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Control, Servo-mechanisms and
System Regulation

This chapter explores compensator servo-mechanisms and control, correction and

proportional control.

1.1. Introduction

1.1.1. Generalities and definitions

In all areas of physics, for the research, analysis and understanding of natural

phenomena, a stage for modeling and the study of the structure of the physical process

is necessary. This has led to the development of modeling, representation and analysis

techniques of systems using a fairly general terminology. This terminology is difficult

to introduce in a clear manner but the concepts, which it relies upon, will be defined

in detail in the following chapters.

A physical process is divided into several components or parts forming a system.

For example, this is the case of an engine that consists of an amplifier, power supply,

an electromagnetic part and a position and/or speed sensor. The system input is the

voltage applied to the amplifier and the output is either the position or the speed of

rotation of the motor shaft.

Among the objectives of the control engineer, we can identify modeling, behavior

analysis and the regulation or control with the aim of dynamically optimizing the

behavior of the system. It should be noted that one preliminary and very important step

is the configuration of the system before its control. During this step, the automation

expert must define sensible choices of sensors, actuators and their placement in the

system to optimize the control (control means verification of the good functioning of

all sensors, actuators, system and corrector or control law). It is only after this stage

that control synthesis finds its place, which might simply be reflected by the use of
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2 Signals and Control Systems

a conventional controller (proportional, proportional, integral and derivative (PID),

phase advance or phase delay or other).

Driving the system or control serves the purpose of ensuring that the variables to

be adjusted or system outputs follow a desired trajectory (curve with respect to time

in general) or have dynamics defined by the specification requirements, for example

temperature control of an oven, fluid flow control or speed and trajectory control of a

moving object. When the desired trajectory is reduced to a point, this is referred to as

regulation and not as control because the main purpose here is to stabilize the output

of the system in a point. The role of control is to allow or to improve the resulting

performance of a system, using actuators and sensors available for information

acquisition and enabling reaction based on behavior. In general, this can be done

using a negative-feedback loop (return or feedback loop) and sometimes a

compensation or anticipation chain of the dynamic effects of the system (feedforward

or (pre or post) compensation). The operation of a vehicle is according to the block

diagram shown in Figure 1.1.
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Figure 1.1. Schematic diagram of a controlled system with
compensation and feedback sequence

In the definition of a control system, we will express transfer functions as follows:

– H(p) transfer of the system to be controlled, p is the Laplace operator;

– R(p) transfer of the sensor or measuring device;

– C(p) transfer of the corrector or servo controller element.

The setpoint is w(t) and the output to control is y(t). The direct chain consists

of C(p) and H(p) and R(p) constitute the feedback chain. The difference between

output and setpoint is e(t) and is also called control error or trajectory tracking error.

In order to simplify the study, we are considering a unity feedback scheme in which

R(p) = 1.

In general, transfers H(p) and R(p) are known or can be obtained and the objective

is to obtain a corrector C(p) that is able to satisfy the performances required for the

closed-loop system (transfer from w to y).
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For the regulation of the temperature of a speaker to a reference value, it is possible

to use one of the following block diagrams.

_

+ H(p)

R(p)

W YE
C(p)

U

Figure 1.2. Schematic diagram of a feedback system R(p) = 1
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Figure 1.3. Speed regulation of a motor
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Figure 1.4. Temperature regulation of an oven

Vehicle operation follows the principle of the diagram shown in Figure 1.5.
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Figure 1.5. Schematic diagram of the model for vehicle operation

In this preface, we are going to cover some conventional methods for the

design of a control system. This study will serve the purpose of finding a control

structure allowing a servo system to be given dynamic characteristics or performances

established a priori in the definition of the requirements, either in terms of temporal

response or in terms of frequency response. In general, the latter is defined to ensure:
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– the stability of the controlled system (loop system);

– the smallest possible permanent errors;

– a suitable dynamic behavior: a response quickly reaching its asymptote, the

lowest overshoot possible, etc.
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Figure 1.6. Servo system

The conventional operation of a servo system is shown in Figure 1.6:

– yd: the setpoint is an electrical quantity that represents the desired output value

of the system;

– ε: the error signal between the setpoint and the actual output of the system;

– u: the control signal generated by the controller;

– y: a physical quantity that represents the system output.

The physical quantity y is measured with a sensor that translates it into an electrical

quantity. By means of the comparer, this electric quantity is compared to the setpoint,

which is an electric quantity.

A model describing the dynamic behavior (physic) of the open-loop (OL) system

is necessary for control synthesis. In general, the accuracy required for modeling is

dependent of the finality of the control and the required performance. It should be

noted that there are several types of models.

The simulation model is useful for the study of behavior and the response of the

system to different excitations. It allows that the laws of control be tested and that

performance be evaluated before application to the actual system. It has to be as

accurate as possible (including disturbance, noises, nonlinearity and all the parts able

to be modeled etc.).
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The control model is usually simpler, sometimes linear, somewhat reduced

compared to the simulation model. It is used to infer the appropriate control law so as

to minimize complexity (reduction of computation times, ease of implementation,

etc.). Consequently, the resulting control law is verified with the simulation model to

measure the impact of the dynamic terms neglected in the synthesis stage. If it proves

insufficient, either a more complete model is retained or compensators are added.

An ensuing model of the physical system may be empirical, be the result of

physical modeling or derived from a process of identification based on information

about the observation of the system after excitation. When a representation of the

system is available, this is a function of some parameters. The estimation of these

parameters from experimental data is the identification step.

In linear systems control, modeling is a very important phase. In order to properly

control a system, a good model thereof must be known. For example, in order to drive

a car, the better its dynamic behavior or model is known (by training), the better it can

be controlled at high speed and therefore the better it will be driven. As a result, it

will achieve the best performance. The dynamic model is acquired by learning or by

system identification.

During the development of an application for automation purposes, we generally

follow the following steps:

1) modeling;

2) identification;

3) behavior analysis;

4) controller synthesis;

5) control implementation;

6) analysis and study of the system in closed loop;

7) verification of the performance and eventually repetition of steps (2), (3) or (4).

The modeling stage becomes crucial when the requirements are strict with respect

to performances and when the control implemented proves to be complex. In order to

introduce the different types of modeling, we will study some examples.

1.1.2. Control law synthesis

1.1.2.1. Specifications and configuration
Control should enable the closed-loop system to ensure that a certain number

of constraints called specifications be satisfied. Among the specifications, we can

distinguish:
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– stability;

– performance;

– robustness.

A servo-mechanism can be qualified by its degree of stability, accuracy, response

speed, sensitivity to disturbances acting on the system, robustness with regard to

disturbances on measures and errors or variations of the characteristic parameters of

the system. The accuracy of a control system can be characterized by the maximal

amplitude of the position error.

1.1.2.2. Performances: regulation, disturbance rejection and anticipation
Disturbance rejection: the process is often subjected to certain inputs considered

as being disturbances. The latter must have a minimal effect on the behavior of the

system when it is controlled. The regulation is the ability of the system to mitigate or

even absorb the effects of disturbances.

Trajectory tracking: the loop system must be fast enough, must not present

significant overshooting or oscillations in order to correctly follow a desired
trajectory or setpoint varying in time.

1.1.2.3. Robustness and parametric uncertainties
A loop system is said to be robust if its characteristics do not vary much or do

not appear too degraded when changing the parameters of the physical system to be

controlled or the neglected dynamics during modeling or when disturbances occur.

These changes may originate either from the change in characteristics of the system

or from the difference between physical system and control model.

Some examples:

– variation in mass of a satellite after fuel consumption;

– aging of a mechanical structure and change in frequency of the natural modes;

– reduced model for the control neglecting the high-frequency dynamics of the

physical process;

– external disturbances such as those conveyed by electrical networks and noises

in sensors;

– failure occurring in systems that alters their dynamics.

1.1.2.4. Constraints on control: control system input energy
Control u is the output of a dynamic system called controller or control law, and it

may be subjected to constraints (amplitude limits and speed variations, actuators limit,

structure limit, etc.). Constraints are sometimes:
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– the use of time-invariant linear correction or a simple proportional feedback;

– a control calculated in the discrete domain by a processor using integer or fixed-

point representation;

– computation time constraint, limitation of the order of the controller, trajectories

continuity and their derivatives up to some order.

Controls admissibility: the amplitudes of signals and control structure must not be

too large compared to those physically feasible.

EXAMPLE 1.1.– Direct current motor with tachometric feedback.

1.1.3. Comprehension and application exercises

1.1.3.1. Study of a servo-mechanism for the attitude of a satellite

The aim is to control the attitude of a satellite such to orientate an antenna

connected to the satellite with regard to a given axis. The output variable of the

system is therefore the attitude θ(t). For the satellite to start rotate, a thrust u(t) is

applied through a nozzle, which produces a couple γ(t) = Lu(t) acting on the

satellite, where L refers to the distance of the thrust point to the axis of rotation of the

satellite. We want to impose direction θd(t) by acting upon u(t). The variable J
designates the moment of inertia of the satellite; the dynamic equation is written as:

γ(t) = Jθ̈(t) = Lu(t). [1.1]

Hence the transfer function between the input u(t) and output θ(t),

Ho(p) =
Θ(p)

U(p)
=

L

Jp2
. [1.2]

The system behaves as a double integrator. When a short impulse is given to the

system, it will begin to rotate indefinitely (the impulse is integrated twice). Control

is achieved using the difference between the desired attitude (setpoint) and the actual

attitude (output) to calculate the control u(t) to apply to orientate the antenna. The

diagram of the control is shown in Figure 1.7.

We must determine a controller C(p) that connects the error ε(p) to the control

signal U(p). As a first step, we propose a regulation proportional to the error correction

(u(t) = Kε(t)), therefore we will write C(p) = K, in which K is constant. This
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control is known as proportional control. The transfer function of the now loop system

is given by:

H(p) =
Θ(p)

Θd(p)
=

C(p)Ho(p)

1 + C(p)Ho(p)
=

KHo(p)

1 +KHo(p)
=

K L
Jp2

1 +K L
Jp2

=
K L

J

p2 +K L
J

. [1.3]

+

-

C (s) H 0(s)
U (s) ( )sq( )d

sq ( )se

Figure 1.7. Control diagram

Suppose that the attitude is initially of 0, and that it is desirable that the satellite

assume an attitude of setpoint θ0. It can be said that the setpoint signal is a Heaviside

function of amplitude θ0, wherefrom

Θd(p) =
θ0
p
. [1.4]

which gives as output:

Θ(p) =
K L

J

p(p2 +K L
J )

θ0. [1.5]

By dividing into simple elements, we get:

θ(t) = θ0(1− cos(ω0t)) with ω0 =

√
K

L

J
. [1.6]

It can be noted that the attitude of the satellite oscillates around the desired

attitude. The result is thus not satisfactory; it is necessary to reconsider the controller
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to improve the performance of the closed-loop system. The problem comes from the

fact that when we assume the value is0, the rotation of the satellite should be slowed

down, whereas it is at this moment that the control is zero, since it is proportional to

the error. However, it can be observed that when the error is zero, its derivative is

maximal (in absolute value). Consequently, the idea is to introduce the error and its

derivative in the correction. We then choose a proportional correction and derivative

(u(t) = Kpε(t) +Kv ε̇(t)). It can be written in a simplified way:

C(p) = 1 + Tp. [1.7]

The transfer function of the closed-loop system is therefore given by

H(p) =
Θ(p)

Θd(p)
=

C(p)Ho(p)

1 + C(p)G(p)
=

(1 + Tp) L
Jp2

1 + (1 + Tp) L
Jp2

=
(1 + Tp)LJ

p2 + T L
J p+

L
J

. [1.8]

REMARK 1.1.– The system using proportional and derivative (PD) control is not
physically feasible since the degree of the numerator is greater than the degree of the
denominator. On the other hand, a good approximation is always possible to achieve.

Consider the same regulation conditions (i.e. step response). The output of the

system is thus given by

Θ(p) =
(1 + Tp)LJ θ0

p(p2 + T L
J p+

L
J )

. [1.9]

The shape depends on the roots of the following characteristic equation:

p2 + T
L

J
p+

L

J
= 0. [1.10]

For example, we take L
J = 10−2. If T > 20, the solutions are real and negative,

p1,2 =
−10−2T ± 10−1

√
10−2T − 4

2
[1.11]

and the response is shown in Figure 1.8.
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Figure 1.8. Step response

For T = 100, the roots of the denominator are approximately −1 and −0.01,

therefore the dominant term in the response should be the second root (larger time

constant 100 s). In fact, it is observed that this is not true, the apparent time constant

is of 1 s. The reason is that the numerator of the transfer function has a root equal to

−1/T = −0.01, which compensates for the effect of the pole for −0.01. We are here

confronted with a system that does not have dominant poles.

If we take T < 20, solutions are complex conjugate and as a result the response

shows damped oscillations. For T = 10, we have the response as shown in Figure 1.9.

REMARK 1.2.– With increasingly smaller values of T , we tend towards an oscillating
solution that corresponds to the case of proportional control (T = 0).

It is thus seen that the shape of the response depends completely on the roots of

the characteristic equation (poles of H(s)) and sometimes depends on the roots of the

numerator of the transfer function (zeroes of H(s)).
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Figure 1.9. Response with damped oscillations

In this example, we have highlighted several characteristics of a control:

– the notion of loop that allows a process to be controlled, which in the case being

considered could not be controlled in the OL system;

– the notion of control system (controller) that can be more or less adapted to the

process to be controlled;

– the influence of poles and zeroes of the transfer function.

1.2. Process control

1.2.1. Correction in the frequency domain

As a first step, we are going to focus only on looping a system with a cascade

controller (regulation). The use of an anticipation chain and compensators will be

addressed farther.
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In this section, we are going to cover process control using conventional methods

for simple control. These controllers that make use of simple actions are regulated by

an approximate study in the frequency domain. Consider a system whose frequency

response has a phase margin ΔΦ = Φ0 and a gain margin ΔG. Suppose that these

characteristics are not sufficient to provide the desired performance. For a simple

system and using Bode, Nyquist or Black–Nichols representations, the observation of

its frequency response makes it possible to observe that for improving the

performance of a system, it is necessary to make sure that the frequency response of

the corrected system passes far away from the critical point ((0dB,−πRad),

(0dB,−180◦) −1). For this purpose, the Bode diagram may inspire two types of

corrective actions, one shifting the phase curve upward in the neighborhood of the

critical point (phase advance control, to increase the phase margin), the other

offsetting the gain downward (phase delay control to increase the gain margin). The

two corrections can be achieved using transfer functions of simple controllers and

may be combined, but their effectiveness is limited as soon as the order of the system

is greater than 2 or 3. Despite the possibility that this type of action can be

multiplied, it is preferable to use other synthesis methods, more flexible and more

efficient for more complex systems.

1.2.2. Phase advance controller and PD controller

The operation principle is that this controller increases the phase of the direct chain

to increase the phase margin of the system. The transfer function of a PD controller is

written as: C(p) = K(1 + Td.p). The derivative action is not physically feasible, it

must be approximated by Td.p 	 Tdp
1+τp with τ 
 Td, which gives us

C(p) = K(1 +
Tdp

1 + τp
) = K(

1 + (Td + τ)p

1 + τp
). [1.12]

The transfer function of a phase advance controller is defined as follows:

C(p) =
1 + aTp

1 + Tp
(a > 1). [1.13]

The Bode plot of the phase advance controller is shown in Figure 1.11.
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Figure 1.11. Bode plot of the phase advance controller

The maximum phase Φm of the phase advance controller is obtained for ω = ωm,

with:

ωm =
1

T
√
a

[1.14]

sin(Φm) =
1− a

1 + a
.

We have a phase margin of Φ0, which means that the controller should add a phase

of Φm = 50◦ −Φ0. The modulus of the controller is equal to 10 log10(a) to ω = ωm.

As a result, if the controller is calculated to get Φm at ωc, the cutoff pulse of the system
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corresponding to 0 dB, the new crossing point at 0 dB would be moved to the right of

the starting point and therefore the phase margin would be different from the expected

margin. To overcome this problem, ωm is chosen at the point where the modulus of the

system is equal to −10 log10(a), which makes it so that after correction the modulus of

the controlled system will cross 0 dB at ω = ωm. The phase margin of the controlled

system will be equal to Φm + 180◦ − Φread|G=−10 log(a).

To determine the coefficients of the controller, the calculated phase margin is

overestimated by 5◦ to take into account the fact that we use the asymptotic diagram:

Φm = Φm(calculated) + 5◦. After having defined Φm, we can derive a by the formula

a =
1 + sin(Φm)

1− sin(Φm)
. [1.15]

Then, since this phase must be placed in ωm = ωc = 1
T
√
a

corresponding to the

modulus of the transfer function in the OL system,

G = −10 log10(a). [1.16]

This allows us to calculate T ,

T =
1

ωm
√
a
. [1.17]

REMARK 1.3.– The phase advance control increases the bandwidth of the system and
as a result the system becomes faster.

Since the determination of the controller coefficients uses approximations, we must
verify the results obtained by printing the Bode plot of C(p)Ho(p). If the phase margin
after correction does not match the expected result, this may be caused by too quick a
variation of the system phase around the critical point. This variation results in a fall
of phase that largely exceeds the 5◦ of margin.

The phase advance controller is not suitable in case of systems having too quick
phase variations.

1.2.3. Phase delay controller and integrator compensator

The operation principle is that this controller decreases the gain of the direct

chain to pulses corresponding to a dephasing shift of the system close to −π rad. The

transfer function of a proportional and integral (PI) controller is written as:
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C(p) = K(1 + 1
Ti.p

) = K 1+Ti.p
Ti.p

. The integral action is often approximated by
1

Ti.p
	 1

1
α+Ti.p

, which gives us

C(p) = K(1 +
1

1
α + Ti.p

) = Kα
( 1
α + 1) + Ti.p

1 + αTi.p
. [1.18]

The transfer function of a phase advance controller (integral compensator) is

defined as follows:

C(p) =
1 + aTp

1 + Tp
(a < 1). [1.19]

s(t) 

C

i(t)

e(t)

Phase delay circuit

R
1

R
2

Figure 1.12. Phase delay controller circuit

Its Bode plot is given by Figure 1.13.

It can be observed that the phase of the controller is negative and consequently it

will delay the phase of the system.

To obtain a desired phase margin of 50◦, we will act this time not upon the phase

but upon the modulus so as it passes through 0 db at pulse ωc that corresponds to

a system phase that is equal to (Φc = −180◦ + 50◦ = −130◦). As the modulus

is cancelled out for ωc (Φc = −130◦), then the phase margin is therefore ΔΦ =
180◦ − 130◦ = 50◦. To offset the effect of the phase introduced by the controller, we

overestimate by 5◦ or 10◦ the margin, that is to say, instead of taking Φc = −130◦,

we will take Φc = −125◦.

The value of a is calculated by measuring the modulus d at pulse ωc corresponding

to a system phase equal to Φc = −125◦. Thus, by imposing this pulse to the gain of

the direct chain |C(ωc)Ho(ωc)| = 1, we therefore obtain the value of a,

20 log(a) = −d =⇒ a = 10−d/20. [1.20]
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Figure 1.13. Bode plot of the phase delay controller

For the other parameter, we choose T in order to not affect the phase around ωc.

To this end, at least a decade is placed between 1/aT and the new crossing point ωc

of the modulus at 0 db after control, which gives

1

aT
≈ ωc

10
=⇒ T =

10

aωc
. [1.21]

REMARK 1.4.– The main disadvantage of the integral compensator is that it reduces
the bandwidth of the system, which makes the system slower.

It is possible to combine the advantages of the two phase delay and advance
controllers by implementing a PID or phase delay and phase advance controller,
combining actions: the phase delay part having the purpose to stabilize the system
and the phase advance part being designed to accelerate the response (make the
system quick).
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1.2.4. Proportional, integral and derivative (PID) control

The PID controller is a special case of phase advance and phase delay controller

or with combined action. It is widely used in the industry. The transfer function of a

PID controller is given by:

C(p) = Kp(1 +
1

Tip
+ Tdp). [1.22]

The problem in designing a PID controller is therefore that of determining

parameters Kp, Ti and Td. To illustrate the influence of the choice of each of the

parameters, we will study an example.

–

+

Phase advance circuit

R
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R
2

C
1

C
2

V
s

V
e

Figure 1.14. Phase advance circuit

EXAMPLE 1.2.– Consider the position control of a direct current motor, whose
transfer function is given by

Ho(p) =
100

p(p+ 50)
. [1.23]

1.2.4.1. PD control

The transfer function of the controller is expressed by

C(p) = Kp(1 + Tdp). [1.24]

REMARK 1.5.– Such a transfer function is not feasible, since the degree of the
numerator is smaller than that of the denominator; on the other hand, what we can
achieve is a function of the type:

C(p) = Kp(
1 + Tdp

1 + τp
) [1.25]

where τ is small enough such that the influence of the pole −1/τ is negligible.
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The transfer function of a non-loop controlled system is written as:

H(p) = Ho(p)C(p) =
100Kp(1 + Tdp)

p(p+ 50)
. [1.26]

We have therefore added a zero to the transfer function Ho(p).

First, consider the proportional controller only (Td = 0). The denominator of the

transfer function of the loop system (characteristic polynomial) equation is given by

P (p) = p2 + 50p+ 100Kp. [1.27]

We have:

ω2
n = 100Kp; 2ξωn = 50 =⇒ ωn = 10

√
Kp; ξ =

50

20
√
Kp

. [1.28]

Therefore, if Kp is increased, ωn also increases and as a result the speed of the

response of the loop system, but the amplitude of the oscillations increases as well

(small ξ). For Kp = 12.5, we get damping ξ =
√
2
2 , but a slow response (ωn =

35.35 rad/s); for Kp = 100 the response is fast (ωn = 100 rad/s) but very oscillating

because ξ = 0.25. It can also be seen that the static error in the velocity is equal

to 50
100Kp

; it is improved by increasing the gain. The static error in position does not

depend on the controller since the process contains an integration.

The introduction of the term involving a derivative allows for an additional degree

of freedom. In effect, the denominator of the transfer function of the loop system

becomes

P (p) = p2 + (50 + 100KpTd)p+ 100Kp, [1.29]

that is

ωn = 10
√
Kp; ξ =

2.5 + 5KpTd√
Kp

. [1.30]

The error of velocity remains equal to 50
100Kp

; the derivative term does not affect

the static behavior in speed. By introducing this additional degree of freedom in the

controller, it is possible to ensure both large ωn and ξ.
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By taking Kp = 100, the same static error can be obtained in velocity as

previously, a natural frequency of ωn = 100 rad/s but also a damping coefficient

ξ = 1 by choosing Td = 0.015 s.

The step response of the controlled loop system is given for different values of Kp

and Td in Figure 1.15.
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Figure 1.15. Step response of the corrected loop system

1.2.4.2. PI control

Now consider a controller of the form:

C(p) = Kp(1 +
1

Tip
) [1.31]
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which can be written as:

C(p) =
Kp

Ti
· 1 + Tip

p
. [1.32]

Therefore, a zero and a pole in 0 can be added to the system. The addition of the

integration reduces the static error. In the case of the PD controller, the static error in

velocity imposed the choice of Td; this is no longer the case here because we have

added a pole at the origin, which cancels out the static error in velocity. Thus, the

choice of controller parameters will be primarily done based on criteria related to

stability and the transient response.

We use the Routh criterion to analyze stability according to the parameters of the

corrector. The characteristic equation of the loop system is given by

p3 + 50p2 + 100Kpp+ 100
Kp

Ti
= 0. [1.33]

The results are presented in Table 1.1.

p3 1 100Kp

p2 50 100
Kp

Ti

p1 100Kp − 2
Kp

Ti
0

p0 100
Kp

Ti
0

Table 1.1. Routh table results

We have stability if and only if
Kp

Ti
> 0 and 1

Ti
< 50. Based on this, we need

to take 1
Ti

as small as possible. In effect, the OL transfer function of the controlled

system is given by

H(p) = C(p)Ho(p) =
100Kp(p+

1
Ti
)

p2(p+ 50)
. [1.34]

The term in p2 in the denominator ensures a zero static error in velocity and the

fact of choosing the zero as small as possible makes it possible to find approximately

the response of the system before integral correction. The responses corresponding to

Kp = 10, 1
Ti

= 0 (Ti = ∞) and Kp = 10, 1
Ti

= 0.01 are identical, but the second

situation has the advantage of ensuring a permanent zero error in the case of a ramp.

The step response of the controlled system is given for different values of Kp and Ti

in Figure 1.16.



Control, Servo-mechanisms and System Regulation 21

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (sec)

Kp=100

1/Ti=0
Kp=10

1/Ti=20

Kp=10, 1/Ti=0.01

Kp=10, 1/Ti=0

Figure 1.16. Step response of the controlled system

REMARK 1.6.– The response of the system controlled by the PI (Kp = 10, 1
Ti

= 0.01)
is slower than with the PD control (Kp = 100, Td = 0.015).

1.2.4.3. PID control

The transfer function of the controller is expressed by

C(p) = Kp(1 +
1

Tip
+ Tdp). [1.35]

This controller allows an approximated implementation using approximations.

There is no general method that can find the best combination of the three actions.

There are methods that make it possible to find a first approximation (Ziegler–Nichols

method) that then has to be refined according to the data of the problem and to trial

and error.
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In the case of the correction of the previous system by this type of controller, a

good solution consists of recovering Kp = 100, Td = 0.015 and adding in the integral

controller with 1/Ti = 0.01 (Ti = 100). This combines the speed obtained by the PD

with the zero velocity error obtained by the PI.
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Figure 1.17. Step response of the controlled system with correction

In this section we have introduced a conventional method of regulation. This

method is based on the knowledge of the frequency response of the system in OL and

the determination of the controller consists of improving the gain margin and phase

margin relatively to the system looped only by a unity feedback. It thus ensures a

robustness margin (at the expense of performance) if the parameters of the transfer

function were to change. We have made no assumptions about these possible

variations and the knowledge of the transfer function is supposed to be acquired. It

can be obtained by identification by using the methods proposed in Chapter 6 or

other methods. In the following, we are addressing an example with identification

based on the frequency response.
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1.3. Some application exercises

1.3.1. Identification of the transfer function and control

The transfer function of a system can be determined from its Bode plot. The plots

of the modulus and of the phase provide information about whether the system is

of minimal or phase non-minimum, which allows us to propose a form of transfer

function.

For the Bode plot given by Figure 1.18, we propose the following minimal phase

transfer function:

Ho(p) =
K

p(1 + τ1p)(1 + τ2p)
. [1.36]
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Figure 1.18. Bode plots of a system

The integration in the transfer function is justified by the fact that the phase starts

from −90◦ and that the very low frequency modulus follows an asymptote of

−20 db/dec. The gain K can be identified by extending the asymptote due to
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integration. The value of K can be directly obtained at the intersection point of this

asymptote with the axis 0 db. The two time constants τ1 and τ2 are identified from

the pulsations of cutoffs ωc1 and ωc2 corresponding to the intersection points of the

asymptotes. It is always possible to verify the results derived by the modulus plot by

using the phase plot. For example, it can be verified that the phase starts from −90◦

(integration) and tends toward −270◦ = 3× 90◦ (two time constants).

The identified parameters of the transfer function are written as:

K = 2
ωc1 = 1
ωc2 = 3

=⇒
K = 2
τ1 = 1
τ2 = 1/3

⎫⎬
⎭ =⇒ Ho(p) =

2

p(1 + p)(1 + p/3)
. [1.37]

1.3.1.1. Calculation of static and dynamic errors

The static error εp of the closed-loop system is zero because the system has an

integration in the direct chain (εp = 0). The static error in the velocity or dynamic

error is calculated in the following manner:

εv = ε(t = +∞)|yd(t)=tu(t) = lim
p→0

pε(p)|Y d(p)=1/p2 =
1

2
. [1.38]

1.3.1.2. Stability study

To study the stability, we calculate the gain and phase margins of the system from

the Bode plot:

– the gain margin is ΔK = 6;

– the phase margin is ΔΦ = 18◦.

The behavior of the system in the closed-loop system is not satisfactory, because

it shows a very low phase margin and as a result it is very poorly damped. The goal

is thus to correct it so as to improve its damping and make it faster (increasing the

bandwidth).

1.3.1.3. Servo-mechanism by phase advance controller

It is desirable to correct the system to bring the phase margin to 50◦. To this end,

we will use two types of controller, phase advance controller and integral compensator

(phase delay).
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Figure 1.19. Bode plots of a system with correction

We have a phase margin of 18◦, which means that the controller should add a phase

of 32◦. The transfer function of a phase advance controller is given as follows:

C(p) =
1 + aTp

1 + Tp
(a > 1). [1.39]

The Bode plot of the phase advance controller is shown in Figure 1.20.

The maximum phase Φm of the phase advance controller is obtained for ω = ωm,

with

ωm = 1
T
√
a

sin(Φm) = 1−a
1+a . [1.40]

The modulus of the controller is equal to 10 log10(a) for ω = ωm. As a result, if

we calculate the controller to get Φm with ωc corresponding to 0 db, the new crossing
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point in 0 dB would be moved to the right of the starting point and as a result the phase

margin would be different from the desired phase margin. To overcome this problem,

we choose ωm at the point where the modulus is equal to−10 log10(a), which makes

it so that after correction the modulus of the controlled system will cross 0 db for ω =
ωm. However, the gain margin of the controlled system will be equal to Φm +180◦ −
Φread|G=−10 log(a). The phase margin will be overestimated by 5◦. The calculated Φm

is 32◦, and therefore we are going to take as new Φm 32◦+5◦ = 37◦. Having set Φm,

we calculate a:

a =
1 + sin(Φm)

1− sin(Φm)
=

1 + sin(37◦)
1− sin(37◦)

=⇒ a = 4. [1.41]
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Figure 1.20. Bode plot of the phase advance controller

By placing ωm at ω corresponding to the system modulus that is equal to

−10 log10(a) = −10 log10(4) = −6 db =⇒ ωm = 1.73rd/p. [1.42]
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This allows us to calculate T ,

T =
1

ωm
√
a
=

1

1.73
√
4
= 0.29 s. [1.43]

Hence, the following controller:

C(p) =
1 + 1.16p

1 + 0.29p
. [1.44]

The Bode plot of the system after correction is shown in Figure 1.21.
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Figure 1.21. Bode plot of the system after correction

We can observe that the phase margin after correction does not correspond to the

expected result; this is due to the variation of the phase around the critical point that is

too fast. This fast variation of the phase causes a phase drop that largely exceeds the

5◦ (in reality 	 18◦ are lost). The advance phase controller is not suitable in the case

of excessively fast phase variations.
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REMARK 1.7.– The results in the Bode plot of the system must always be verified after
correction.

1.3.1.4. Integral compensator control (phase delay controller)

In order to obtain a desired phase margin of 50◦, this time we are going to act not

upon the phase but upon the modulus such that it passes through 0 db at pulse ωc that

corresponds to a system phase that is equal to (Φc = −180◦ + 50◦ = −130◦). Since

the modulus cancels out for ωc (Φc = −130◦), then the phase margin is therefore

ΔΦ = 180◦ − 130◦ = 50◦. The integral compensator has the transfer function

C(p) =
1 + aTp

1 + Tp
(a < 1). [1.45]

Its Bode plot diagram is shown in Figure 1.22.
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Figure 1.22. Bode plot of the system after correction

It can be observed that the phase of the controller is negative and consequently it

will delay the phase of the system; as a result, the calculated phase margin will be
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affected. To compensate for this effect, we add a margin of 5◦, that is to say, instead of

taking Φc = −130◦, we will choose Φc = −125◦ and by placing ωm we will manage

to not lose more than these 5◦ because of the controller.

The value of a is calculated by measuring the modulus d at ωc (Φc = −125◦) and

by making

20 log(a) = −d =⇒ a = 10−d/20. [1.46]

We choose T so as to not affect the phase around ωc. For this purpose, we put a

decade between 1/aT and ωc, the impulse of the modulus crossing 0 db after control,

which makes

1

aT
=

ωc

10
=⇒ T =

10

aωc
. [1.47]

The phase Φ = Φc = −125◦ is obtained for ω = 0.486, which yields a modulus

d = 11.30. Hence, the value of a is given by:

a = 10−11.30/20 = 0.27. [1.48]

The value of T is given by

T =
10

aωc
=

10

0.27× 0.486
= 76.20 s. [1.49]

Hence the following controller is obtained:

C(p) =
1 + 20.57p

1 + 76.20p
. [1.50]

The Bode plot of the system after control is shown in Figure 1.23.

The phase margin is maintained, and it is correctly written as ΔΦ 	 50◦. The

advantage of this controller is its simplicity, but its main drawback is that it reduces

the bandwidth of the system.
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Figure 1.23. Bode plot with integral compensator

1.3.2. PI control

For the system represented by its transfer function,

Ho(p) =
2

(1 + 0.5p)2
. [1.51]

The following requirements must be satisfied:

– zero static position error;

– bandwidth ωc ≥ 4 rd/s (cutoff impulse);

– phase margin 	 50◦.

The Bode plot of this system is shown in Figure 1.24.

The cutoff pulse ωc = 2 rd/s (|H(jωc)| = 0db), and the phase margin ΔΦ =
90◦.
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Figure 1.24. Bode plot of the system without PI control

The static position error is non-zero; to cancel, it is necessary to introduce an

integration in the controller. The controller that we thus propose is a PI controller:

C(p) = K(1 +
1

Tip
) = K

(
1 + Tip

Tip

)
=

K

Ti
· 1 + Tip

p
. [1.52]

The choice of 1
Ti

is made so as to compensate the effect on the integration phase.

The phase around ωc should be unchanged (≈ the system phase). We will therefore

place 1
Ti

a decade further than ωc: 1
Ti

= ωc

10 =⇒ Ti = 10
ωc

= 10
2 = 5 s. The Bode

diagram of the system controlled by means of the following controller ( KTi
= 1) is

shown in Figure 1.25:

C1(p) =
1 + Tip

p
. [1.53]

The position error is zero because there is integration in the direct chain; we are

now going to determine the parameters of the controller in order to meet the
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specifications. The choice of Ti has been done so as to offset the phase effect of the

integration, it then just suffices to calculate the second parameter K to ensure a phase

margin of 	 50◦ and a bandwidth of at least 4 rd/s (ωc ≥ 4 rd/s).
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Figure 1.25. Bode plot of the system with control

The quantity K
Ti

is calculated by measuring the modulus d of |C1(jω
′
c)Ho(jω

′
c)|

with ω′
c the new cut-off pulse corresponding to a phase Φc = −130◦ (phase margin

≈ 50◦) and by imposing:

20 log(
K

Ti
) = −d =⇒ K = Ti · 10−d/20. [1.54]

The phase Φ = Φc = −130◦ is obtained for ω = ωc = 4.02 rd/s, which yields

a modulus d = 5.94. Hence, the value of K: K = 5 · 10−5.94/20 = 2.5 and the

expression of the controller

C(p) = 2.5(1 +
1

5p
). [1.55]
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The Bode plot of the system after control is shown in Figure 1.26. We correctly

verify on the plot that the bandwidth is of 4 rd/s and that the phase margin is 50◦. The

position static error is zero due to the integration in the direct chain. The requirements

of the specifications are thus properly satisfied.
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Figure 1.26. Bode plot of the system with control

1.3.3. Phase advance control

For the system represented by its transfer function

Ho(p) =
K(1 + p)

p(1 + 0.2p)(1 + 0.05p)
, [1.56]

The following requirements must be satisfied:

– zero static error;

– a gain of about 30 db for ω = 2 rd/s;



34 Signals and Control Systems

– phase margin 	 50◦.

We want a gain of 30 for ω = 2 rd/s. This allows us to define the value of K. We

write:

20 log10 (|H(jω)|ω=2) = 20 log10

(
K
√
1 + ω2

ω
√
1 + 0.04ω2

√
1 + 0.0025ω2

∣∣∣∣∣
ω=2

)

= 30db. [1.57]

This equation can be rewritten by replacing ω by its value

20 log10(1.033K) = 30 =⇒ K = 30.6 (that is K = 30). [1.58]

The new transfer function of the system is

H(p) =
30(1 + p)

p(1 + 0.2p)(1 + 0.05p)
. [1.59]

The Bode plot of this system is shown in Figure 1.27.

The controller that we propose is a phase advance corrector because the dynamic

accuracy is imposed by the value of K (gain of 30 db at ω = 2 rd/s). Consequently,

we cannot use an integral compensator (phase delay). The transfer function of the

controller is as follows:

C(p) =
1 + aTp

1 + Tp
(a > 1). [1.60]

The phase margin is ΔΦ = 25◦, hence the phase to be added is Φm = 25◦ +5◦ =
30◦. The value of a is given by

a =
1 + sin(Φm)

1− sin(Φm)
=

1 + sin(30◦)
1− sin(30◦)

= 3 (that is a = 4). [1.61]

By placing ωm at ω corresponding to the system modulus that is equal to

−10 log10(a) = −10 log10(4) = −6 db =⇒ ωm = 76 rd/s. [1.62]
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Figure 1.27. Outline of the Bode plot of the system
without phase advance control

This allows us to calculate T ,

T =
1

ωm
√
a
=

1

76
√
4
= 0.0066 s. [1.63]

Hence, the following controller:

C(p) =
1 + 0.0263p

1 + 0.0066p
. [1.64]

The outline of the Bode plot of the system after being controlled is shown in Figure

1.28 in which we verify that the specifications are properly satisfied.

The cases of nonlinear systems will be addressed in the following chapters and

examples of nonlinear systems using linearization methods will be given.
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Figure 1.28. Outline of the Bode plot of the system
with phase advance control

1.4. Some application exercises

EXERCISE 1.– A device, whose transfer function is as follows, is controlled

by a controller placed in cascade with the system with a unity feedback loop.

Ho(p) =
1

p(p+1) :

1) Let C(p) = K.

a) Express the parameters of the transfer function of the system in the closed-

loop system.

b) For K = 1, what can be said of its step response y(t) to unit step function,

and about permanent errors of positions εp and velocity εv?

c) For K = 9, what can be said of y(t), of εp and of εv? Specify the effects

due to the increase in K. Following Bode’s method, determine the gain and phase

margins. What can be observed from these values?
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2) We want to find a permanent velocity error εv < 10% and a phase margin of

about 50◦.

a) Determine the parameters of a controller to be inserted.

b) Verify the result using the Nyquist method by plotting the frequency

response with and without control.

EXERCISE 2.– Figure 6.21 shows the frequency response of a system plotted

according to Bode’s method:

1) Determine the transfer function Ho(p) of the system.

2) What are the position εp and velocity errors εv?

3) What are the gain ΔG and phase margins ΔΦ? The behavior of the system is

not considered satisfactory. Why?

4) We want to bring the phase margin to 50o. Study the serial compensation using

phase advance and phase delay controllers. Compare both methods.
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Figure 1.29. Frequency response of the unknown system
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EXERCISE 3.– An OL system is described by Bode, see Figure 1.30.

Ho(p) =
2

(1 + 0.5p)2
. [1.65]
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Figure 1.30. Bode plot of H(p) = 2
(1+0.5p)2

Determine the parameters of a controller to be inserted in series to obtain the

following performance:

1) zero static (position) error;

2) bandwidth ωc ≥ 4 rad/s;

3) phase margin 	 50o.
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EXERCISE 4.– Let a system be described by its transfer function in OL (Bode, Figure

1.31):

Ho(p) =
K(1 + p)

p(1 + 0.2p)(1 + 0.05p)
. [1.66]

This process is inserted in a control chain with unity back. The desired

performances are:

1) zero static (position) error;

2) a gain of about 30 db for ω = 2 rd/s;

3) phase margin 	 50o.

Determine the parameters of a controller to be inserted in the sequence to satisfy

these conditions.

Bode plot of

H(s) =
K(1 + s)

s(1 + 0.2s)(1 + 0.05s)
. [1.67]

1.5. Application 1: stabilization of a rigid robot with pneumatic actuator

The model of a robot for manipulation with two degrees of freedom is defined by

τ = M(q)q̈ + C(q, q̇)q̇ + Fv q̇ +G(q). [1.68]

The system variables are vectors of dimension 2, respectively, representing

positions, velocities and accelerations, q, q̇,q̈. We define the following parameters for

this robot:

– M(q) is the matrix of inertia of dimension 2×2;

– G(q) is the vector of gravity effects;

– C(q, q̇)q̇ represents the centrifugal and Coriolis forces;

– Fv is the coefficient of viscous friction at the axis level;

– τ represents the couples applied at the axis level of the robot.
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Figure 1.31. Bode plot of H(p)
K

= (1+p)
p(1+0.2p)(1+0.05p)

Pneumatic actuators used for this robot can be represented by the differential

equation linking the couple τ with the control voltage u and the velocity of the axes q̇
as it follows:

.
τ +Bτ + E

.
q = Ju. [1.69]

First, to simplify the study, it will be assumed that the essential terms of the

dynamic model: M(q) = M, C(q, q̇)q̇ = Coq̇, G(q) = Go are constant. The first

part of the study concerns the first axis of the robot. In other words, variables q, q̇,q̈
and u can be regarded as scalars.

The parameters of the system (considered linear invariant) are the following:

g = 9.81 ; l1 = 0.11 ; l2 = 0.15 ; I1 = 0.07 kgm2; I2 = 0.025 kgm2;m1 =
0.6 kg; m2 = 0.4 kg;
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E = 5Id2; B = 10Id2; J = 100Id2, Id2 is the identity matrix of dimension 2.

s = sin(q2); c = cos(q2);

mll = 2m2l1l2; mlc = 2m2l1l2c;mls = 2m2l1l2s;

c12 = cos(q1 + q2); s12 = sin(q1 + q2);

Components of the inertia matrix: Mij : let A = 4m2l
2
1 + I1 + I2;

M11 = A+ 4m2l1l2c+m1l
2
1 +m2l

2
2 ; M12 = I2 + 2m2l1l2c+m2l

2
2;

M21 = I2 + 2m2l1l2c+m2l
2
2 ; M22 = I2 +m2l

2
2;

Components of the matrix C: C11 = −mlsq̇2; C12 = −mls(q̇1 + q̇2); C21 =
mlsq̇1; C22 = 0;

Componants of vector G: G1 = (m1 + 2m2)gl1sin(q1) + m2gl2s12;

G2 = m2gl2s12.

To simplify the preliminary study of the control of this robot, we will focus on the

first axis only and as a first step, couplings and nonlinearities, which can be considered

as disturbance inputs, will be neglected. Next, we will be able to consider as a nominal

model the one obtained when functioning around angular positions q1 = q2 = 0 and

movements of small amplitudes.

M =

(
0.1570 0.0472
0.0472 .0340

)
;Co = 0; and Go = 0; Fv = 0. [1.70]

J =

(
100 0
0 100

)
; B =

(
10 0
0 10

)
; E =

(
5 0
0 5

)
. [1.71]

1.5.1. Conventional approach

For the study below, the system equation will be taken as: τ = Moq̈ and
.
τ +Bτ +

E
.
q = Ju, with Mo = 0.157, B = 10, J = 100, and E = 5.

1) Write in the form of a single differential equation the model of the first axis of
the robot with its actuator.

We shall express the model of the first axis of the robot with its actuator in the form

of a single differential equation. The system equations: τ = Moq̈ and
.
τ +Bτ +E

.
q =

Ju, with Mo = 0.157, B = 10, J = 100, and E = 5 can be written describing

τ = Moq̈ and substituting in the other equation. This gives us: Ju = Mo
...
q +BMo

..
q+

E
.
q = 0.157

...
q + 1.57

..
q + 5

.
q = 100u.
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2) Express the system transfer functions for the velocity H1(p) = V (p)
U(p) and for

position H2(p) =
q(p)
U(p) , with v(t) = dq(t)

dt the rotation velocity of the axis. Determine
the poles and zeros of these two transfer functions.

From the above equation, the transfer functions of the system are derived using

Laplace transformation and considering zero initial conditions,

H1(p) =
V (p)

U(p)
=

100

0.157p2 + 1.57p+ 5
[1.72]

and

H2(p) =
q(p)

U(p)
=

100

p(0.157p2 + 1.57p+ 5)
. [1.73]

Figure 1.32. Locus of the roots of H1(p)

3) Plot the Nyquist locus of the transfer function Ho(p) = Kp. H2(p) = Kp
q(p)
U(p)

and analyze the stability of the system with a unity feedback loop for this position
control.

Nyquist locus of the transfer function

Ho(p) = K.H2(p) = K
q(p)

U(p)
=

100K

p(0.157p2 + 1.57p+ 5)
. [1.74]
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Figure 1.33. Locus of the roots of H2(p)

H2,H2*.5,H2*.1,H2*.05,H2*.01 Bode plot

Figure 1.34. Bode plot of K.H2(p). For a color version of this figure,
see www.iste.co.uk/femmam/signals.zip
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KH1 Nyquist plot

Figure 1.35. Nyquist locus for K = 1(H1)

Figure 1.36. Nyquist loci for H2(p) ∗Ki. For a color version of this
figure, see www.iste.co.uk/femmam/signals.zip
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H2,H2*.5,H2*.1,H2*.05,H2*.01 Black plot

Figure 1.37. Black plot for K.H2(p). For a color version of this figure,
see www.iste.co.uk/femmam/signals.zip

4) The stability of the system with a unity feedback loop is guaranteed if K < 0.5.

5) First, we want to control the velocity of this axis; the system is then considered
as defined by H1(p) =

V (p)
U(p) .

a) By applying the Routh criterion, analyze the stability of the system, whose
velocity is looped with a proportional controller of gain Kv (C(p) = Kv) with a unity

feedback. Determine the conditions on the gain of a proportional feedback ensuring

the stabilization of the system.

Velocity control of H1(p) =
V (p)
U(p) = 100

(0.157p2+1.57p+5) .

The system looped with a proportional controller of gain K (C(p) = K) with

a unity feedback has a transfer

G1(p) =
100K

0.157p2 + 1.57p+ 5 + 100K
. [1.75]

We apply the Routh criterion to

0.157p2 + 1.57p+ 5 + 100K. [1.76]

6) a) The condition on gain K ensuring the stability of the system in the closed-

loop system is: K > −0.05.
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line p2 0.157 5 + 100K

line p1 1.57 0

line p0 5 + 100K 0

Table 1.2. Routh table results

b) Plot the Bode graph and recall the definitions of phase margin of gain
margin and static gain.

H1,H1*.5,H1*.1,H1*.05,H1*.01 Bode plot

Figure 1.38. Bode plot of K.H1(p). For a color version of this figure,
see www.iste.co.uk/femmam/signals.zip

7) a) Plot the Nyquist locus of the transfer function H(p) = Kv.H1(p) =

Kv
V (p)
U(p) and verify the previous results.

Nyquist locus of the transfer function

H(p) = K.H1(p) = K
V (p)

U(p)
=

100K

0.157p2 + 1.57p+ 5
. [1.77]

b) Can a margin be obtained with phase of 45◦? What is the order of
magnitude of the gain margin? Justify the answers.

If the gain is correctly chosen, a phase margin greater than 45◦ can be obtained

as well as an infinite gain margin regardless of the order of magnitude of K.

c) What can be said about the static error of position εp and about the system
controlled in velocity εv?
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H1,H1*10,H1*50,H1*100,H1*200 Nyquist plot

Figure 1.39. Nyquist locus for velocity K.H1(p). For a color version of
this figure, see www.iste.co.uk/femmam/signals.zip

The static error in position εp = lim
p→0

1
0.157p2+1.57p+5+100K = 1

5+100K and the

static error in velocity εv = lim
p→0

p
0.157p2+1.57p+5+100K = 0.

Some observations: in order to stabilize the system, it is more interesting to

implement a first loop for the velocity feedback using a control u = Kv(v−q̇) and then

to consider the system having as input v and as output angular position q. The transfer

function becomes: Ho(p) = 100Kv

0.157p2+1.57p+5+100Kv

1
p . Here, the Nyquist locus for

such a system is represented for Kv = 1, then for Kv = 10. Note the difference

with the result of Question 3. Calculate the gain margin and the phase margin in these

two cases and conclude on the difference and the significance of the velocity feedback

(differential term).

8) The objective is to complete this servo with a position loop, after the velocity

feedback giving a phase margin of 45◦ (this allows us to set the value of Kv).

a) Express the transfer function H3(p) of the system that results therefrom

(considering as the output the position q).

H3(p) =
100Kv

0.157p2 + 1.57p+ 5 + 100Kv

1

p
. [1.78]

b) By applying the Routh criterion, analyze the stability of the system, in

which position is looped back with a proportional controller of gain Kp with a unity

feedback. Determine the conditions of the gain Kp that ensure the stabilization of the

system.
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c) Plot the Bode chart and the Nyquist locus of the transfer function Ho(p) =
Kp.H3(p). Conclude on the stability of the system using the Nyquist criterion.

KvH3 Nyquist plot for Kv=1

Figure 1.40. Nyquist locus for the system position after velocity
feedback Kv = 1 and K = 1

KvH3 Nyquist plot for Kv=10

Figure 1.41. Nyquist locus for the system position after velocity
feedback Kv = 10 and K = 1

d) Determine the optimal values that can be obtained for the phase margin and

the gain margin of the system looped in this manner.
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10H3(Kv) Nyquist plot for Kv=10

Figure 1.42. Nyquist locus for the system position after velocity
feedback Kv = 10 and K = 10

H3, K=1,10,100 Black plot, Kv=1 and 10

Figure 1.43. Black plot for Kv = 1 and 10 with K = 1, 10 and 100

e) Express static position εp and velocity εv errors of the system controlled in

position.

f) For the position control of the system, is an acceleration feedback loop

necessary and what would its contribution be in this case?
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9) Compare and discuss the results of Questions 3–5 in the cases that follow:

a) what would be the effect due to a velocity sensor of transfer function

Hc(p) =
1

1+Tp?

b) Go the effect of gravitation is materialized by a non-zero constant;

c) the coefficient of frictions Fv was not zero;

d) Co originating from the Coriolis effect and centrifugal is non-zero and

variable (see definition of C11 at the beginning of the text);

e) Mo varies according to the angular position;

f) Go the effect of gravitation is not null and variable as well as Co and Fv;

10) In this section, the study of the control of the system is achieved in the state
space:

a) Give two state–space representations for the model of this axis, one of which

under a controllable canonical form. Voltage u will be considered as input and as

output the angular position q on the one hand and the angular velocity q̇ on the other

hand.

b) Study of the system in the state space: state–space representations for the

model of this axis. In the case where the output is the angular velocity q̇,

H1(p) =
100

0.157p2 + 1.57p+ 5
=

100/.157

p2 + 10p+ 5/.157

=
636. 94

p2 + 10.0p+ 31. 847
. [1.79]

Ẋ =

[−10 −31. 847
1 0

]
X +

[
636. 94
0

]
u and y =

[
0 100

]
X [1.80]

Ẋ =

[
0 −10
1 −31.847

]
X +

[
1
0

]
u and y =

[
β1 β2

]
X [1.81]

For the case where the output is the angular position q,

H2(p) =
100

p(0.157p2 + 1.57p+ 5)
=

636.94

p3 + 10p2 + 31.847p
. [1.82]

Ẋ =

⎡
⎣−10 31. 847 0
1 0 0
0 1 0

⎤
⎦X +

⎡
⎣ 1
0
0

⎤
⎦u and y =

[
0 0 636.94

]
X [1.83]
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Ẋ =

⎡
⎣ 0 0 −10
1 0 −31.847
0 1 0

⎤
⎦X +

⎡
⎣ 1
0
0

⎤
⎦u and y =

[
β1 β2 β3

]
X [1.84]

c) Give the state–space representation of the system having the state vector

x =

⎛
⎝ q

q̇
q̈

⎞
⎠ .

0.157
...
q + 1.57

..
q + 5

.
q = 100u ⇒ ...

q = −10
..
q − 31.847

.
q + 636.94u [1.85]

Ẋ =

⎡
⎣ 0 1 0
0 0 1
0 −31.847 −10

⎤
⎦X +

⎡
⎣ 1
0
0

⎤
⎦u and y =

[
1 0 0

]
X [1.86]

d) Express the characteristic equation of the system.

e) Velocity control: the system is velocity looped, with a state feedback u =
−L1x, determine the gains l1 and l2 of vector L1, in order for the closed-loop system
to have a natural frequency ωo = 10 rad/s and a damping ξ = 1 (corresponding to

the characteristic equation p2 + 2ωop+ ω2
o).

f) The system (having the angular position on output) is position looped on

a state feedback u = −Lx, determine the gains l1 and l2 of vector L, such that the

closed-loop system has a natural frequency ωo = 10 rad/s and a damping ξ = 1
(corresponding to the characteristic equation (p+ 10)(p2 + 2ωop+ ω2

o)).

11) Compare both approaches of the position control of the system, considering

disturbances, couplings and variations of the parameters.

12) Start the study again considering this time both mobile axes simultaneously and

non-diagonal matrices and with variable coefficients.

1.6. Application 2: temperature control of an oven

The study consists of two parts: modeling and identification on the one hand and

control on the other hand.

1.6.1. Modeling and identification study

In the case of thermal processes, the most often applied modeling and

identification technique consists of finding a model describing the behavior of a

system from experimental measurements. Most often, the measure chosen is the

reading of the system response to a step setpoint (in the case of the figure in multiples
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of 500◦). The step response of the system as a function of time, if the step function is

applied at date t = 1 s, is shown in Figure 1.44 for the case of an empty oven,

half-loaded and with a full load. It is desired to derive its transfer function when

empty (half-loaded and in full load). Modeling is the most important step in the study

of an automated system. In order to control or regulate a given system, it is first

necessary to have its model in order to study it in simulation. Once simulation results

are very satisfactory, we will apply the control laws proposed in simulation on the

real system. On the other hand, if the results with the real system are not acceptable,

the modeling will imperatively have to be reviewed. After modeling, the second step

consists of analyzing the behavior of the system using its model. This behavior

analysis allows us to elaborate a control strategy for the system taking into account

the performance restrictions imposed by the specifications and of the physical

limitations of the real system. To illustrate this approach, we propose the following

organization chart (Figure 1.45).

Figure 1.44. Model describing the behavior of a system

The modeling is achieved by writing the physical equations that describe the

behavior of the system. In the continuous case, these equations are differential

equations and in the discrete case recurrence equation. To these equations we apply

transformations (Laplace transform: continuous; Z-transform: discrete) to shift from

the time domain to the frequency domain where the analysis of the behavior of the

system is more interesting. In the case where the system cannot be described by

physical equations, it is always possible that an approximate model be proposed,

through identification. This model should best describe the behavior of the system. It

can be obtained from the identification by analogy to known systems, using the
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responses to test signals or by using an identification that includes the optimization of

the error criterion. In this case, the algorithm uses data that correspond to the input

and output signals of the system. These data must be rich enough in excitation to

cover the entire spectrum of the system. The block diagram is shown in Figure 1.46.

Actual process

Controller

Behavior

analysis

Test on simulated

system

Good
YesNo

Good
Yes

End

No

Test on real

system

Modeling or

Identification

Figure 1.45. Organigram of the modeling stages
for the study of an automated system

Model

System

u basis y basis

y est

+

_

Figure 1.46. Approximate model for identification
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Representation choice

The delay

The time constant(s)

Ho(p) =
Ke−τ

(1 + Tp)
. [1.87]

Ho(p) =
Ke−τ

(1 + Tp)n
. [1.88]

Parametrization choice

Transfer function

State–space representation

Discrete representations

Identification method choice

Comparative method

Strejc method

Broida method

Least squares method

and at the end of this application as practical work we should consider control and

performance improvement.


