
Chapter 1

Some Simple Examples

1.1. Introduction

In this chapter, we give three simple examples of mechanical models in the three
domains that are concerned in this book: friction problems (section 1.2), impact
problems (section 1.3) and friction problems in the stochastic context (section 1.4).
Each of them treats a simple mechanical system, a mass with one degree of freedom
resting on a support plane. This chapter constitutes an informal introduction to the rest
of the chapters where the theory will be developed with different application examples
of the work.

1.2. Frictions

1.2.1. Coulomb’s law

We recall Coulomb’s friction law: we consider a solid resting on a rough ground
plane, which exerts a reaction OR on that solid. This reaction decomposes itself on a
normal component ON , perpendicular to the ground, and a tangent component OT (see
Figure 1.1). As long as the ratio T/N does not exceed a certain limit f0, there is
adherence and the solid remains at rest. Once the value is reached, there is a slip, we
have T/N = f0 and the tangential force is opposed to the relative velocity between the
solid and the ground. We note the adherence condition being that the vector OR remains
in a cone. The value f0 depends on the nature of the ground and the solid. We assume
here that the dynamic friction coefficient (in slip phase or dynamic phase) is equal to
the static friction coefficient (in adherence phase or static phase). Occasionally, this
static coefficient of friction is supposed to be larger than the dynamic, which can be
numerically dangerous (see section 7.8). For more details, we can consult section 8.5
of [GIE 85].
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Figure 1.1. Coulomb’s friction

We now assume that the solid moves along an axis and we note x the abscissa
of the solid. We can then assume the normal of the force N to be constant. In this
case, the cone transforms into an interval: the tangential force is named g and the
velocity of the solid is ẋ. We introduce the function sign defined by:

sign(x) =

⎧⎪⎨⎪⎩
−1 if x < 0,

1 if x > 0,

0 if x = 0.

[1.1]

Then there is a number α > 0 such that:

if ẋ = 0, g ∈ [−α, α], [1.2a]
if ẋ .= 0, g = −αsign (ẋ). [1.2b]

We remark that [1.2] is not equivalent to g = −αsign (ẋ), which implies that in the
static phase, we have g = 0! (see section 1.2.2). Nevertheless, we can rewrite [1.2]
under a more condensed form, by introducing a multivalued operator, meaning an
application of R in the set of R parts. Let us then define the operator σ by:

σ(x) =

⎧⎪⎨⎪⎩
−1 if x < 0,

1 if x > 0,

[−1, 1] if x = 0.

[1.3]

We can also see it as part of R2, represented in Figure 1.2. We then have:
g ∈ −ασ (ẋ). [1.4]

We next identify the graph of R2 notions and of multivalued operators on R. We will
then discuss the σ graph defined by [1.3]. We note that in the dynamic phase (when ẋ
is non-zero), the force g is equal to −αsign (ẋ) and that in the static phase (when ẋ is
null), g belongs to [−α, α]. We will return to the graphs in more detail in Chapter 2.

Let us assume now that the studied solid has a mass m, an external force F acting
on it and that we are given two initial conditions:

x(0) = x0, ẋ(0) = ẋ0. [1.5a]
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Figure 1.2. The operator σ

The fundamental principle of dynamics gives:
mẍ = F + g. [1.5b]

1.2.2. Differential equation with univalued operator and usual sign
Before studying a differential inclusion with Coulomb’s law friction force in

section 1.2.3, let us now look at what happens if we choose to define the function
g, thanks to the “usual” sign defined by [1.1], meaning:

g(t) = −α sign (ẋ(t)). [1.6]
We will see that the problem formed by equations [1.5] and [1.6] equivalent to:

x(0) = x0, ẋ(0) = ẋ0, [1.7a]
mẍ(t) + α sign (ẋ(t)) = F (t), [1.7b]

is ill-posed and that the analytical resolution of this simple problem does not provide
the solution! We note here that by setting u0 = ẋ(0) and u = ẋ, [1.7] is equivalent to:

u(0) = u0, [1.8a]

∀t ∈ [0, T ], u̇(t) +
α

m
sign (u(t)) =

1

m
F (t). [1.8b]

To simplify, we assume that
m = α = 1. [1.9]

We then have the differential equation:
u(0) = u0, [1.10a]
∀t ∈ [0, T ], u̇(t) + sign (u(t)) = F (t). [1.10b]
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Let us now consider a special case:

u0 = 0, F (t) = t. [1.11]
1) We will first assume – which is physically well conceived – that the mass is at

rest for a certain amount of time, which is necessary for obtaining an external force
large enough to move it. Let us assume then:

∃T > 0: ∀t ∈]0, T ], u(t) = 0, [1.12]
Hence, u̇ = t in [0, T ] and then u(t) = t2/2 > 0, as soon as t > 0. This is
contradictory to our starting hypothesis [1.12] (and against intuition).

2) Let us then try the other hypothesis:
∀T > 0, ∃t0 ∈]0, T ]: u(t0) .= 0. [1.13]

We note:
ε = sign(u(t0)) ∈ {−1, 1}. [1.14]

We can set T such that:

T <
1

2
. [1.15]

We define t1, the smallest real number of [0, t0[ such that u is the sign of u(t0) on
]t1, t0]. By continuity,

u(t1) = 0. [1.16]
We therefore have by integration of [1.10b] on [t1, t0]:

u(t0)− u(t1) + ε(t0 − t1) =
1

2

%
t20 − t21

,
,

Then,

u(t0) =
1

2

%
t20 − t21

,− ε(t0 − t1) = (t0 − t1)

&
1

2
(t0 + t1)− ε

-
,

and therefore,

sign(u(t0)) =
1

2
(t0 + t1)− ε.

We still have two cases: either ε = 1 and from [1.15]

sign(u(t0)) =
1

2
(t0 + t1)− 1 < t0 − 1 <

1

2
− 1 = −1

2
,
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which contradicts [1.14]. Thus, ε = −1 and

sign(u(t0)) =
1

2
(t0 + t1) + 1 > 1,

which contradicts [1.14].

In conclusion, none of these hypotheses are compatible with the model, yet they
correspond to what we expect as possible answers to the problem. The explanation
can be found in the expression of an incorrect sign. Besides, the calculation of the
friction force with this “usual” expression of the sign is not correct from a physical
point of view: for a mass at rest, the friction force would be null!

Another question arises: is it possible to define for the usual sign simple numerical
schemes that would provide reasonable solutions, at least from a physical point of
view? Let us use the same example, the same expression of the sign and test the
construction of numerical schemes.

1) Let us start with an explicit Euler numerical scheme (see, e.g. [BAS 03,
CRO 84, SCH 01]) for problems [1.10]–[1.11]. By discretizing, we then introduce
the sequences un 7 u(tn), and tn = nh, for n ∈ {0, ..., N}, with h = T/N as the
time step (chosen constant) and u0 = u(0) = 0. We get u0 = 0 and

∀n ∈ {0, ..., N − 1}, un+1 − un

h
+ sign(un) = nh, [1.17]

or finally
∀n ∈ {0, ..., N − 1}, un+1 = un + h (hn− sign(un)). [1.18]

Figure 1.3 shows the results obtained for two values of h. Some oscillations
emerge; at each time value, the function approached changes sign and it can no longer
remain at 0. We also note that the amplitude of the oscillations seem to decrease with
h. This issue can be demonstrated in the following way: we generally assume that:

u0 ∈ [−2h, 2h] and ∀t ∈ [0, T ], |F (t)| ≤ 1. [1.19]
Then, let (vn)0≤n≤N be defined by:

∀n ∈ {0, ..., N − 1}, vn =
un

h
. [1.20]

The scheme [1.17] is then written as:
∀n ∈ {0, ..., N − 1}, vn+1 = − sign(vn) + vn + F (tn). [1.21]

Showing by induction on n ∈ {0, ..., N} that:
∀n ∈ {0, ..., N}, vn ∈ [−2, 2]. [1.22]
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Figure 1.3. Two approximations of [1.10] and [1.11] given by
the explicit Euler scheme [1.18]

For n = 0, this comes from the initial condition [1.19]. Let us assume that [1.20] is
true for n. We can observe that the function x *→ − sign(x) + x maps the interval
[−2, 2] in [−1, 1]. Thus, − sign(vn) + vn belongs to [−1, 1]; since F (tn) ∈ [−1, 1],
we deduce from this that by summing, vn+1 ∈ [−2, 2]. We then deduce from [1.22]
that:

∀n ∈ {0, ..., N}, |un| ≤ 2h. [1.23]
Numerically, we have drawn for N describing a logarithmic interval

[10nmin, 10nmax ] curve (N,max0≤n≤N (|un/h|)) (see Figure 1.4(a)), which
corroborates [1.23]. The oscillations are more difficult to demonstrate formally.
We remark that u1 = 0; we have then drawn in Figure 1.4(b)) the curve
(N,min2≤n≤N (|un/h|)), which shows that the minimum seems to be comprised
between two curves, one above corresponding to non-zero values (of the order of
10−5).

Finally for each value ofN , we can calculate the number P (N) of sign changes of
un defined by the number of valuesn ∈ {2, . . . , N−1} such as unun+1 < 0. We have
P (N) ≤ N − 2. We have drawn the curve (N,P (N)) in Figure 1.5. On this curve,
the points seem perfectly aligned: the correlation is equal to r = 0.9999999999074,
for a slope a = 0.5000000232 and an ordinate at the origin b = −1.3748. We then
have:

P (N) ≈ 0.5000000232N − 1.3748.
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Figure 1.4. Extreme values of |un/h| versus N for N ∈ [10nmin , 10nmax ]
with nmin = 1 and nmax = 5 .5
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Figure 1.5. Number P (N) of changing signs of un versus N

2) Let us continue with a numerical implicit Euler scheme for the same problem
[1.10]–[1.11]. In this case, with the same notations, [1.17] must be replaced by:

∀n ∈ {0, ..., N − 1}, un+1 − un

h
+ sign(un+1) = nh, [1.24]

with u0 = 0. Let us examine the possible states and demonstrate that un is not defined
for n ≥ 2. Let us assume that N is large enough so that:

h < 1. [1.25]
For n = 0, [1.24] gives:

u1

h
+ sign(u1) = 0. [1.26]

We can check that u1 = 0 is a solution of [1.26]. On the other hand, u1 > 0 is
impossible since [1.26] would give u1/h = −1. Likewise, u1 < 0 is impossible since
[1.26] would give u1/h = 1. Thus, for n = 1, [1.24] gives:

u2

h
+ sign(u2) = h. [1.27]

The u2 = 0 case is impossible since [1.27] would give 0 = h. Likewise, the u2 > 0
case is impossible since [1.27] would give:

u2 = (h− 1)h < 0,
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according to [1.25]. Finally, the u2 < 0 case is impossible because [1.27] would give:
u2 = (h+ 1)h > 0.

3) We have also tested the resolution of [1.10] and [1.11] with two Matlab©
solvers (Figure 1.6).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10−5 approximate calculation with solvers

ode23
ode45

Figure 1.6. Two approximations of [1.10] and [1.11]
given by two Matlab © solvers

Oscillations still appear and the velocity is non-zero. For the more precise second
solver (ode23), the amplitude of the oscillations is weaker.

We have drawn in Figure 1.7 the results given by explicit Euler and two Matlab©
solvers, this time on [0, 2]. Oscillations still appear and the velocity is non-zero. For
the more precise second solver (ode23), the amplitude of the oscillations is smaller.
Beyond 1 (see Figure 1.7(b)), the oscillations disappear: we are in the case where the
point material slips with a friction force equal to −1 and there are no more problems.
COMMENT 1.1.– The astute reader will understand that even if the numerical solution
given by [1.10] and [1.11] approaches zero, it cannot tend toward a solution of [1.11],
since the second member F (t) − sign(u) is not continuous in u and so the usual
theorems of convergence of numerical schemes [BAS 03, CRO 84, SCH 01] cannot
be applied.

Thus, it is clear that if we look at the consistency of the results provided by these
schemes with the usual sign, they are not capable of returning correct behavior from a
mathematical or physics point of view.
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Figure 1.7. Three approximations of [1.10] and [1.11] given by Explicit Euler
numerical scheme and two Matlab© solvers on [0 , 2 ]

Let us take advantage of this simple example to demonstrate why the usual sign
is not adapted to good modeling. We consider mass m initially at rest on the support
subjected to an external slowly growing force F (t) starting from zero. As long as the
force is not large enough to overcome the friction effect (let us say at an interval
of time [0, T ], T > 0), the mass will stay motionless. In [1.10] and [1.11], the
term −α sign(u(t)) corresponds to Coulomb’s friction force. Clearly on [0, T ], this
amounts to: 0 = F (t), which is not coherent with the hypothesis on f(t), except
for t = 0. It appears that we must develop the possibility for the Coulomb’s friction
model to not be univalued: as the mass is not set in motion, sign(u(t)) = sign(0)
must take multiple values allowing F (t) to balance. This leads us to consider the
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friction term to be modeled as a graph (the graph of a function then being a special
case). The motion equation will then be described not by the previous equality but by
a differential inclusion, as shown in section 1.2.3.

1.2.3. Differential equation with multivalued term: differential inclusion
In this section, we demonstrate that the problem is well set if the force g is defined

by [1.4]:
g(t) ∈ −ασ (ẋ(t)). [1.28]

We are therefore seeking two functions x and g checking systems [1.5] and [1.28]. By
setting:

g(t) = mẍ(t)− F (t),

this system can also be written in the equivalent following form:
x(0) = x0, ẋ(0) = ẋ0,
mẍ(t)− F (t) ∈ −ασ (ẋ),

then again by returning the symbol ∈:
x(0) = x0, ẋ(0) = ẋ0, [1.29a]
∀t ∈ [0, T ], mẍ(t) + ασ (ẋ(t)) 0 F (t). [1.29b]

This is not a differential equation but a differential inclusion. We will then take a
closer look at this differential inclusion [1.29], where the data is F and the unknown
function is x. As in section 1.2.2, by setting u0 = ẋ(0) and u = ẋ, we replace [1.29]
by:

u(0) = u0,

∀t ∈ [0, T ], u̇(t) +
α

m
σ (u(t)) 0 1

m
F (t).

To simplify things, we will assume that [1.9] occurs. We therefore have a differential
inclusion:

u(0) = u0, [1.30a]
∀t ∈ [0, T ], u̇(t) + σ (u(t)) 0 F (t). [1.30b]

We will come back to this example, according to initial conditions and second
members in section 2.2.6.1.

As in section 1.2.2, we can present several simulations. By anticipating
section 2.2.6.1, we note that the inclusions [1.11] and [1.30] are of the type [2.26]
with the hypotheses [2.35] where ta = 1 and T = 2 are valid. The exact expression is
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then given by [2.36], thus here:

∀t ∈ [0, T ], u(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t ≤ 1,

1

2
t2 − t+

1

2
if t ≥ 1.

[1.31]

We note that in section 2.2.6.1, the ad hoc numerical implicit Euler scheme used (see
[2.32]) provides the solution with an error in 0(h).

The results are given in Figure 1.8. In this figure, we note that in the static phase,
on [0, 1], u is null and the numerical scheme gives a solution that is rigorously null,
without oscillation.

To conclude, we therefore note that all is well here with a differential inclusion,
contrary to the differential equation ill-posed in section 1.2.2.

COMMENT 1.2.– Let us note two important things here. The force g is continuous;
otherwise said, the σ graph does not present a “hole”. Moreover, the power of the
force dissipated by friction is always negative because:

g(t)ẋ(t) = 0, if ẋ(t) = 0,

g(t)ẋ(t) = −α sign (ẋ(t)) ẋ(t) = −α |ẋ(t)| , if ẋ(t) .= 0.

We therefore have:

g(t)ẋ(t) ≤ 0. [1.32]

The function sign is monotone; we deduce from it the monotonicity of the σ graph
that can be written as:

∀x, y ∈ R, u ∈ σ(x), v ∈ σ(y) =⇒ (v − u)(y − x) ≥ 0. [1.33]

Since α is strictly positive and 0 ∈ σ(0), [1.32] is only a consequence of [1.28] and
[1.33].

1.2.4. Other friction laws

Other type of frictions can be considered, which are more realistic than ideal
Coulomb’s friction.
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Figure 1.9. Two types of friction laws

In [BAS 08a], we have seen other forms of friction: we can, generalizing the
inclusion [1.28], assume that:

g(t) ∈ −A (ẋ(t)), [1.34]

where the multivalued operator is of the form:

A(w) = αSσ(w) + Ψ(w), [1.35]

where αS is the static coefficient of friction, the multivalued operator σ is defined by
[1.3] and Ψ is a smooth function, vanishing at zero. Thus, we obtain a friction force
generalizing what we have seen in equation [1.2]:

if ẋ = 0, g ∈ [−αS, αS ], [1.36a]
if ẋ .= 0, g = −αSsign (ẋ)−Ψ (ẋ). [1.36b]

This case corresponds to a friction force given in Figure 1.9(a). A special case
often used is given in Figure 1.9(b), which emphasizes a static coefficient of friction
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αS and a limit coefficient of friction α∞ with:

0 ≤ α∞ < αS . [1.37]

A particular case is given by Stibeck’s formula (p. 86 of [AND 05]) where:

A(w) =
D

A|w|3 +Bw2 + C|w|+ 1
σ(w), [1.38]

withA andD strictly positive andB andC positive. See, for example, Figure 1.10 that
corresponds to particular values of coefficients (this figure corresponds to Figure 3.22
of [AND 05]) given by:

A = 0.01, B = 0.2, C = 0.01 D = 900. [1.39]
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Figure 1.10. The opposite of the force function of the velocity for Stibeck’s
formula with A, B, C andD defined by [1.39]

In this book, we take a specific interest in the special case where the friction force
is given by [1.4]: we will demonstrate throughout Chapter 5 that a large class of
visco-elastoplastic models is covered by a similar mathematical formality, involving
maximal monotone operators. These are introduced throughout Chapter 2. We will
show that the problem is well set and that an ad hoc numerical scheme can be used,
which will please numericians. Furthermore, we are in particular interested in this
ideal problem as it reveals the difficulty of treating the fundamental discontinuity of
the zero sign.
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However, to also satisfy the engineer, we will show in section 7.6.1 that most of the
ideal models studied throughout Chapter 5 can take into account the [1.35] or [1.38]
type laws, provided certain precautions are taken. In section 7.6.2, we will briefly
cover the case where the static coefficient can be varied and in section 7.6.3 the case
where the static and dynamic coefficient can be varied.

1.3. Impact

1.3.1. Difficulties with writing the differential equation

This introduction is inspired by the mathematical aspect of the pioneering works
by Michelle Schatzman [SCH 78]. Let us consider a simple example of a mechanical
system with one degree of freedom modeled by the following problem:

d2u

dt2
(t) +R(t) = f(t), [1.40]

where u denotes the displacement of the system (mass unit here), R denotes a force
(Reaction) exerted on the system while it encounters an obstacle, placed to simplify
u = umax = 0 (so that the movement takes place in the half-space u ≥ umax = 0).
Here, f corresponds to an external stress, which is eventually null. This model is
not complete because we can intuitively see that after encountering the obstacle, a
usual mechanical system undergoes a change (generally discontinuous) in velocity.
This model is then completed with a shock law that operates until instants t where the
system encounters the obstacle (u(t) = umax = 0). Aside from such an instant, the
“reaction”R is null.

A family of shock laws is very familiar. It consists of linking the velocity just
before the shock (left-hand limit at t−) with the velocity after the shock (right-hand
limit at t+) by a coefficient of restitution and an inversion of the sign to model the
mechanical system rebound on the obstacle. By noting du

dt
= u̇, this law can be

written as:
u̇(t+) = −eu̇(t−),

where e ∈ [0, 1] is the coefficient of restitution. To simplify here, we consider a
perfectly elastic shock e = 1. With initial conditions u(0) = u0 > 0, and u̇(0) =
v0 < 0, we obtain analytically:

u(t) = u0 + v0t, 0 ≤ t < t1,
u(t1) = umax = 0, t1 = −u0

v0
,

u(t) = −v0(t− t1), t > t1.
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The velocity verifies

u̇(t−1 ) = v0, u̇(t
+
1 ) = −v0 = −eu̇(t−1 ), (e = 1). [1.41]

The reaction R(t) is null if t .= t1, and to give a direction to R(t1), we must
derive the velocity (to obtain the acceleration) set as a function that can be locally
integrated (piecewise constant), continuously differentiable (C1) except at t1 where
we are situated at a point of discontinuity of the first kind. The formula for
the jump distribution theory gives meaning to the equilibrium reaction opposite the
acceleration:

R = R1δt1,

where δt1 denotes the Dirac distribution in t1, and R1 is the opposite of the jump of
the velocity at t1. We are naturally seeing the context in which these models have
an impact: these are differential equations in the sense of measures. But note here
that it is possible to use other formulations: the context of differential inclusions (we
will quickly see), or in the context of complementary problems [ACA 08, BRO 96,
GLO 01], which consists of writing the previous problem in the form of equations
[1.40]–[1.41] with the complementarity relations:

R(t).(u(t)− umax) = 0,−R(t) ≥ 0, u(t)− umax ≥ 0.

There are also consistent mechanical approaches that regularize the problem for
physical reasons: we remove the impact, we assume that before the obstacle (u = l,
l small) the mass encounters a very stiff spring (stiffness K , very large K), which is
compressed, its velocity is cancelled and it expands to its original configuration before
letting the mass rebound. In this case, we can have a (brief) passage of the mass in
the obstacle. The model therefore allows us to then calculate all of the mechanical
properties to consider the limiting case of an infinite stiffness. The details of the
calculations for initial conditions u(0) = u0 > l > 0, and u̇(0) = v0 < 0:

0 ≤ t < t1b =
l − u0

v0
, u(t) = v0t+ u0.

then with Ω =
√
K:

t1b ≤ t ≤ t3b, tan(Ω(t2b − t1b)) =
v0
lΩ

, tan(Ω(t3b − t2b)) =
v0
lΩ

,

t1b < t2b < t3b, u̇(t2b) = 0, u(t) = ρ sin(Ω(t− t1b) + θ1),

with θ1 as:
l

ρ
cos(Ω(t− t1b)) +

v0
ρΩ

sin(Ω(t− t1b)) = sin(Ω(t− t1b) + θ1),
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and ρ =

5
l2 +

v20
Ω2

. Then beyond instant t3b, the solution is defined by:

t ≥ t3b, u(t) = v3(t− t3b) + l,

with

u̇(t3b) = ρΩcos(Ω(t3b − t1b) + θ1) = v3.

By passing to the limit on K and l, for example by setting Kl = 1, and if K tends to
+∞, we have:

t1b −→ t1, l −→ 0+, t2b − t1b −→ 0+, t3b − t2b −→ 0+, ρ −→ 0+,
u̇(t3b) −→ u̇(t+1 ), u̇(t1b) −→ u̇(t−1 ), u̇(t3b) −→ −u̇(t1b).

We find, at the limit, all the properties of the original model.

Let us look at the mathematics. It is possible to model the reaction R by taking
into account the following aspects:

– u(t) must not penetrate the obstacle: u(t) ≥ umax = 0;
– if u(t) = umax, the equilibrium must take the reaction into account;
– if u(t) > umax = 0, there is no reaction.

To model, we must add a shock law that will deliver the discontinuity of
the velocity generally observed at the moment of impact (we describe shock as
instantaneous). Rather than a differential equation, we write a differential inclusion.
In our simple example (derived from [SCH 78]), it is written as:

d2u

dt2
+ ∂ΨK(u) 0 f, [1.42]

here with f = 0 to simplify and

∂ΨK(z) = {0}, z > umax,
∂ΨK(z) =]−∞, 0], z = umax,
∂ΨK(z) = ∅, z < umax.

We show that ∂ΨK is the sub-differential of the indicator functionK = [umax,+∞]:

∀z, ΨK(z) =

	
+∞ if z .∈ K,

0 if z ∈ K.
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The mathematical treatment of the problem requires solving an approximate problem
using Yosida regularization [BRE 73, SCH 78] of a multivalued operator defined on a
Hilbert space, very simple here: R. If:

Jλ = (I + λ∂φ)−1,

and if φλ is the regularization Yosida of φ defined by:

z ∈ R, φλ(z) = φ(Jλ(z)) +
[z − Jλ(z)]

2

2λ
,

we arrive at

∂φλ(z) =
z − Jλ(z)

λ
.

For φ = ΨK , it leads to:

∀z, ∂ψλ(z) =

⎧⎨⎩
z − umax

λ
if z ≤ umax,

0 if z ≥ umax.

1.3.2. Ill-posed problems

The examples are inspired by Michelle Schatzman’s works [SCH 78]. They
concern ill-posed problems from a (dis)continuity or a uniqueness point of view. Let
us examine and illustrate these questions on these examples more precisely.

For uh
0 = (1−h, 12 +h), vh0 = (−1,− 1

2 ) with | h |≤ 1
2 , we have uniqueness of the

solution of the exact initially problem. The detailed solution is provided by Michelle
Schatzman and shows that like the function of h, the right solution is continuous on
the right-hand side, but not on the left-hand side, showing a regularity (and sensitivity)
problem with regard to the data, which can also be observed with reflections of two
straight edges or forming a right angle or a more open marginal angle (infinitely
small).

The second problem is that of the uniqueness. We must first remember the
founding work of [SCH 78], which defined a solution preserving energy. M.
Schatzman is placed in a more general context than that of section 1.3.1: she considers
a functionφ, which is convex, proper and lower semi-continuous and she demonstrates
a result that generalizes the existence of the solution of [1.42]. Here, we noteH = Rn,
equipped with the usual scalar product �., .� (see Appendix 1). u0 is in the domain
D(φ) of φ. Thus, f ∈ L2(0, T ;H) (see Appendix 1) with T finite. The function u is
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a solution of the problem:

d2u

dt2
+ ∂φ(u) 0 f,+ initial conditions, [1.43]

preserving energy, when u satisfies:

u ∈ W 1,∞(0, T ;H),
∀t ∈ [0, T ], u(t) ∈ D(φ),

when μ is a measure with values in H , such that, in the sense of distributions1:

d2u

dt2
+ μ = f,

when for all continuous v, with values inH , such as φ(v) ∈ L1(0, T ), we have2: T

0

(φ(v) − φ(u))dt ≥< μ, v − u >,

du

dt
admits left- and right-hand limits at t for all t ∈ [0, T ],

by correcting in 0 and in T and when energy is finally conserved:====dudt (t+)
====2

+ φ(u(t)) =

====dudt (t−)
====2

+ φ(u(t)) = �u1�2 + φ(u0) +

 t

0

�u̇(s), f(s)�ds,

almost everywhere on [0, T ] where u̇ means du/dt, and initial conditions are satisfied
in the following sense: u(0) = u0, and if K0 is the closure of D(φ) and ΨK0 the
indicator function ofK0:

−u1 +
du

dt
(0+) + ∂ΨK0(u0) 0 0.

With this definition, M. Schatzman proves the following result.

1 Here, unlike the case of Appendix 1, the distribution space is smaller here than D�(Ω;H): it
is the dual of C0([0, T ],H), named the set of Radon measurements. The reader is referred for
example to [WAG 99].
2 In the two following equations, �μ, v� signifies the bilinear form, meaning the image of the μ
measurement on the continuous function v.
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THEOREM 1.1.–
1) For all f ∈ L2(0, T ;H), u0 ∈ D(φ) and u1 ∈ H , problem [1.43] has a

solution conserving energy in the previous sense. This solution is obtained as a strong
limit inH1(0, T ;H) and as a weak limit ∗ inW 1,∞(0, T ;H) of a sequence extracted
from a family of solutions of the problem:

d2uλ

dt2
+ ∂φλ(uλ) = f, [1.44a]

uλ(0) = u0, [1.44b]
duλ

dt
(0) = u1. [1.44c]

2) Moreover, if φ is Lipschitz continuous in the neighborhood of u0 relative to K0

and if −u1 ∈ C, C being the tangent cone at K0 in u0, then:
du

dt
(t+) = 2PCu1 − u1,

where PC is the projection on C.

During the proof of this result, Michelle Schatzman clarifies the sense in
measure of the equation and in terms of distributions as well as the velocity
properties. Following this result, she proposes the construction of function f (external
solicitation) such that the problem admits two solutions. The function f is constructed
analytically in a countdown time from an instant t to the initial time, and is very regular
(infinitely differentiable). The two solutions are respectively:

– for the first, an infinite number of arches “bounces” with an amplitude gradually
getting weaker as we go back to initial time; the “reaction” is given by atomic
measures;

– for the second: the null solution, with the function f (external solicitation) as the
reaction to itself.

Later, Michelle Schatzman will focus with F. Nqi on other unpleasant behaviors of
such non-regular systems at another level of dynamics study [NQI 97]. These works
will display throughout the simple example of a one degree of freedom oscillator with
impact that the calculation schemes exposing Lyapounov are under extreme sensitivity
to the parameters of the discrete system obtained via a numerical scheme, in particular
the time step.

The formality of theorem 1.1 is not used in this publication, since we will often
consider an analytical or numerical solution.
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1.4. Probabilistic context

Let us here interest ourselves on the problem exposed in section 1.3.2 and defined
in [1.30] where F is stochastic, meaning it depends on time and on a variable
describing hazard, in other words it is a stochastic process, a notion that will be
defined in Chapter 3. We assume for the moment that it is white noise that we
will not define more rigorously in this work because it requires the introduction of
a heavy mathematical framework on generalized processes (measures on the space
of tempered distributions) that won’t justify itself. Noting the white noise N(t),
the mathematical framework mentioned will allow us to give sense to the equality
N(t) = dB(t)/dt where B denotes Brownian motion (this process will be defined
more rigorously in Chapter 3). Indeed, this equality cannot be taken in the usual
sense since the trajectories of the Brownian motion are nowhere differentiable with
probability 1.

Let us assume that the soliciting force is F (t) = N(t). By using
N(t) = dB(t)/dt, we interest ourselves in the following differential system:

u(0) = u0, [1.45a]
∀t ∈ [0, T ], du(t) + σ (u(t)) dt 0 dB(t). [1.45b]

We will then give in Chapter 3 a meaning to this multivalued stochastic differential
equation. Here, we recall a result obtained in [SHR 81] with regard to the stochastic
differential equation:

u(0) = u0, [1.46a]
∀t ∈ [0, T ], du(t) = − sign (u(t)) dt+ dB(t), [1.46b]

which is the stochastic analogous of [1.10].

The results in this stochastic context are distinguished by those presented in
the deterministic context. It was indeed shown that for mathematical and physics
reasons, it is necessary to consider a multivalued operator rather than the sign function.
The illustration was shown in the case where the F function was initially worth
0 and increasing, such that velocity u was null for a certain time, and then took
non-zero values. An equality formulation of the differential problem could not model
this phenomenon and the multivalued character of the friction is necessary. In the
stochastic case, Shreve provides in [SHR 81] analytical expressions for the law of
solution of [1.46]. In particular, he finds a new result proved in [BEN 74] in which,
with probability 1, the Lebesgue measure of the set of time t such that u(t) = 0 is
null. In other terms, the assigned value of the sign function in 0 has no incidence for
the solution [1.46]. This result is completely different for the deterministic case for
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which the value of 0 was crucial, it must have a range of values even. This result can
be observed from a mathematical point of view by introducing the explicit numerical
Euler scheme. We will see, unlike the deterministic case, that the scheme does not
lead to oscillations previously observed. By discretizing, we introduce the sequences
un 7 u(tn), and tn = nh, for n ∈ {0, ..., N}, with h = T/N as the timestep (chosen
constant) and u0 = u(0) = 0 (we will not confuse the number N of timesteps with
the white noise (N(t))t≥0). According to N(t)dt = dB(t), the explicit Euler scheme
associated to [1.46] takes the following form: u0 = 0 and

∀n ∈ {0, ..., N − 1}, un+1 = un − h sign(un) +B(tn+1)−B(tn), [1.47]

where, by the Brownian motion property (see Chapter 3), B(tn+1) − B(tn) is a
random variable following a centered normal law with variance h. We represent in
Figure 1.11 a trajectory of the system [1.46] using the scheme [1.47] for values of
h ∈ {10−4, 2 10−4, 4 10−4, 5 10−4, 10−3, 2 10−3}. It is impossible to distinguish the
different obtained simulations with different timesteps. We can note the convergence,
without oscillations, of the scheme in Figure 1.12 obtained by zooming in on part of
the trajectory (indeed, it is difficult here again to distinguish the different simulations).
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Figure 1.11. Simulation of a trajectory of the system [1.46] using the scheme
[1.47] for values of h ∈ {10−4, 2 10−4, 4 10−4, 5 10−4, 10−3, 2 10−3}

Let us assume from now on that the soliciting force is not a white noise but a
filtered white noise, meaning the output of a linear system excited by a white noise.
We frequently encounter this type of noise for modeling earthquakes, swell or wind
(see, e.g. [KRE 83] for a detailed presentation). A widely used seismic model is the
Kanai–Tajimi model [KRE 83] that is represented in Figure 1.13.
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Figure 1.12. Simulation of a trajectory of the system [1.46] using the scheme
[1.47] for values in h ∈ {10−4, 2 10−4, 4 10−4, 5 10−4, 10−3, 2 10−3}
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Figure 1.13. Kanai–Tajimi model

More precisely, the force exerted on point A, which is −(2ξ1ω1ẋ + ω2
1x), with

ẍ(t) + 2ξ1ω1ẋ(t) + ω2
1x(t) = N(t), becomes the soliciting force of the system.

We therefore obtain, with ω1 = 1 and ξ1 = 0.5 to simplify the study, the following
system:

x(0) = x0, [1.48a]
y(0) = y0, [1.48b]
u(0) = u0, [1.48c]
∀t ∈ [0, T ], dx(t) = y(t)dt, [1.48d]
∀t ∈ [0, T ], dy(t) = −y(t)dt− x(t)dt+ dB(t), [1.48e]
∀t ∈ [0, T ], du(t) + σ (u(t)) dt 0 −x(t)dt− y(t)dt. [1.48f]
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To our knowledge, theoretical results analogous to those of Shreve [SHR 81]
do not exist for system [1.48]. Besides, we will convince ourselves with numerical
simulations that such results cannot be established. We indeed find the same
difficulties encountered in the deterministic case. Let us first simulate system
[1.48] using the sign function instead of the σ operator like we did in [1.46] and
for the following numerical scheme of the [1.47] type: x0 = y0 = u0 = 0 and
∀n ∈ {0, ..., N − 1},

xn+1 = xn + hyn, [1.49a]
yn+1 = yn − hyn − hxn +B(tn+1)− B(tn), [1.49b]
un+1 = un − h sign(un)− hxn − hyn. [1.49c]

We have represented in Figure 1.14 the simulation of a trajectory of u
solution to system [1.48] using the numerical scheme [1.49] for values of h ∈
{10−4, 2 10−4, 4 10−4, 5 10−4, 10−3, 2 10−3}. We can note oscillations, like in the
deterministic case.
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Figure 1.14. Simulation of a trajectory of the system [1.48] using the
numerical scheme [1.49] for values of

h ∈ {10−4, 2 10−4, 4 10−4, 5 10−4, 10−3, 2 10−3 }

Let us now consider for system [1.48] an ad hoc numerical scheme, meaning
specific to stochastic multivalued differential equations (see section 3.4). We will
then observe that there are no oscillations like we see in Figure 1.15.

Whether in the deterministic or stochastic context, the numerical approximation of
differential inclusions is to be considered with many precautions. The three following
chapters are committed to defining modeling by maximal monotone multivalued
operator in a rigorous mathematical context also integrating numerical aspects.
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Figure 1.15. Simulation of a trajectory of the system [1.48] using the ad hoc
numerical scheme for stochastic differential inclusions for values of

h ∈ {10−4, 2 10−4, 4 10−4, 5 10−4, 10−3, 2 10−3 }




