Corporate Finance

STUDY SESSIONS

- Study Session 8 Corporate Finance
- Study Session 9 Corporate Finance: Financing and Control Issues

TOPIC LEVEL LEARNING OUTCOME

The candidate should be able to evaluate capital budget projects, capital structure policy, dividend policy, corporate governance, and mergers and acquisitions.
This study session first presents capital budgeting analysis, focusing on the application of concepts in the corporate finance decision-making process. These capital budgeting principles are critical for an analyst inside a company preparing capital budgeting recommendations as well as for an external analyst estimating the value of the company.

The remainder of the study session covers capital structure and dividend policy. The presentation of capital structure starts with the classic Modigliani-Miller irrelevance proposition that states a company’s value is not affected by capital structure choice. The reading then considers how the optimal capital structure is affected by taxes, agency costs, and the possibility of financial distress. The reading on dividend policy discusses the company’s choice between reinvesting or distributing earnings, and the choice between paying cash dividends and repurchasing shares. Analysts are interested in capital structure and dividend policies because of their effect on the risk and return characteristics of corporate equities and bonds.

READING ASSIGNMENTS

Reading 25 Capital Budgeting
Corporate Finance: A Practical Approach, by Michelle R. Clayman, CFA, Martin S. Fridson, CFA, and George H. Troughton, CFA

Reading 26 Capital Structure
by Raj Aggarwal, CFA, Pamela Peterson Drake, CFA, Adam Kobor, CFA, and Gregory Noronha, CFA

Reading 27 Dividends and Share Repurchases: Analysis
by Gregory Noronha, CFA and George H. Troughton, CFA
Capital Budgeting

by John D. Stowe, CFA and Jacques R. Gagné, CFA

LEARNING OUTCOMES

<table>
<thead>
<tr>
<th>Mastery</th>
<th>The candidate should be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a determine the yearly cash flows of expansion and replacement capital projects, and evaluate how the choice of depreciation method affects those cash flows;</td>
</tr>
<tr>
<td></td>
<td>b explain the effects of inflation on capital budgeting analysis;</td>
</tr>
<tr>
<td></td>
<td>c evaluate capital projects and determine the optimal capital project in situations of 1) mutually exclusive projects with unequal lives, using either the least common multiple of lives approach or the equivalent annual annuity approach, and 2) capital rationing;</td>
</tr>
<tr>
<td></td>
<td>d explain how sensitivity analysis, scenario analysis, and Monte Carlo simulation can be used to assess the stand-alone risk of a capital project;</td>
</tr>
<tr>
<td></td>
<td>e explain and calculate the discount rate, based on market risk methods, to use in valuing a capital project;</td>
</tr>
<tr>
<td></td>
<td>f describe types of real options and evaluate a capital project using real options;</td>
</tr>
<tr>
<td></td>
<td>g describe common capital budgeting pitfalls;</td>
</tr>
<tr>
<td></td>
<td>h calculate and interpret accounting income and economic income in the context of capital budgeting;</td>
</tr>
<tr>
<td></td>
<td>i distinguish among, and evaluate a capital project using, the economic profit, residual income, and claims valuation models.</td>
</tr>
</tbody>
</table>

INTRODUCTION

Capital budgeting is the process that companies use for decision making on capital projects—those projects with a life of a year or more. This is a fundamental area of knowledge for financial analysts for many reasons.

First, capital budgeting is very important for corporations. Capital projects, which make up the long-term asset portion of the balance sheet, can be so large that sound capital budgeting decisions ultimately decide the future of many corporations. Capital decisions cannot be reversed at a low cost, so mistakes
are very costly. Indeed, the real capital investments of a company describe a company better than its working capital or capital structures, which are intangible and tend to be similar for many corporations.

- Second, the principles of capital budgeting have been adapted for many other corporate decisions, such as investments in working capital, leasing, mergers and acquisitions, and bond refunding.

- Third, the valuation principles used in capital budgeting are similar to the valuation principles used in security analysis and portfolio management. Many of the methods used by security analysts and portfolio managers are based on capital budgeting methods. Conversely, there have been innovations in security analysis and portfolio management that have also been adapted to capital budgeting.

- Finally, although analysts have a vantage point outside the company, their interest in valuation coincides with the capital budgeting focus of maximizing shareholder value. Because capital budgeting information is not ordinarily available outside the company, the analyst may attempt to estimate the process, within reason, at least for companies that are not too complex. Further, analysts may be able to appraise the quality of the company’s capital budgeting process, for example, on the basis of whether the company has an accounting focus or an economic focus.

This reading is organized as follows: Section 2 presents the steps in a typical capital budgeting process. After introducing the basic principles of capital budgeting in Section 3, in Section 4 we discuss the criteria by which a decision to invest in a project may be made. Section 5 presents a crucial element of the capital budgeting process: organizing the cash flow information that is the raw material of the analysis. Section 6 looks further at cash flow analysis. Section 7 demonstrates methods to extend the basic investment criteria to address economic alternatives and risk. Finally, Section 8 compares other income measures and valuation models that analysts use to the basic capital budgeting model.

THE CAPITAL BUDGETING PROCESS

The specific capital budgeting procedures that a manager uses depend on the manager’s level in the organization, the size and complexity of the project being evaluated, and the size of the organization. The typical steps in the capital budgeting process are as follows:

- Step One, Generating Ideas—Investment ideas can come from anywhere, from the top or the bottom of the organization, from any department or functional area, or from outside the company. Generating good investment ideas to consider is the most important step in the process.

- Step Two, Analyzing Individual Proposals—This step involves gathering the information to forecast cash flows for each project and then evaluating the project’s profitability.

- Step Three, Planning the Capital Budget—The company must organize the profitable proposals into a coordinated whole that fits within the company’s overall strategies, and it also must consider the projects’ timing. Some projects that look good when considered in isolation may be undesirable strategically. Because of financial and real resource issues, scheduling and prioritizing projects is important.
Step Four, Monitoring and Post-auditing—In a post-audit, actual results are compared to planned or predicted results, and any differences must be explained. For example, how do the revenues, expenses, and cash flows realized from an investment compare to the predictions? Post-auditing capital projects is important for several reasons. First, it helps monitor the forecasts and analysis that underlie the capital budgeting process. Systematic errors, such as overly optimistic forecasts, become apparent. Second, it helps improve business operations. If sales or costs are out of line, it will focus attention on bringing performance closer to expectations if at all possible. Finally, monitoring and post-auditing recent capital investments will produce concrete ideas for future investments. Managers can decide to invest more heavily in profitable areas and scale down or cancel investments in areas that are disappointing.

Planning for capital investments can be very complex, often involving many persons inside and outside of the company. Information about marketing, science, engineering, regulation, taxation, finance, production, and behavioral issues must be systematically gathered and evaluated. The authority to make capital decisions depends on the size and complexity of the project. Lower-level managers may have discretion to make decisions that involve less than a given amount of money, or that do not exceed a given capital budget. Larger and more complex decisions are reserved for top management, and some are so significant that the company’s board of directors ultimately has the decision-making authority.

Like everything else, capital budgeting is a cost-benefit exercise. At the margin, the benefits from the improved decision making should exceed the costs of the capital budgeting efforts.

Companies often put capital budgeting projects into some rough categories for analysis. One such classification would be as follows:

1. Replacement projects. These are among the easier capital budgeting decisions. If a piece of equipment breaks down or wears out, whether to replace it may not require careful analysis. If the expenditure is modest and if not investing has significant implications for production, operations, or sales, it would be a waste of resources to overanalyze the decision. Just make the replacement. Other replacement decisions involve replacing existing equipment with newer, more efficient equipment, or perhaps choosing one type of equipment over another. These replacement decisions are often amenable to very detailed analysis, and you might have a lot of confidence in the final decision.

2. Expansion projects. Instead of merely maintaining a company’s existing business activities, expansion projects increase the size of the business. These expansion decisions may involve more uncertainties than replacement decisions, and these decisions will be more carefully considered.

3. New products and services. These investments expose the company to even more uncertainties than expansion projects. These decisions are more complex and will involve more people in the decision-making process.

4. Regulatory, safety, and environmental projects. These projects are frequently required by a governmental agency, an insurance company, or some other external party. They may generate no revenue and might not be undertaken by a company maximizing its own private interests. Often, the company will accept the required investment and continue to operate. Occasionally, however, the cost of the regulatory/safety/environmental project is sufficiently high that the company would do better to cease operating altogether or to shut down any part of the business that is related to the project.

5. Other. The projects above are all susceptible to capital budgeting analysis, and they can be accepted or rejected using the net present value (NPV) or
some other criterion. Some projects escape such analysis. These are either pet projects of someone in the company (such as the CEO buying a new aircraft) or so risky that they are difficult to analyze by the usual methods (such as some research and development decisions).

BASIC PRINCIPLES OF CAPITAL BUDGETING

Capital budgeting has a rich history and sometimes employs some pretty sophisticated procedures. Fortunately, capital budgeting relies on just a few basic principles. Capital budgeting usually uses the following assumptions:

1. Decisions are based on cash flows. The decisions are not based on accounting concepts, such as net income. Furthermore, intangible costs and benefits are often ignored because, if they are real, they should result in cash flows at some other time.

2. Timing of cash flows is crucial. Analysts make an extraordinary effort to detail precisely when cash flows occur.

3. Cash flows are based on opportunity costs. What are the incremental cash flows that occur with an investment compared to what they would have been without the investment?

4. Cash flows are analyzed on an after-tax basis. Taxes must be fully reflected in all capital budgeting decisions.

5. Financing costs are ignored. This may seem unrealistic, but it is not. Most of the time, analysts want to know the after-tax operating cash flows that result from a capital investment. Then, these after-tax cash flows and the investment outlays are discounted at the “required rate of return” to find the net present value (NPV). Financing costs are reflected in the required rate of return. If we included financing costs in the cash flows and in the discount rate, we would be double-counting the financing costs. So even though a project may be financed with some combination of debt and equity, we ignore these costs, focusing on the operating cash flows and capturing the costs of debt (and other capital) in the discount rate.

Capital budgeting cash flows are not accounting net income. Accounting net income is reduced by noncash charges such as accounting depreciation. Furthermore, to reflect the cost of debt financing, interest expenses are also subtracted from accounting net income. (No subtraction is made for the cost of equity financing in arriving at accounting net income.) Accounting net income also differs from economic income, which is the cash inflow plus the change in the market value of the company. Economic income does not subtract the cost of debt financing, and it is based on the changes in the market value of the company, not changes in its book value (accounting depreciation). We will further consider cash flows, accounting income, economic income, and other income measures at the end of this reading.

In assumption 5 above, we referred to the rate used in discounting the cash flows as the “required rate of return.” The required rate of return is the discount rate that investors should require given the riskiness of the project. This discount rate is frequently called the “opportunity cost of funds” or the “cost of capital.” If the company can invest elsewhere and earn a return of \(r \), or if the company can repay its sources of capital and save a cost of \(r \), then \(r \) is the company’s opportunity cost of funds. If the company cannot earn more than its opportunity cost of funds on an investment, it should not undertake that investment. Unless an investment earns more than the
cost of funds from its suppliers of capital, the investment should not be undertaken. The cost-of-capital concept is discussed more extensively elsewhere. Regardless of what it is called, an economically sound discount rate is essential for making capital budgeting decisions.

Although the principles of capital budgeting are simple, they are easily confused in practice, leading to unfortunate decisions. Some important capital budgeting concepts that managers find very useful are given below.

■ A sunk cost is one that has already been incurred. You cannot change a sunk cost. Today’s decisions, on the other hand, should be based on current and future cash flows and should not be affected by prior, or sunk, costs.

■ An opportunity cost is what a resource is worth in its next-best use. For example, if a company uses some idle property, what should it record as the investment outlay: the purchase price several years ago, the current market value, or nothing? If you replace an old machine with a new one, what is the opportunity cost? If you invest $10 million, what is the opportunity cost? The answers to these three questions are, respectively: the current market value, the cash flows the old machine would generate, and $10 million (which you could invest elsewhere).

■ An incremental cash flow is the cash flow that is realized because of a decision: the cash flow with a decision minus the cash flow without that decision. If opportunity costs are correctly assessed, the incremental cash flows provide a sound basis for capital budgeting.

■ An externality is the effect of an investment on other things besides the investment itself. Frequently, an investment affects the cash flows of other parts of the company, and these externalities can be positive or negative. If possible, these should be part of the investment decision. Sometimes externalities occur outside of the company. An investment might benefit (or harm) other companies or society at large, and yet the company is not compensated for these benefits (or charged for the costs). Cannibalization is one externality. Cannibalization occurs when an investment takes customers and sales away from another part of the company.

■ Conventional versus nonconventional cash flows—A conventional cash flow pattern is one with an initial outflow followed by a series of inflows. In a nonconventional cash flow pattern, the initial outflow is not followed by inflows only, but the cash flows can flip from positive to negative again (or even change signs several times). An investment that involved outlays (negative cash flows) for the first couple of years that were then followed by positive cash flows would be considered to have a conventional pattern. If cash flows change signs once, the pattern is conventional. If cash flows change signs two or more times, the pattern is nonconventional.

Several types of project interactions make the incremental cash flow analysis challenging. The following are some of these interactions:

■ Independent versus mutually exclusive projects. Independent projects are projects whose cash flows are independent of each other. Mutually exclusive projects compete directly with each other. For example, if Projects A and B are mutually exclusive, you can choose A or B, but you cannot choose both. Sometimes there are several mutually exclusive projects, and you can choose only one from the group.

■ Project sequencing. Many projects are sequenced through time, so that investing in a project creates the option to invest in future projects. For example, you might invest in a project today and then in one year invest in
a second project if the financial results of the first project or new economic conditions are favorable. If the results of the first project or new economic conditions are not favorable, you do not invest in the second project.

- Unlimited funds versus capital rationing. An unlimited funds environment assumes that the company can raise the funds it wants for all profitable projects simply by paying the required rate of return. Capital rationing exists when the company has a fixed amount of funds to invest. If the company has more profitable projects than it has funds for, it must allocate the funds to achieve the maximum shareholder value subject to the funding constraints.

INVESTMENT DECISION CRITERIA

Analysts use several important criteria to evaluate capital investments. The two most comprehensive measures of whether a project is profitable or unprofitable are the net present value (NPV) and internal rate of return (IRR). In addition to these, we present four other criteria that are frequently used: the payback period, discounted payback period, average accounting rate of return (AAR), and profitability index (PI). An analyst must fully understand the economic logic behind each of these investment decision criteria as well as its strengths and limitations in practice.

4.1 Net Present Value

For a project with one investment outlay, made initially, the net present value (NPV) is the present value of the future after-tax cash flows minus the investment outlay, or

\[
NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+r)^t} - \text{Outlay}
\]

where

\[CF_t = \text{after-tax cash flow at time } t\]
\[r = \text{required rate of return for the investment}\]
\[\text{Outlay = investment cash flow at time zero}\]

To illustrate the net present value criterion, we will take a look at a simple example. Assume that Gerhardt Corporation is considering an investment of €50 million in a capital project that will return after-tax cash flows of €16 million per year for the next four years plus another €20 million in Year 5. The required rate of return is 10 percent. For the Gerhardt example, the NPV would be

\[
NPV = \frac{16}{1.10^1} + \frac{16}{1.10^2} + \frac{16}{1.10^3} + \frac{16}{1.10^4} + \frac{20}{1.10^5} - 50
\]

\[
\]

\[
NPV = 63.136 - 50 = \text{€13.136 million} \]

The investment has a total value, or present value of future cash flows, of €63.136 million. Since this investment can be acquired at a cost of €50 million, the investing company is giving up €50 million of its wealth in exchange for an investment worth €63.136 million. The investor’s wealth increases by a net of €13.136 million.

\[\text{1 Occasionally, you will notice some rounding errors in our examples. In this case, the present values of the cash flows, as rounded, add up to 63.135. Without rounding, they add up to 63.13627, or 63.136. We will usually report the more accurate result, the one that you would get from your calculator or computer without rounding intermediate results.}\]
Because the NPV is the amount by which the investor's wealth increases as a result of the investment, the decision rule for the NPV is as follows:

<table>
<thead>
<tr>
<th>Invest if</th>
<th>NPV > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not invest if</td>
<td>NPV < 0</td>
</tr>
</tbody>
</table>

Positive NPV investments are wealth-increasing, while negative NPV investments are wealth-decreasing.

Many investments have cash flow patterns in which outflows may occur not only at time zero, but also at future dates. It is useful to consider the NPV to be the present value of all cash flows:

\[
\text{NPV} = CF_0 + \frac{CF_1}{(1+r)} + \frac{CF_2}{(1+r)^2} + \ldots + \frac{CF_n}{(1+r)^n},
\]

or

\[
\text{NPV} = \sum_{i=0}^{n} \frac{CF_i}{(1+r)^i}
\]

In Equation 2, the investment outlay, \(CF_0\), is simply a negative cash flow. Future cash flows can also be negative.

4.2 Internal Rate of Return

The internal rate of return (IRR) is one of the most frequently used concepts in capital budgeting and in security analysis. The IRR definition is one that all analysts know by heart. For a project with one investment outlay, made initially, the IRR is the discount rate that makes the present value of the future after-tax cash flows equal that investment outlay. Written out in equation form, the IRR solves this equation:

\[
\sum_{i=1}^{n} \frac{CF_i}{(1+\text{IRR})^i} = \text{Outlay}
\]

where IRR is the internal rate of return. The left-hand side of this equation is the present value of the project's future cash flows, which, discounted at the IRR, equals the investment outlay. This equation will also be seen rearranged as

\[
\sum_{i=1}^{n} \frac{CF_i}{(1+\text{IRR})^i} - \text{Outlay} = 0
\]

In this form, Equation 3 looks like the NPV equation, Equation 1, except that the discount rate is the IRR instead of \(r\) (the required rate of return). Discounted at the IRR, the NPV is equal to zero.

In the Gerhardt Corporation example, we want to find a discount rate that makes the total present value of all cash flows, the NPV, equal zero. In equation form, the IRR is the discount rate that solves this equation:

\[
-50 + \frac{16}{(1+\text{IRR})^1} + \frac{16}{(1+\text{IRR})^2} + \frac{16}{(1+\text{IRR})^3} + \frac{16}{(1+\text{IRR})^4} + \frac{20}{(1+\text{IRR})^5} = 0
\]

Algebraically, this equation would be very difficult to solve. We normally resort to trial and error, systematically choosing various discount rates until we find one, the IRR, that satisfies the equation. We previously discounted these cash flows at 10 percent and found the NPV to be €13.136 million. Since the NPV is positive, the IRR is probably greater than 10 percent. If we use 20 percent as the discount rate, the NPV is – €0.543 million, so 20 percent is a little high. One might try several other discount rates until the NPV is equal to zero; this approach is illustrated in Table 1:
The IRR is 19.52 percent. Financial calculators and spreadsheet software have routines that calculate the IRR for us, so we do not have to go through this trial and error procedure ourselves. The IRR, computed more precisely, is 19.5197 percent.

The decision rule for the IRR is to invest if the IRR exceeds the required rate of return for a project:

Invest if \(\text{IRR} > r \)
Do not invest if \(\text{IRR} < r \)

In the Gerhardt example, since the IRR of 19.52 percent exceeds the project’s required rate of return of 10 percent, Gerhardt should invest.

Many investments have cash flow patterns in which the outlays occur at time zero and at future dates. Thus, it is common to define the IRR as the discount rate that makes the present values of all cash flows sum to zero:

\[
\sum_{t=0}^{n} \frac{CF_t}{(1 + \text{IRR})^t} = 0
\]

Equation 4 is a more general version of Equation 3.

4.3 Payback Period

The payback period is the number of years required to recover the original investment in a project. The payback is based on cash flows. For example, if you invest $10 million in a project, how long will it be until you recover the full original investment? Table 2 below illustrates the calculation of the payback period by following an investment’s cash flows and cumulative cash flows.

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash flow</td>
<td>-10,000</td>
<td>2,500</td>
<td>2,500</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Cumulative cash flow</td>
<td>-10,000</td>
<td>-7,500</td>
<td>-5,000</td>
<td>-2,000</td>
<td>1,000</td>
<td>4,000</td>
</tr>
</tbody>
</table>

In the first year, the company recovers 2,500 of the original investment, with 7,500 still unrecovered. You can see that the company recoups its original investment between Year 3 and Year 4. After three years, 2,000 is still unrecovered. Since the Year 4 cash flow is 3,000, it would take two-thirds of the Year 4 cash flow to bring the cumulative cash flow to zero. So, the payback period is three years plus two-thirds of the Year 4 cash flow, or 3.67 years.
Investment Decision Criteria

The drawbacks of the payback period are transparent. Since the cash flows are not discounted at the project’s required rate of return, the payback period ignores the time value of money and the risk of the project. Additionally, the payback period ignores cash flows after the payback period is reached. In the table above, for example, the Year 5 cash flow is completely ignored in the payback computation!

Example 1 below is designed to illustrate some of the implications of these drawbacks of the payback period.

Example 1

Drawbacks of the Payback Period

The cash flows, payback periods, and NPVs for Projects A through F are given in Table 3. For all of the projects, the required rate of return is 10 percent.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Examples of Drawbacks of the Payback Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Flows</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Project A</td>
</tr>
<tr>
<td>0</td>
<td>– 1,000</td>
</tr>
<tr>
<td>1</td>
<td>1,000</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td>Payback period</td>
<td>1.0</td>
</tr>
<tr>
<td>NPV</td>
<td>– 90.91</td>
</tr>
</tbody>
</table>

Comment on why the payback period provides misleading information about the following:

1. Project A
2. Project B versus Project C
3. Project D versus Project E
4. Project D versus Project F

Solution 1:

Project A does indeed pay itself back in one year. However, this result is misleading because the investment is unprofitable, with a negative NPV.

Solution 2:

Although Projects B and C have the same payback period and the same cash flow after the payback period, the payback period does not detect the fact that Project C’s cash flows within the payback period occur earlier and result in a higher NPV.

Solution 3:

Projects D and E illustrate a common situation. The project with the shorter payback period is the less profitable project. Project E has a longer payback and higher NPV.

Solution 4:

Projects D and F illustrate an important flaw of the payback period—that the payback period ignores cash flows after the payback period is reached. In this case, Project F has a much larger cash flow in Year 3, but the payback period does not recognize its value.
The payback period has many drawbacks—it is a measure of payback and not a measure of profitability. By itself, the payback period would be a dangerous criterion for evaluating capital projects. Its simplicity, however, is an advantage. The payback period is very easy to calculate and to explain. The payback period may also be used as an indicator of project liquidity. A project with a two-year payback may be more liquid than another project with a longer payback.

Because it is not economically sound, the payback period has no decision rule like that of the NPV or IRR. If the payback period is being used (perhaps as a measure of liquidity), analysts should also use an NPV or IRR to ensure that their decisions also reflect the profitability of the projects being considered.

4.4 Discounted Payback Period

The discounted payback period is the number of years it takes for the cumulative discounted cash flows from a project to equal the original investment. The discounted payback period partially addresses the weaknesses of the payback period. Table 4 gives an example of calculating the payback period and discounted payback period. The example assumes a discount rate of 10 percent.

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash flow (CF)</td>
<td>– 5,000</td>
<td>1,500.00</td>
<td>1,500.00</td>
<td>1,500.00</td>
<td>1,500.00</td>
<td>1,500.00</td>
</tr>
<tr>
<td>Cumulative CF</td>
<td>– 5,000</td>
<td>– 3,500.00</td>
<td>– 2,000.00</td>
<td>– 500.00</td>
<td>1,000.00</td>
<td>2,500.00</td>
</tr>
<tr>
<td>Discounted CF</td>
<td>– 5,000</td>
<td>1,363.64</td>
<td>1,239.67</td>
<td>1,126.97</td>
<td>1,024.52</td>
<td>931.38</td>
</tr>
<tr>
<td>Cumulative discounted CF</td>
<td>– 5,000</td>
<td>– 3,636.36</td>
<td>– 2,396.69</td>
<td>– 1,269.72</td>
<td>– 245.20</td>
<td>686.18</td>
</tr>
</tbody>
</table>

The payback period is three years plus 500/1500 = 1/3 of the fourth year’s cash flow, or 3.33 years. The discounted payback period is between four and five years. The discounted payback period is four years plus 245.20/931.38 = 0.26 of the fifth year’s discounted cash flow, or 4.26 years.

The discounted payback period relies on discounted cash flows, much as the NPV criterion does. If a project has a negative NPV, it will usually not have a discounted payback period since it never recovers the initial investment.

The discounted payback does account for the time value of money and risk within the discounted payback period, but it ignores cash flows after the discounted payback period is reached. This drawback has two consequences. First, the discounted payback period is not a good measure of profitability (like the NPV or IRR) because it ignores these cash flows. Second, another idiosyncrasy of the discounted payback period comes from the possibility of negative cash flows after the discounted payback period is reached. It is possible for a project to have a negative NPV but to have a positive cumulative discounted cash flow in the middle of its life and, thus, a reasonable discounted payback period. The NPV and IRR, which consider all of a project’s cash flows, do not suffer from this problem.

4.5 Average Accounting Rate of Return

The average accounting rate of return (AAR) can be defined as

\[
AAR = \frac{\text{Average net income}}{\text{Average book value}}
\]

To understand this measure of return, we will use a numerical example.
Assume a company invests $200,000 in a project that is depreciated straight-line over a five-year life to a zero salvage value. Sales revenues and cash operating expenses for each year are as shown in Table 5. The table also shows the annual income taxes (at a 40 percent tax rate) and the net income.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Net Income for Calculating an Average Accounting Rate of Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year 1</td>
</tr>
<tr>
<td>Sales</td>
<td>$100,000</td>
</tr>
<tr>
<td>Cash expenses</td>
<td>50,000</td>
</tr>
<tr>
<td>Depreciation</td>
<td>40,000</td>
</tr>
<tr>
<td>Earnings before taxes</td>
<td>10,000</td>
</tr>
<tr>
<td>Taxes (at 40 percent)</td>
<td>4,000</td>
</tr>
<tr>
<td>Net income</td>
<td>6,000</td>
</tr>
</tbody>
</table>

*Negative taxes occur in Year 5 because the earnings before taxes of – $10,000 can be deducted against earnings on other projects, thus reducing the tax bill by $4,000.

For the five-year period, the average net income is $18,000. The initial book value is $200,000, declining by $40,000 per year until the final book value is $0. The average book value for this asset is ($200,000 – $0) / 2 = $100,000. The average accounting rate of return is

\[
\text{AAR} = \frac{\text{Average net income}}{\text{Average book value}} = \frac{18,000}{100,000} = 18\%
\]

The advantages of the AAR are that it is easy to understand and easy to calculate. The AAR has some important disadvantages, however. Unlike the other capital budgeting criteria discussed here, the AAR is based on accounting numbers and not based on cash flows. This is an important conceptual and practical limitation. The AAR also does not account for the time value of money, and there is no conceptually sound cutoff for the AAR that distinguishes between profitable and unprofitable investments. The AAR is frequently calculated in different ways, so the analyst should verify the formula behind any AAR numbers that are supplied by someone else. Analysts should know the AAR and its potential limitations in practice, but they should rely on more economically sound methods like the NPV and IRR.

4.6 Profitability Index

The profitability index (PI) is the present value of a project’s future cash flows divided by the initial investment. It can be expressed as

\[
\text{PI} = \frac{\text{PV of future cash flows}}{\text{Initial investment}} = 1 + \frac{\text{NPV}}{\text{Initial investment}} = \frac{\text{PI}}{1}\text{ or }\text{PI} = \text{PI} + 1
\]

You can see that the PI is closely related to the NPV. The PI is the ratio of the PV of future cash flows to the initial investment, while an NPV is the difference between the PV of future cash flows and the initial investment. Whenever the NPV is positive, the PI will be greater than 1.0, and conversely, whenever the NPV is negative, the PI will be less than 1.0. The investment decision rule for the PI is as follows:

- Invest if \(\text{PI} > 1.0 \)
- Do not invest if \(\text{PI} < 1.0 \)
Because the PV of future cash flows equals the initial investment plus the NPV, the PI can also be expressed as 1.0 plus the ratio of the NPV to the initial investment, as shown in Equation 5 above. Example 2 illustrates the PI calculation.

Example 2

Example of a PI Calculation

The Gerhardt Corporation investment (discussed earlier) had an outlay of €50 million, a present value of future cash flows of €63.136 million, and an NPV of €13.136 million. The profitability index is

\[
\text{PI} = \frac{\text{PV of future cash flows}}{\text{Initial investment}} = \frac{63.136}{50.000} = 1.26
\]

The PI can also be calculated as

\[
\text{PI} = 1 + \frac{\text{NPV}}{\text{Initial investment}} = 1 + \frac{13.136}{50.000} = 1.26
\]

Because the PI > 1.0, this is a profitable investment.

The PI indicates the value you are receiving in exchange for one unit of currency invested. Although the PI is used less frequently than the NPV and IRR, it is sometimes used as a guide in capital rationing, which we will discuss later. The PI is usually called the profitability index in corporations, but it is commonly referred to as a “benefit-cost ratio” in governmental and not-for-profit organizations.

4.7 NPV Profile

The NPV profile shows a project’s NPV graphed as a function of various discount rates. Typically, the NPV is graphed vertically (on the y-axis) and the discount rates are graphed horizontally (on the x-axis). The NPV profile for the Gerhardt capital budgeting project is shown in Example 3.

Example 3

NPV Profile

For the Gerhardt example, we have already calculated several NPVs for different discount rates. At 10 percent the NPV is €13.136 million; at 20 percent the NPV is −€0.543 million; and at 19.52 percent (the IRR), the NPV is zero. What is the NPV if the discount rate is 0 percent? The NPV discounted at 0 percent is €34 million, which is simply the sum of all of the undiscounted cash flows. Table 6 and Figure 1 show the NPV profile for the Gerhardt example for discount rates between 0 percent and 30 percent.

<table>
<thead>
<tr>
<th>Discount Rate (%)</th>
<th>NPV (in € Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>34.000</td>
</tr>
<tr>
<td>5.00</td>
<td>22.406</td>
</tr>
</tbody>
</table>
The NPV profile in Figure 1 is very well-behaved. The NPV declines at a decreasing rate as the discount rate increases. The profile is convex from the origin (convex from below). You will shortly see some examples in which the NPV profile is more complicated.

4.8 Ranking Conflicts between NPV and IRR

For a single conventional project, the NPV and IRR will agree on whether to invest or to not invest. For independent, conventional projects, no conflict exists between the decision rules for the NPV and IRR. However, in the case of two mutually exclusive projects, the two criteria will sometimes disagree. For example, Project A might have a larger NPV than Project B, but Project B has a higher IRR than Project A. In this case, should you invest in Project A or in Project B?

Differing cash flow patterns can cause two projects to rank differently with the NPV and IRR. For example, suppose Project A has shorter-term payoffs than Project B. This situation is presented in Example 4.
Example 4

Ranking Conflict Due to Differing Cash Flow Patterns

Projects A and B have similar outlays but different patterns of future cash flows. Project A realizes most of its cash payoffs earlier than Project B. The cash flows as well as the NPV and IRR for the two projects are shown in Table 7. For both projects, the required rate of return is 10 percent.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash Flows</th>
<th>NPV</th>
<th>IRR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>53.59</td>
<td>21.86</td>
</tr>
</tbody>
</table>

Table 8 and Figure 2 show the NPVs for Project A and Project B for various discount rates between 0 percent and 30 percent.

<table>
<thead>
<tr>
<th>Discount Rate (%)</th>
<th>NPV for Project A</th>
<th>NPV for Project B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>120.00</td>
<td>200.00</td>
</tr>
<tr>
<td>5.00</td>
<td>83.68</td>
<td>129.08</td>
</tr>
<tr>
<td>10.00</td>
<td>53.59</td>
<td>73.21</td>
</tr>
<tr>
<td>15.00</td>
<td>28.40</td>
<td>28.70</td>
</tr>
<tr>
<td>15.09</td>
<td>27.98</td>
<td>27.98</td>
</tr>
<tr>
<td>18.92</td>
<td>11.41</td>
<td>0.00</td>
</tr>
<tr>
<td>20.00</td>
<td>7.10</td>
<td>–7.10</td>
</tr>
<tr>
<td>21.86</td>
<td>0.00</td>
<td>–18.62</td>
</tr>
<tr>
<td>25.00</td>
<td>–11.07</td>
<td>–36.16</td>
</tr>
<tr>
<td>30.00</td>
<td>–26.70</td>
<td>–59.95</td>
</tr>
</tbody>
</table>
Whenever the NPV and IRR rank two mutually exclusive projects differently, as they do in the example above, you should choose the project based on the NPV. Project B, with the higher NPV, is the better project because of the reinvestment assumption. Mathematically, whenever you discount a cash flow at a particular discount rate, you are implicitly assuming that you can reinvest a cash flow at that same discount rate. In the NPV calculation, you use a discount rate of 10 percent for both projects. In the IRR calculation, you use a discount rate equal to the IRR of 21.86 percent for Project A and 18.92 percent for Project B.

Can you reinvest the cash inflows from the projects at 10 percent, or 21.86 percent, or 18.92 percent? When you assume the required rate of return is 10 percent, you are assuming an opportunity cost of 10 percent—you are assuming that you can either find other projects that pay a 10 percent return or pay back your sources of capital that cost you 10 percent. The fact that you earned 21.86 percent in Project A or 18.92 percent in Project B does not mean that you can reinvest future cash flows at those rates. (In fact, if you can reinvest future cash flows at 21.86 percent or 18.92 percent, these should have been used as your required rate of return instead of 10 percent.) Because the NPV criterion uses the most realistic discount rate—the opportunity cost of funds—the NPV criterion should be used for evaluating mutually exclusive projects.

Another circumstance that frequently causes mutually exclusive projects to be ranked differently by NPV and IRR criteria is project scale—the sizes of the projects. Would you rather have a small project with a higher rate of return or a large project with a lower rate of return? Sometimes, the larger, low rate of return project has the better NPV. This case is developed in Example 5.

Note that Project B has the higher NPV for discount rates between 0 percent and 15.09 percent. Project A has the higher NPV for discount rates exceeding 15.09 percent. The crossover point of 15.09 percent in Figure 2 corresponds to the discount rate at which both projects have the same NPV (of 27.98). Project B has the higher NPV below the crossover point, and Project A has the higher NPV above it.

Whenever the NPV and IRR rank two mutually exclusive projects differently, as they do in the example above, you should choose the project based on the NPV. Project B, with the higher NPV, is the better project because of the reinvestment assumption. Mathematically, whenever you discount a cash flow at a particular discount rate, you are implicitly assuming that you can reinvest a cash flow at that same discount rate. In the NPV calculation, you use a discount rate of 10 percent for both projects. In the IRR calculation, you use a discount rate equal to the IRR of 21.86 percent for Project A and 18.92 percent for Project B.

Can you reinvest the cash inflows from the projects at 10 percent, or 21.86 percent, or 18.92 percent? When you assume the required rate of return is 10 percent, you are assuming an opportunity cost of 10 percent—you are assuming that you can either find other projects that pay a 10 percent return or pay back your sources of capital that cost you 10 percent. The fact that you earned 21.86 percent in Project A or 18.92 percent in Project B does not mean that you can reinvest future cash flows at those rates. (In fact, if you can reinvest future cash flows at 21.86 percent or 18.92 percent, these should have been used as your required rate of return instead of 10 percent.) Because the NPV criterion uses the most realistic discount rate—the opportunity cost of funds—the NPV criterion should be used for evaluating mutually exclusive projects.

Another circumstance that frequently causes mutually exclusive projects to be ranked differently by NPV and IRR criteria is project scale—the sizes of the projects. Would you rather have a small project with a higher rate of return or a large project with a lower rate of return? Sometimes, the larger, low rate of return project has the better NPV. This case is developed in Example 5.

2 For example, assume that you are receiving $100 in one year discounted at 10 percent. The present value is $100/1.10 = $90.91. Instead of receiving the $100 in one year, invest it for one additional year at 10 percent, and it grows to $110. What is the present value of $110 received in two years discounted at 10 percent? It is the same $90.91. Because both future cash flows are worth the same, you are implicitly assuming that reinvesting the earlier cash flow at the discount rate of 10 percent has no effect on its value.
Example 5

Ranking Conflicts Due to Differing Project Scale

Project A has a much smaller outlay than Project B, although they have similar future cash flow patterns. The cash flows as well as the NPVs and IRRs for the two projects are shown in Table 9. For both projects, the required rate of return is 10 percent.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash Flows</th>
<th>NPV</th>
<th>IRR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Project A</td>
<td>–100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Project B</td>
<td>–400</td>
<td>170</td>
<td>170</td>
</tr>
</tbody>
</table>

If they were not mutually exclusive, you would invest in both projects because they are both profitable. However, you can choose either Project A (which has the higher IRR) or Project B (which has the higher NPV).

Table 10 and Figure 3 show the NPVs for Project A and Project B for various discount rates between 0 percent and 30 percent.

<table>
<thead>
<tr>
<th>Discount Rate (%)</th>
<th>NPV for Project A</th>
<th>NPV for Project B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.00</td>
<td>280.00</td>
</tr>
<tr>
<td>5.00</td>
<td>77.30</td>
<td>202.81</td>
</tr>
<tr>
<td>10.00</td>
<td>58.49</td>
<td>138.88</td>
</tr>
<tr>
<td>15.00</td>
<td>42.75</td>
<td>85.35</td>
</tr>
<tr>
<td>20.00</td>
<td>29.44</td>
<td>40.08</td>
</tr>
<tr>
<td>21.86</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td>25.00</td>
<td>18.08</td>
<td>1.47</td>
</tr>
<tr>
<td>25.21</td>
<td>17.65</td>
<td>0.00</td>
</tr>
<tr>
<td>30.00</td>
<td>8.31</td>
<td>–31.74</td>
</tr>
<tr>
<td>34.90</td>
<td>0.00</td>
<td>–60.00</td>
</tr>
<tr>
<td>35.00</td>
<td>–0.15</td>
<td>–60.52</td>
</tr>
</tbody>
</table>
Investment Decision Criteria

The good news is that the NPV and IRR criteria will usually indicate the same investment decision for a given project. They will usually both recommend acceptance or rejection of the project. When the choice is between two mutually exclusive projects and the NPV and IRR rank the two projects differently, the NPV criterion is strongly preferred. There are good reasons for this preference. The NPV shows the amount of gain, or wealth increase, as a currency amount. The reinvestment assumption of the NPV is the more economically realistic. The IRR does give you a rate of return, but the IRR could be for a small investment or for only a short period of time. As a practical matter, once a corporation has the data to calculate the NPV, it is fairly trivial to go ahead and calculate the IRR and other capital budgeting criteria. However, the most appropriate and theoretically sound criterion is the NPV.

4.9 The Multiple IRR Problem and the No IRR Problem

A problem that can arise with the IRR criterion is the “multiple IRR problem.” We can illustrate this problem with the following nonconventional cash flow pattern:\(^3\)

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Flow</td>
<td>−1,000</td>
<td>5,000</td>
<td>−6,000</td>
</tr>
</tbody>
</table>

The IRR for these cash flows satisfies this equation:

\[-1,000 + \frac{5,000}{(1 + IRR)} + \frac{-6,000}{(1 + IRR)^2} = 0\]

Note that Project B has the higher NPV for discount rates between 0 percent and 21.86 percent. Project A has the higher NPV for discount rates exceeding 21.86 percent. The crossover point of 21.86 percent in Figure 3 corresponds to the discount rate at which both projects have the same NPV (of 25.00). Below the crossover point, Project B has the higher NPV, and above it, Project A has the higher NPV. When cash flows are discounted at the 10 percent required rate of return, the choice is clear—Project B, the larger project, which has the superior NPV.

This example is adapted from Hirschleifer (1958).
It turns out that there are two values of IRR that satisfy the equation: $\text{IRR} = 1 = 100\%$ and $\text{IRR} = 2 = 200\%$. To further understand this problem, consider the NPV profile for this investment, which is shown in Table 11 and Figure 4.

Table 11 NPV Profile for a Multiple IRR Example

<table>
<thead>
<tr>
<th>Discount Rate (%)</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2,000.00</td>
</tr>
<tr>
<td>25</td>
<td>-840.00</td>
</tr>
<tr>
<td>50</td>
<td>-333.33</td>
</tr>
<tr>
<td>75</td>
<td>-102.04</td>
</tr>
<tr>
<td>100</td>
<td>0.00</td>
</tr>
<tr>
<td>125</td>
<td>37.04</td>
</tr>
<tr>
<td>140</td>
<td>41.67</td>
</tr>
<tr>
<td>150</td>
<td>40.00</td>
</tr>
<tr>
<td>175</td>
<td>24.79</td>
</tr>
<tr>
<td>200</td>
<td>0.00</td>
</tr>
<tr>
<td>225</td>
<td>-29.59</td>
</tr>
<tr>
<td>250</td>
<td>-61.22</td>
</tr>
<tr>
<td>300</td>
<td>-125.00</td>
</tr>
<tr>
<td>350</td>
<td>-185.19</td>
</tr>
<tr>
<td>400</td>
<td>-240.00</td>
</tr>
<tr>
<td>500</td>
<td>-333.33</td>
</tr>
<tr>
<td>1,000</td>
<td>-595.04</td>
</tr>
<tr>
<td>2,000</td>
<td>-775.51</td>
</tr>
<tr>
<td>3,000</td>
<td>-844.95</td>
</tr>
<tr>
<td>4,000</td>
<td>-881.62</td>
</tr>
<tr>
<td>10,000</td>
<td>-951.08</td>
</tr>
<tr>
<td>1,000,000</td>
<td>-999.50</td>
</tr>
</tbody>
</table>

As you can see in the NPV profile, the NPV is equal to zero at $\text{IRR} = 100\%$ and $\text{IRR} = 200\%$. The NPV is negative for discount rates below 100 percent, positive between
100 percent and 200 percent, and then negative above 200 percent. The NPV reaches its highest value when the discount rate is 140 percent.

It is also possible to have an investment project with no IRR. The “no-IRR problem” occurs with this cash flow pattern:

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Flow</td>
<td>100</td>
<td>-300</td>
<td>250</td>
</tr>
</tbody>
</table>

The IRR for these cash flows satisfies this equation:

\[
100 \frac{-300}{(1 + IRR)} + \frac{250}{(1 + IRR)^2} = 0
\]

For these cash flows, no discount rate exists that results in a zero NPV. Does that mean this project is a bad investment? In this case, the project is actually a good investment. As Table 12 and Figure 5 show, the NPV is positive for all discount rates. The lowest NPV, of 10, occurs for a discount rate of 66.67 percent, and the NPV is always greater than zero. Consequently, no IRR exists.

<table>
<thead>
<tr>
<th>Discount Rate (%)</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50.00</td>
</tr>
<tr>
<td>25</td>
<td>20.00</td>
</tr>
<tr>
<td>50</td>
<td>11.11</td>
</tr>
<tr>
<td>66.67</td>
<td>10.00</td>
</tr>
<tr>
<td>75</td>
<td>10.20</td>
</tr>
<tr>
<td>100</td>
<td>12.50</td>
</tr>
<tr>
<td>125</td>
<td>16.05</td>
</tr>
<tr>
<td>150</td>
<td>20.00</td>
</tr>
<tr>
<td>175</td>
<td>23.97</td>
</tr>
<tr>
<td>200</td>
<td>27.78</td>
</tr>
<tr>
<td>225</td>
<td>31.36</td>
</tr>
<tr>
<td>250</td>
<td>34.69</td>
</tr>
<tr>
<td>275</td>
<td>37.78</td>
</tr>
<tr>
<td>300</td>
<td>40.63</td>
</tr>
<tr>
<td>325</td>
<td>43.25</td>
</tr>
<tr>
<td>350</td>
<td>45.68</td>
</tr>
<tr>
<td>375</td>
<td>47.92</td>
</tr>
<tr>
<td>400</td>
<td>50.00</td>
</tr>
</tbody>
</table>

This example is also adapted from Hirschleifer.
For conventional projects that have outlays followed by inflows—negative cash flows followed by positive cash flows—the multiple IRR problem cannot occur. However, for nonconventional projects, as in the example above, the multiple IRR problem can occur. The IRR equation is essentially an nth degree polynomial. An nth degree polynomial can have up to n solutions, although it will have no more real solutions than the number of cash flow sign changes. For example, a project with two sign changes could have zero, one, or two IRRs. Having two sign changes does not mean that you will have multiple IRRs; it just means that you might. Fortunately, most capital budgeting projects have only one IRR. Analysts should always be aware of the unusual cash flow patterns that can generate the multiple IRR problem.

4.10 Popularity and Usage of the Capital Budgeting Methods

Analysts need to know the basic logic of the various capital budgeting criteria as well as the practicalities involved in using them in real corporations. Before delving into the many issues involved in applying these models, we would like to present some feedback on their popularity.

The usefulness of any analytical tool always depends on the specific application. Corporations generally find these capital budgeting criteria useful. Two recent surveys by Graham and Harvey (2001) and Brounen, De Jong, and Koedijk (2004) report on the frequency of their use by U.S. and European corporations. Table 13 gives the mean responses of executives in five countries to the question “How frequently does your company use the following techniques when deciding which projects or acquisitions to pursue?”

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>U.K.</th>
<th>Netherlands</th>
<th>Germany</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal rate of return</td>
<td>3.09</td>
<td>2.31</td>
<td>2.36</td>
<td>2.15</td>
<td>2.27</td>
</tr>
<tr>
<td>Net present value</td>
<td>3.08</td>
<td>2.32</td>
<td>2.76</td>
<td>2.26</td>
<td>1.86</td>
</tr>
<tr>
<td>Payback period</td>
<td>2.53</td>
<td>2.77</td>
<td>2.53</td>
<td>2.29</td>
<td>2.46</td>
</tr>
<tr>
<td>Hurdle rate</td>
<td>2.13</td>
<td>1.35</td>
<td>1.98</td>
<td>1.61</td>
<td>0.73</td>
</tr>
<tr>
<td>Sensitivity analysis</td>
<td>2.31</td>
<td>2.21</td>
<td>1.84</td>
<td>1.65</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Although financial textbooks preach the superiority of the NPV and IRR techniques, it is clear that several other methods are heavily used. In the four European countries, the payback period is used as often as, or even slightly more often than, the NPV and IRR. In these two studies, larger companies tended to prefer the NPV and IRR over the payback period. The fact that the U.S. companies were larger, on average, partially explains the greater U.S. preference for the NPV and IRR. Other factors influence the choice of capital budgeting techniques. Private corporations used the payback period more frequently than did public corporations. Companies managed by an MBA had a stronger preference for the discounted cash flow techniques. Of course, any survey research also has some limitations. In this case, the persons in these large corporations responding to the surveys may not have been aware of all of the applications of these techniques.

These capital budgeting techniques are essential tools for corporate managers. Capital budgeting is also relevant to external analysts. Because a corporation’s investing decisions ultimately determine the value of its financial obligations, the corporation’s investing processes are vital. The NPV criterion is the criterion most directly related to stock prices. If a corporation invests in positive NPV projects, these should add to the wealth of its shareholders. Example 6 illustrates this scenario.

Example 6

NPVs and Stock Prices

Freitag Corporation is investing €600 million in distribution facilities. The present value of the future after-tax cash flows is estimated to be €850 million. Freitag has 200 million outstanding shares with a current market price of €32.00 per share. This investment is new information, and it is independent of other expectations about the company. What should be the effect of the project on the value of the company and the stock price?

Solution:

The NPV of the project is €850 million – €600 million = €250 million. The total market value of the company prior to the investment is €32.00 × 200 million

5 Analysts often refer to the NPV and IRR as “discounted cash flow techniques” because they accurately account for the timing of all cash flows when they are discounted.
The effect of a capital budgeting project’s positive or negative NPV on share price is more complicated than Example 6 above, in which the value of the stock increased by the project’s NPV. The value of a company is the value of its existing investments plus the net present values of all of its future investments. If an analyst learns of an investment, the impact of that investment on the stock price will depend on whether the investment’s profitability is more or less than expected. For example, an analyst could learn of a positive NPV project, but if the project’s profitability is less than expectations, this stock might drop in price on the news. Alternatively, news of a particular capital project might be considered as a signal about other capital project underway or in the future. A project that by itself might add, say, €0.25 to the value of the stock might signal the existence of other profitable projects. News of this project might increase the stock price by far more than €0.25.

The integrity of a corporation’s capital budgeting processes is important to analysts. Management’s capital budgeting processes can demonstrate two things about the quality of management: the degree to which management embraces the goal of shareholder wealth maximization, and its effectiveness in pursuing that goal. Both of these factors are important to shareholders.

CASH FLOW PROJECTIONS

In Section 4, we presented the basic capital budgeting models that managers use to accept or reject capital budgeting proposals. In that section, we assumed the cash flows were given, and we used them as inputs to the analysis. In Section 5, we detail how these cash flows are found for an “expansion” project. An expansion project is an independent investment that does not affect the cash flows for the rest of the company. In Section 6, we will deal with a “replacement” project, in which the cash flow analysis is more complicated. A replacement project must deal with the differences between the cash flows that occur with the new investment and the cash flows that would have occurred for the investment being replaced.

5.1 Table Format with Cash Flows Collected by Year

The cash flows for a conventional expansion project can be grouped into 1) the investment outlays, 2) after-tax operating cash flows over the project’s life, and 3) terminal year after-tax non-operating cash flows. Table 14 gives an example of the cash flows for a capital project where all of the cash flows are collected by year.

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment outlays:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed capital</td>
<td>–</td>
<td>200,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net working capital</td>
<td>–</td>
<td>30,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>–</td>
<td>230,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

shares = €6,400 million. The value of the company should increase by €250 million to €6,650 million. The price per share should increase by the NPV per share, or €250 million/200 million shares = €1.25 per share. The share price should increase from €32.00 to €33.25.
The investment outlays include a $200,000 outlay for fixed capital items. This outlay includes $25,000 for nondepreciable land, plus $175,000 for equipment that will be depreciated straight-line to zero over five years. The investment in net working capital is the net investment in short-term assets required for the investment. This is the investment in receivables and inventory needed, less the short-term payables generated by the project. In this case, the project required $50,000 of current assets but generated $20,000 in current liabilities, resulting in a total investment in net working capital of $30,000. The total investment outlay at time zero is $230,000.

Each year, sales will be $220,000 and cash operating expenses will be $90,000. Annual depreciation for the $175,000 depreciable equipment is $35,000 (one-fifth of the cost). The result is an operating income before taxes of $95,000. Income taxes at a 40 percent rate are \(0.40 \times 95,000 = 38,000\). This leaves operating income after taxes of $57,000. Adding back the depreciation charge of $35,000 gives the annual after-tax operating cash flow of $92,000.\(^6\)

At the end of Year 5, the company will sell off the fixed capital assets. In this case, the fixed capital assets (including the land) are sold for $50,000, which represents a gain of $25,000 over the remaining book value of $25,000. The gain of $25,000 is taxed at 40 percent, resulting in a tax of $10,000. This leaves $40,000 for the fixed capital assets after taxes. Additionally, the net working capital investment of $30,000 is recovered, as the short-term assets (such as inventory and receivables) and short-term liabilities (such as payables) are no longer needed for the project. Total terminal year non-operating cash flows are then $70,000.

The investment project has a required rate of return of 10 percent. Discounting the future cash flows at 10 percent and subtracting the investment outlay gives an

\(^6\) Examining the operating cash flows in Table 14, we have a $220,000 inflow from sales, a $90,000 outflow for cash operating expenses, and a $38,000 outflow for taxes. This is an after-tax cash flow of $92,000.
NPV of $162,217. The internal rate of return is 32.70 percent. Because the investment has a positive NPV, this project should be accepted. The IRR investment decision criterion would also recommend accepting the project because the IRR is greater than the required rate of return.

5.2 Table Format with Cash Flows Collected by Type

In the layout in Table 14, we essentially collected the cash flows in the columns, by year, and then found the NPV by summing the present values of the annual cash flows (at the bottom of each column). There is another way of organizing the same information. We could also find the NPV by finding the present values of the cash flows in Table 14 by rows, which are the types of cash flows. This approach is shown in Table 15:

<table>
<thead>
<tr>
<th>Time</th>
<th>Type of Cash Flow</th>
<th>Before-Tax Cash Flow</th>
<th>After-Tax Cash Flow</th>
<th>PV at 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Fixed capital</td>
<td>−200,000</td>
<td>−200,000</td>
<td>−200,000</td>
</tr>
<tr>
<td>0</td>
<td>Net working capital</td>
<td>−30,000</td>
<td>−30,000</td>
<td>−30,000</td>
</tr>
<tr>
<td>1−5</td>
<td>Sales minus cash expenses</td>
<td>220,000 − 90,000 = 130,000</td>
<td>130,000(1 − 0.40) = 78,000</td>
<td>295,681</td>
</tr>
<tr>
<td>1−5</td>
<td>Depreciation tax savings</td>
<td>None</td>
<td>0.40(35,000) = 14,000</td>
<td>53,071</td>
</tr>
<tr>
<td>5</td>
<td>After-tax salvage value</td>
<td>50,000</td>
<td>50,000 − 0.40(50,000 − 25,000) = 40,000</td>
<td>24,837</td>
</tr>
<tr>
<td>5</td>
<td>Return of net working capital</td>
<td>30,000</td>
<td>30,000</td>
<td>18,628</td>
</tr>
</tbody>
</table>

As Table 15 shows, the outlays in fixed capital and in net working capital at time zero total $230,000. For Years 1 through 5, the company realizes an after-tax cash flow for sales minus cash expenses of $78,000, which has a present value of $295,681. The depreciation charge results in a tax savings of $14,000 per year, which has a present value of $53,071. The present values of the after-tax salvage and of the return of net working capital are also shown in the table. The present value of all cash flows is an NPV of $162,217. Obviously, collecting the after-tax cash flows by year, as in Table 14, or by type, as in Table 15, results in the same NPV.

5.3 Equation Format for Organizing Cash Flows

The capital budgeting cash flows in the example project above were laid out in one of two alternative tabular formats. Analysts may wish to take even another approach. Instead of producing a table, you can also look at the cash flows using equations such as the following:

1. Initial outlay: For a new investment:

 \[\text{Outlay} = \text{FCInv} + \text{NWCInv} \]

 where

 \(\text{FCInv} = \text{investment in new fixed capital} \)

 \(\text{NWCInv} = \text{investment in net working capital} \)

This equation can be generalized for a replacement project (covered in Section 6.2), in which existing fixed capital is sold and provides some of the funding for the new fixed capital purchased. The outlay is then
Cash Flow Projections

Outlay = FCInv + NWCIInv − Sal₀ + T(Sal₀ − B₀)

(6)

where

Sal₀ = cash proceeds (salvage value) from sale of old fixed capital
T = tax rate
B₀ = book value of old fixed capital

2. Annual after-tax operating cash flow:

CF = (S − C − D)(1 − T) + D, or
CF = (S − C)(1 − T) + TD

(7) (8)

where

S = sales
C = cash operating expenses
D = depreciation charge

3. Terminal year after-tax non-operating cash flow:

TNOCF = Salₜ + NWCIInv − T(Salₜ − Bₜ)

(9)

where

Salₜ = cash proceeds (salvage value) from sale of fixed capital on termination date
Bₜ = book value of fixed capital on termination date

The outlay in the example is found with Equation 6:

Outlay = 200,000 + 30,000 − 0 + 0 = $230,000

For a replacement project, the old fixed capital would be sold for cash (Sal₀) and then there would be taxes paid on the gain (if Sal₀ − B₀ were positive) or a tax saving (if Sal₀ − B₀ were negative). In this example, Sal₀ and T(Sal₀ − B₀) are zero because no existing fixed capital is sold at time zero.

Using Equation 7, we find that the annual after-tax operating cash flow is

CF = (S − C − D)(1 − T) + D
 = (220,000 − 90,000 − 35,000)(1 − 0.40) + 35,000 = 95,000
 × (0.60) + 35,000
 = 57,000 + 35,000 = $92,000

Equation 7 is the project’s net income plus depreciation. An identical cash flow results if we use Equation 8:

CF = (S − C)(1 − T) + TD
 = (220,000 − 90,000)(1 − 0.40) + 0.40(35,000)
 = 130,000(0.60) + 0.40(35,000) = 78,000 + 14,000 = $92,000

Equation 8 is the after-tax sales and cash expenses plus the depreciation tax savings. The analyst can use either equation.

Equation 9 provides the terminal year non-operating cash flow:

TNOCF = Salₜ + NWCIInv − T(Salₜ − Bₜ)
 = 50,000 + 30,000 − 0.40(50,000 − 25,000)
 = 50,000 + 30,000 − 10,000 = $70,000

The old fixed capital (including land) is sold for $50,000, but $10,000 of taxes must be paid on the gain. Including the $30,000 return of net working capital gives a terminal year non-operating cash flow of $70,000.
The NPV of the project is the present value of the cash flows—an outlay of $230,000 at time zero, an annuity of $92,000 for five years, plus a single payment of $70,000 in five years:

\[
NPV = -230,000 + \sum_{t=1}^{5} \frac{92,000}{(1.10)^t} + \frac{70,000}{(1.10)^5}
\]

\[
= -230,000 + 348,752 + 43,465 = $162,217
\]

We obtain an identical NPV of $162,217 whether we use a tabular format collecting cash flows by year, a tabular format collecting cash flows by type, or an equation format using Equations 6 through 9. The analyst usually has some flexibility in choosing how to solve a problem. Furthermore, the analysis that an analyst receives from someone else could be in varying formats. The analyst must interpret this information correctly regardless of format. An analyst may need to present information in alternative formats, depending on what the client or user of the information wishes to see. All that is important is that the cash flows are complete (with no cash flows omitted and none double-counted), that their timing is recognized, and that the discounting is done correctly.

MORE ON CASH FLOW PROJECTIONS

Cash flow analysis can become fairly complicated. Section 6 extends the analysis of the previous section to include more details on depreciation methods, replacement projects (as opposed to simple expansion projects), the use of spreadsheets, and the effects of inflation.

6.1 Straight-Line and Accelerated Depreciation Methods

Before going on to more complicated investment decisions, we should mention the variety of depreciation methods that are in use. The example in Section 5.1 assumed straight-line depreciation down to a zero salvage value. Most accounting texts give a good description of the straight-line method, the sum-of-years digits method, the double-declining balance method (and the 150 percent declining balance method), and the units-of-production and service hours method.\(^7\)

Many countries specify the depreciation methods that are acceptable for tax purposes in their jurisdictions. For example, in the U.S., corporations use the MACRS (modified accelerated cost recovery system) for tax purposes. Under MACRS, real property (real estate) is usually depreciated straight-line over a 27.5- or 39-year life, and other capital assets are usually grouped into MACRS asset classes and subject to a special depreciation schedule in each class. These MACRS classes and the depreciation rates for each class are shown in Table 16.

Table 16

<table>
<thead>
<tr>
<th>Recovery Period Class</th>
<th>3-Year</th>
<th>5-Year</th>
<th>7-Year</th>
<th>10-Year</th>
<th>15-Year</th>
<th>20-Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.33%</td>
<td>20.00%</td>
<td>14.29%</td>
<td>10.00%</td>
<td>5.00%</td>
<td>3.75%</td>
</tr>
<tr>
<td>2</td>
<td>44.45%</td>
<td>32.00%</td>
<td>24.49%</td>
<td>18.00%</td>
<td>9.50%</td>
<td>7.22%</td>
</tr>
</tbody>
</table>

\(^7\) White, Sondhi, and Fried (2003) is a good example. Consult their Chapter 8, “Analysis of Long-Lived Assets: Part II—Analysis of Depreciation and Impairment,” for review and examples.
For the first four MACRS classes (3-year, 5-year, 7-year, and 10-year), the depreciation is double-declining-balance with a switch to straight-line when optimal and with a half-year convention. For the last two classes (15-year and 20-year), the depreciation is 150 percent-declining-balance with a switch to straight-line when optimal and with a half-year convention. Take 5-year property in Table 16 as an example. With double-declining-balance, the depreciation each year is $2/5 = 40\%$ of the beginning-of-year book value. However, with a half-year convention, the asset is assumed to be in service for only six months during the first year, and only one-half of the depreciation is allowed the first year. After the first year, the depreciation rate is 40 percent of the beginning balance until Year 4, when straight-line depreciation would be at least as large, so we switch to straight-line. In Year 6, we have one-half of a year of the straight-line depreciation remaining because we assumed the asset was placed in service half-way through the first year.

Accelerated depreciation generally improves the NPV of a capital project compared to straight-line depreciation. For an example of this effect, we will assume the same capital project as in Table 14, except that the depreciation is MACRS 3-year property. When using straight-line, the depreciation was 20 percent per year ($35,000). The depreciation percentages for MACRS 3-year property are given in Table 16. The first-year depreciation is $0.3333 \times 175,000 = $58,327.50$, second year depreciation is $0.4445 \times 175,000 = $77,787.50$, third year depreciation is $0.1481 \times 175,000 = $25,917.50$, fourth year depreciation is $0.0741 \times 175,000 = $12,967.50$, and fifth year depreciation is zero. The impact on the NPV and IRR of the project is shown in Table 17.

<table>
<thead>
<tr>
<th>Year</th>
<th>3-Year</th>
<th>5-Year</th>
<th>7-Year</th>
<th>10-Year</th>
<th>15-Year</th>
<th>20-Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.81</td>
<td>19.20</td>
<td>17.49</td>
<td>14.40</td>
<td>8.55</td>
<td>6.68</td>
</tr>
<tr>
<td>2</td>
<td>7.41</td>
<td>11.52</td>
<td>12.49</td>
<td>11.52</td>
<td>7.70</td>
<td>6.18</td>
</tr>
<tr>
<td>3</td>
<td>11.52</td>
<td>8.93</td>
<td>9.22</td>
<td>6.93</td>
<td>5.71</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.76</td>
<td>8.93</td>
<td>7.37</td>
<td>6.23</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8.93</td>
<td>6.55</td>
<td>5.90</td>
<td>4.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.45</td>
<td>6.55</td>
<td>5.90</td>
<td>4.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6.55</td>
<td>5.90</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6.55</td>
<td>5.90</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.29</td>
<td>5.90</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.90</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5.90</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.90</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.90</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.90</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.90</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2.99</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 17
Capital Budgeting Example with MACRS

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment outlays:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed capital</td>
<td>– 200,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net working capital</td>
<td>– 30,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>– 230,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual after-tax operating cash flows:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td>220,000</td>
<td>220,000</td>
<td>220,000</td>
<td>220,000</td>
<td>220,000</td>
<td>220,000</td>
</tr>
<tr>
<td>Cash operating expenses</td>
<td>90,000</td>
<td>90,000</td>
<td>90,000</td>
<td>90,000</td>
<td>90,000</td>
<td>90,000</td>
</tr>
<tr>
<td>Depreciation</td>
<td>58,328</td>
<td>77,788</td>
<td>25,918</td>
<td>12,968</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Operating income before taxes</td>
<td>71,673</td>
<td>52,213</td>
<td>104,083</td>
<td>117,033</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>Taxes on operating income (40%)</td>
<td>28,669</td>
<td>20,885</td>
<td>41,633</td>
<td>46,813</td>
<td>52,000</td>
<td></td>
</tr>
<tr>
<td>Operating income after taxes</td>
<td>43,004</td>
<td>31,328</td>
<td>62,450</td>
<td>70,220</td>
<td>78,000</td>
<td></td>
</tr>
<tr>
<td>Add back: Depreciation</td>
<td>58,328</td>
<td>77,788</td>
<td>25,918</td>
<td>12,968</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>After-tax operating cash flow</td>
<td>101,331</td>
<td>109,115</td>
<td>88,367</td>
<td>83,187</td>
<td>78,000</td>
<td></td>
</tr>
<tr>
<td>Terminal year after-tax non-operating cash flows:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After-tax salvage value</td>
<td>40,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return of net working capital</td>
<td>30,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>70,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total after-tax cash flows</td>
<td>– 230,000</td>
<td>101,331</td>
<td>109,115</td>
<td>88,367</td>
<td>83,187</td>
<td>148,000</td>
</tr>
<tr>
<td>Net present value at 10% required rate of return</td>
<td>$167,403</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal rate of return</td>
<td>34.74%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As the table shows, the depreciation charges still sum to $175,000 (except for $2 of rounding), but they are larger in Years 1 and 2 and smaller in Years 3, 4, and 5. Although this method reduces operating income after taxes in Years 1 and 2 (and increases it in Years 3, 4, and 5), it reduces tax outflows in Years 1 and 2 and increases them later. Consequently, the after-tax operating cash flows (which were $92,000 per year) increase in early years and decrease in later years. This increases the NPV from $162,217 to $167,403, a difference of $5,186. The IRR also increases from 32.70 percent to 34.74 percent.8

The impact of accelerated depreciation can be seen without going through the complete analysis in Table 17. We previously showed in Table 15 that the present value of the depreciation tax savings (which was an annuity of 0.40 × $35,000 = $14,000 a year for five years) was $53,071. The present value of the tax savings from accelerated depreciation is shown in Table 18.

Table 18
Present Value of Tax Savings from Accelerated Depreciation

<table>
<thead>
<tr>
<th>Year</th>
<th>Depreciation ($)</th>
<th>Tax Savings</th>
<th>PV at 10% ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58,327.50</td>
<td>0.40 × $58,327.5 = $23,331</td>
<td>21,210</td>
</tr>
<tr>
<td>2</td>
<td>77,787.50</td>
<td>0.40 × $77,787.5 = $31,115</td>
<td>25,715</td>
</tr>
</tbody>
</table>

8 This example assumes that the investment occurs on the first day of the tax year. If the outlay occurs later in the tax year, the depreciation tax savings for the tax years are unchanged, which means that the cash savings occur sooner, increasing their present values. The result is a higher NPV and IRR.
By using the accelerated depreciation schedule, we increase the present value of the tax savings from $53,071 (from Table 15) to $58,257, an increase of $5,186. The tax deferral associated with the accelerated depreciation (compared to straight-line) adds $5,186 to the NPV of the project.

There are a myriad of tax and depreciation schedules that apply to investment projects around the world. These tax and depreciation schedules are also subject to change from year to year. To accurately assess the profitability of a particular capital project, it is vital to identify and apply the schedules that are relevant to the capital budgeting decision at hand.

6.2 Cash Flows for a Replacement Project

In Section 5.1, we evaluated the cash flows for an expansion project, basing our after-tax cash flows on the outlays, annual operating cash flows after tax, and salvage value for the project by itself. In many cases, however, investing in a project will be more complicated. Investing could affect many of the company’s cash flows. In principle, the cash flows relevant to an investing decision are the incremental cash flows: the cash flows the company realizes with the investment compared to the cash flows the company would realize without the investment. For example, suppose we are investing in a new project with an outlay of $100,000 and we sell off existing assets that the project replaces for $30,000. The incremental outlay is $70,000.

A very common investment decision is a replacement decision, in which you replace old equipment with new equipment. This decision requires very careful analysis of the cash flows. The skills required to detail the replacement decision cash flows are also useful for other decisions in which an investment affects other cash flows in the company. We use the term “replacement” loosely, primarily to indicate that the cash flow analysis is more complicated than it was for the simpler expansion decision.

Assume we are considering the replacement of old equipment with new equipment that has more capacity and is less costly to operate. The characteristics of the old and new equipment are given below:

<table>
<thead>
<tr>
<th>Old Equipment</th>
<th>New Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current book value</td>
<td>$400,000</td>
</tr>
<tr>
<td>Current market value</td>
<td>$600,000</td>
</tr>
<tr>
<td>Remaining life</td>
<td>10 years</td>
</tr>
<tr>
<td>Annual sales</td>
<td>$300,000</td>
</tr>
<tr>
<td>Cash operating expenses</td>
<td>$120,000</td>
</tr>
<tr>
<td>Annual depreciation</td>
<td>$40,000</td>
</tr>
<tr>
<td>Accounting salvage value</td>
<td>$0</td>
</tr>
<tr>
<td>Expected salvage value</td>
<td>$100,000</td>
</tr>
<tr>
<td></td>
<td>Acquisition cost</td>
</tr>
<tr>
<td></td>
<td>Life</td>
</tr>
<tr>
<td></td>
<td>Annual sales</td>
</tr>
<tr>
<td></td>
<td>Cash operating expenses</td>
</tr>
<tr>
<td></td>
<td>Annual depreciation</td>
</tr>
<tr>
<td></td>
<td>Accounting salvage value</td>
</tr>
<tr>
<td></td>
<td>Expected salvage value</td>
</tr>
</tbody>
</table>

By using the accelerated depreciation schedule, we increase the present value of the tax savings from $53,071 (from Table 15) to $58,257, an increase of $5,186. The tax deferral associated with the accelerated depreciation (compared to straight-line) adds $5,186 to the NPV of the project.

There are a myriad of tax and depreciation schedules that apply to investment projects around the world. These tax and depreciation schedules are also subject to change from year to year. To accurately assess the profitability of a particular capital project, it is vital to identify and apply the schedules that are relevant to the capital budgeting decision at hand.

Table 18

<table>
<thead>
<tr>
<th>Year</th>
<th>Depreciation ($)</th>
<th>Tax Savings</th>
<th>PV at 10% ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>25,917.50</td>
<td>0.40 × $25,917.5 = $10,367</td>
<td>7,789</td>
</tr>
<tr>
<td>4</td>
<td>12,967.50</td>
<td>0.40 × $12,967.5 = $5,187</td>
<td>3,543</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.40 × $0 = $0</td>
<td>0</td>
</tr>
<tr>
<td>Total present value</td>
<td></td>
<td></td>
<td>58,257</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Depreciation ($)</th>
<th>Tax Savings</th>
<th>PV at 10% ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>25,917.50</td>
<td>0.40 × $25,917.5 = $10,367</td>
<td>7,789</td>
</tr>
<tr>
<td>4</td>
<td>12,967.50</td>
<td>0.40 × $12,967.5 = $5,187</td>
<td>3,543</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.40 × $0 = $0</td>
<td>0</td>
</tr>
<tr>
<td>Total present value</td>
<td></td>
<td></td>
<td>58,257</td>
</tr>
</tbody>
</table>
If the new equipment replaces the old equipment, an additional investment of $80,000 in net working capital will be required. The tax rate is 30 percent, and the required rate of return is 8 percent.

The cash flows can be found by carefully constructing tables like Table 14 or by using Equations 6 through 9. The initial outlay is the investment in the new equipment plus the additional investment in net working capital less the after-tax proceeds from selling the old equipment:

\[
\text{Outlay} = \text{FCInv} + \text{NWCInv} - \text{Sal}_0 + T(\text{Sal}_0 - B_0)
\]

\[
\text{Outlay} = 1,000,000 + 80,000 - 600,000 \\
+ 0.3(600,000 - 400,000) = $540,000
\]

In this case, the outlay of $540,000 is $1,080,000 for new equipment and net working capital minus the after-tax proceeds of $540,000 the company receives from selling the old equipment. The incremental operating cash flows are

\[
\text{CF} = (S - C - D)(1 - T) + D
\]

\[
= [150,000 - 30,000 - 60,000] - (150,000 - 120,000) \\
- (100,000 - 40,000)(1 - 0.30) + (100,000 - 40,000) \\
= (150,000 - 30,000 - 60,000)(1 - 0.30) + 60,000 = $102,000
\]

The incremental sales are $150,000, incremental cash operating expenses are $30,000, and incremental depreciation is $60,000. The incremental after-tax operating cash flow is $102,000 per year.

At the project termination, the new equipment is expected to be sold for $200,000, which constitutes an incremental cash flow of $100,000 over the $100,000 expected salvage price of the old equipment. Since the accounting salvage values for both the new and old equipment were zero, this gain is taxable at 30 percent. The company also recaptures its investment in net working capital. The terminal year after-tax non-operating cash flow is

\[
\text{TNOCF} = \text{Sal}_T + \text{NWCInv} - T(\text{Sal}_T - B_T)
\]

\[
= (200,000 - 100,000) + 80,000 - 0.30 \\
\left[(200,000 - 100,000) - (0 - 0) \right] \\
= $150,000
\]

Once the cash flows are identified, the NPV and IRR are readily found. The NPV, found by discounting the cash flows at the 8 percent required rate of return, is

\[
\text{NPV} = -540,000 + \sum_{t=1}^{10} \frac{102,000}{1.08^t} + \frac{150,000}{1.08^{10}} = $213,907
\]

The IRR, found with a financial calculator, is 15.40 percent. Because the NPV is positive, this equipment replacement decision is attractive. The fact that the IRR exceeds the 8 percent required rate of return leads to the same conclusion.

The key to estimating the incremental cash flows for the replacement is to compare the cash flows that occur with the new investment to the cash flows that would have occurred without the new investment. The analyst is comparing the cash flows with a particular course of action to the cash flows with an alternative course of action.

6.3 Spreadsheet Modeling

Although the examples in this reading can be readily solved with a financial calculator, capital budgeting is usually done with the assistance of personal computers and spreadsheets such as Microsoft Excel. Spreadsheets are heavily used for several reasons. Spreadsheets provide a very effective way of building even complex models. Built-in spreadsheet functions (such as those for finding rates of return) are easy to use. The
Lawton Enterprises is evaluating a project with the following characteristics:

- Fixed capital investment is $2,000,000.
- The project has an expected six-year life.
- The initial investment in net working capital is $200,000. At the end of each year, net working capital must be increased so that the cumulative investment in net working capital is one-sixth of the next year’s projected sales.
- The fixed capital is depreciated 30 percent in Year 1, 35 percent in Year 2, 20 percent in Year 3, 10 percent in Year 4, 5 percent in Year 5, and 0 percent in Year 6.
- Sales are $1,200,000 in Year 1. They grow at a 25 percent annual rate for the next two years, and then grow at a 10 percent annual rate for the last three years.
- Fixed cash operating expenses are $150,000 for Years 1–3 and $130,000 for Years 4–6.
- Variable cash operating expenses are 40 percent of sales in Year 1, 39 percent of sales in Year 2, and 38 percent in Years 3–6.
- Lawton’s marginal tax rate is 30 percent.
- Lawton will sell its fixed capital investments for $150,000 when the project terminates and recapture its cumulative investment in net working capital. Income taxes will be paid on any gains.
- The project’s required rate of return is 12 percent.
- If taxable income on the project is negative in any year, the loss will offset gains elsewhere in the corporation, resulting in a tax savings.

1. Determine whether this is a profitable investment using the NPV and IRR.
2. If the tax rate increases to 40 percent and the required rate of return increases to 14 percent, is the project still profitable?

Solution to 1:

Table 19: Cash Flows for Lawton Investment (Rounded to Nearest $1,000)

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed capital investment</td>
<td>−2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWC investments</td>
<td>−200</td>
<td>−50</td>
<td>−63</td>
<td>−31</td>
<td>−34</td>
<td>−38</td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td>1,200</td>
<td>1,500</td>
<td>1,875</td>
<td>2,063</td>
<td>2,269</td>
<td>2,496</td>
<td></td>
</tr>
<tr>
<td>Fixed cash expenses</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Variable cash expenses</td>
<td>480</td>
<td>585</td>
<td>713</td>
<td>784</td>
<td>862</td>
<td>948</td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>600</td>
<td>700</td>
<td>400</td>
<td>200</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Operating income before taxes</td>
<td>−30</td>
<td>65</td>
<td>613</td>
<td>949</td>
<td>1,177</td>
<td>1,417</td>
<td></td>
</tr>
<tr>
<td>Taxes on operating income</td>
<td>−9</td>
<td>20</td>
<td>184</td>
<td>285</td>
<td>353</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>Operating income after taxes</td>
<td>−21</td>
<td>45</td>
<td>429</td>
<td>664</td>
<td>824</td>
<td>992</td>
<td></td>
</tr>
<tr>
<td>Add back: Depreciation</td>
<td>600</td>
<td>700</td>
<td>400</td>
<td>200</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 19

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>After-tax operating cash flow</td>
<td>579</td>
<td>745</td>
<td>829</td>
<td>864</td>
<td>924</td>
<td>992</td>
<td></td>
</tr>
<tr>
<td>Salvage value</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxes on salvage value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return of NWC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>416</td>
<td></td>
</tr>
<tr>
<td>Total after-tax cash flows</td>
<td>–2,200</td>
<td>529</td>
<td>682</td>
<td>798</td>
<td>830</td>
<td>886</td>
<td>1,513</td>
</tr>
<tr>
<td>NPV (at (r = 12) percent)</td>
<td>1,181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.60%</td>
</tr>
</tbody>
</table>

Because the NPV of $1,181,000 is positive, the project is profitable for Lawton to undertake. The IRR investment decision rule also indicates that the project is profitable because the IRR of 26.60 percent exceeds the 12 percent required rate of return.

Solution to 2:

The tax rate and required return can be changed in the spreadsheet model. When these changes are made, the NPV becomes $736,000 and the IRR becomes 24.02 percent. (The revised spreadsheet is not printed here.) Although profitability is lower, the higher tax rate and required rate of return do not change the investment decision.

6.4 Effects of Inflation on Capital Budgeting Analysis

Inflation affects capital budgeting analysis in several ways. The first decision the analyst must make is whether to do the analysis in “nominal” terms or in “real” terms. Nominal cash flows include the effects of inflation, while real cash flows are adjusted downward to remove the effects of inflation. It is perfectly acceptable to do the analysis in either nominal or real terms, and sound decisions can be made either way. However, inflation creates some issues regardless of the approach.

The cash flows and discount rate used should both be nominal or both be real. In other words, nominal cash flows should be discounted at a nominal discount rate, and real cash flows should be discounted at a real rate. The real rate, just like real cash flows, has had the effect of inflation taken out. In general, the relationship between real and nominal rates is

\[
(1 + \text{Nominal rate}) = (1 + \text{Real rate})(1 + \text{Inflation rate})
\]

Inflation reduces the value of depreciation tax savings (unless the tax system adjusts depreciation for inflation). The effect of expected inflation is captured in the discounted cash flow analysis. If inflation is higher than expected, the profitability of the investment is correspondingly lower than expected. Inflation essentially shifts wealth from the taxpayer to the government. Higher-than-expected inflation increases the corporation’s real taxes because it reduces the value of the depreciation tax shelter. Conversely, lower-than-expected inflation reduces real taxes (the depreciation tax shelters are more valuable than expected).

Inflation also reduces the value of fixed payments to bondholders. When bonds are originally issued, bondholders pay a price for the bonds reflecting their inflationary expectations. If inflation is higher than expected, the real payments to bondholders
are lower than expected. Higher-than-expected inflation shifts wealth from bondholders to the issuing corporations. Conversely, if inflation is lower than expected, the real interest expenses of the corporation increase, shifting wealth from the issuing corporation to its bondholders.

Finally, inflation does not affect all revenues and costs uniformly. The company’s after-tax cash flows will be better or worse than expected depending on how particular sales outputs or cost inputs are affected. Furthermore, contracting with customers, suppliers, employees, and sources of capital can be complicated as inflation rises.

The capital budgeting model accommodates the effects of inflation, although inflation complicates the capital budgeting process (and the operations of a business, in general).

PROJECT ANALYSIS AND EVALUATION

Assessing the opportunity costs and analyzing the risks of capital investments becomes more complex and sophisticated as you examine real cases. The first project interaction we examine in this section is that of comparing mutually exclusive projects with unequal lives. We will briefly describe other project interactions, but will not examine them in detail. We also examine the process of capital budgeting under capital rationing.

Up to this point, we have largely ignored the issue of accounting for risk. We will introduce risk analysis in two ways. The first is accounting for risk on a stand-alone basis. The second is accounting for risk on a systematic basis.

7.1 Mutually Exclusive Projects with Unequal Lives

We have previously looked at mutually exclusive projects and decided that the best project is the one with the greatest NPV. However, if the mutually exclusive projects have differing lives and the projects will be replaced (or replicated) repeatedly when they wear out, the analysis is more complicated. The analysis of a one-shot (one time only) investment differs from that of an investment chain (in which the asset is replaced regularly in the future).

For example, assume we have two projects with unequal lives of two and three years, with the following after-tax cash flows:

<table>
<thead>
<tr>
<th></th>
<th>CF<sub>t</sub></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project S</td>
<td></td>
<td>-100</td>
<td>60</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Project L</td>
<td></td>
<td>-140</td>
<td>80</td>
<td>70</td>
<td>60</td>
</tr>
</tbody>
</table>

Both projects have a 10 percent required rate of return. The NPV of Project S is $28.93 and the NPV of Project L is $35.66. Given that the two projects are mutually exclusive, Project L, with the greater NPV, should be chosen.

However, let us now assume that these are not one-shot investments, but investments in assets that the company will need to replace when they wear out. Project S would be replaced every two years and Project L every three years. This situation is often referred to as a replacement chain. In this type of problem, you should examine the entire chain and not just the first link in the chain. If the projects are part of a replacement chain, examining the cash flows for only the initial investment for Projects S and L is improper because Project L provides cash flows during Year 3, when Project S provides none.
There are two logically equivalent ways of comparing mutually exclusive projects in a replacement chain. They are the “least common multiple of lives” approach and the “equivalent annual annuity” approach.

7.1.1 Least Common Multiple of Lives Approach

For the least common multiple of lives approach, the analyst extends the time horizon of analysis so that the lives of both projects will divide exactly into the horizon. For Projects S and L, the least common multiple of 2 and 3 is 6: The two-year project would be replicated three times over the six-year horizon and the three-year project would be replicated two times over the six-year horizon.\(^9\) The cash flows for replicating Projects S and L over a six-year horizon are shown below:

<table>
<thead>
<tr>
<th>Time (t)</th>
<th>CF, Project S</th>
<th>CF, Project L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-100</td>
<td>-140</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>(-100+90)</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>(-140+60)</td>
</tr>
<tr>
<td>4</td>
<td>(-100+90)</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>60</td>
</tr>
</tbody>
</table>

Discounting the cash flows for the six-year horizon results in an NPV for Project S of $72.59 and an NPV for Project L of $62.45. Apparently, investing in Project S and replicating the investment over time has a greater NPV than choosing Project L and replicating it. This decision is the reverse of the one we made when looking solely at the NPVs of the initial investments!

Because the NPV of a single investment represents the present values of its cash flows, you can also visualize the NPV of a replacement chain as the present value of the NPVs of each investment (or link) in the chain. For Projects S and L, the NPVs of each investment are shown on the timelines below:

<table>
<thead>
<tr>
<th>Time (t)</th>
<th>CF, Project S</th>
<th>CF, Project L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>28.93</td>
<td>35.66</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>28.93</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>28.93</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investing in Project S is equivalent to receiving values of $28.93 at times 0, 2, and 4, while investing in Project L is equivalent to receiving values of $35.66 at times 0 and 3. The present values of these cash flow patterns are $72.59 for Project S and $62.45 for Project L. Discounting the NPVs of each investment in the chain is equivalent to discounting all of the individual cash flows in the chain.

7.1.2 Equivalent Annual Annuity Approach

The other method for properly evaluating a replacement chain is called the equivalent annual annuity (EAA) approach. The name for this approach is very descriptive. For an investment project with an outlay and variable cash flows in the future, the project NPV summarizes the equivalent value at time zero. For this same project, the EAA is the annuity payment (series of equal annual payments over the project’s life) that is equivalent in value to the NPV.

\(^9\) The least common multiple of lives is not necessarily the product of the two lives, as in the case of Projects S and L. For example, if two projects have lives of 8 and 10 years, the least common multiple of lives is 40 years, not 80. Both 8 and 10 are exactly divisible into 40.
Analysts can use a simple two-step procedure to find the EAA. The first step is to find the present value of all of the cash flows for an investment—the investment’s NPV. The second step is to calculate an annuity payment that has a value equivalent to the NPV. For Project S above, we already calculated the NPV of the project over its two-year life to be $28.93. The second step is to find an annuity payment for the two-year life that is equivalent. For a two-year life and a 10 percent discount rate, a payment of $16.66 is the equivalent annuity.

The EAA for Project L is found by annuitizing its $35.66 NPV over three years, so the EAA for Project L is $14.34.

The decision rule for the EAA approach is to choose the investment chain that has the highest EAA, which in this case is Project S.

Given these two approaches to comparing replacement chains, which one should the analyst use? As a practical matter, the two approaches are logically equivalent and will result in the same decision. Consequently, the analyst can choose one approach over the other based on personal preference. Or, if the audience for the analyst’s work prefers to see the analysis using one approach, the analyst can simply produce the analysis in that format.

7.2 Capital Rationing

Capital rationing is the case in which the company’s capital budget has a size constraint. For example, the capital budget is a fixed money amount. A fixed capital budget can place the company in several interesting situations. To illustrate these, we will assume that the company has a fixed $1,000 capital budget and has the opportunity to invest in four projects. The projects are of variable profitability.

In the first situation, the budget is adequate to invest in all profitable projects. Consider the projects in Table 20.

<table>
<thead>
<tr>
<th>Table 20</th>
<th>First Capital Rationing Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investment Outlay</td>
</tr>
<tr>
<td>Project 1</td>
<td>600</td>
</tr>
<tr>
<td>Project 2</td>
<td>200</td>
</tr>
<tr>
<td>Project 3</td>
<td>200</td>
</tr>
<tr>
<td>Project 4</td>
<td>400</td>
</tr>
</tbody>
</table>

In this case, the company has two positive-NPV projects, Projects 1 and 2, which involve a total outlay of $800. Their total NPV is $290. The company should choose these projects, and it will have $200 in its capital budget left over. These excess funds can be used elsewhere in the company (moved to someone else’s budget, used to pay dividends or repurchase shares, or used to pay down debt). If a manager is afraid to return the excess funds and chooses to invest in Project 3, the manager will consume the whole capital budget but reduce the total NPV to $230, essentially destroying $60 of wealth for the company.

A second case exists in which the company has more profitable projects than it can choose, but it is able to invest in the most profitable ones available. Continuing with the $1,000 capital budget, this second case is illustrated in Table 21.

10 For Projects S and L, the NPVs of a replacement chain over the least common multiple of lives (six years) were $72.59 for Project S and $62.45 for Project L. If we discount the EAA for Project S ($16.66) and the EAA for Project L ($14.34) for six years (treating each as a six-year annuity), we have the same NPVs. Hence, the least common multiple of lives and EAA approaches are consistent with each other.
When the analyst has a fixed budget, the PI is especially useful because it shows the profitability of each investment per currency unit invested. If we rank these projects by their PIs, Projects 5, 6, and 7 are the best projects and we are able to select them. This selection results in a total NPV of $440. The IRRs, shown in the last column, are not a reliable guide to choosing projects under capital rationing because a high-IRR project may have a low NPV. Wealth maximization is best guided by the NPV criterion.

A third case exists in which the company has more profitable projects than it can choose, but it is not able to invest in the most profitable ones available. Assume the company cannot invest in fractional projects: It must take all or none of each project it chooses. Continuing with the $1,000 capital budget, this case is illustrated in Table 22.

<table>
<thead>
<tr>
<th>Table 21</th>
<th>Second Capital Rationing Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 5</td>
<td>600</td>
</tr>
<tr>
<td>Project 6</td>
<td>200</td>
</tr>
<tr>
<td>Project 7</td>
<td>200</td>
</tr>
<tr>
<td>Project 8</td>
<td>200</td>
</tr>
</tbody>
</table>

In this example, an unlimited budget of $1,800 would generate a total NPV of $750. However, when the budget constraint is imposed, the highest NPV results from choosing Projects 9 and 12. The company is forced to choose its best project and its fourth-best project, as indicated by their relative PIs. Any other combination of projects either violates the budget or has a lower total NPV.

Capital rationing has the potential to misallocate resources. Capital markets are supposed to allocate funds to their highest and best uses, with the opportunity cost of funds (used as the discount rate for NPVs or the hurdle rate for IRRs) guiding this allocation process. Capital rationing violates market efficiency if society’s resources are not allocated where they will generate the best returns. Companies that use capital rationing may be doing either “hard” or “soft” capital rationing. Under hard capital rationing, the budget is fixed and the managers cannot go beyond it. Under soft capital rationing, managers may be allowed to over-spend their budgets if they argue effectively that the additional funds will be deployed profitably.

In the case of hard rationing, choosing the optimal projects that fit within the budget and maximize the NPV of the company can be computationally intensive. Sometimes, managers use estimates and trial and error to find the optimal set of projects. The PI can be used as a guide in this trial and error process. Other times, the number of possibilities is so daunting that mathematical programming algorithms are used.

<table>
<thead>
<tr>
<th>Table 22</th>
<th>Third Capital Rationing Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 9</td>
<td>600</td>
</tr>
<tr>
<td>Project 10</td>
<td>600</td>
</tr>
<tr>
<td>Project 11</td>
<td>200</td>
</tr>
<tr>
<td>Project 12</td>
<td>400</td>
</tr>
</tbody>
</table>
7.3 Risk Analysis of Capital Investments—Stand-Alone Methods

So far, we have evaluated projects by calculating a single NPV to decide whether a project is profitable. We took a single value, or point estimate, of each input into the model and combined the values to calculate the NPV.

Risk is usually measured as a dispersion of outcomes. In the case of stand-alone risk, we typically measure the riskiness of a project by the dispersion of its NPVs or the dispersion of its IRRs. Sensitivity analysis, scenario analysis, and simulation analysis are very popular stand-alone risk analysis methods. These risk measures depend on the variation of the project’s cash flows.

To illustrate the stand-alone risk tools, we will use the following “base case” capital project:

<table>
<thead>
<tr>
<th></th>
<th>Base Value</th>
<th>Low Value</th>
<th>High Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit price</td>
<td>$5.00</td>
<td>$4.50</td>
<td>$5.50</td>
</tr>
<tr>
<td>Annual unit sales</td>
<td>40,000</td>
<td>35,000</td>
<td>45,000</td>
</tr>
<tr>
<td>Variable cost per unit</td>
<td>$1.50</td>
<td>$1.40</td>
<td>$1.60</td>
</tr>
<tr>
<td>Investment in fixed capital</td>
<td>$300,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment in working capital</td>
<td>$50,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project life</td>
<td>6 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciation (straight-line)</td>
<td>$50,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected salvage value</td>
<td>$60,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax rate</td>
<td>40 percent</td>
<td>38 percent</td>
<td>42 percent</td>
</tr>
<tr>
<td>Required rate of return</td>
<td>12 percent</td>
<td>10 percent</td>
<td>14 percent</td>
</tr>
</tbody>
</table>

The outlay, from Equation 6, is $300,000 plus $50,000, or $350,000. The annual after-tax operating cash flow, from Equation 7, is

\[
CF = (S - C - D)(1 - T) + D \\
= [(5 \times 40,000) - (1.50 \times 40,000) - (50,000)](1 - 0.40) + 50,000 \\
= $104,000
\]

The terminal year after-tax non-operating cash flow, from Equation 9, is

\[
TNOCF = Sal_v + NWCInv - T(Sal_v - B_v) \\
= 60,000 + 50,000 - 0.40(60,000 - 0) = $86,000
\]

The project NPV is

\[
NPV = -350,000 + \sum_{t=1}^{6} \frac{104,000}{1.12^t} + \frac{86,000}{1.12^6} = -350,000 + 471,157 = $121,157
\]

7.3.1 Sensitivity Analysis

Sensitivity analysis calculates the effect on the NPV of changes in one input variable at a time. The base case above has several input variables. If we wish to do a sensitivity analysis of several of them, we must specify the changes in each that we wish to evaluate. Suppose we want to consider the following:
We have changed each of six input variables. Table 23 shows the NPV calculated for the base case. Then the NPV is recalculated by changing one variable from its base case value to its high or low value.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Base Case ($)</th>
<th>With Low Estimate ($)</th>
<th>With High Estimate ($)</th>
<th>Range of Estimates ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit price</td>
<td>121,157</td>
<td>71,820</td>
<td>170,494</td>
<td>98,674</td>
</tr>
<tr>
<td>Annual unit sales</td>
<td>121,157</td>
<td>77,987</td>
<td>164,326</td>
<td>86,339</td>
</tr>
<tr>
<td>Cost per unit</td>
<td>121,157</td>
<td>131,024</td>
<td>111,289</td>
<td>19,735</td>
</tr>
<tr>
<td>Salvage value</td>
<td>121,157</td>
<td>112,037</td>
<td>127,236</td>
<td>15,199</td>
</tr>
<tr>
<td>Tax rate</td>
<td>121,157</td>
<td>129,165</td>
<td>113,148</td>
<td>16,017</td>
</tr>
<tr>
<td>Required return</td>
<td>121,157</td>
<td>151,492</td>
<td>93,602</td>
<td>57,890</td>
</tr>
</tbody>
</table>

As Table 23 shows, the project’s NPV is most sensitive to changes in the unit price variable. The project’s NPV is least sensitive to changes in the salvage value. Roughly speaking, the project’s NPV is most sensitive to changes in unit price and in unit sales. It is least affected by changes in cost per unit, salvage value, and the tax rate. Changes in the required rate of return also have a substantial effect, but not as much as changes in price or unit sales.

In a sensitivity analysis, the manager can choose which variables to change and by how much. Many companies have access to software that can be instructed to change a particular variable by a certain amount—for example, to increase or decrease unit price, unit sales, and cost per unit by 10 percent. The software then produces the changes in NPV for each of these changes. Sensitivity analysis can be used to establish which variables are most influential on the success or failure of a project.

7.3.2 Scenario Analysis

Sensitivity analysis calculates the effect on the NPV of changes in one variable at a time. In contrast, scenario analysis creates scenarios that consist of changes in several of the input variables and calculates the NPV for each scenario. Although corporations could do a large number of scenarios, in practice they usually do only three. They can be labeled variously, but we will present an example with “pessimistic,” “most likely,” and “optimistic” scenarios. Continuing with the basic example from the section above, the values of the input variables for the three scenarios are given in the table below.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pessimistic</th>
<th>Most Likely</th>
<th>Optimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit price</td>
<td>$4.50</td>
<td>$5.00</td>
<td>$5.50</td>
</tr>
<tr>
<td>Annual unit sales</td>
<td>35,000</td>
<td>40,000</td>
<td>45,000</td>
</tr>
<tr>
<td>Variable cost per unit</td>
<td>$1.60</td>
<td>$1.50</td>
<td>$1.40</td>
</tr>
<tr>
<td>Investment in fixed capital</td>
<td>$320,000</td>
<td>$300,000</td>
<td>$280,000</td>
</tr>
<tr>
<td>Investment in working capital</td>
<td>$50,000</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
</tbody>
</table>
The most likely scenario is the same as the base case we used above for sensitivity analysis, and the NPV for the most likely scenario is $121,157. To form the pessimistic and optimistic scenarios, managers change several of the assumptions for each scenario. For the pessimistic scenario, several of the input variables are changed to reflect higher costs, lower revenues, and a higher required rate of return. As the table shows, the result is a negative NPV for the pessimistic scenario and an IRR that is less than the pessimistic scenario’s 13 percent required rate of return. For the optimistic scenario, the more favorable revenues, costs, and required rate of return result in very good NPV and IRR.

For this example, the scenario analysis reveals the possibility of an unprofitable investment, with a negative NPV and with an IRR less than the cost of capital. The range for the NPV is fairly large compared to the size of the initial investment, which indicates that the investment is fairly risky. This example included three scenarios for which management wants to know the profitability of the investment for each set of assumptions. Other scenarios can be investigated if management chooses to do so.

7.3.3 Simulation (Monte Carlo) Analysis

Simulation analysis is a procedure for estimating a probability distribution of outcomes, such as for the NPV or IRR for a capital investment project. Instead of assuming a single value (a point estimate) for the input variables in a capital budgeting spreadsheet, the analyst can assume several variables to be stochastic, following their own probability distributions. By simulating the results hundreds or thousands of times, the analyst can build a good estimate of the distributions for the NPV or IRR. Because of the volume of computations, analysts and corporate managers rely heavily on their personal computers and specialized simulation software such as @RISK. Example 8 presents a simple simulation analysis.

Example 8

Capital Budgeting Simulation

Gouhua Zhang has made the following assumptions for a capital budgeting project:

- Fixed capital investment is 20,000; no investment in net working capital is required.
- The project has an expected five-year life.

11 @RISK is a popular and powerful risk analysis tool sold by Palisade Corporation. @RISK is an add-in for Microsoft Excel that allows simulation techniques to be incorporated into spreadsheet models.
The fixed capital is depreciated straight-line to zero over a five-year life. The salvage value is normally distributed with an expected value of 2,000 and a standard deviation of 500.

Unit sales in Year 1 are normally distributed with a mean of 2,000 and a standard deviation of 200.

Unit sales growth after Year 1 is normally distributed with a mean of 6 percent and standard deviation of 4 percent. Assume the same sales growth rate for Years 2–5.

The sales price is 5.00 per unit, normally distributed with a standard deviation of 0.25 per unit. The same price holds for all five years.

Cash operating expenses as a percentage of total revenue are normally distributed with a mean and standard deviation of 30 percent and 3 percent, respectively.

The discount rate is 12 percent and the tax rate is 40 percent.

1. What are the NPV and IRR using the expected values of all input variables?
2. Perform a simulation analysis and provide probability distributions for the NPV and IRR.

Solution to 1:

Table 25 Expected Cash Flows for Simulation Example

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed capital</td>
<td>-20,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After-tax salvage value</td>
<td></td>
<td>1,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Output</td>
<td>2,000</td>
<td>2,120</td>
<td>2,247</td>
<td>2,382</td>
<td>2,525</td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td>10,000</td>
<td>10,600</td>
<td>11,236</td>
<td>11,910</td>
<td>12,625</td>
<td></td>
</tr>
<tr>
<td>Cash operating expenses</td>
<td>3,000</td>
<td>3,180</td>
<td>3,371</td>
<td>3,573</td>
<td>3,787</td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>Operating income before taxes</td>
<td>3,000</td>
<td>3,420</td>
<td>3,865</td>
<td>4,337</td>
<td>4,837</td>
<td></td>
</tr>
<tr>
<td>Taxes on operating income</td>
<td>1,200</td>
<td>1,368</td>
<td>1,546</td>
<td>1,735</td>
<td>1,935</td>
<td></td>
</tr>
<tr>
<td>Operating income after taxes</td>
<td>1,800</td>
<td>2,052</td>
<td>2,319</td>
<td>2,602</td>
<td>2,902</td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>Total after-tax cash flow</td>
<td>-20,000</td>
<td>5,800</td>
<td>6,052</td>
<td>6,319</td>
<td>6,602</td>
<td>8,102</td>
</tr>
</tbody>
</table>

NPV (at $r = 12\%$) | 3,294
IRR | 18.11%

Based on the point estimates for each variable (the mean values for each), which are shown in Table 25 above, Zhang should find the NPV to be 3,294 and the IRR to be 18.11 percent.

Solution to 2:

Zhang performs a simulation using @RISK with 10,000 iterations. For each iteration, values for the five stochastic variables (price, output, output growth rate, cash expense percentage, and salvage value) are selected from their assumed distributions and the NPV and IRR are calculated. After the 10,000 iterations, the resulting information about the probability distributions for the NPV and IRR is shown in Figure 6 and Table 26.
Figure 6 Probability Distributions for NPV and IRR

A. Distribution for NPV

Mean = 3338.362

B. Distribution for IRR

Mean = 0.1807078

Table 26 Summary Statistics for NPV and IRR

<table>
<thead>
<tr>
<th>Statistic</th>
<th>NPV</th>
<th>IRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>3,338</td>
<td>18.07%</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>2,364</td>
<td>4.18%</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.2909</td>
<td>0.1130</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>3.146</td>
<td>2.996</td>
</tr>
<tr>
<td>Median</td>
<td>3,236</td>
<td>18.01%</td>
</tr>
<tr>
<td>90% confidence interval</td>
<td>– 379 to 7,413</td>
<td>11.38% to 25.13%</td>
</tr>
</tbody>
</table>
This capital budgeting simulation example was not very complex, with only five stochastic variables. The example’s five input variables were assumed to be normally distributed—in reality, many other distributions can be employed. Finally, the randomly chosen values for each variable were assumed to be independent. They can be selected jointly instead of independently. Simulation techniques have proved to be a boon for addressing capital budgeting problems.

Sensitivity analysis, scenario analysis, and simulation analysis are well-developed stand-alone risk analysis methods. These risk measures depend on the variation of the project’s cash flows. Market risk measures, presented in the next section, depend not only on the variation of a project’s cash flows, but also on how those cash flows covary with (or correlate with) market returns.

7.4 Risk Analysis of Capital Investments—Market Risk Methods

When using market risk methods, the discount rate to be used in evaluating a capital project is the rate of return required on the project by a diversified investor. The discount rate should thus be a risk-adjusted discount rate, which includes a premium to compensate investors for risk. An alternative approach, which is also conceptually sound, is the “certainty-equivalent method.” In this method, certainty-equivalent cash flows (expected cash flows that are reduced to certainty equivalents) are valued by discounting them at a risk-free discount rate. The use of risk-adjusted discount rates is more intuitive and much more popular.

12 Our approach to capital budgeting is to discount expected cash flows at a risk-adjusted cost of capital. An alternative approach, which is also conceptually sound, is the “certainty-equivalent method.” In this method, certainty-equivalent cash flows (expected cash flows that are reduced to certainty equivalents) are valued by discounting them at a risk-free discount rate. The use of risk-adjusted discount rates is more intuitive and much more popular.
priced or valued in the marketplace. The two equilibrium models for estimating this risk premium are the capital asset pricing model (CAPM) and arbitrage pricing theory (APT). We will discuss the CAPM as a way of finding risk-adjusted discount rates, although you should be aware that other methods can be used.

In the CAPM, total risk can be broken into two components: systematic risk and unsystematic risk. Systematic risk is the portion of risk that is related to the market and that cannot be diversified away. Unsystematic risk is non-market risk, risk that is idiosyncratic and that can be diversified away. Diversified investors can demand a risk premium for taking systematic risk, but not unsystematic risk. Hence, the stand-alone risk measures—total risk measured by the dispersion of the NPV or the IRR—are inappropriate when the corporation is diversified, or, as is more likely, when the corporation’s investors are themselves diversified.

In the capital asset pricing model, a project’s or asset’s “beta,” or \(\beta \), is generally used as a measure of systematic risk. The security market line (SML) expresses the asset’s required rate of return as a function of \(\beta \):

\[
ri = R_F + \beta \left[E(R_M) - R_F \right]
\]

where

\(ri \) = required return for project or asset \(i \)
\(R_F \) = risk-free rate of return
\(\beta_i \) = beta of project or asset \(i \)
\([E(R_M) - R_F] \) = market risk premium, the difference between the expected market return and the risk-free rate of return

The project’s required rate of return is equal to the risk-free rate plus a risk premium, where the risk premium is the product of the project beta and the market risk premium.

Here, the required rate of return (sometimes called a hurdle rate) is specific to the risk of the project. There is no one hurdle rate appropriate for all projects.

The security market line (SML) is graphed in Figure 7. This line indicates the required rate of return for a project, given its beta. The required rate of return can be used in two ways:

- The SML is used to find the required rate of return. The required rate of return is then used to find the NPV. Positive NPV projects are accepted and negative NPV projects are rejected.
- The SML is used to find the required rate of return. The project’s IRR is compared to the required rate of return. If the IRR is greater than the required return, the project is accepted (this point would plot above the SML in Figure 7). If the IRR is less than the required rate of return (below the SML), the project is rejected.

13 The capital asset pricing model uses this intuition to show how risky assets should be priced relative to the market. While the CAPM assigns a single market risk premium for each security, the APT develops a set of risk premia. The CAPM and APT are developed in detail elsewhere in the CFA curriculum.
Example 9 illustrates how the capital asset pricing model and the security market line are used as part of the capital budgeting process.

Example 9

Using the SML to Find the Project Required Rate of Return

Premont Systems is evaluating a capital project with the following characteristics:

- The initial outlay is €150,000.
- Annual after-tax operating cash flows are €28,000.
- After-tax salvage value at project termination is €20,000.
- Project life is 10 years.
- The project beta is 1.20.
- The risk-free rate is 4.2 percent and the expected market return is 9.4 percent.

1. Compute the project NPV. Should the project be accepted?
2. Compute the project IRR. Should the project be accepted?

Solution to 1:

The project’s required rate of return is

\[r_i = R_f + \beta_i [E(R_M) - R_f] = 4.2\% + 1.20(9.4\% - 4.2\%) \]
\[= 4.2\% + 6.24\% = 10.44\% \]

The cash flows discounted at 10.44 percent give an NPV of

\[\text{NPV} = -150,000 + \sum_{t=1}^{10} \frac{28,000}{1.1044^t} + \frac{20,000}{1.1044^{10}} = €26,252 \]

The project should be accepted because it has a positive NPV.

Solution to 2:

The IRR, found with a financial calculator, is 14.24 percent. The required rate of return, established with the SML as in the solution to Question 1 above, is 10.44 percent. Since the IRR exceeds the required rate of return, the project should be accepted. For a beta of 1.20, the IRR of 14.24 percent would plot above the SML.
Using project betas to establish required rates of return for capital projects is especially important when a project’s risk differs from that of the company. The cost of capital for a company is estimated for the company as a whole—it is based on the average riskiness of the company’s assets as well as its financial structure. The required rates of return of debt and equity are used to estimate the weighted (overall) average cost of capital (WACC) for the company. When a project under consideration is more risky or less risky than the company, the WACC should not be used as the project’s required rate of return.

For example, assume that the risk-free rate of return is 3 percent, the market return is 8 percent, and the company beta is 0.9. Assume also that the company is considering three projects: Project A with a 0.5 beta, Project B with a 0.9 beta, and Project C with a 1.1 beta. The required rates of return for the company and for each project are as follows:

- **Company**: \(3\% + 0.9(8\% - 3\%) = 7.5\%\)
- **Project A**: \(3\% + 0.5(8\% - 3\%) = 5.5\%\)
- **Project B**: \(3\% + 0.9(8\% - 3\%) = 7.5\%\)
- **Project C**: \(3\% + 1.1(8\% - 3\%) = 8.5\%\)

If management uses the company WACC as the required return for all projects, this rate is too high for Project A, making it less likely that Project A would be accepted. Project B has the same risk as the company, so it would be evaluated fairly. Using the WACC for Project C makes the error of using a discount rate that is too low, which would make it more likely that this high-risk project would be accepted. Whenever possible, it is desirable to use project-specific required rates of return instead of the company’s overall required rate of return.

Market returns are readily available for publicly traded companies. The stock betas of these companies can then be calculated, and this calculation assists in estimating the companies’ betas and WACC. Unfortunately, however, the returns for specific capital projects are not directly observable, and we have to use proxies for their betas. Frequently, we can employ the pure-play method, in which the analyst identifies other publicly traded stocks in the same business as the project being considered. The betas for the stocks of these companies are used to estimate a project beta. In the pure-play method, these proxy companies need to be relatively focused in the same line of business as the project. When the pure-play method is not possible, other methods, such as estimating accounting betas or cross-sectional regression analysis, are used.

7.5 Real Options

Real options are capital budgeting options that allow managers to make decisions in the future that alter the value of capital budgeting investment decisions made today. Instead of making all capital budgeting decisions now, at time zero, managers can wait and make additional decisions at future dates when these future decisions are contingent upon future economic events or information. These sequential decisions, in which future decisions depend on the decisions made today as well as on future economic events, are very realistic capital budgeting applications.

Real options are like financial options—they just deal with real assets instead of financial assets. A simple financial option could be a call option on a share of stock. Suppose the stock is selling for $50, the exercise (strike) price is $50, and the option expires in one year. If the stock goes up to $60, you exercise the option and have a gain of $10 in one year. If the stock goes down to $40, you do not exercise, and you have no gain. However, no gain is better than the $10 loss you would have had if you had purchased the stock at the beginning of the year. Real options, like financial options, entail the right to make a decision, but not the obligation. The corporation should exercise a real option only if it is value-enhancing.
Just as financial options are contingent on an underlying asset, real options are contingent on future events. The flexibility that real options give to managers can greatly enhance the NPV of the company’s capital investments. The following are several types of these real options:

Timing Options Instead of investing now, the company can delay investing. Delaying an investment and basing the decision on hopefully improved information that you might have in, say, a year could help improve the NPV of the projects selected.

Sizing Options If after investing, the company can abandon the project when the financial results are disappointing, it has an abandonment option. At some future date, if the cash flow from abandoning a project exceeds the present value of the cash flows from continuing the project, managers should exercise the abandonment option. Conversely, if the company can make additional investments when future financial results are strong, the company has a growth option or an expansion option.

Flexibility Options Once an investment is made, other operational flexibilities may be available besides abandonment or expansion. For example, suppose demand exceeds capacity. Management may be able to exercise a price-setting option. By increasing prices, the company could benefit from the excess demand, which it cannot do by increasing production. There are also production-flexibility options. Even though it is expensive, the company can profit from working overtime or from adding additional shifts. The company can also work with customers and suppliers for their mutual benefit whenever a demand–supply mismatch occurs. This type of option also includes the possibility of using different inputs or producing different outputs.

Fundamental Options In cases like those above, there are options embedded in a project that can raise its value. In other cases, the whole investment is essentially an option. The payoffs from the investment are contingent on an underlying asset, just like most financial options. For example, the value of an oil well or refinery investment is contingent upon the price of oil. The value of a gold mine is contingent upon the price of gold. If oil prices are low, you may not drill a well. If oil prices are high, you go ahead and drill. Many R&D (research and development) projects also look like options.

There are several approaches to evaluating capital budgeting projects with real options. One of the difficulties with real options is that the analysis can be very complicated. Although some of the problems are simple and can be readily solved, many of them are so complex that they are expensive to evaluate or you may not have much confidence in the analysis. Four common sense approaches to real options analysis are presented below.

1. **Use DCF analysis without considering options.** If the NPV is positive without considering real options, and the project has real options that would simply add more value, it is unnecessary to evaluate the options. Just go ahead and make the investment.

2. **Consider the Project NPV = NPV(based on DCF alone) – Cost of options + Value of options.** Go ahead and calculate the NPV based on expected cash flows. Then simply add the value associated with real options. For example, if a project has a negative NPV based on DCF alone of $50 million, will the options add at least that much to its value?

3. **Use decision trees.** Although they are not as conceptually sound as option pricing models, decision trees can capture the essence of many sequential decision making problems.

4. **Use option pricing models.** Except for simple options, the technical requirements for solving these models may require you to hire special consultants or “quants.” Some large companies have their own specialists.
The analyst is confronted with 1) a variety of real options that investment projects may possess and 2) a decision about how to reasonably value these options. Example 10 deals with production flexibility; in this case, an additional investment outlay gives the company an option to use alternative fuel sources.

Example 10

Production-Flexibility Option

Sackley AquaFarms estimated the NPV of the expected cash flows from a new processing plant to be - $0.40 million. Sackley is evaluating an incremental investment of $0.30 million that would give management the flexibility to switch between coal, natural gas, and oil as an energy source. The original plant relied only on coal. The option to switch to cheaper sources of energy when they are available has an estimated value of $1.20 million. What is the value of the new processing plant including this real option to use alternative energy sources?

Solution:

The NPV, including the real option, should be

$$\text{Project NPV} = \text{NPV (based on DCF alone)} - \text{Cost of options} + \text{Value of options}$$

$$\text{Project NPV} = -0.40 \text{ million} - 0.30 \text{ million} + 1.20 \text{ million}$$

$$\text{Project NPV} = $0.50 \text{ million}$$

Without the flexibility offered by the real option, the plant is unprofitable. The real option to adapt to cheaper energy sources adds enough to the value of this investment to give it a positive NPV.

Two of the most valuable options are to abandon or expand a project at some point after the original investment. Example 11 illustrates the abandonment option.

Example 11

Abandonment Option

Nyberg Systems is considering a capital project with the following characteristics:

- The initial outlay is €200,000.
- Project life is four years.
- Annual after-tax operating cash flows have a 50 percent probability of being €40,000 for the four years and a 50 percent probability of being €80,000.
- Salvage value at project termination is zero.
- The required rate of return is 10 percent.
- In one year, after realizing the first-year cash flow, the company has the option to abandon the project and receive the salvage value of €150,000.

1. Compute the project NPV assuming no abandonment.
2. What is the optimal abandonment strategy? Compute the project NPV using that strategy.

Solution to 1:

The expected annual after-tax operating cash flow is $0.50(40,000) + 0.50(80,000) = €60,000. The cash flows discounted at 10 percent give an NPV of
\[
\text{NPV} = -200,000 + \sum_{t=1}^{4} \frac{60,000}{1.10^t} = -€9,808
\]

The project should be rejected because it has a negative NPV.

Solution to 2:

The optimal abandonment strategy would be to abandon the project in one year if the subsequent cash flows are worth less than the abandonment value. If at the end of the first year the low cash flow occurs, you can abandon for €150,000 and give up €40,000 for the following three years. The €40,000 annual cash flow, discounted for three years at 10 percent, has a present value of only €99,474, so you should abandon. Three years of the higher €80,000 cash flow has a present value of €198,948, so you should not abandon. After the first year, abandon if the low cash flow occurs, and do not abandon if the high cash flow occurs.

If you abandon when the low cash flow occurs, you receive the first year cash flow and the abandonment value and then no further cash flows. In that case, the NPV is

\[
\text{NPV} = -200,000 + \sum_{t=1}^{4} \frac{80,000}{1.10^t} = €53,589
\]

If you abandon when the low cash flow occurs, you receive the first year cash flow and the abandonment value and then no further cash flows. In that case, the NPV is

\[
\text{NPV} = -200,000 + \frac{40,000 + 150,000}{1.10} = -€27,273
\]

The expected NPV is then

\[
\text{NPV} = 0.50(53,589) + 0.50(-27,273) = €13,158
\]

Optimal abandonment raises the NPV by 13,158 – (– €9,808) = €22,966.

A fundamental real option could be a gold mine or an oil well. Example 12 looks at the possibility of purchasing the rights to a gold mining property.

Example 12

Erichmann Gold Mine

The Erichmann family has offered a five-year option on one of its small gold mining properties for $10 million. The current price of gold is $400 per ounce. The mine holds an estimated 500,000 ounces that could be mined at an average cost of $450 per ounce. The maximum production rate is 200,000 ounces per year. How would you assess the Erichmann family’s offer?

Solution:

A binomial option model can be built for the underlying price of gold. These binomial models are very common in assessing the value of financial options such as puts and calls on stocks, callable bonds, or mortgages with prepayment options. Whenever the price path for gold is above $450 per ounce, it might be attractive to commence mining. Of course, you would cease mining whenever the price is lower. With additional information about the volatility of gold prices and the risk-free interest rate, an expert could build this binomial model and value the real option. Comparing the value of this real option to its $10 million cost would enable you to make an investment decision.
A critical assumption of many applications of traditional capital budgeting tools is that the investment decision is made now, with no flexibility considered in future decisions. A more reasonable approach is to assume that the corporation is making sequential decisions, some now and some in the future. A combination of optimal current and future decisions is what will maximize company value. Real options analysis tries to incorporate rational future decisions into the assessment of current investment decision making. This future flexibility, exercised intelligently, enhances the value of capital investments. Some real options can be valued with readily available option pricing models, such as the binomial model or the Black–Scholes–Merton option pricing model. Unfortunately, many real options are very complex and hard to value, which poses a challenge as the analyst tries to lay out the economic contingencies of an investment and assess their values. A real option, with the future flexibility it provides, can be an important piece of the value of many projects.

7.6 Common Capital Budgeting Pitfalls

Although the principles of capital budgeting may be easy to learn, applying the principles to real world investment opportunities can be challenging. Some of the common mistakes that managers make are listed in Table 27.

Table 27

<table>
<thead>
<tr>
<th>Common Capital Budgeting Pitfalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not incorporating economic responses into the investment analysis</td>
</tr>
<tr>
<td>Misusing capital budgeting templates</td>
</tr>
<tr>
<td>Pet projects</td>
</tr>
<tr>
<td>Basing investment decisions on EPS, net income, or return on equity</td>
</tr>
<tr>
<td>Using IRR to make investment decisions</td>
</tr>
<tr>
<td>Bad accounting for cash flows</td>
</tr>
<tr>
<td>Overhead costs</td>
</tr>
<tr>
<td>Not using the appropriate risk-adjusted discount rate</td>
</tr>
<tr>
<td>Spending all of the investment budget just because it is available</td>
</tr>
<tr>
<td>Failure to consider investment alternatives</td>
</tr>
<tr>
<td>Handling sunk costs and opportunity costs incorrectly</td>
</tr>
</tbody>
</table>

Economic Responses Economic responses to an investment often affect its profitability, and these responses have to be correctly anticipated. For example, in response to a successful investment, competitors can enter and reduce the investment’s profitability. Similarly, vendors, suppliers, and employees may want to gain from a profitable enterprise. Companies that make highly profitable investments often find that a competitive marketplace eventually causes profitability to revert to normal levels.

Template Errors Because hundreds or even thousands of projects need to be analyzed over time, corporations have standardized capital budgeting templates for managers to use in evaluating projects. This situation creates risks in that the template model may not match the project, or employees may input inappropriate information.

Pet Projects Pet projects are projects that influential managers want the corporation to invest in. Ideally, pet projects will receive the normal scrutiny that other investments receive and will be selected on the strength of their own merits. Often,

Chapter 4 of Chance (2003) gives an excellent overview of option pricing models.
unfortunately, pet projects are selected without undergoing normal capital budgeting analysis. Or the pet project receives the analysis, but overly optimistic projections are used to inflate the project’s profitability.

EPS, Net Income, or ROE Managers sometimes have incentives to boost EPS, net income, or ROE. Many investments, even those with strong NPVs, do not boost these accounting numbers in the short run and may even reduce them. Paying attention to short-run accounting numbers can result in choosing projects that are not in the long-run economic interests of the business.

Basing Decisions on the IRR The NPV criterion is economically sound. The IRR criterion is also sound for independent projects (with conventional cash flow patterns). If projects are mutually exclusive or competitive with each other, investing in projects based on the IRR will tend to result in choosing smaller, short-term projects with high IRRs at the expense of larger, longer-term, high NPV projects. Basing decisions on paybacks or accounting rates of return is even more dangerous. These measures can be economically unsound.

Bad Accounting for Cash Flows In analyzing a complicated project, it is easy to omit relevant cash flows, double count cash flows, and mishandle taxes.

Overhead Costs In large companies, the cost of a project must include the overhead it generates for such things as management time, information technology support, financial systems, and other support. Although these items are hard to estimate, over- or underestimating these overhead costs can lead to poor investment decisions.

Discount Rate Errors The required rate of return for a project should be based on its risk. If a project is being financed with debt (or with equity), you should still use the project’s required rate of return and not the cost of debt (or the cost of equity). Similarly, a high-risk project should not be discounted at the company’s overall cost of capital, but at the project’s required rate of return. Discount rate errors have a huge impact on the computed NPVs of long-lived projects.

Overspending and Underspending the Capital Budget Politically, many managers will spend all of their budget and argue that their budget is too small. In a well-run company, managers will return excess funds whenever their profitable projects cost less than their budget, and managers will make a sound case for extra funds if their budget is too small.

Failure to Consider Investment Alternatives Generating good investment ideas is the most basic step in the capital budgeting process, and many good alternatives are never even considered.

Sunk Costs and Opportunity Costs Ignoring sunk costs is difficult for managers to do. Furthermore, not identifying the economic alternatives (real and financial) that are the opportunity costs is probably the biggest failure in much analysis. Only costs that change with the decision are relevant.

OTHER INCOME MEASURES AND VALUATION MODELS

Capital budgeting was one of the first widespread applications of discounted cash flow analysis. In the basic capital budgeting model, the analyst values an investment by discounting future after-tax cash flows at the rate of return required by investors.
Subtracting the initial investment results in the project’s NPV. The future cash flows consist of after-tax operating cash flows plus returns of investment (such as salvage value and sale of working capital).

Analysts will employ and encounter other concepts of income and other valuation approaches besides this basic capital budgeting model. Because some of these other approaches are economically sound and widely employed, we will briefly describe some of them here. By considering these approaches, you can see the distinguishing features of each approach and that they should result in consistent valuations (if they are used correctly).

To facilitate the comparison of income measures and valuation models, we will employ as an example a simple company (the Granite Corporation) that invests in one project. The company goes out of business when that project expires. After evaluating that project with the NPV and IRR capital budgeting models, we will examine that same project using the following alternative methods:

- economic income and accounting income;
- economic profit valuation;
- residual income valuation; and
- claims valuation.

Our purpose is to show how the various income measures and valuation methods are related to each other.

8.1 The Basic Capital Budgeting Model

The basic capital budgeting model (presented earlier) identifies the after-tax operating cash flows from an investment as well as non-operating cash flows (such as the initial investment or future recovery of invested capital or net working capital). Then, these cash flows are discounted at the required rate of return for the asset to establish the NPV.

The base-case capital budgeting project is the following. The company is going to invest $150,000 and generate sales for the next five years as shown in Table 28. Variable cash operating expenses will be 50 percent of sales each year, and fixed cash operating expenses are $20,000. Depreciation is straight-line to zero, $30,000 per year with a zero book value at the end of five years. The income tax rate is 40 percent. Salvage value is $10,000, which is taxable at 40 percent, leaving an after-tax salvage value of $6,000 at the end of five years. The required rate of return is 10 percent.

Table 28 Basic Capital Budgeting Example for Granite Corporation

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed capital investment</td>
<td>−150,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td>150,000</td>
<td>200,000</td>
<td>250,000</td>
<td>200,000</td>
<td>150,000</td>
<td></td>
</tr>
<tr>
<td>Variable cash expenses</td>
<td>75,000</td>
<td>100,000</td>
<td>125,000</td>
<td>100,000</td>
<td>75,000</td>
<td></td>
</tr>
<tr>
<td>Fixed cash expenses</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>Operating income before taxes</td>
<td>25,000</td>
<td>50,000</td>
<td>75,000</td>
<td>50,000</td>
<td>25,000</td>
<td></td>
</tr>
<tr>
<td>Taxes at 40 percent</td>
<td>10,000</td>
<td>20,000</td>
<td>30,000</td>
<td>20,000</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>Operating income after taxes</td>
<td>15,000</td>
<td>30,000</td>
<td>45,000</td>
<td>30,000</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td>After-tax operating cash flow</td>
<td>45,000</td>
<td>60,000</td>
<td>75,000</td>
<td>60,000</td>
<td>45,000</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 28
Continued

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salvage value</td>
<td>10,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxes on salvage value</td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After-tax salvage value</td>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total after-tax cash flow</td>
<td>–150,000</td>
<td>45,000</td>
<td>60,000</td>
<td>75,000</td>
<td>60,000</td>
<td>51,000</td>
</tr>
<tr>
<td>NPV (at (r = 10) percent)</td>
<td>69,492</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRR</td>
<td>26.27%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present value of the after-tax cash flows for Years 1-5 is $219,492. Subtracting the investment of $150,000 results in the NPV of $69,492. The IRR for the investment is 26.27 percent.

8.2 Economic and Accounting Income

Economic income and accounting income differ from the after-tax operating cash flows used in the basic capital budgeting model.

Economic income is the profit realized from an investment. For a given year, economic income is the investment’s after-tax cash flow plus the change in the market value:

\[
\text{Economic income} = \text{Cash flow} + \text{Change in market value}
\]

Or

\[
\text{Economic income} = \text{Cash flow} - (\text{Beginning market value} - \text{Ending market value}) = \text{Cash flow} - \text{Economic depreciation}^{15}
\]

For the Granite Corporation, the cash flows are already calculated in Table 28. The beginning market value at time zero is the present value of the future after-tax cash flows at the 10 percent required rate of return, or $219,492. The market value at any future date is the present value of subsequent cash flows discounted back to that date. For the Granite Corporation, the cash flows, changes in market value, and economic incomes are shown in Table 29.

Table 29
Economic Income for Granite Corporation

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning market value</td>
<td>219,492</td>
<td>196,441</td>
<td>156,086</td>
<td>96,694</td>
<td>46,364</td>
</tr>
<tr>
<td>Ending market value</td>
<td>196,441</td>
<td>156,086</td>
<td>96,694</td>
<td>46,364</td>
<td>0</td>
</tr>
<tr>
<td>After-tax cash flow</td>
<td>45,000</td>
<td>60,000</td>
<td>75,000</td>
<td>60,000</td>
<td>51,000</td>
</tr>
<tr>
<td>Economic income</td>
<td>21,949</td>
<td>19,644</td>
<td>15,609</td>
<td>9,669</td>
<td>4,636</td>
</tr>
<tr>
<td>Economic rate of return</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>

15 These equations are conceptually identical because economic depreciation is the negative of the change in market value. For example, assume the cash flow is 10, the beginning market value is 30, and the ending market value is 25. Cash flow + Change in market value = Cash flow + (Ending market value – Beginning market value) = 10 + (25 – 30) = 5. Or, Cash flow – Economic depreciation = Cash flow – (Beginning market value – Ending market value) = 10 – (30 – 25) = 5.
In Year 1, the beginning value is $219,492 and the ending value is $196,441, so the change in value is –$23,051. The economic income is the cash flow plus the change in value, or $45,000 + (–$23,051) = $21,949. The economic income for Years 2–5 is found similarly. The economic rate of return is the year’s economic income divided by its beginning market value. Notice that the economic rate of return is precisely 10 percent each year, which was the required rate of return on the project.

Accounting income for this company will differ from the economic income for two reasons. First, the accounting depreciation is based on the original cost of the investment (not the market value of the investment). Consequently, the accounting depreciation schedule does not follow the declines in the market value of an asset. Besides being based on accounting depreciation instead of economic depreciation, accounting net income is the after-tax income remaining after paying interest expenses on the company’s debt obligations. In contrast, interest expenses are ignored when computing the economic income for an asset or the after-tax operating cash flows in the basic capital budgeting model. As explained in Section 3, the effects of financing costs are captured in the discount rate, not in the cash flows. In the capital budgeting model, if we included interest expenses in the cash flows, we would be double counting them.

To illustrate these differences, we will assume that the company borrows an amount equal to one-half of the value of the company, which is 50 percent of $219,492, or $109,746, and that it pays 8 1/3 percent interest each year on the beginning balance. With a 40 percent tax rate, the after-tax interest cost is 8 1/3% (1 – 0.40) = 5.0%. Because the Granite Corporation has a five-year life, it does not need to borrow or retain earnings for the future, and all cash flows will be distributed to bondholders and stockholders. Granite will maintain a 50 percent debt/value ratio on the company’s debt, so bondholders will receive 8 1/3 percent interest on their beginning bond balance and the debt will also be amortized (paid down) whenever the value of the company goes down. Furthermore, after all operating costs, interest expenses, and taxes are paid, stockholders will receive all remaining cash flows each year as a cash dividend or share repurchase.\footnote{The assumptions may be unrealistic, but this is a very simple corporation.}

The financial statements for the Granite Corporation are shown in Table 30.

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance sheets:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assets</td>
<td>150,000</td>
<td>120,000</td>
<td>90,000</td>
<td>60,000</td>
<td>30,000</td>
<td>0</td>
</tr>
<tr>
<td>Liabilities</td>
<td>109,746</td>
<td>98,221</td>
<td>78,043</td>
<td>48,347</td>
<td>23,182</td>
<td>0</td>
</tr>
<tr>
<td>Net worth</td>
<td>40,254</td>
<td>21,779</td>
<td>11,957</td>
<td>11,653</td>
<td>6,818</td>
<td>0</td>
</tr>
<tr>
<td>Income statements:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td>150,000</td>
<td>200,000</td>
<td>250,000</td>
<td>200,000</td>
<td>150,000</td>
<td></td>
</tr>
<tr>
<td>Variable cash expenses</td>
<td>75,000</td>
<td>100,000</td>
<td>125,000</td>
<td>100,000</td>
<td>75,000</td>
<td></td>
</tr>
<tr>
<td>Fixed cash expenses</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>EBIT</td>
<td>25,000</td>
<td>50,000</td>
<td>75,000</td>
<td>50,000</td>
<td>25,000</td>
<td></td>
</tr>
<tr>
<td>Interest expense</td>
<td>9,146</td>
<td>8,185</td>
<td>6,504</td>
<td>4,029</td>
<td>1,932</td>
<td></td>
</tr>
<tr>
<td>EBT</td>
<td>15,854</td>
<td>41,815</td>
<td>68,496</td>
<td>45,971</td>
<td>23,068</td>
<td></td>
</tr>
<tr>
<td>Taxes at 40 percent</td>
<td>6,342</td>
<td>16,726</td>
<td>27,399</td>
<td>18,388</td>
<td>9,227</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
The income statement for financial reporting purposes differs from that used in the capital budgeting model because the interest on debt obligations is now taken out as an expense before arriving at net income. The book value of the company’s assets is based on the original accounting cost minus accumulated accounting depreciation. Note that the liabilities and net worth are also declining in the balance sheet. The liabilities decline each year, reflecting the amounts that were paid annually to reduce the principal of the loan. Notice, also, that the net worth is declining. Normally, the net worth of a company increases because beginning equity is increased by net retained earnings—the excess of net income over dividends paid. In this case, the company is shrinking and going out of business in five years, so the distributions to shareholders (which can be either cash dividends or share repurchases) exceed net income and net worth declines. The amounts that are paid each year to reduce debt and for dividends/share repurchases are shown in the financing section of the statement of cash flows.

Accounting measures of performance also can differ from economic measures of performance. Table 31 repeats the economic income and accounting income from Tables 29 and 30. The table also shows the economic rate of return each year and two popular accounting measures of performance: the return on equity (ROE = Net income divided by Beginning equity) and return on assets (ROA = EBIT divided by Beginning assets).
As Table 31 illustrates, economic and accounting incomes differ substantially. Over the five years, economic income is much less than accounting income, and the patterns certainly differ. In addition, the accounting rates of return, the ROE and ROA, for this admittedly unusual company are quite different from the economic rate of return.

8.3 Economic Profit, Residual Income, and Claims Valuation

Although the capital budgeting model is widely employed, analysts have used other procedures to divide up the cash flows from a company or project and then value them using discounted cash flow methods. We present three of these alternative models here: the economic profit model, the residual income model, and the claims valuation model. Used correctly, they are all consistent with the basic capital budgeting model and with each other.

8.3.1 Economic Profit

The first alternative method for measuring income and valuing assets is based on economic profit (EP). Economic profit has been used in asset valuation as well as in performance measurement and management compensation. Its calculation is loosely as follows:

\[
EP = NOPAT - WACC \times \text{Capital} \tag{12}
\]

where

- \(EP \) = economic profit
- \(NOPAT \) = net operating profit after tax = \(EBIT \times (1 - \text{Tax rate}) \)
- \(EBIT \) = operating income before taxes, or earnings before interest and taxes
- \(WACC \times \text{Capital} \) = dollar cost of capital = \(WACC \times \text{Capital} \)

\(WACC \) = weighted average (or overall) cost of capital
- \(\text{Capital} \) = investment

EP is a periodic measure of profit above and beyond the dollar cost of the capital invested in the project. The dollar cost of capital is the dollar return that the company must make on the project in order to pay the debt holders and the equity holders their respective required rates of return.

For the Granite Corporation, for the first year, we have the following:

\[
\begin{align*}
\text{NOPAT} &= EBIT \times (1 - \text{Tax rate}) = 25,000 \times (1 - 0.40) = 15,000 \\
\text{WACC} \times \text{Capital} &= 10\% \times 150,000 = 15,000 \\
EP &= \text{NOPAT} - \text{WACC} \times \text{Capital} = 15,000 - 15,000 = 0
\end{align*}
\]

Table 32 shows the EP for all five years for the Granite Corporation.

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital<sup>a</sup></td>
<td>150,000</td>
<td>120,000</td>
<td>90,000</td>
<td>60,000</td>
<td>30,000</td>
</tr>
<tr>
<td>NOPAT</td>
<td>15,000</td>
<td>30,000</td>
<td>45,000</td>
<td>30,000</td>
<td>21,000</td>
</tr>
</tbody>
</table>

(continued)

17 **Economic Value Added** (EVA), trademarked by the consulting firm Stern Stewart & Company, is a well-known commercial application of the economic profit approach. See Stewart (1991) and Peterson and Peterson (1996) for complete discussion.

18 You have already studied the relationship between the required rate of return on the project or WACC (here 10 percent), the rate of return required by debtholders (here 8 1/3 percent), and the rate of return required by equityholders (here 15 percent).
EP is readily applied to valuation of an asset or a security. The NPV found by discounted cash flow analysis in the basic capital budgeting model will be equal to the present value of future EP discounted at the weighted average cost of capital.

\[
\text{NPV} = \sum_{t=1}^{\infty} \frac{\text{EP}_t}{(1 + \text{WACC})^t}
\]

This NPV is also called the market value added (MVA). So we have

\[
\text{NPV} = \text{MVA} = \sum_{t=1}^{\infty} \frac{\text{EP}_t}{(1 + \text{WACC})^t}
\]

Discounting the five years of EP for the Granite Corporation at the 10 percent WACC gives an NPV (and MVA) of $69,492. The total value of the company (of the asset) is the original investment of $150,000 plus the NPV of $69,492, or $219,492. The valuation using EP is the same as that found with the basic capital budgeting model.

8.3.2 Residual Income

Another method for estimating income and valuing an asset is the residual income method. This method focuses on the returns to equity, where

\[
\text{Residual income} = \text{Net income} - \text{Equity charge},
\]

or

\[
\text{RI}_t = \text{NI}_t - r_e B_{t-1}
\]

where

- \(\text{RI}_t\) = residual income during period \(t\)
- \(\text{NI}_t\) = net income during period \(t\)
- \(r_e B_{t-1}\) = equity charge for period \(t\), which is the required rate of return on equity, \(r_e\), times the beginning-of-period book value of equity, \(B_{t-1}\)

For the first year for the Granite Corporation, the net income is $9,513. The beginning book value of equity is $40,254 (from the balance sheet in Table 30), and the required rate of return on equity is 15 percent. Consequently, the residual income for Year 1 is:

\[
\text{RI}_1 = \text{NI}_1 - r_e B_{1-1} = 9,513 - 0.15(40,254) = 9,513 - 6,038 = $3,475
\]

The residual income for all five years for Granite is shown in Table 33.

Table 32 Continued

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>SWACC</td>
<td>15,000</td>
<td>12,000</td>
<td>9,000</td>
<td>6,000</td>
<td>3,000</td>
</tr>
<tr>
<td>EP</td>
<td>0</td>
<td>18,000</td>
<td>36,000</td>
<td>24,000</td>
<td>18,000</td>
</tr>
</tbody>
</table>

^aDepreciation is $30,000 per year.

^bThe $6,000 after-tax gain from salvage is included in NOPAT in Year 5.

19 Peterson and Peterson define MVA as the market value of the company minus the capital invested, which is an NPV.

Residual income, like EP, can also be applied to valuation of an asset or security. The NPV of an investment is the present value of future residual income discounted at the required rate of return on equity.

\[
\text{NPV} = \sum_{t=1}^{\infty} \frac{RI_t}{(1 + r_e)^t}
\]

Discounting the residual income for the Granite Corporation at the 15 percent required rate of return on equity gives an NPV of $69,492. The total value of the company (of the asset) is the present value of the residual income, the original equity investment, plus the original debt investment:

- PV of residual income: $69,492
- Equity investment: 40,254
- Debt investment: 109,746
- Total value: 219,492

The value of the company is the original book value of its debt and equity plus the present value of the residual income (which is the project’s NPV). Again, this is the same value we found with the basic capital budgeting model and with the EP model.

8.3.3 Claims Valuation

To value a company, the EP valuation approach essentially adds the present value of EP to the original investment. The residual income approach adds the present value of residual income to the original debt and equity investments in the company. Since the EP approach is from the perspective of all suppliers of capital, EP is discounted at the overall WACC. The residual income approach takes the perspective of equity investors, so residual income is discounted at the cost of equity.

The third and final alternative valuation approach that we present is to divide the operating cash flows between securityholder classes (in this example, debt and equity), and then value the debt and equity cash flows separately.

Balance Sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
<th>Equity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The basic capital budgeting approach is to value the asset, which is on the left-hand side of the balance sheet above. The claims valuation approach values the liabilities and equity, the claims against the assets, which are on the right-hand side of the balance sheet. The value of the claims should equal the value of the assets.

For the Granite Corporation, the cash flows to debtholders are the interest payments and principal payments. These are valued by discounting them at the cost of debt, which is 8 1/3 percent. The cash flows to stockholders are the dividends and

Table 33 Residual Income for Granite Corporation

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5*</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI_t</td>
<td>9,513</td>
<td>25,089</td>
<td>41,098</td>
<td>27,583</td>
<td>19,841</td>
</tr>
<tr>
<td>r_{B,t-1}</td>
<td>6,038</td>
<td>3,267</td>
<td>1,794</td>
<td>1,748</td>
<td>1,023</td>
</tr>
<tr>
<td>RI_t</td>
<td>3,475</td>
<td>21,822</td>
<td>39,304</td>
<td>25,835</td>
<td>18,818</td>
</tr>
</tbody>
</table>

*The $6,000 after-tax gain from salvage is included in NI in Year 5.
share repurchases, which are valued by discounting them at the 15 percent cost of equity. Table 34 lists the future cash flows for debt and equity.

Table 34 Payments to Bondholders and Stockholders of Granite Corporation

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interest payments</td>
<td>9,146</td>
<td>8,185</td>
<td>6,504</td>
<td>4,029</td>
</tr>
<tr>
<td></td>
<td>Principal payments</td>
<td>11,525</td>
<td>20,178</td>
<td>29,696</td>
<td>25,165</td>
</tr>
<tr>
<td></td>
<td>Total debt payments</td>
<td>20,671</td>
<td>28,363</td>
<td>36,199</td>
<td>29,194</td>
</tr>
<tr>
<td></td>
<td>Equity distributions</td>
<td>27,987</td>
<td>34,911</td>
<td>41,402</td>
<td>32,417</td>
</tr>
</tbody>
</table>

The present value of the total debt payments, discounted at the cost of debt, is $109,746. The value of the equity distributions, discounted at the cost of equity, is $109,746. The total value of the company is the combined value of debt and equity, which is $219,492.

In our example, the basic capital budgeting model, the economic profit model, the residual income model, and the claims valuation model all result in the same valuation of the company. In the real world, analysts must deal with many accounting complications. Some of these complications may include pension liability adjustments, valuations of marketable securities held, exchange rate gains and losses, and adjustments for leases, inventories, goodwill, deferred taxes, etc. In theory, all of the valuation models are equivalent. In practice, even with due diligence and care, analysts may prefer one approach over others and disagree about valuations.

There are other approaches to valuation that analysts use and run across. Two common ones are the free cash flow to the firm and **free cash flow to equity** approaches. The free cash flow to the firm approach is fundamentally the same as the basic capital budgeting approach. The free cash flow to equity approach is related to the claims valuation approach. In corporate finance, corporate managers usually value an asset by valuing its total after-tax cash flows. Security analysts typically value equity by valuing the cash flows to stockholders. Real estate investors often evaluate real estate investments by valuing the cash flows to the equity investor after payments to creditors, which is like the claims valuation approach.

SUMMARY

Capital budgeting is the process that companies use for decision making on capital projects—those projects with a life of a year or more. This reading developed the principles behind the basic capital budgeting model, the cash flows that go into the model, and several extensions of the basic model.

- Capital budgeting undergirds the most critical investments for many corporations—their investments in long-term assets. The principles of capital budgeting have been applied to other corporate investing and financing decisions and to security analysis and portfolio management.
- The typical steps in the capital budgeting process are: 1) generating ideas, 2) analyzing individual proposals, 3) planning the capital budget, and 4) monitoring and post-auditing.

21 The free cash flow to the firm and free cash flow to equity approaches are developed in Chapter 3 of Stowe, Robinson, Pinto, and McLeavey (2002).
Projects susceptible to capital budgeting process can be categorized as: 1) replacement, 2) expansion, 3) new products and services, and 4) regulatory, safety and environmental.

Capital budgeting decisions are based on incremental after-tax cash flows discounted at the opportunity cost of funds. Financing costs are ignored because both the cost of debt and the cost of other capital are captured in the discount rate.

The net present value (NPV) is the present value of all after-tax cash flows, or

$$\text{NPV} = \sum_{t=0}^{n} \frac{\text{CF}_t}{(1+r)^t}$$

where the investment outlays are negative cash flows included in the CFs and where r is the required rate of return for the investment.

The IRR is the discount rate that makes the present value of all future cash flows sum to zero. This equation can be solved for the IRR:

$$\sum_{t=0}^{n} \frac{\text{CF}_t}{(1+\text{IRR})^t} = 0$$

The payback period is the number of years required to recover the original investment in a project. The payback is based on cash flows.

The discounted payback period is the number of years it takes for the cumulative discounted cash flows from a project to equal the original investment.

The average accounting rate of return (AAR) can be defined as follows:

$$\text{AAR} = \frac{\text{Average net income}}{\text{Average book value}}$$

The profitability index (PI) is the present value of a project’s future cash flows divided by the initial investment:

$$\text{PI} = \frac{\text{PV of future cash flows}}{\text{Initial investment}} = 1 + \frac{\text{NPV}}{\text{Initial investment}}$$

The capital budgeting decision rules are to invest if the NPV > 0, if the IRR > r, or if the PI > 1.0. There are no decision rules for the payback period, discounted payback period, and AAR because they are not always sound measures.

The NPV profile is a graph that shows a project’s NPV graphed as a function of various discount rates.

For mutually exclusive projects that are ranked differently by the NPV and IRR, it is economically sound to choose the project with the higher NPV.

The “multiple IRR problem” and the “no IRR problem” can arise for a project with nonconventional cash flows—cash flows that change signs more than once during the project’s life.

The fact that projects with positive NPVs theoretically increase the value of the company and the value of its stock could explain the popularity of NPV as an evaluation method.

Analysts often organize the cash flows for capital budgeting in tables, summing all of the cash flows occurring at each point in time. These totals are then used to find an NPV or IRR. Alternatively, tables collecting cash flows by type can be used. Equations for the capital budgeting cash flows are as follows:
Initial outlay:
\[\text{Outlay} = \text{FCInv} + \text{NWCInv} - \text{Sal}_0 + T(\text{Sal}_0 - B_0) \]
Annual after-tax operating cash flow:
\[\text{CF} = (S - C - D)(1 - T) + D, \text{ or } \]
\[\text{CF} = (S - C)(1 - T) + TD \]
Terminal year after-tax non-operating cash flow:
\[\text{TNOCF} = \text{Sal}_T + \text{NWCInv} - T(\text{Sal}_T - B_T) \]

- Depreciation schedules affect taxable income, taxes paid, and after-tax cash flows, and therefore capital budgeting valuations.
- Spreadsheets are heavily used for capital budgeting valuation.
- When inflation exists, the analyst should perform capital budgeting analysis in “nominal” terms if cash flows are nominal and in “real” terms if cash flows are real.
- Inflation reduces the value of depreciation tax savings (unless the tax system adjusts depreciation for inflation). Inflation reduces the value of fixed payments to bondholders. Inflation usually does not affect all revenues and costs uniformly. Contracting with customers, suppliers, employees, and sources of capital can be complicated as inflation rises.
- Two ways of comparing mutually exclusive projects in a replacement chain are the “least common multiple of lives” approach and the “equivalent annual annuity” approach.
- For the least common multiple of lives approach, the analyst extends the time horizon of analysis so that the lives of both projects will divide exactly into the horizon. The projects are replicated over this horizon, and the NPV for the total cash flows over the least common multiple of lives is used to evaluate the investments.
- The equivalent annual annuity is the annuity payment (series of equal annual payments over the project’s life) that is equivalent in value to the project’s actual cash flows. Analysts find the present value of all of the cash flows for an investment (the NPV) and then calculate an annuity payment that has a value equivalent to the NPV.
- With capital rationing, the company’s capital budget has a size constraint. Under “hard” capital rationing, the budget is fixed. In the case of hard rationing, managers use trial and error and sometimes mathematical programming to find the optimal set of projects. In that situation, it is best to use the NPV or PI valuation methods.
- Sensitivity analysis calculates the effect on the NPV of changes in one input variable at a time.
- Scenario analysis creates scenarios that consist of changes in several of the input variables and calculates the NPV for each scenario.
- Simulation (Monte Carlo) analysis is used to estimate probability distributions for the NPV or IRR of a capital project. Simulations randomly select values for stochastic input variables and then repeatedly calculate the project NPV and IRR to find their distributions.
- Risk-adjusted discount rates based on market risk measures should be used as the required rate of return for projects when the investors are diversified. The capital asset pricing model (CAPM) and arbitrage pricing theory (APT) are common approaches for finding market-based risk-adjusted rates.
- In the CAPM, a project’s or asset’s beta, or \(\beta \), is used as a measure of systematic risk. The security market line (SML) estimates the asset’s required rate of return as
\[r_j = R_f + \beta_j [E(R_m) - R_f] \]
- Project-specific betas should be used instead of company betas whenever the risk of the project differs from that of the company.

- Real options can be classified as 1) timing options; 2) sizing options, which can be abandonment options or growth (expansion) options; 3) flexibility options, which can be price-setting options or production-flexibility options; and 4) fundamental options. Simple options can be evaluated with decision trees; for more complex options, the analyst should use option pricing models.

- Economic income is the investment’s after-tax cash flow plus the change in the market value. Accounting income is revenues minus expenses. Accounting depreciation, based on the original cost of the investment, is the decrease in the book (accounting) value, while economic depreciation is the decrease in the market value of the investment. Accounting net income is net of the after-tax interest expenses on the company’s debt obligations. In computing economic income, financing costs are ignored.

- Economic profit is

$$ EP = NOPAT - WACC $$

where NOPAT = Net operating profit after tax = EBIT(1 – Tax rate) and $WACC = Dollar cost of capital = WACC \times Capital$. When applied to the valuation of an asset or security, the NPV of an investment (and its market value added) is the present value of future EP discounted at the weighted average cost of capital.

$$ NPV = MVA = \sum_{t=1}^{\infty} \frac{EP_t}{(1+WACC)^t} $$

The total value of the company (of the asset) is the original investment plus the NPV.

- Residual income = Net income – Equity charge, or $RI_t = NI_t - r_0B_{t-1}$ where $RI_t = Residual$ income during period t, $NI_t = Net$ income during period t, $r_0 = Cost$ of equity, and $B_{t-1} = Beginning$-of-period book value of equity. The NPV of an investment is the present value of future residual income discounted at the required rate of return on equity:

$$ NPV = \sum_{t=1}^{\infty} \frac{RI_t}{(1+r_0)^t} $$

The total value of the company (of the asset) is the NPV plus the original equity investment plus the original debt investment.

- The claims valuation approach values an asset by valuing the claims against the asset. For example, an asset financed with debt and equity has a value equal to the value of the debt plus the value of the equity.
PRACTICE PROBLEMS FOR READING 25

1. FITCO is considering the purchase of new equipment. The equipment costs $350,000, and an additional $110,000 is needed to install it. The equipment will be depreciated straight-line to zero over a five-year life. The equipment will generate additional annual revenues of $265,000, and it will have annual cash operating expenses of $83,000. The equipment will be sold for $85,000 after five years. An inventory investment of $73,000 is required during the life of the investment. FITCO is in the 40 percent tax bracket and its cost of capital is 10 percent. What is the project NPV?

A. $52,122.
B. $64,090.
C. $97,449.

2. After estimating a project’s NPV, the analyst is advised that the fixed capital outlay will be revised upward by $100,000. The fixed capital outlay is depreciated straight-line over an eight-year life. The tax rate is 40 percent and the required rate of return is 10 percent. No changes in cash operating revenues, cash operating expenses, or salvage value are expected. What is the effect on the project NPV?

A. $100,000 decrease.
B. $73,325 decrease.
C. $59,988 decrease.

3. When assembling the cash flows to calculate an NPV or IRR, the project’s after-tax interest expenses should be subtracted from the cash flows for:

A. the IRR calculation, but not the NPV calculation.
B. both the NPV calculation and the IRR calculation.
C. neither the NPV calculation nor the IRR calculation.

4. Standard Corporation is investing $400,000 of fixed capital in a project that will be depreciated straight-line to zero over its ten-year life. Annual sales are expected to be $240,000, and annual cash operating expenses are expected to be $110,000. An investment of $40,000 in net working capital is required over the project’s life. The corporate income tax rate is 30 percent. What is the after-tax operating cash flow expected in year one?

A. $63,000.
B. $92,000.
C. $103,000.

5. Five years ago, Frater Zahn’s Company invested £38 million—£30 million in fixed capital and another £8 million in working capital—in a bakery. Today, Frater Zahn’s is selling the fixed assets for £21 million and liquidating the investment in working capital. The book value of the fixed assets is £15 million and the marginal tax rate is 40 percent. The fifth year’s after-tax non-operating cash flow to Frater Zahn’s is closest to:

A. £20.6 million.
B. £23.0 million.
C. £26.6 million.
The following information relates to Questions 6–8

McConachie Company is considering the purchase of a new 400-ton stamping press. The press costs $360,000, and an additional $40,000 is needed to install it. The press will be depreciated straight-line to zero over a five-year life. The press will generate no additional revenues, but it will reduce cash operating expenses by $140,000 annually. The press will be sold for $120,000 after five years. An inventory investment of $60,000 is required during the life of the investment. McConachie is in the 40 percent tax bracket.

6. What is the McConachie net investment outlay?
 A. $400,000.
 B. $420,000.
 C. $460,000.

7. McConachie’s incremental annual after-tax operating cash flow is closest to:
 A. $116,000.
 B. $124,000.
 C. $140,000.

8. What is the terminal year after-tax non-operating cash flow at the end of year five?
 A. $108,000.
 B. $132,000.
 C. $180,000.

The following information relates to Questions 9–14

Linda Pyle is head of analyst recruiting for PPA Securities. She has been very frustrated by the number of job applicants who, in spite of their stellar pedigrees, seem to have little understanding of basic financial concepts. Pyle has written a set of conceptual questions and simple problems for the human resources department to use to screen for the better candidates in the applicant pool. A few of her corporate finance questions and problems are given below.

Concept 1 “A company invests in depreciable assets, financed partly by issuing fixed-rate bonds. If inflation is lower than expected, the value of the real tax savings from depreciation and the value of the real after-tax interest expense are both reduced.”

Concept 2 “Sensitivity analysis and scenario analysis are useful tools for estimating the impact on a project’s NPV of changing the value of one capital budgeting input variable at a time.”

Concept 3 “When comparing two mutually exclusive projects with unequal lives, the IRR is a good approach for choosing the better project because it does not require equal lives.”

Concept 4 “Project-specific betas should be used instead of company betas whenever the risk of the project differs from that of the company.”

Problem “Fontenot Company is investing €100 in a project that is being depreciated straight-line to zero over a two-year life with no salvage value. The project will generate earnings before interest and taxes of €50 each year for two years. Fontenot’s weighted average cost of capital and required rate of return for the project are both 12 percent, and its tax rate is 30 percent.”
9. For Concept 1, the statement is correct regarding the effects on:
 A. the real tax savings from depreciation, but incorrect regarding the real after-tax interest expense.
 B. both the real tax savings from depreciation and the real after-tax interest expense.
 C. neither the real tax savings from depreciation nor the real after-tax interest expense.

10. For Concept 2, the statement is correct regarding:
 A. sensitivity analysis, but not correct regarding scenario analysis.
 B. scenario analysis, but not correct regarding sensitivity analysis.
 C. both sensitivity analysis and scenario analysis.

11. Are the statements identified as Concept 3 and Concept 4 correct?
 A. No for Concepts 3 and 4.
 B. No for Concept 3, but yes for Concept 4.
 C. Yes for Concept 3, but no for Concept 4.

12. The after-tax operating cash flows in euros for the Fontenot Company are:
 A. 50 in both years.
 B. 70 in both years.
 C. 85 in both years.

13. The economic income in euros for the Fontenot Company is:
 A. 17.24 in Year 1 and 9.11 in Year 2.
 B. 17.76 in Year 1 and 24.89 in Year 2.
 C. 24.89 in Year 1 and 17.76 in Year 2.

14. The market value added (MVA) in euros for the Fontenot Company is closest to:
 A. 38.87.
 B. 39.92.
 C. 43.65.

The following information relates to Questions 15–20

The capital budgeting committee for Laroche Industries is meeting. Laroche is a North American conglomerate that has several divisions. One of these divisions, Laroche Livery, operates a large fleet of vans. Laroche’s management is evaluating whether it is optimal to operate new vans for two, three, or four years before replacing them. The managers have estimated the investment outlay, annual after-tax operating expenses, and after-tax salvage cash flows for each of the service lives. Because revenues and some operating costs are unaffected by the choice of service life, they were ignored in the analysis. Laroche Livery’s opportunity cost of funds is 10 percent. The following table gives the cash flows in thousands of Canadian dollars (C$).

<table>
<thead>
<tr>
<th>Service Life</th>
<th>Investment</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Salvage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 years</td>
<td>–40,000</td>
<td>–12,000</td>
<td>–15,000</td>
<td></td>
<td></td>
<td>20,000</td>
</tr>
<tr>
<td>3 years</td>
<td>–40,000</td>
<td>–12,000</td>
<td>–15,000</td>
<td>–20,000</td>
<td></td>
<td>17,000</td>
</tr>
<tr>
<td>4 years</td>
<td>–40,000</td>
<td>–12,000</td>
<td>–15,000</td>
<td>–20,000</td>
<td>–25,000</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Schoeman Products, another division of Laroche, has evaluated several investment projects and now must choose the subset of them that fits within its C$40 million
capital budget. The outlays and NPVs for the six projects are given below. Schoeman
cannot buy fractional projects, and must buy all or none of a project. The currency
amounts are in millions of Canadian dollars.

<table>
<thead>
<tr>
<th>Project</th>
<th>Outlay</th>
<th>PV of Future Cash Flows</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
<td>44</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>16.5</td>
<td>4.5</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Schoeman wants to determine which subset of the six projects is optimal.

A final proposal comes from the division Society Services, which has an investment
opportunity with a real option to invest further if conditions warrant. The crucial
details are as follows:

- The original project:
 - An outlay of C$190 million at time zero.
 - Cash flows of C$40 million per year for Years 1–10 if demand is “high.”
 - Cash flows of C$20 million per year for Years 1–10 if demand is “low.”

- Additional cash flows with the optional expansion project:
 - An outlay of C$190 million at time one.
 - Cash flows of C$40 million per year for Years 2–10 if demand is “high.”
 - Cash flows of C$20 million per year for Years 2–10 if demand is “low.”

- Whether demand is “high” or “low” in Years 1–10 will be revealed during the
 first year. The probability of “high” demand is 0.50, and the probability of “low”
 demand is 0.50.

- The option to make the expansion investment depends on making the initial
 investment. If the initial investment is not made, the option to expand does not
 exist.

- The required rate of return is 10 percent.

Society Services wants to evaluate its investment alternatives.

The internal auditor for Laroche Industries has made several suggestions for
improving capital budgeting processes at the company. The internal auditor’s sug-
gestions are as follows:

- **Suggestion 1** “In order to put all capital budgeting proposals on an equal foot-
ing, the projects should all use the risk-free rate for the required
 rate of return.”

- **Suggestion 2** “Because you cannot exercise both of them, you should not permit
 a given project to have both an abandonment option and an expan-
 sion/growth option.”

- **Suggestion 3** “When rationing capital, it is better to choose the portfolio of
 investments that maximizes the company NPV than the portfolio
 that maximizes the company IRR.”

- **Suggestion 4** “Project betas should be used for establishing the required rate of
 return whenever the project’s beta is different from the company’s
 beta.”
15. What is the optimal service life for Laroche Livery’s fleet of vans?
 A. Two years.
 B. Three years.
 C. Four years.

16. The optimal subset of the six projects that Schoeman is considering consists of Projects:
 A. 1 and 5.
 B. 2, 3, and 4.
 C. 2, 4, 5, and 6.

17. What is the NPV (C$ millions) of the original project for Society Services without considering the expansion option?
 A. –6.11.
 B. –5.66.
 C. 2.33.

18. What is the NPV (C$ millions) of the optimal set of investment decisions for Society Services including the expansion option?
 A. 6.34.
 B. 12.68.
 C. 31.03.

19. Should the capital budgeting committee accept the internal auditor’s first and second suggestions, respectively?
 A. No for Suggestions 1 and 2.
 B. No for Suggestion 1 and Yes for Suggestion 2.
 C. Yes for Suggestion 1 and No for Suggestion 2.

20. Should the capital budgeting committee accept the internal auditor’s third and fourth suggestions, respectively?
 A. No for Suggestions 3 and 4.
 B. Yes for Suggestions 3 and 4.
 C. No for Suggestion 3 and Yes for Suggestion 4.

The following information relates to Questions 21–26

Maximilian Böhm is reviewing several capital budgeting proposals from subsidiaries of his company. Although his reviews deal with several details that may seem like minutiae, the company places a premium on the care it exercises in making its investment decisions.

The first proposal is a project for Richie Express, which is investing $500,000, all in fixed capital, in a project that will have operating income after taxes of $20,000 and depreciation of $40,000 each year for the next three years. Richie Express will sell the asset in three years, paying 30 percent taxes on any excess of the selling price over book value. The proposal indicates that a $647,500 terminal selling price will enable the company to earn a 15 percent internal rate of return on the investment. Böhm doubts that this terminal value estimate is correct.

Another proposal concerns Gasup Company, which does natural gas exploration. A new investment has been identified by the Gasup finance department with the following projected cash flows:

- Investment outlays are $6 million immediately and $1 million at the end of the first year.
After-tax operating cash flows are $0.5 million at the end of the first year and $4 million at the end of each of the second, third, fourth, and fifth years. In addition, an after-tax outflow occurs at the end of the five-year project that has not been included in the operating cash flows: $5 million required for environmental cleanup.

The required rate of return on natural gas exploration is 18 percent.

The Gasup analyst is unsure about the calculation of the NPV and the IRR because the outlay is staged over two years.

Finally, Dominion Company is evaluating two mutually exclusive projects: The Pinto grinder involves an outlay of $100,000, annual after-tax operating cash flows of $45,000, an after-tax salvage value of $25,000, and a three-year life. The Bolten grinder has an outlay of $125,000, annual after-tax operating cash flows of $47,000, an after-tax salvage value of $20,000, and a four-year life. The required rate of return is 10 percent. The net present value (NPV) and equivalent annual annuity (EAA) of the Pinto grinder are $30,691 and $12,341, respectively. Whichever grinder is chosen, it will have to be replaced at the end of its service life. The analyst is unsure about which grinder should be chosen.

Böhm and his colleague Beth Goldberg have an extended conversation about capital budgeting issues, including several comments listed below. Goldberg makes two comments about real options:

Comment 1 “The abandonment option is valuable, but it should be exercised only when the abandonment value is above the amount of the original investment.”

Comment 2 “If the cost of a real option is less than its value, this will increase the NPV of the investment project in which the real option is embedded.”

Böhm also makes several comments about specific projects under consideration:

Comment A The land and building were purchased five years ago for $10 million. This is the amount that should now be included in the fixed capital investment.”

Comment B “We can improve the project’s NPV by using the after-tax cost of debt as the discount rate. If we finance the project with 100 percent debt, this discount rate would be appropriate.”

Comment C “It is generally safer to use the NPV than the IRR in making capital budgeting decisions. However, when evaluating mutually exclusive projects, if the projects have conventional cash flow patterns and have the same investment outlays, it is acceptable to use either the NPV or IRR.”

Comment D “You should not base a capital budgeting decision on its immediate impact on earnings per share (EPS).”

21. What terminal selling price is required for a 15 percent internal rate of return on the Richie project?
 A. $588,028.
 B. $593,771.
 C. $625,839.

22. The NPV and IRR, respectively, of the Gasup Company investment are closest to:
 A. $509,600 and 21.4%.
 B. $509,600 and 31.3%.
 C. $946,700 and 31.3%.
23. Of the two grinders that the Dominion Company is evaluating, Böhm should recommend the:
 A. Bolten grinder because its NPV is higher than the Pinto grinder NPV.
 B. Bolten grinder because its EAA is higher than the Pinto grinder EAA.
 C. Pinto grinder because its EAA is higher than the Bolten grinder EAA.

24. Are Goldberg’s comments about real options correct?
 A. No for Comment 1 and Comment 2.
 B. No for Comment 1 and Yes for Comment 2.
 C. Yes for Comment 1 and No for Comment 2.

25. Is Böhm most likely correct regarding Comment A about the $10 million investment and Comment B about using the after-tax cost of debt?
 A. No for both comments.
 B. Yes for both comments.
 C. No for Comment A and Yes for Comment B.

26. Is Böhm most likely correct regarding Comment C that it is acceptable to use either NPV or IRR and Comment D about the immediate impact on EPS?
 A. No for both comments.
 B. Yes for both comments.
 C. No for Comment C and Yes for Comment D.

The following information relates to Questions 27–32

Barbara Simpson is a sell-side analyst with Smith Riccardi Securities. Simpson covers the pharmaceutical industry. One of the companies she follows, Bayonne Pharma, is evaluating a regional distribution center. The financial predictions for the project are as follows:

- Fixed capital outlay is €1.50 billion.
- Investment in net working capital is €0.40 billion.
- Straight-line depreciation is over a six-year period with zero salvage value.
- Project life is 12 years.
- Additional annual revenues are €0.10 billion.
- Annual cash operating expenses are reduced by €0.25 billion.
- The capital equipment is sold for €0.50 billion in 12 years.
- Tax rate is 40 percent.
- Required rate of return is 12 percent.

Simpson is evaluating this investment to see whether it has the potential to affect Bayonne Pharma’s stock price. Simpson estimates the NPV of the project to be €0.41 billion, which should increase the value of the company.

Simpson is evaluating the effects of other changes to her capital budgeting assumptions. She wants to know the effect of a switch from straight-line to accelerated depreciation on the company’s operating income and the project’s NPV. She also believes that the initial outlay might be much smaller than initially assumed. Specifically, she thinks the outlay for fixed capital might be €0.24 billion lower, with no change in salvage value.

When reviewing her work, Simpson’s supervisor provides the following comments. “I note that you are relying heavily on the NPV approach to valuing the investment decision. I don’t think you should use an IRR because of the multiple IRR problem that
is likely to arise with the Bayonne Pharma project. However, the equivalent annual annuity would be a more appropriate measure to use for the project than the NPV. I suggest that you compute an EAA.”

27. Simpson should estimate the after-tax operating cash flow for Years 1–6 and 7–12, respectively, to be closest to:
 A. €0.31 billion and €0.21 billion.
 B. €0.31 billion and €0.25 billion.
 C. €0.35 billion and €0.25 billion.

28. Simpson should estimate the initial outlay and the terminal year non-operating cash flow, respectively, to be closest to:
 A. €1.50 billion and €0.70 billion.
 B. €1.90 billion and €0.70 billion.
 C. €1.90 billion and €0.90 billion.

29. Is Simpson’s estimate of the NPV of the project correct?
 A. Yes.
 B. No. The NPV is –€0.01 billion.
 C. No. The NPV is €0.34 billion.

30. A switch from straight-line to accelerated depreciation would:
 A. increase the NPV and decrease the first year operating income after taxes.
 B. increase the first year operating income after taxes and decrease the NPV.
 C. increase both the NPV and first year operating income after taxes.

31. If the outlay is lower by the amount that Simpson suggests, the project NPV should increase by an amount closest to:
 A. €0.09 billion.
 B. €0.14 billion.
 C. €0.17 billion.

32. How would you evaluate the comments by Simpson’s supervisor about not using the IRR and about using the EAA? The supervisor is:
 A. incorrect about both.
 B. correct about IRR and incorrect about EAA.
 C. incorrect about IRR and correct about EAA.

The following information relates to Questions 33–38

Mun Hoe Yip is valuing Pure Corporation. Pure is a simple corporation that is going out of business in five years, distributing its income to creditors and bondholders as planned in the financial statements below. Pure has a 19 percent cost of equity, 8 1/3 percent before-tax cost of debt, 12 percent weighted average cost of capital, and 40 percent tax rate, and it maintains a 50 percent debt/value ratio.

Yip is valuing the company using the basic capital budgeting method as well as other methods, such as EVA, residual income, and claims valuation. Yip’s research assistant, Linda Robinson, makes three observations about the analysis.

Observation 1 “The present value of the company’s economic income should be equal to the present value of the cash flows in the basic capital budgeting approach.”

Observation 2 “The economic income each year is equal to the cash flow minus the economic depreciation.”
Observation 3 “The market value added is the present value of the company’s
economic profit (EP), which equals the net worth of 77,973.”

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance Sheets:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assets</td>
<td>200,000</td>
<td>160,000</td>
<td>120,000</td>
<td>80,000</td>
<td>40,000</td>
<td>0</td>
</tr>
<tr>
<td>Liabilities</td>
<td>122,027</td>
<td>107,671</td>
<td>88,591</td>
<td>64,222</td>
<td>33,929</td>
<td>0</td>
</tr>
<tr>
<td>Net worth</td>
<td>77,973</td>
<td>52,329</td>
<td>31,409</td>
<td>15,778</td>
<td>6,071</td>
<td>0</td>
</tr>
<tr>
<td>Income Statements:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td>180,000</td>
<td>200,000</td>
<td>220,000</td>
<td>240,000</td>
<td>200,000</td>
<td></td>
</tr>
<tr>
<td>Variable cash expenses</td>
<td>90,000</td>
<td>100,000</td>
<td>110,000</td>
<td>120,000</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>Fixed cash expenses</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td></td>
</tr>
<tr>
<td>EBIT</td>
<td>30,000</td>
<td>40,000</td>
<td>50,000</td>
<td>60,000</td>
<td>40,000</td>
<td></td>
</tr>
<tr>
<td>Interest expense</td>
<td>10,169</td>
<td>8,973</td>
<td>7,383</td>
<td>5,352</td>
<td>2,827</td>
<td></td>
</tr>
<tr>
<td>EBT</td>
<td>19,831</td>
<td>31,027</td>
<td>42,617</td>
<td>54,648</td>
<td>37,173</td>
<td></td>
</tr>
<tr>
<td>Taxes at 40 percent</td>
<td>7,932</td>
<td>12,411</td>
<td>17,047</td>
<td>21,859</td>
<td>14,869</td>
<td></td>
</tr>
<tr>
<td>Net income before salvage</td>
<td>11,899</td>
<td>18,616</td>
<td>25,570</td>
<td>32,789</td>
<td>22,304</td>
<td></td>
</tr>
<tr>
<td>After-tax salvage value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12,000</td>
</tr>
<tr>
<td>Net income</td>
<td>11,899</td>
<td>18,616</td>
<td>25,570</td>
<td>32,789</td>
<td>34,304</td>
<td></td>
</tr>
<tr>
<td>Statements of Cash Flows:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating cash flows:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net income</td>
<td>11,899</td>
<td>18,616</td>
<td>25,570</td>
<td>32,789</td>
<td>34,304</td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>51,899</td>
<td>58,616</td>
<td>65,570</td>
<td>72,789</td>
<td>74,304</td>
<td></td>
</tr>
<tr>
<td>Financing cash flows:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt repayment</td>
<td>14,357</td>
<td>19,080</td>
<td>24,369</td>
<td>30,293</td>
<td>33,929</td>
<td></td>
</tr>
<tr>
<td>Dividends/repurchases</td>
<td>37,542</td>
<td>39,536</td>
<td>41,201</td>
<td>42,496</td>
<td>40,375</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>−51,899</td>
<td>−58,616</td>
<td>−65,570</td>
<td>−72,789</td>
<td>−74,304</td>
<td></td>
</tr>
<tr>
<td>Investing cash flows:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total cash flows:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

33. Economic income during year one is closest to:
 A. 23,186.
 B. 29,287.
 C. 46,101.

34. What is EP during Year 1?
 A. −12,101.
 B. −6,000.
 C. 6,000.

35. What is residual income during Year 1?
 A. −2,916.
 B. 2,542.
 C. 8,653.
36. What is the value of equity at time zero?
 A. 44,055.
 B. 77,973.
 C. 122,027.

37. Are Robinson’s first two observations, respectively, correct?
 A. Yes for both observations.
 B. No for the first and Yes for the second.
 C. Yes for the first and No for the second.

38. Which of the following would be Yip’s most appropriate response to Robinson’s third observation?
 A. The market value added is not equal to the present value of EP, although the market value of equity is equal to 122,027.
 B. The market value added is equal to the present value of EP, which in this case is 44,055.
 C. The market value added is not equal to the present value of EP, and market value added is equal to 44,055.

The following information relates to Questions 39–44

Carlos Velasquez, CFA, is a financial analyst with Embelesado, S.A., a Spanish manufacturer of sailboats and sailing equipment. Velasquez is evaluating a proposal for Embelesado to build sailboats for a foreign competitor that lacks production capacity and sells in a different market. The sailboat project is perceived to have the same risk as Embelesado’s other projects.

The proposal covers a limited time horizon—three years—after which the competitor expects to be situated in a new, larger production facility. The limited time horizon appeals to Embelesado, which currently has excess capacity but expects to begin its own product expansion in slightly more than three years.

Velasquez has collected much of the information necessary to evaluate this proposal in Exhibits 1 and 2.

Exhibit 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount (€ Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial fixed capital outlay</td>
<td>60</td>
</tr>
<tr>
<td>Annual contracted revenues</td>
<td>60</td>
</tr>
<tr>
<td>Annual operating costs</td>
<td>25</td>
</tr>
<tr>
<td>Initial working capital outlay (recovered at end of the project)</td>
<td>10</td>
</tr>
<tr>
<td>Annual depreciation expense (both book and tax accounting)</td>
<td>20</td>
</tr>
<tr>
<td>Economic life of facility (years)</td>
<td>3</td>
</tr>
<tr>
<td>Salvage (book) value of facility at end of project</td>
<td>0</td>
</tr>
<tr>
<td>Expected market value of facility at end of project</td>
<td>5</td>
</tr>
</tbody>
</table>
Velasquez recognizes that Embelesado is currently financed at its target capital structure and expects that the capital structure will be maintained if the sailboat project is undertaken. Embelesado’s managers disagree, however, about the method that should be used to evaluate capital budgeting proposals.

One of Embelesado’s vice presidents asks Velasquez the following questions:

Question 1 Will projects that meet a corporation’s payback criterion for acceptance necessarily have a positive net present value (NPV)?

Question 2 For mutually exclusive projects, will the NPV and internal rate of return (IRR) methods necessarily agree on project ranking?

Question 3 For the sailboat project, what will be the effects of using accelerated depreciation (for both book and tax accounting) instead of straight-line depreciation on a) the NPV and b) the total net cash flow in the terminal year?

Question 4 Assuming a 13 percent discount rate, what will be the increase in the sailboat project’s NPV if the expected market value of the facility at end of project is €15 million rather than €5 million?

39. The weighted average cost of capital for Embelesado is closest to:
 A. 10.78%.
 B. 11.20%.
 C. 11.85%.

40. The total net cash flow (in € millions) for the sailboat project in its terminal year is closest to:
 A. 33.00.
 B. 39.75.
 C. 43.00.

41. The IRR for the sailboat project is closest to:
 A. 18.5%.
 B. 19.7%.
 C. 20.3%.
42. The best responses that Velasquez can make to Question 1 and Question 2 are:

<table>
<thead>
<tr>
<th>Question 1</th>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. No</td>
<td>No</td>
</tr>
<tr>
<td>B. No</td>
<td>Yes</td>
</tr>
<tr>
<td>C. Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

43. In response to Question 3, what are the most likely effects on the NPV and the total net cash flow in the terminal year, respectively?

<table>
<thead>
<tr>
<th>NPV</th>
<th>Total Net Cash Flow in Terminal Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Increase</td>
<td>Increase</td>
</tr>
<tr>
<td>B. Increase</td>
<td>Decrease</td>
</tr>
<tr>
<td>C. Decrease</td>
<td>Increase</td>
</tr>
</tbody>
</table>

44. In response to Question 4, the increase in the sailboat project’s NPV (in € millions) is closest to:

- A. 4.50.
- B. 6.50.
- C. 6.76.

The following information relates to Questions 45–50

María Hernández is a sell-side analyst covering the electronics industry in Spain. One of the companies she follows, SG Electronics, S.A., has recently announced plans to begin producing and selling a new series of video cameras. Hernández estimates that this project will increase the value of the company and, consequently, she plans on changing her research opinion on the company from a “hold” to a “buy.” Her initial financial predictions for the project are:

- Fixed capital equipment outlay is €2,750,000.
- At the beginning of the project, a required increase in current assets of €200,000 and a required increase in current liabilities of €125,000.
- Straight-line depreciation to zero over a five-year life.
- Project life of five years.
- Incremental annual unit sales of 3,000 at a unit price of €600.
- Annual fixed cash expenses of €125,000; variable cash expenses of €125 per unit.
- The capital equipment is expected to be sold for €450,000 at the end of Year 5. At the end of the project, the net working capital investment will be recovered.
- Tax rate of 40 percent.
- Based on the capital asset pricing model, the required rate of return is 12 percent.

Hernández estimates the expected net present value (NPV) of the project to be €975,538 and the internal rate of return (IRR) to be 24.6 percent. She also performs a sensitivity analysis by changing the input variable assumptions used in her initial analysis.

When reviewing Hernández’s work, her supervisor, Arturo Costa, notes that she did not include changes in the depreciation method, initial fixed capital outlay, or inflation assumptions in her sensitivity analysis. As a result, Costa asks the following questions:
Question 1 “What would be the effect on the project’s NPV if the initial fixed capital equipment outlay increased from €2,750,000 to €3,000,000, everything else held constant?”

Question 2 “How would a higher than expected inflation rate affect the value of the real tax savings from depreciation and the value of the real after-tax interest expense, everything else held constant?”

Question 3 “You are using a required rate of return of 12 percent when the company’s weighted average cost of capital (WACC) is 10 percent. Why are you using a required rate of return for the project greater than the company’s WACC?”

Before ending the meeting, Costa tells Hernández: “Last year the company produced a prototype at a cost of €500,000. Now management is having doubts about the market appeal of the product in its current design, and so they are considering delaying the start of the project for a year, until the prototype can be shown to industry experts.”

45. Using Hernández’s initial financial predictions, the estimated annual after-tax operating cash flow is closest to:
 A. €780,000.
 B. €1,000,000.
 C. €1,075,000.

46. Using Hernández’s initial financial predictions, the estimated terminal year after-tax non-operating cash flow is closest to:
 A. €195,000.
 B. €270,000.
 C. €345,000.

47. Hernández’s best response to Costa’s first question is that the project’s NPV would decrease by an amount closest to:
 A. €142,000.
 B. €178,000.
 C. €250,000.

48. Hernández’s best response to Costa’s second question is that:
 A. real tax savings from depreciation and real interest expense would be lower.
 B. real tax savings from depreciation would be higher and real interest expense would be lower.
 C. real tax savings from depreciation would be lower and real interest expense would be higher.

49. Hernández’s best response to Costa’s third question is: “Because:
 A. the project will plot above the security market line.”
 B. the project’s beta is greater than the company’s beta.”
 C. the project’s IRR is greater than the required rate of return.”

50. Should Costa’s end-of-meeting comments result in changes to Hernández’s capital budgeting analysis?
 A. No.
 B. Yes, but only to incorporate the possible delay.
 C. Yes, to incorporate both the possible delay and the cost of producing the prototype.
1. C is correct.
 \[\text{Outlay} = FC\text{Inv} + NW\text{CInv} - Sal_b + T(Sal_b - B_b) \]
 \[\text{Outlay} = (350,000 + 110,000) + 73,000 - 0 + 0 = $553,000 \]
 The installed cost is $350,000 + $110,000 = $460,000, so the annual depreciation is $460,000/5 = $92,000. The annual after-tax operating cash flow for Years 1–5 is
 \[CF = (S - C - D)(1 - T) + D = (265,000 - 83,000 - 92,000) \]
 \[(1 - 0.40) + 92,000 \]
 \[CF = $146,000 \]
 The terminal year after-tax non-operating cash flow in Year 5 is
 \[\text{TNOCF} = Sal_s + NW\text{CInv} - T(Sal_s - B_s) = 85,000 + 73,000 \]
 \[-0.40(85,000 - 0) \]
 \[\text{TNOCF} = $124,000 \]
 The NPV is
 \[\text{NPV} = -533,000 + \sum_{t=1}^{5} \frac{146,000}{1.10^t} + \frac{124,000}{1.10^5} = $97,449 \]

2. B is correct. The additional annual depreciation is $100,000/8 = $12,500. The depreciation tax savings is 0.40 ($12,500) = $5,000. The change in project NPV is
 \[-100,000 + \sum_{t=1}^{5} \frac{5,000}{1.10^t} = -100,000 + 26,675 = -$73,325 \]

3. C is correct. Financing costs are not subtracted from the cash flows for either the NPV or the IRR. The effects of financing costs are captured in the discount rate used.

4. C is correct. The annual depreciation charge is $400,000/10 = $40,000. The after-tax operating cash flow in Year 1 should be
 \[CF = (S - C - D)(1 - T) + D \]
 \[= (240,000 - 110,000 - 40,000)(1 - 0.30) + 40,000 \]
 \[= 63,000 + 40,000 = $103,000 \]

5. C is correct. The terminal year after-tax non-operating cash flow is
 \[\text{TNOCF} = Sal_s + NW\text{CInv} - T(Sal_s - B_s) \]
 \[= 21 + 8 - 0.40(21 - 15) = £26.6 \text{ million} \]

6. C is correct. The investment outlay is
 \[\text{Outlay} = FC\text{Inv} + NW\text{CInv} - Sal_b + T(Sal_b - B_b) \]
 \[= (360,000 + 40,000) + 60,000 - 0 + 0 = $460,000 \]

7. A is correct. Depreciation will be $400,000/5 = $80,000 per year. The annual after-tax operating cash flow is
 \[CF = (S - C - D)(1 - T) + D \]
 \[= [0 - (-140,000) - 80,000](1 - 0.40) + 80,000 = $116,000 \]
8. B is correct. The terminal year non-operating cash flow is
\[\text{TNOCF} = \text{Sal}_t + \text{NWCI} \times T \times (\text{Sal}_t - B)_t \]
\[= 120,000 + 60,000 - 0.40(120,000 - 0) = 132,000 \]

9. C is correct. The value of the depreciation tax savings is increased, and the value of the real after-tax interest expense is also increased. Due to the lower inflation, the value has increased (essentially discounting at a lower rate).

10. A is correct. The statement is correct for sensitivity analysis, but not for scenario analysis (in which several input variables are changed for each scenario).

11. B is correct. Either the least-common multiple of lives or the equivalent annual annuity approach should be used (both use the NPV, not the IRR). Concept 4 is correct as given.

12. C is correct. The problem gives EBIT not EBITDA.
\[\text{CF} = (S - C - D)(1 - T) + D = 50(1 - 0.3) + 50 = \$85 \text{ each year} \]

13. A is correct. Economic income is the cash flow plus the change in value, or economic income is the cash flow minus the economic depreciation (we will use the second expression):
\[V_0 = \frac{85}{1.12} + \frac{85}{1.12^2} = 143.65 \quad V_1 = \frac{85}{1.12} = 75.89 \quad V_2 = 0 \]
\[\text{Economic income (Year 1)} = \text{CF}_1 - (V_0 - V_1) \]
\[= 85 - (143.65 - 75.89) \]
\[= 85 - 67.76 = \$17.24 \]
\[\text{Economic income (Year 2)} = \text{CF}_2 - (V_1 - V_2) \]
\[= 85 - (75.89 - 0) \]
\[= 85 - 75.89 = \$9.11 \]

14. C is correct.
\[\text{EP} = \text{NOPAT} - \$WACC = \text{EBIT}(1 - T) - WACC \times \text{Capital} \]
\[\text{EP (Year 1)} = 50(1 - 0.30) - 0.12(100) = 35 - 12 = \$23 \]
\[\text{EP (Year 2)} = 50(1 - 0.30) - 0.12(50) = 35 - 6 = \$29 \]
\[\text{MVA} = \frac{\text{EP (Year 1)}}{1 + \text{WACC}} + \frac{\text{EP (Year 2)}}{(1 + \text{WACC})^2} = \frac{23}{1.12} + \frac{29}{1.12^2} = \$43.65 \]
(An alternative way to get MVA is simply to find the NPV of the investment project.)

15. B is correct. The way to solve the problem is to calculate the equivalent annual annuity and choose the service life with the lowest annual cost. For a two-year service life, the NPV is
\[\text{NPV} = -40,000 + \frac{-12,000}{1.10^1} + \frac{-15,000}{1.10^2} + \frac{20,000}{1.10^3} = -46,776.86 \]

The EAA (PV = -46,776.86, N = 2, and i = 10%) is -26,952.38.

For a three-year service life, the NPV is
\[\text{NPV} = -40,000 + \frac{-12,000}{1.10^1} + \frac{-15,000}{1.10^2} + \frac{-20,000}{1.10^3} + \frac{17,000}{1.10^4} = -65,559.73 \]
The EAA (PV = -65,559.73, N = 3, and i = 10%) is -26,362.54.

For a four-year service life, the NPV is
NPV = \(-40,000 + \frac{-12,000}{1.10^1} + \frac{-15,000}{1.10^2} + \frac{-20,000}{1.10^3} + \frac{-25,000}{1.10^4} + \frac{12,000}{1.10^5}\) = \(-87,211.26\)

The EAA (PV = \(-87,211.26\), N = 4, and i = 10%) is \(-27,512.61\).

The three-year service life has the lowest annual cost. Laroche should replace the vans every three years.

16. A is correct. To help the selection process, use the profitability index for each project, which shows the total present value per dollar invested.

<table>
<thead>
<tr>
<th>Project</th>
<th>Outlay</th>
<th>PV of Future Cash Flows</th>
<th>NPV</th>
<th>PI</th>
<th>PI Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
<td>44</td>
<td>13</td>
<td>1.419</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>21</td>
<td>6</td>
<td>1.400</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>16.5</td>
<td>4.5</td>
<td>1.375</td>
<td>(tie) 3</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>13</td>
<td>3</td>
<td>1.300</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>11</td>
<td>3</td>
<td>1.375</td>
<td>(tie) 3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>1.333</td>
<td>5</td>
</tr>
</tbody>
</table>

Try to incorporate the high PI projects into the budget using trial and error. These trials include the following:

<table>
<thead>
<tr>
<th>Set of Projects</th>
<th>Total Outlay</th>
<th>Total NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 5</td>
<td>39</td>
<td>16</td>
</tr>
<tr>
<td>2, 3, and 4</td>
<td>37</td>
<td>13.5</td>
</tr>
<tr>
<td>2, 3, and 5</td>
<td>35</td>
<td>13.5</td>
</tr>
<tr>
<td>2, 4, 5, and 6</td>
<td>39</td>
<td>14</td>
</tr>
</tbody>
</table>

Among the sets of projects suggested, the optimal set is the one with the highest NPV, provided its total outlay does not exceed C$40 million. The set consisting of Projects 1 and 5 produces the highest NPV.

17. B is correct.

If demand is “high,” the NPV is

\[NPV = -190 + \sum_{t=1}^{10} \frac{40}{1.10^t} = \text{C$55.783 million} \]

If demand is “low,” the NPV is

\[NPV = -190 + \sum_{t=1}^{10} \frac{20}{1.10^t} = \text{C$67.109 million} \]

The expected NPV is \(0.50(55.783) + 0.50(-67.109) = \text{C$5.663 million} \).

18. B is correct. Assume we are at time = 1. The NPV of the expansion (at time 1) if demand is “high” is

\[NPV = -190 + \sum_{t=1}^{9} \frac{40}{1.10^t} = \text{C$40.361 million} \]

The NPV of the expansion (at time 1) if demand is “low” is

\[NPV = -190 + \sum_{t=1}^{9} \frac{20}{1.10^t} = \text{C$74.820 million} \]
The optimal decision is to expand if demand is “high” and not expand if “low.” Because the expansion option is exercised only when its value is positive, which happens 50 percent of the time, the expected value of the expansion project, at time zero, is

\[
\text{NPV} = \frac{1}{1.10} \times 0.50(40.361) = \text{C$18.346 million}
\]

The total NPV of the initial project and the expansion project is

\[
\text{NPV} = -\text{C$5.663 million} + \text{C$18.346 million} = \text{C$12.683 million}
\]

The optional expansion project, handled optimally, adds sufficient value to make this a positive NPV project.

19. A is correct. Both suggestions are bad. In valuing projects, expected cash flows should be discounted at required rates of return that reflect their risk, not at a risk-free rate that ignores risk. Even though both options cannot be simultaneously exercised, they can both add value. If demand is high, you can exercise the growth option, and if demand is low, you can exercise the abandonment option.

20. B is correct. Both suggestions are good. Choosing projects with high IRRs might cause the company to concentrate on short-term projects that reduce the NPV of the company. Whenever the project risk differs from the company risk, a project-specific required rate of return should be used.

21. C is correct. The after-tax operating cash flow for each of the next three years is $20,000 + $40,000 = $60,000. The book value in three years will be $380,000 (the original cost less three years’ depreciation). So the terminal year after-tax non-operating cash flow will be \(\text{Sal}_3 - 0.30(\text{Sal}_3 - 380,000) \), where \(\text{Sal}_3 \) is the selling price. For a 15 percent return, the PV of future cash flows must equal the investment:

\[
500,000 = \frac{60,000}{1.15} + \frac{60,000}{1.15^2} + \frac{60,000 + \text{Sal}_3 - 0.30(\text{Sal}_3 - 380,000)}{1.15^3}
\]

There are several paths to follow to solve for \(\text{Sal}_3 \),

\[
363,006.5 = \frac{\text{Sal}_3 - 0.30(\text{Sal}_3 - 380,000)}{1.15^3}
\]

\[
\text{Sal}_3 - 0.30(\text{Sal}_3 - 380,000) = 552,087.5
\]

\[
0.70 \text{Sal}_3 = 438,087.5
\]

\[
\text{Sal}_3 = 625,839
\]

22. A is correct. The cash flows (in $ million) for the 5-year gas project are as follows:

<table>
<thead>
<tr>
<th>Time</th>
<th>Outlays</th>
<th>After-Tax Operating Cash Flows</th>
<th>Total After-Tax Cash Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.0</td>
<td>0.0</td>
<td>-6.0</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>4.0</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

Given the required rate of return of 18 percent, the NPV can be calculated with Equation 2 or with a financial calculator:
NPV = $509,579

Similarly, the IRR can be calculated from Equation 3:

\[-6.0 + \frac{-0.5}{1+r} + \frac{4.0}{(1+r)^2} + \frac{4.0}{(1+r)^3} + \frac{-1.0}{(1+r)^4} = 0\]

Solving for r with a financial calculator or spreadsheet software will yield 21.4 percent for the internal rate of return. Note that in spite of the fact that we are dealing with a nonconventional cash flow pattern, the IRR has a unique solution. The NPV profile declines as the required rate of return increases, and the NPV value crosses the x-axis (required rate of return) only one time, at 21.4 percent.

23. C is correct. Because the mutually exclusive projects have unequal lives, the EAA should be used instead of the NPV. The NPV and EAA for the Pinto grinder are correct. For the Bolten grinder, the NPV is

\[\text{NPV} = -125,000 + \sum_{t=1}^{4} \left(\frac{47,000}{1.10^t} + \frac{20,000}{1.10^t} \right) = 37,644\]

To find the Bolten EAA, take the NPV for Bolten and annualize it for four years \((N = 4, PV = 37,644, \text{ and } i = 10\%)\). The Bolten EAA is $11,876. Consequently, the Pinto grinder has the better EAA of $12,341.

24. B is correct. Goldberg’s first comment is wrong. A project should be abandoned in the future only when its abandonment value is more than the discounted value of the remaining cash flows. Goldberg’s second comment is correct.

25. A is correct. The $10 million original cost is a sunk cost and not relevant. The correct investment is today’s opportunity cost, the market value today. The correct discount rate is the project required rate of return.

26. C is correct. Even if they are the same size, a short-term project with a high IRR can have a lower NPV than a longer-term project. The immediate impact on EPS does not capture the full effect of the cash flows over the project’s entire life.

27. A is correct. The annual depreciation charge for Years 1–6 is 1.5/6 = 0.25. Annual after-tax operating cash flows for Years 1–6 are:

\[\text{CF} = (S - C - D)(1 - T) + D\]
\[\text{CF} = [0.10 - (-0.25) - 0.25](1 - 0.40) + 0.25\]
\[\text{CF} = 0.06 + 0.25 = €0.31 \text{ billion}\]

Annual after-tax operating cash flows for Years 7–12 are:

\[\text{CF} = (S - C - D)(1 - T) + D\]
\[\text{CF} = [0.10 - 0.25 - 0](1 - 0.40) + 0\]
\[\text{CF} = €0.21 \text{ billion}\]

28. B is correct.

Outlay at time zero is:

\[\text{Outlay} = \text{FCInv} + \text{NWClInv} - \text{Sal}_0 + T(\text{Sal}_0 - B_0)\]
\[\text{Outlay} = 1.50 + 0.40 - 0 + 0 = €1.90 \text{ billion}\]

Terminal year after-tax non-operating cash flow is

\[\text{TNOCF} = \text{Sal}_{12} + \text{NWClInv} - T(\text{Sal}_{12} - B_{12})\]
\[\text{TNOCF} = 0.50 + 0.40 - 0.40(0.50 - 0) = €0.70 \text{ billion}\]
29. B is correct. The cash flows, computed in the first two questions, are as follows:

<table>
<thead>
<tr>
<th>Time</th>
<th>Cash Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>€1.90 billion</td>
</tr>
<tr>
<td>1–6</td>
<td>€0.31 billion</td>
</tr>
<tr>
<td>7–12</td>
<td>€0.21 billion</td>
</tr>
<tr>
<td>12</td>
<td>€0.70 billion</td>
</tr>
</tbody>
</table>

The NPV is

\[\text{NPV} = -1.90 + \frac{0.31}{1.12} + \frac{0.21}{1.12^2} + \frac{0.70}{1.12^3} \approx -€0.01 \text{ billion} \]

30. A is correct. Accelerated depreciation shifts depreciation expense toward the earlier years so that first-year operating income after taxes will be lower. However, because depreciation is a noncash expense, it must be added back to operating income after taxes in order to obtain after-tax operating cash flow. This process shifts cash flows from later years to earlier years, increasing the NPV.

31. C is correct. The outlay is lower by €0.24, which will decrease the annual depreciation by €0.04 for the first six years. The annual additional taxes from the loss of the depreciation tax shelter are €0.04(0.40) = €0.016. The after-tax cash flows are higher by €0.24 at time zero (because of the smaller investment) and lower by €0.016 for the first six years. The NPV increases by

\[\text{NPV} = +0.24 - \sum_{i=1}^{6} 0.016 \approx €0.17 \text{ billion} \]

32. A is correct. Both of the supervisor's comments are incorrect. Because the Bayonne Pharma project is a conventional project (an outflow followed by inflows), the multiple IRR problem cannot occur. The EAA is preferred over the NPV when dealing with mutually exclusive projects with differing lives, a scenario which is not relevant for this decision. The Bayonne Pharma project is free-standing, so the NPV approach is appropriate.

33. B is correct.

\[
\text{Economic income} = \text{Cash flow} - \text{Economic depreciation} \\
\text{Economic income (Year 1)} = CF_1 - (V_o - V_i) \\
\text{After-tax operating cash flow (CF)} = (S - C - D)(1 - T) + D + \text{After-tax salvage} \\
\text{After-tax salvage} = EBIT(1 - T) + D + \text{After-tax salvage}
\]

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBIT</td>
<td>30,000</td>
<td>40,000</td>
<td>50,000</td>
<td>60,000</td>
<td>40,000</td>
</tr>
<tr>
<td>EBIT(1 – 0.40)</td>
<td>18,000</td>
<td>24,000</td>
<td>30,000</td>
<td>36,000</td>
<td>24,000</td>
</tr>
<tr>
<td>D</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
</tr>
<tr>
<td>After-tax salvage</td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>58,000</td>
<td>64,000</td>
<td>70,000</td>
<td>76,000</td>
<td>76,000</td>
</tr>
</tbody>
</table>

\[CF_1 = 58,000 \]

\[
\begin{align*}
V_o &= \frac{58,000}{1.12} + \frac{64,000}{1.12^2} + \frac{70,000}{1.12^3} + \frac{76,000}{1.12^4} + \frac{76,000}{1.12^5} = 244,054.55 \\
V_i &= \frac{64,000}{1.12} + \frac{70,000}{1.12^2} + \frac{76,000}{1.12^3} + \frac{76,000}{1.12^4} = 215,341.10
\end{align*}
\]
Economic income (Year 1) = 58,000 – (244,054.55 – 215,341.10)
Economic income (Year 1) = 58,000 – 28,713.45 = 29,286.55

34. B is correct.
 EP = NOPAT – $WACC
 NOPAT = EBIT (1 – Tax rate) = 30,000(1 – 0.40) = 18,000
 $WACC = WACC × Capital = 0.12(200,000) = 24,000
 EP = 18,000 – 24,000 = –6,000

35. A is correct.
 Ri = NI – rBi
 Ri = 11,899 – 0.19(77,973) = 11,899 – 14,815 = –2,916

36. C is correct. The value of equity is the PV of cash distributions to equity:
 \[PV = \frac{37,542}{1.19} + \frac{39,536}{1.19^2} + \frac{41,201}{1.19^3} + \frac{42,496}{1.19^4} + \frac{40,375}{1.19^5} = 122,027 \]

37. B is correct. Robinson’s first statement is wrong. The value of an asset is the present value of its future cash flows. Economic income each year is the cash flow minus economic depreciation, EI = CF – ED. For this company, which is declining in value each year, the economic depreciation is positive and EI is less than CF each year. Consequently, the present value of economic income (EI) will be less than the present value of future cash flows (CF). Robinson’s second statement is correct.

38. B is correct. Market value added is equal to the present value of EP. Its value, however, is not equal to the book value of equity. The calculation of MVA is shown below:

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5*</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBIT</td>
<td>30,000</td>
<td>40,000</td>
<td>50,000</td>
<td>60,000</td>
<td>60,000</td>
</tr>
<tr>
<td>NOPAT = EBIT(1 – 0.40)</td>
<td>18,000</td>
<td>24,000</td>
<td>30,000</td>
<td>36,000</td>
<td>36,000</td>
</tr>
<tr>
<td>Capital (beginning)</td>
<td>200,000</td>
<td>160,000</td>
<td>120,000</td>
<td>80,000</td>
<td>40,000</td>
</tr>
<tr>
<td>$WACC = 0.12 × Capital</td>
<td>24,000</td>
<td>19,200</td>
<td>14,400</td>
<td>9,600</td>
<td>4,800</td>
</tr>
<tr>
<td>EP = NOPAT – $WACC</td>
<td>–6,000</td>
<td>4,800</td>
<td>15,600</td>
<td>26,400</td>
<td>31,200</td>
</tr>
</tbody>
</table>

*The fifth year figures include the effects of salvage. Before-tax salvage of 20,000 (= 12,000/(1 – 0.40)) is added to EBIT. The after-tax salvage of 12,000 is included in NOPAT.

\[MVA = \frac{–6,000}{1.12} + \frac{4,800}{1.12^2} + \frac{15,600}{1.12^3} + \frac{26,400}{1.12^4} + \frac{31,200}{1.12^5} = 44,054.55 \]

39. B is correct. The weighted average cost of capital for Embelesado is calculated as:

\[WACC = \left(\text{Market weight of debt} \times \text{After-tax cost of debt} \right) + \left(\text{Market weight of equity} \times \text{Cost of equity} \right) \]

\[WACC = w_d k_d (1 – T) + w_e k_e = 0.231(8.0%)(1 – 0.35) + 0.769(13.0%) = 1.201% + 9.997% \]

\[WACC = 11.198% = 11.20% \]

40. C is correct. The terminal year cash flow is:

Revenues	€60.00
Less operating costs	25.00
Less depreciation expenses	20.00
= Taxable Income 15.00
Less taxes @ 35% (5.25)
= Net Income 9.75
Plus depreciation expenses 20.00
= After-tax operating CF 29.75
+ Recover WC 10.00
+ Ending market value 5.00
Less taxes on sale proceeds @ 35% (1.75)*
= Terminal Year CF €43.00

*The tax on the sale proceeds is 35% times the gain of €5.00 = €1.75

41. C is correct. This is the IRR for a project with the following cash flows:
€70,000 in Year 0, €29,750 at Years 1 and 2, and €43,000 at Year 3.

<table>
<thead>
<tr>
<th>Years 1 & 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>€60,000</td>
</tr>
<tr>
<td>Less operating costs</td>
<td>25,000</td>
</tr>
<tr>
<td>Less depreciation expense</td>
<td>20,000</td>
</tr>
<tr>
<td>= Taxable income</td>
<td>15,000</td>
</tr>
<tr>
<td>Less taxes @ 35%</td>
<td>5,250</td>
</tr>
<tr>
<td>= Net income</td>
<td>9,750</td>
</tr>
<tr>
<td>Plus depreciation expense</td>
<td>20,000</td>
</tr>
<tr>
<td>= After-tax operating CF</td>
<td>€29,750</td>
</tr>
<tr>
<td>+ Recover WC</td>
<td>10,000</td>
</tr>
<tr>
<td>+ Salvage value</td>
<td>5,000</td>
</tr>
<tr>
<td>– Less taxes on sal. value @ 35%</td>
<td>1,750</td>
</tr>
<tr>
<td>= Terminal year CF</td>
<td>€43,000</td>
</tr>
</tbody>
</table>

The IRR of 20.29% is readily found with a financial calculator:

\[70,000 = \frac{29,750}{(1 + IRR)^1} + \frac{29,750}{(1 + IRR)^2} + \frac{43,000}{(1 + IRR)^3} \]

You can also “reverse-engineer” the answer using the choices given in the question.

42. A is correct. Projects with shorter paybacks do not necessarily have a positive NPV. For mutually exclusive projects, the NPV and IRR criteria will not necessarily provide the same project ranking.

43. B is correct. Additional depreciation in earlier time periods will shield Embelesado from additional taxes, thus increasing the net cash flows in earlier years of the project and increasing the project’s NPV. However, this also means that there will be less depreciation expense in the terminal year of the project, thus shielding less income and increasing taxes. Terminal-year net cash flow will likely decrease.

44. A is correct. The entire €10 million will be subject to taxes, resulting in an additional €6.5 million after taxes. As indicated below, when discounted at 13 percent for three years, this has a present value of €4.5048 (rounded to €4.50 million):
\[
PV = \frac{10.0(1 - 0.35)}{(1.13)^3} = \frac{6.50}{(1.13)^3} = 4.50
\]

45. B is correct. Using equation \(CF = (S - C) \times (1 - T) + TD \), the numbers are:

- Sales = \(P \times Q = 600 \times 3,000 = \text{€}1,800,000 \)
- Costs = \(\text{Variable cost} \times Q + \text{Fixed costs} = (125 \times 3,000) + \text{€}125,000 \)
 \(= 500,000 \)
- Depreciation expense = \(\text{€}2,750,000 \div 5 = \text{€}550,000 \)
- \(CF = (1,800,000 - 500,000) \times (1 - 0.40) + (550,000 \times 0.40) \)
 \(= 780,000 + 220,000 = \text{€}1,000,000 \)

46. C is correct. The terminal year non-operating cash flow includes the after-tax salvage value and the recovery of net working capital = \(\text{€}450,000 \times (1 - 0.40) + \text{€}75,000 = \text{€}345,000 \).

(Note: Terminal year recovery of net working capital investment = Decrease in current assets – Decrease in current liabilities = \(\text{€}200,000 - \text{€}125,000 = \text{€}75,000 \).)

47. B is correct. Calculations: The outlay is higher by \(\text{€}250,000 \), which will increase annual depreciation by \(\text{€}50,000 \) over the 5-year period. The annual additional tax savings from the higher depreciation expense is: \(50,000 \times (0.40) = 20,000 \).

Therefore NPV should decrease by:

\[
NPV = -250,000 + \sum_{t=1}^{5} \frac{20,000}{1.12^t} = -250,000 + 72,095.524 = -177,904
\]

48. A is correct. Higher than expected inflation increases the corporation’s real taxes because it reduces the value of the depreciation tax shelter; it also decreases the real interest expense because payments to bondholders in real terms are lower than expected.

49. B is correct. When a project is more or less risky than the company, project beta and not WACC should be used to establish the required rate of return for the capital project. In this case, the required rate of return is greater than the WACC, which means the project beta (risk) is greater than the company’s beta.

50. B is correct. Timing options (e.g., delay investing) should be included in the NPV analysis, but sunk costs should not.