over the five time periods. GAMS automatically performs the assignment for each
value of the index i; notice the use of the SUM function to perform the summation over the
t index, and the use of the CARD function to average.

The $-operator and conditional expressions

The $-operator is somewhat unusual and deserves special attention. It is a binary operator,
and the meaning of the expression (exp) $ (cond) is as follows.

Sect. 1.3 The GAMS Language 9

Table 1.4: Date and Time functions in GAMS. Notes: (1)
JDATE converts a date (given as year, month, day) into the day
number, where “Day 1” is January 1, 1900; (2) JTIME converts
a time (given as hour [0, . . ., 23], minute [0, . . ., 59], second [0,
. . ., 59]) into a fraction of a day; (3) these routines convert a
day number into year, month, day, day of week, and check for
leap years; (4) JSTART and JNOW return, in addition to date
information, information on the time of day, taking no
parameters; (5) these routines convert the result of JTIME,
JSTART or JNOW back into time of day.

Function Description Note

JDATE(Y,M,D) Day number 1
JTIME(H,M,S) Time of day as fraction 2
GYEAR(J) Year 3
GMONTH(J) Month 3
GDAY(J) Day of month 3
GDOW(J) Day of week 3
GLEAP(J) 1 if leap year, 0 otherwise 3
JSTART Start of current GAMS job 4
JNOW Date and time when called 4
GHOUR(J) Hour 5
GMINUTE(J) Minute 5
GSECOND(J) Second 5

(exp) $ (cond) # GAMS conditional expression

(cond)? (exp) : 0 # Same construct in C/C++/Java

First, evaluate the expression cond. If its value is non-zero, then the complete expression
has the value of exp, otherwise it has the value 0 and exp is not evaluated. For example,
the annual cashflows of a set of bonds given their coupon rates and maturity years can be
calculated by:

PARAMETER F(i,t);

F(t,i) = 1 $ (tau(t) = Maturity(i))

+ coupon(i) $ (tau(t) <= Maturity(i) and tau(t) > 0);

where tau(t) maps elements of the time set to calendar years; a bond’s cashflow is
composed of its price (negative at purchase), its principal payment (1, at maturity), and
coupon payments; see Figures 2.1 and 2.2 for the complete model.

An expression such as tau(t) = 0 is called a conditional expression. GAMS has very
simple rules for forming and using conditional expressions: any non-zero numerical value
is interpreted as “true” when used in a conditional expression, and zero is interpreted as
“false.” Consistent with this, the relational operators (= , <, <= , >, >= , <>) and
the logical operators AND, OR, and NOT return the numerical values 1 for “true” and 0 for
“false.” It is advisable to use parentheses around the operands of the $-operator; this aids
readability and avoids any confusion about the priority of $ relative to other operators.

10 An Introduction to the GAMS Modeling System Chap. 1

Notice also the use of an indexed set or parameter as a condition. Given the declarations

SET Matur(i,t);

PARAMETER F(t,i);

the expressions Matur(i,t) and F(t,i) are legal $-conditions, testing whether the pair
(i,t) belongs to Matur, or whether F(t,i) is non-zero, respectively.

The $-operator also has another important function as a control structure: any time
GAMS performs an indexed operation, a $-condition can be used to specify a subset of
the indices over which the operation should be performed. Details are given in the relevant
sections under equation definitions (Section 1.3.6), assignment statements (Section 1.3.4),
and the SUM, PROD, SMIN and SMAX functions below.

Special functions: SUM, PROD, SMIN, SMAX

The functions SUM, PROD, SMAX, and SMIN have two arguments where the first must be
a set (or index) expression. They form the sum, product, element-wise maximum, and
element-wise minimum over the second argument values:

SUM(i, x(i)); # sum of x's in a constraint

SMIN((i,j), A(i,j)); # multidimensional indexation

Note the use of parentheses to sum over multiple indices.
The index set over which the operation is applied can be qualified using the $-operator,

as in:

PROD(i $ Callable(i), x(i)); # conditional indexation

PROD(Callable(i), x(i)); # shorthand; same as above

* Find maximum below-diagonal element of A:

SMAX((i,j) $ (ORD(i) > ORD(j)), A(i,j));

The operation will be performed only over indices that satisfy the condition. When the con-
dition is simply an indexed set or parameter, as in Callable(i), the conditional summation
can be abbreviated as shown in the second line above, which aids readability.

Applying one of these functions over an empty set results in the operations’s neutral
element: 0 for SUM, 1 for PROD, -INF for SMAX, and INF for SMIN. Comparing index values
directly is not possible:

SMAX((i,j) $ (i > j), A(i,j)); # Illegal!

SMAX((i,j) $ (ORD(i) > ORD(j)), A(i,j)); # OK!

L(t) $ (t < "2006") = 7; # Illegal!

L(t) $ (tau(t) < tau("2006")) = 7; # OK!

It is necessary to use some function that converts from set elements to numerical values,
such as ORD or some parameter indexed by the set (as tau in the example above). For the
special case of testing for equality, however, GAMS has a function SAMEAS:

Sect. 1.3 The GAMS Language 11

SUM((i,j) $ SAMEAS(i,j), A(i,j)); # Sum of A's diagonal elements

SAMEAS compares the names of the set elements referred to by the indices (not their ordinal
values), and is legal even if the two indices belong to different sets.

Extended arithmetic: INF, EPS, NA, UNDF

GAMS defines certain special values that can be used in and result from expressions, but
which are not numbers. The most common one is INF, which represents the (extended
real) number ∞. For instance, a free VARIABLE has lower and upper bounds -INF and
INF.

Another common special value is EPS, which is returned by solvers as the marginal value
of degenerate variables or constraints (that is, non-basic variables or binding constraints
with zero marginals). Knowing this makes it easy to pick out the final basis from a linear
programming solution as those variables and (slack/artificial variables corresponding to)
equations having “.” as the marginal value as opposed to EPS or a non-zero value.

Finally, the last two special values are NA (used to represent missing, or “Not Available,”
data) and UNDF, for undefined (usually erroneous) results.

The rules for arithmetic using these values are well defined in GAMS but rather com-
plicated; see the User’s Guide or the library model crazy.gms for details.

1.3.4 Assignment statements

The assignment statement is used, as in any other language, to assign values to parameters
(SCALARs, PARAMETERs, and TABLEs). The parameter on the left-hand side always has all
indices specified, and GAMS automatically performs the assignment for each index value.
Some examples:

left_over = 1-tax_rate;

Total_CF(i) = SUM(t, F(t,i));

P(i) $ (ORD(i) = CARD(i)) = 3;

The first line is a simple assignment of a single value. The second is performed for all
indices i, the third only for those values of i that satisfy the condition. Note that in a
conditional assignment that the condition is placed before the = sign.

Assignments performed over indices are performed in “parallel,” in the sense that the
right-hand side is first calculated for each index value, and only then is the left-hand side
simultaneously updated. See in Section 1.3.9 (the LOOP statement) how this behavior can
be circumvented if desired.

As a complete example, consider the following calculation of a lower-triangular matrix
to hold covariance information:

SET Lower(i,j);

Lower(i,j) = YES $ (ORD(i) > ORD(j));

PARAMETER VarCov2(i,j); # Lower-triangular Var-Covar matrix

VarCov2(i,i) = SUM(t, SQR(Return(t,i) - MeanRet(i))) / (CARD(t)-1);

12 An Introduction to the GAMS Modeling System Chap. 1

VarCov2(Lower(i,j)) =

2 * SUM(t, (Return(t,i) - MeanRet(i)) *

(Return(t,j) - MeanRet(j))) / (CARD(t)-1);

In this example we want to calculate variance-covariance information into a matrix ef-
ficiently, by only storing elements in the lower triangular half of the VarCov2 matrix, defined
by the dynamically calculated subset SET Lower. The assignment to VarCov2(i,i)) cal-
culates the diagonal, and the assignment to VarCov2(Lower(i,j)) is shorthand for:

VarCov2(i,j) $ Lower(i,j) = ...

so that only below-diagonal elements are assigned. Altogether, this calculation is almost
twice as fast as calculating VarCov shown on page 7, yet used in a typical variance ex-
pression such as

SUM((i,j), x(i) * VarCov2(i,j) * x(j))

it is equivalent (but again about twice as fast to evaluate).

1.3.5 Variable declarations

Variable declarations are used to declare the variables used in a model. Variables can be
continuous or discrete or some mixture of the two. Continuous variables are allowed to take
on a range of variables between some (possibly infinite) lower and upper bounds, while
discrete variables must take on an integer value between some finite bounds. The different
declaration possibilities are shown in Table 1.5. Variables can have up to 10 indices.

Variable attributes

After declaration of a variable it is always possible to change its bounds:

POSITIVE VARIABLES y(i,j);

y.LO(i,j) = -4;

y.UP(i,j) = 10;

y.FX("2","3") = y.LO("2","3") + 18;

Table 1.5: The different kinds of variables and their declaration. The default bounds can
be reset through the LO and UP (or FX) attributes.

Keyword Type Default Default
Lower Bound Upper Bound

FREE (Default) Continuous -INF INF

POSITIVE Continuous 0 INF

NEGATIVE Continuous -INF 0
BINARY Discrete 0 1
INTEGER Discrete 0 100

Sect. 1.3 The GAMS Language 13

Here, a two-dimensional array of variables is declared as non-negative (default bounds 0
and ∞), but then the bounds are reset to −4 and 10, by setting LO and UP attributes. Finally,
y("2","3") is fixed at a specific value. Assigning a value to the FX attribute is equivalent
to setting the variable’s lower and upper bounds to the same value. Fixing a variable does
not remove it from the model; see the HOLDFIXED attribute on page 15 for how to do this.
Variables also have two other attributes which are set by solvers: L is the “level” value (for
instance the optimal value after the problem is solved), and M is the “marginal,” or reduced
cost. These can both be initialized by the user, which is useful in nonlinear programming
to provide a starting point for the solver.

Variables also have a scaling attribute, SCALE; see the User’s Guide for details.

1.3.6 Constraints: Equation declarations

Equations are used to declare and define model constraints:

EQUATIONS constr(i), objective;

constr(i) .. SUM(j, A(i,j) * x(j)) =L= b(i);

objective .. z =E= SUM(j, c(j) * x(j));

Here, we declare a set of constraints constr(i), and an individual constraint, objective.
They are then defined (indicated by the “..” symbol). Each of the constraints constr(i) is
a less-or-equal inequality constraint, as indicated by =L=. The objective constraint is
an equality indicated by =E=. Greater-or-equal constraints are specified using =G=. A
fourth relation, =N=, indicates that the constraint is present but non-binding; no use has
yet been found for it. The expressions used to define constraints are covered in Section 1.3.3.

Endogenous variables in constraints

Constraint expressions are the only places where endogenous variables (GAMS variables),
like x(j), can be used without their attributes (L, M, UP, LO, etc.). Note a few cautions
regarding endogenous variables in constraints (an “endogenous expression” is an expression
that is or contains an endogenous variable):

• nonlinear GAMS functions or operators, when used on endogenous expressions, lead
to nonlinear (NLP or DNLP) models; see Section 1.3.8 for details on model types.

• non-continuous GAMS functions may not be used on endogenous expressions.

• the pseudo-random number generator functions UNIFORM and NORMAL may not be
used at all in constraints.

• endogenous expressions cannot be used in the conditional part of a $-condition.

A $-condition may be placed before the .. symbol in a constraint definition. The
constraint is only then generated and included in the model if the condition is satisfied:

constr(i) $ (ORD(i) > 3) .. SUM(j, A(i,j) * x(j)) =L= b(i);

objective $ 0 .. z =E= SUM(j, c(j) * x(j)); # constraint excluded

14 An Introduction to the GAMS Modeling System Chap. 1

Equation attributes

Constraints have the attributes LO, UP, L and M. To understand these it is useful to consider,
for instance, a less-equal constraint to be written as:

lhs=L=rhs

where lhs consists of all variable terms of the constraint and rhs consists of all con-
stant terms. Then the level attribute .L is the value (after a solve) of the constraint’s
left-hand side, and the bounds attributes LO, UP are the bounds on it; for a less-equal con-
straint the left-hand side has bounds -INF and rhs. The M attribute is the constraint’s dual
price.

1.3.7 Model declarations

Model declarations serve to collect the constraints and variables that are part of the model,
and to name the model.

MODEL Dedication /cfm, constr/;

Between the slashes are listed the names (without indices) of any constraints that should be
part of the model Dedication. If all the constraints defined in the source file up to this
point are part of the model, one can write:

MODEL Dedication /ALL/;

Model attributes

Models have “attributes” which are used to communicate information to and from a solver.
Some are set by the user and correspond to setting the corresponding value using an OPTION

statement; see Table 1.6. For instance, Dedication.RESLIM = 200; allows the solver to
spend at most 200 seconds solving the Dedication model.

Others are set as a result of executing a SOLVE statement and they can be used to test
the result of solving a model and hence decide on further actions to take:

Table 1.6: The most important OPTIONs. The argument N indicates a non-negative integer.

Keyword Description

DECIMALS = N Prints numerical values with N decimals
ITERLIM Maximum number of solver iterations (default 1000)
LIMCOL = N Lists N equations for each equation block (default 3)
LIMROW = N Lists N variables for each variable block (default 3)
OPTCA, OPTCR Sets optimality tolerance for MIP (see Page 15)
RESLIM Maximum number of solver CPU seconds (default 1000)
SOLPRINT = ON/OFF Lists the solution after each solve statement
SYSOUT = ON/OFF Includes solver output files into listing

Sect. 1.3 The GAMS Language 15

IF (Dedication.MODELSTAT = 1, # Optimal! Solve another one:

Solve Model2 MINIMIZING z USING lp;

ELSE

DISPLAY "Could not solve Dedication";

)

The most important values of MODELSTAT are 1: optimal, 2: locally optimal, 3: unbounded,
and 4: infeasible;

Substituting fixed variables

The variable suffix FX will “fix” a variable, i.e., set its upper and lower bounds to the
same value, but the variable is still present in the problem even though it has only a single
feasible value. The MODEL attribute HOLDFIXED, when set to 1:

MODEL m /all/;

m.HOLDFIXED = 1;

will cause the values of all fixed variables to be substituted for the value throughout in
the model. This can greatly reduce the complexity of a model, for instance converting a
nonlinear model to a linear one. The only piece of information lost is the variable’s dual
information (marginal).

1.3.8 The SOLVE statement and model types

The SOLVE statement has the general form:

SOLVE model_name MINIMIZING obj_var USING model_type;

where model_name is the model to be solved, obj_var is the variable whose value should
be minimized (one can also ask for MAXIMIZING the value), and model_type indicates the
type of model to be solved; see Table 1.7. GAMS will select a default solver that is capable
of solving the indicated model type, or a desired solver can be specified:

OPTION LP = BDMLP;

causes GAMS to use BDMLP to solve LP models.
The variable obj_var appearing in the SOLVE statement should be continuous without

bounds.

Model types

GAMS recognizes several model types, as listed in Table 1.7. The most important are:

• LP: If the model contains only linear constraints and continuous variables, it’s an LP.
LP’s are generally very easy to solve, except when extremely large.

• MIP: If the model contains linear constraints but discrete (integer or binary) variables,
then it’s a MIP model. These can be very time-consuming to solve. Be aware that

16 An Introduction to the GAMS Modeling System Chap. 1

Table 1.7: GAMS Model types.

Keyword Description Variable and constraint
typologies

LP Linear Program Linear
MIP Mixed-integer Program Linear, discrete
RMIP Relaxed MIP As MIP; solved as an LP

NLP Nonlinear Program Linear, nonlinear
DNLP Discontinuous NLP Linear, nonlinear,

non-differentiable constraints
MINLP Mixed-Integer NLP Linear, discrete, nonlinear
RMINLP Relaxed MINLP As MINLP; solved as a NLP

MCP Mixed Complementarity Program Complementarity constraints
CNS Constrained Nonlinear System LP or NLP without objective

function

INTEGER VARIABLES have implicit upper bounds of 100, so it is usually a good
idea to set relevant upper bounds explicitly. Also, by default, a solution that is prob-
ably within 10 % of the optimum may be returned – to force the solver to go for
an optimal one use OPTION OPTCR = 0. Also, the default iteration and resource
limits of 1000 iterations and 1000 CPU seconds are, in some cases, not sufficient for
the convergence of the solver. Use, for instance, OPTION ITERLIM = 999999999,

RESLIM = 1200; to allow 20 minutes but virtually unlimited iterations for the
solution.

• RMIP: To solve a MIP model while ignoring the integrality constraints, use RMIP.
This is useful for model debugging.

• NLP: If your model contains nonlinear constraints and continuous variables, it’s an
NLP. These can be easy or difficult depending (mostly) upon whether the constraint
set is convex, and the objective function convex (for minimization) or concave (for
maximization). The best result possible for an NLP is “locally optimal”; the solver
has no way to guarantee that a locally optimal solution is also globally optimal.

• MINLP: May contain nonlinear expressions and discrete variables.

• DNLP: May contain nonlinear constraints that are not differentiable, hence very unre-
liable to solve. One should usually try to reformulate such models, or “smooth” any
“kinks.”

1.3.9 Control structures

The control structures consist of the IF, WHILE, FOR, LOOP statements. They are used
to control the execution of statements, depending on a condition. Control statements may
not contain declarations.

Sect. 1.3 The GAMS Language 17

The IF statement

The IF statement has the following forms:

IF (condition, stat-seq)

IF (condition, stat-seq ELSE stat-seq)

IF (condition, stat-seq ELSEIF condition, stat-seq ...

ELSE stat-seq)

where condition is a conditional expression (1.3.3) and stat-seq is a
semicolon-separated list of executable statements. Some examples follow:

IF (i < 0,

DISPLAY "i is negative"

);

IF (i < 0,

DISPLAY "i is negative"

ELSEIF i = 0,

DISPLAY "i is zero"

ELSE

DISPLAY "i is positive"

);

The IF . . . ELSEIF . . . variant allows an arbitrary number of ELSEIF parts, and the
ELSE part is optional.

Iterative control structures

These statements allow repeated execution of groups of statements until some condition is
satisfied (WHILE), or under control of either a scalar parameter (FOR) or a set index (LOOP).
Their syntax is:

WHILE(condition, stat-seq)

FOR (parm = val1 TO/DOWNTO val2 BY val3, stat-seq)

LOOP(set-index, stat-seq)

where condition is a conditional expression (1.3.3) and stat-seq is a
semicolon-separated list of executable statements. The FOR loop iterates a parameter parm
through a range of values, as for instance:

PARAMETER p;

FOR (p = 10 TO 20 , stat-seq) # p = 10, 11, 12, ..., 20

FOR (p = 20 DOWNTO 10 , stat-seq) # p = 20, 19, 18, ..., 10

FOR (p = 0 TO 1 BY 0.1, stat-seq) # p = 0, 0.1, 0.2, ..., 1

A powerful use of the iterative statements is to solve sequences of related models by
having a SOLVE statement in the iteration. To use this facility it is necessary to know that

18 An Introduction to the GAMS Modeling System Chap. 1

every time a SOLVE statement is executed, the model is regenerated from scratch: GAMS
runs through the equation definitions using the latest values of all sets and parameters they
reference. By changing these as part of the iteration one can generate a different model in
each run through the loop.

As an example, Figure 1.1 shows how to solve a sequence of related models under
control of a FOR statement. The model is the Klee-Minty model (see, e.g., Nash and Sofer
[1996] for a discussion on the Klee-Minty problem), which is interesting because it may
require 2m iterations with a naive implementation of the simplex algorithm, where m, the
number of variables and constraints, is a parameter:

Maximize
z∈�,x∈�m

z =
m∑

j=1

10m−j xj (1.4)

subject to 2
i−1∑

j=1

10i−j xj + xi ≤ 100i−1, i = 1, . . . , m (1.5)

x ≥ 0 (1.6)

As another example, Figure 1.2 shows the use of a LOOP to control the iterations, and
a dynamic set s is used to control generation of the model. A solution report is built along
the way.

SET base /1 * 10000/; ALIAS (base, j); # Allow at most m = 10000

SET i(base); # A dynamic subset of base

PARAMETER numval(j);

numval(j) = ORD(j); # Map set elements to numerical values

PARAMETER m;

EQUATIONS obj, constr(base); # Declare constr over the base set

VARIABLE z; POSITIVE VARIABLES x(j);

obj .. z =E= SUM(i, POWER(10, m-numval(i)) * x(i));

constr(i) .. 2 * SUM(j$(numval(j) < numval(i)),

POWER(10, numval(i)-numval(j)) * x(j)) + x(i)

=L= POWER(100, numval(i)-1);

MODEL KleeMinty /all/;

FOR (m = 1 TO 4, # Solve a sequence of KleeMinty models

i(j) = YES $ (numval(j) <= m); # i contains /1, 2, ..., m/;

SOLVE KleeMinty MAXIMIZING z USING lp;

DISPLAY m, z.L;

);

Figure 1.1: GAMS model for solving the Klee-Minty problem for m = 1, 2, 3, 4.

Sect. 1.3 The GAMS Language 19

SET control /1*1000/; ALIAS(control,c);

SET s(control); # a dynamic subset

* Tiny model to be solved:

VARIABLE x, z;

EQUATION eqn;

PARAMETER parm(c) /1 = 10, 2 = 50, 3 = 80/; # some data

eqn(s) .. z = E = SQR(x) + parm(s); # depends on contents of s

x.LO = 0.1; x.UP = 100;

MODEL testmodel /all/;

PARAMETER solution(control, *);

PARAMETER converged; converged = 0;

LOOP(c $ (NOT converged), # c is used only within the loop

s(control) = YES $ (ORD(control) = ORD(c)); # controls eqn(s)

SOLVE testmodel MAXIMIZING z USING NLP;

solution(c, "parm") = parm(c);

solution(c, "x") = x.L;

solution(c, "obj") = z.L;

converged = ...; # 1 when converged and want to terminate

);

DISPLAY solution;

Figure 1.2: Using a LOOP iterative statement to control a SOLVE statement and to create an
iteration-by-iteration solution report. Notice the way the three sets/indices (control, s, and
c) are declared and used: control is the base set, allowing up to 1000 iterations; c is the
loop control index; and s is a dynamic subset of the control set, which (in this example)
contains the the current loop index as its only element, and which in turn controls the
generation of equation eqn. The loop can be terminated at any time by setting converged

to 1.

Defeating parallel assignment

An assignment statement such as

MeanRet(i) = SUM(t, Return(t,i)) / CARD(t);

is executed “in parallel”: GAMS performs the assignment for each value of the controlling
index i “at once.” But sometimes the parallel assignment feature gets in the way. Consider
calculating the Fibonacci numbers from 1 to 100. One might be tempted to do this:

SET i /1*100/; ALIAS(i,j);

PARAMETER Fibonacci(i);

20 An Introduction to the GAMS Modeling System Chap. 1

Fibonacci("1") = 1;

Fibonacci("2") = 2;

Fibonacci(i) = Fibonacci(i-1) + Fibonacci(i-2); # Bad idea!

The last assignment would not work because of the “parallel assignment” feature of GAMS:
Most of the values referenced on the right-hand side are equal to zero (i.e., Fibonacci("3")
through Fibonacci("100")), and the values assigned to Fibonacci("1") through
Fibonacci("2") use undefined indices, −1 and 0. The way to implement this kind of
recurrence relation is to force GAMS to execute the assignment element-by-element in a
specified order, rather than in parallel. The LOOP statement does this:

Fibonacci("1") = 1;

Fibonacci("2") = 2;

LOOP(i $ (ORD(i) > 2),

Fibonacci(i) = Fibonacci(i-1) + Fibonacci(i-2); # OK!

);

Note the use of the $-operator to limit the LOOP statement to values of i greater than 2.

1.3.10 Conditional compilation

Some of the GAMS $-control commands (see Table 1.1) are particularly useful for con-
ditional compilation, that is, including or excluding parts of the GAMS source code depend-
ing on some condition. We give here an example:

$SET switch 2 # Select this case among several

DISPLAY "beginning...";

$IF NOT "%switch%" == "1" $GOTO case2

DISPLAY "case 1";

$ GOTO continue

$LABEL case2

$IF NOT "%switch%" == "2" $GOTO case3

DISPLAY "case 2";

$ GOTO continue

$LABEL case3

$IF NOT "%switch%" == "3" $GOTO error

DISPLAY "case 3";

$ GOTO continue

$LABEL error

ABORT "switch has an illegal value";

$LABEL continue

DISPLAY "Carrying on...";

Sect. 1.4 Getting Started 21

1.4 Getting Started
The GAMS system can be executed in two modes. On computers running Windows,
through an Integrated Development Environment graphical interface that facilitates man-
aging the files involved in a GAMS project. On computers running Unix, through a simpler
command-line interface where the GAMS system is called from a command-line window.
Both modes of execution are described below.

1.4.1 The Integrated Development Environment

The GAMS Integrated Development Environment (IDE) provides an environment for man-
aging GAMS modeling projects that facilitates the process of editing input files, executing
GAMS, and viewing output files. It is a graphical environment that is available on Windows
systems, and is expected to be available on Unix systems as well.

The GAMS IDE is project-oriented. This means that all the files associated with a model,
or a set of models, are collected in a project file. Even if your GAMS “project” consists of
only a single GAMS input file and its output file, there are advantages to organizing these
files in a project.

Creating a new GAMS project

To create a new GAMS project, first close any open files in the GAMS IDE (“File – Close”
for each one). Then open the “File – Project – New Project” window and navigate to the
directory where you want your project to reside (you may already have your GAMS source
file there). Under “File name,” enter the name of your project. To add existing source files
to your project, use “File – Open” and navigate to your source files (usually .gms and
.inc files), adding them to the project one by one (or add multiple files at once, using the
standard key sequences). To create a new source file in your project, use “File – New”; then
immediately after “File – Save as” to give the new file a name.

Opening an existing GAMS project

Use “File – Project”, to check if the project is already listed in the window, or click “Open
project” and navigate to it.

Executing GAMS models

To execute a GAMS source (.gms) file, make sure it is the active file in the IDE (“has
focus”). Then use the Run entry from the File menu, press F9 or click on the Run icon at
the top of the main window. Next to the Run icon is an entry field to specify additional
parameters for the GAMS run. Additional parameters have the same effect as if they were
specified from the commandline.

While GAMS is compiling and executing the model it displays a log window showing
what is going on. If the run takes a while, you may check the Update entry at the bottom
to make sure the log window is updated every time GAMS or one of the solvers outputs
a line. After execution, the listing file is made the active file, and can be examined for the
solution or any error messages.

22 An Introduction to the GAMS Modeling System

1.4.2 Command line interaction

The simplest and most general way to use the GAMS system is from the command line
through text files. An input file containing the model’s source code, and having a name with
the extension .gms, is created using an ordinary text editor, such as vi, emacs, or Notepad
(if using a word processor you should “save as type .TXT”). This file is then submitted to
the GAMS system by issuing the command:

gams dedicate

from the Unix prompt. GAMS will look for and compile the file dedicate.gms, and
generate an output file, dedicate.lst, containing a listing of the input file and the solutions
of any models solved. This file is then examined using a text editor. It is often convenient
to have several open windows: one in which to edit the input file, one to call GAMS, and
one to look at the output.

1.4.3 The model library

The fastest way to build a new model, or to learn the language, is to study existing models
that address a related problem. The GAMS system includes a large library of models that
demonstrate applications drawn from engineering, finance, and economics. The library is
an excellent resource for learning GAMS, or for learning about modeling in a particular
problem area. The FINLIB library, which is documented in this book, contains several of
the financial optimization models discussed in the companion volume Practical Financial
Optimization.

From the GAMS IDE, “File – Model Library – Open GAMS Model Library” gives
access to more than 100 models in the standard library and to the FINLIB library. Clicking
on one of the models will add it to your current project and you can now modify it as you
want (you will not be allowed to modify the original file).

From the command line,

gamslib index

copies a file containing a list of the library models into the current directory; the commands

gamslib 1

gamslib dedicate

both copy model number 1, dedicate.gms, into the current directory.

Notes and References
The GAMS manual, GAMS: A User’s Guide and other documents can be downloaded from
http://www.gams.com. A demonstration version of the GAMS system can be obtained
from http://www.gams.com/download.

Notes and References 23

At the time of writing it is also possible to download the GAMS Integrated Developer
Environment (for Windows), containing a sample of solvers and the GAMS main compiler.
This system runs in “demo mode,” allowing the solution of small to medium-sized models.
To obtain licenses for solving larger models, for other solvers, or for systems for other
machines, contact support@gams.com.

